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Abstract—Robots inevitably fail, often without the ability to
recover autonomously. A human partner can help a robot recover
from a failure, but it is challenging even for a willing and
motivated helper to determine what actions will effectively aid
the robot. To address this problem, we demonstrate an approach
for enabling a robot to communicate its need for specific help to
a human partner using language. Our approach automatically
detects failures, then generates targeted spoken-language request
such as “Hand me the white table leg.” Once the human partner
has repaired the failure condition, the system resumes full auton-
omy. We present a novel algorithm for generating help requests
by emulating the human’s ability to interpret a command, based
on the Generalized Grounding Graph framework. We report
preliminary results for an early version of our algorithm.

I. INTRODUCTION

We envision household robots capