
Writing and Using Program Specifications
Steven P. Reiss

Department of Computer Science, Brown University, Providence, RI. 02912, USA

(401)-863-7641

spr@cs.brown.edu
ABSTRACT
While there are a growing number of tools that demonstrate
interesting and important uses of program specifications in
software development, these tools are not widely applicable to
today’s software. A major problem is that it is difficult or
impossible to write program specifications for most components in
modern applications. In this white paper we look at the reasons for
this and then propose possible research directions that can address
the problem.

Categories and Subject Descriptors
D2.1 [Requirements/Specifications]: Tools; D2.4 [Soft-
ware/Program Verification]: Formal methods, Validation..

General Terms
Design, Reliability, Security, Verification.

Keywords
.Software specification; Testing; Specification languages; Pro-
gramming tools.

1. MOTIVATION
Program specifications have a wide variety of uses in software
engineering. They have been used as a basis for writing pro-
grams [17]. They are essential for proving program correctness
and model checking [6,30]. They are used for program under-
standing, description, and visualization. They are used for
finding potential system problems [2] and have been proposed
for automated debugging [27,32]. They are the basis for work
in automated test case generation [22]. They are used record-
ing requirements, specifications, and agile scenarios. More-
over, the uses of such specifications continue to grow as
researchers find them more available and are able to develop
new tools and techniques based on them such as code search
[24], automatic connection of web services [9,23], model
driven development [10,26], and automatic code generation
[19].

We have attempted to use program specifications for three par-
ticular problems in the past few years. The first involves using
semantics as the basis for selecting, binding, and using exter-
nal components such as web services [23]. Specifications here
defined what the program depended upon from the external
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.
component and let the system recheck the external components
as they evolved to ensure they still met the original program’s
needs. The second involved semantic-based code search [24].
Here we let programmers define the semantics of what they
want to search for and we attempt to find and transform pub-
licly available code to meet their specifications. The third
involved providing visualizations of a complex system in
terms of the system, for example showing the threads, tasks
and transactions involved in a complex server [25]. Here the
problem involves building the program model the user wants
to visualize and mapping this model to the actual code.

The problem we have come up against in each of these cases is
that while there have been a variety of techniques used for pro-
gram specification, none is suitable for describing much of
what we wanted to describe. Today’s specification languages
and techniques are not appropriate for today’s applications.

2. BACKGROUND
A wide variety of different types of formal specifications have
been proposed over the years. Much early work was done with
executable specifications using formalisms such as VDL [29].
These were difficult to use both for formal program checking,
often were as difficult to write as the actual program, and were
difficult to verify. Formal, mathematical models have been
more common, with frameworks such as Larch [12] and Z [31]
as well as successors such as Alloy [18] being widely used.
These are easier to use for proving program correctness, but
turn out to be difficult for programmers to write and difficult
to determine if they actually say what the writer intended.
Another approach that is often taken is to use a domain-spe-
cific language. Here much of the complexity of the specifica-
tions is embedded in the language rather than in the program.
Programs are relatively simple and hence much easier to ver-
ify. A classic example of this is the use of SQL for accessing
databases. This approach, however, is limited to well-defined
and understood domains.

Other approaches attempt to provide partial specifications of
programs. Here the specifications concentrate on particular
aspects of correctness or program behavior. To accommodate
the movement toward software model checking, a variety of
finite-state formal models have been developed [1,7,8,11,14-
16]. These are often more intuitive and can be easier to write.
They are typically used for proving relatively simple proper-
ties of programs, but have been used for describing complex
systems [11]. The most common use of formal specifications
today is in the form of contracts, generally preconditions and
postconditions, either as part of a programming language as in
Eiffel [21] or Spec# [3], or as an add-on as with JML [4].
These are useful for doing local validation, but do not provide
comprehensive program semantics.

Because formal specifications have proven difficult to write
correctly, researchers have tried other approaches. Informal
specifications, for example in English or even UML are the
most widely used. They are easy to write and generally can be

understood by most programmers. However, they are often
ambiguous and incomplete and are rarely suitable for use in
proving program properties or by other tools.

A compromise that forms the basis for agile development is the
use of test cases. Test cases are inherently easier for the pro-
grammer to write and understand since they use the same lan-
guage and constructs as the program itself. There are, however,
incomplete in that they do not specify everything about the
program and even what they specify is inherently ambiguous.
This is often not a problem as they can demonstrate “sufficient
correctness” to the programmer [28]. Moreover, experience
has shown that a relatively small number of test cases are often
enough to validate a program. This follows from the fact that
while there are many possible programs that could satisfy the
test cases, the one that is simplest and most likely is generally
going to be the one that was intended by the programmer.
Moreover, the test cases that are specified generally reflect
both the common cases and the unusual cases foreseen by the
programmer.

3. DIFFICULTIES
To take advantage of the growing set of uses for software spec-
ifications, one needs to be able to create specifications for both
complete applications and for the various components that
comprise today’s systems. However, both formal specifica-
tions and formal test cases are difficult or impossible to write
for most modern programs or program components. This
occurs in a variety of ways.

One case arises when the user’s specification is purposefully
imprecise. As a simple example, consider a routine to convert
an integer to a roman numeral. The user might want to specify
precisely what should happen for numbers between 1 and
5,000. However, for values that are too small or too large, they
would be willing to accept a variety of “nice” errors (e.g. dif-
ferent exceptions thrown), or reasonable default values (e.g.
returning the arabic representation). However, they do not
want the program to abort, go into an infinite loop, or return
something meaningless or inappropriate.

A second case occurs when the result itself might be imprecise.
Consider a routine that takes as input a news article and returns
a probability vector of what countries the article is about. For
most articles, a wide variety of answers are possible and cor-
rect under some reasonable interpretation of “about”. Attempt-
ing to provide precise specifications or even test cases here is
quite difficult.

Another common case for today’s applications occurs when
the application or component involves a visual result. For
example, this occurs when the component represents a user
interface widget or when the result is supposed to be a visual-
ization of some sort. Current specification languages and most
testing systems do not allow the specification of the user inter-
face or graphical results. This is further complicated by the
fact that there is considerable flexibility in what might be con-
sidered an acceptable user interface or graphical representa-
tion, and by the fact that correctness here might need to be
measured in terms of user interactions and satisfaction.

A fourth case arises when the correct behavior of the compo-
nent in questions depends on intricate behaviors of other com-
ponents that may or may not be user-written code. For
example, understanding and specifying the behavior of an edit
operation in a Java swing framework depends on the imple-
mentation of the underlying document, elements, and views as

well as the various document and undoable edit callbacks, the
handlers have been registered with those callbacks dynami-
cally, and the order of that registration.

Other cases arise because of complex behaviors. There are
cases when the task to be done is effectively programmatic and
thus a program or at least an abstract program is the best
description of what should be done. An example here might be
a web service that provides the distance between an address
and a zip code. In other cases, the specification can get quite
tricky to write while a corresponding program might be much
simpler. Consider checking a robots.txt entry. The programs
that do this are generally under one page of code; the specifica-
tion is two pages of ambiguous but dense English text.

While these examples might seem unusual, the cases they point
out are not. Most parts of most modern applications fall into
one of these categories and are thus difficult or impossible to
semantically specify.

4. RESEARCH
While there are a growing set of tools and applications for
machine-readable specifications, the applicability of these
applications is severely limited by the impracticality of devel-
oping appropriate specifications to describe modern systems.
We believe that addressing these issues is and will continue to
be a fruitful area for future software engineering research.

There are several directions that such research could take. One
approach that might be tractable for tools that involve interac-
tion, for example code search and semantic checking, is to let
the user be part of the specification. While it might be impossi-
ble to characterize all possible outcomes of giving zero to a
roman numeral routine, it is relatively easy for a user to tell if a
particular result is appropriate or not. Similarly, a user would
be able to tell relatively quickly if a widget or visualization
looks correct or is obviously wrong. We have started to look at
this both for code search and for dynamic visualization. For
example, our code search front end lets the user judge whether
test cases should be considered failing after they see either the
textually or graphically output.

Another possible research direction involves deriving the spec-
ifications from the system. Initial work has been done here by
looking at what is considered “good” code, for example estab-
lished libraries, and using static or dynamic analysis to find the
usage patterns for the functions in a library or the methods of a
class [5]. These patterns provide a model or partial semantics
specification describing how applications should behave.
These specifications can then be checked either statically using
techniques such as model checking or dynamically with appro-
priate code instrumentation.

These two approaches can also be combined. For example, our
Dyview visualization system uses a combination of dynamic
and static analysis to build a model of the behavior of threads,
transactions and tasks in a user application [25]. However, in
order to do so it needs user input to determine what are the
transactions and what tasks are appropriate for understanding
and hence for the visualization.

Beyond these simple approaches, we believe there is a large
opportunity for new research. One approach is to develop new
formalisms for specifications. For example, there have been
efforts at extending finite state models with stack-based com-
ponents to provide a more powerful framework both for speci-
fication and checking. Alternatively, one could look at
probabilistic semantic specifications or test cases where the

results are evaluated probabilisticly. This is a step up from ran-
domized testing [13], and is used in restricted domains such as
cryptography [20]. Another direction might involve combining
existing models in different ways, for example, allowing
model-checking specifications as contracts.

A related research direction would involve defining specifica-
tions for components with graphical results. This could involve
incorporating user interface expertise, building user interface
models based on usage (e.g. looking at error rates), graph
grammars, programmer feedback, and other techniques.

Another possibility would be use the program itself as the
semantics and then have the user validate that these semantics
are correct. This implies converting the actual program into a
higher-level model that the user can then understand. This
could involve providing a clear view of the program’s actions
for particular test cases. It could also involve using automatic
test case generation to build a suite of test cases and then hav-
ing the programmer validate that the outputs for the test cases
are what one would expect.

This could also be done only partially. For example, one could
use a combination of dynamic and static analysis to build a
model of the program automatically and excluding the compo-
nent of interest. This semantics of the component could then be
described relative to this model.

None of these approaches solves all the problems, nor do we
believe that these ideas cover all possibilities. However, they
do provide a feel for what is possible and what is needed.

5. IMPACT
The availability of more program specifications (including test
cases) and the ability of the programmer to either write these in
a simple fashion or to have the automatically generated, will
also lead to research into new research directions on how these
specifications can be used to improve the programming pro-
cess.

Many things are possible here. For example, if the specifica-
tions were test cases, could these be used by the compiler to do
additional checking or better code generation. Specifications
could be used to build models and then show visualizations
that offer an understanding of the actual behavior of a complex
program. Model-based specifications can be used to answer
what-if questions, for example, predicting the behavior of a
system if the number of threads or the number of cores avail-
able to it were to change. Finally, if we can write the specifica-
tions, why not have the computer write the code, either directly
using what is considered automatic programming, or using
new ideas such as extracting the functionality by doing genetic
adaptation of code gleamed from the repository of over a bil-
lion lines of open source code.

6. REFERENCES
1. Godmar Back and Dawson Engler, “MJ - a system for

constructing bug-finding analyses for Java,” Stanford
University Computer Systems Laboratory, (2003).

2. Thomas Ball and Sriram K. Rajamani, “The SLAM project:
debugging system software via static analysis,” Proc. POPL
2002, (2002).

3. Mike Barnett, Rustan M. Leino, and Wolfram Schulte, “The
spec# programming language: an overview,” CASSIS 2004,
(2004).

4. Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe
Kiniry, Gary T. Leavens, K. Rustan, M. Leino, and Erik Poll,
“An overview of JML tools and applications,” Intl. Journal
on Software Tools for Technology Transfer Vol. 7(3) pp. 212-
232 (June 2005).

5. Jacob Burnim and Koushik Sen, “DETERMIN: inferring likely
deterministic specifications of multithreaded programs.,”
ICSE 2010, pp. 415-424 (May 2010).

6. Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled,
Model Checking, The MIT Press (1999).

7. J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil, “FLAVERS:
A finite state verification technique for software systems,”
IBM Systems Journal Vol. 41(1) pp. 140-165 (2002).

8. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett,
“Patterns in property specifications for finite-state
verification,” Proc. ICSE 99, pp. 411-420 (1999).

9. Naeem Esfahani and Sam Malek, “Social computing networks:
a new paradigm for engineering self-adaptive pervasive
software systems,” ICSE 2010, pp. 159-162 (emscnnp).

10. Object Management Group, “Model driven architecture
(MDA),” Document ormsc/2001-07-01, (July 2001).

11. Yuri Gurevich, Benjamin Rossman, and Wolfram Shulte,
“Semantic Essence of AsmL,” Microsoft Research Technical
Report MSR-TR-2004-27, (2004).

12. J. V. Guttag, J. J. Horning, and J. M. Wing, “The Larch family
of specification languages,” IEEE Software Vol. 2(5) pp. 24-
36 (March 1985).

13. Dick Hamlet, “When only random testing will do,” Intl. Symp.
on Software Testing and Analysis, pp. 1-9 (2006).

14. Klaus Havelund and Jens Ulrik Skakkebaek, “Applying model
checking in Java verification,” Proc. 5th and 6th SPIN
Workshop, Lecture Notes in Computer Science Vol. 1680 pp.
216-231 Springer-Verlag, (1999).

15. Klaus Havelund and Thomas Pressburger, “Model checking
Java programs using Java Pathfinder,” Intl Journal on
Software Tools for Technology Transfer Vol. 2(4)(April
2000).

16. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Gregoire Sutre, “Lazy abstraction,” Proc. POPL ’02, pp. 58-
70 (2002).

17. C. A. R. Hoare, “Proof of a program: FIND,” CACM Vol.
14(1) pp. 39-45 (January 1971).

18. Daniel Jackson, “Alloy: A lightweight object modeling
notation,” ACM Trans. Software Engineering and
Methodology Vol. 11(2) pp. 256-290 (April 2002).

19. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish
Tiwari, “Oracle- guided component-based program
synthesis,” ICSE 2010, pp. 215-224 (May 2010).

20. Catherine Meadows, “Formal methods for crytographic
protocol analysis: emerging ideas and trends,” IEEE J. on
Selected Areas in Communications Vol. 21(1) pp. 44-54
(January 2003).

21. Bertrand Meyer, “” “Applying ”design by contract“,” IEEE
Computer Vol. 25(10) pp. 40-51 (October 1992).

22. Sun Microsystems, ADL Design Specification, Version 0.1,
Sun Microsystems (1993).

23. Steven P. Reiss, “A component model for Internet-scale
applications,” Proc. ASE 2005, pp. 34-43 (November 2005).

24. Steven P. Reiss, “Semantics-based code search,” ICSE 2009,
pp. 243-253 (May 2009).

25. Steven P. Reiss and Suman Karumuri, “Visualizing threads,
transactions, and tasks,” PASTE 2010, (June 2010).

26. Douglas C. Schmidt, “Model-driven engineering,” IEEE
Computer Vol. 39(2) pp. 25-31 (February 2006).

27. Ehud Y. Shapiro, Algorithmic Program Debugging, MIT
Press (1983).

28. Mary Shaw, “Sufficient correctness and homeostasis in open
resource conditions: how much can you trush your software
system,” Proc. 4th Intl. Software Architecture Workshop, pp.
46-50 (2000).

29. Peter Wegner, “The Vienna definition language,” ACM
Computing Surveys Vol. 4(1) pp. 5-63 (March 1972).

30. Jeannette M. Wing and Mandana Vaziri-Farahani, “Model
checking software systems: a case study,” Software
Engineering Notes Vol. 20(4) pp. 128-139 (October 1995).

31. J. B. Wordsworth, Software Development with Z, Addison-
Wesley (1992).

32. Cernal Yilmaz and Clay Williams, “An automated model-
based debugging approach,” Proc. ASE’07, pp. 174-183
(November 2007).

	Abstract
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Motivation
	2. Background
	3. Difficulties
	4. Research
	5. Impact
	6. References

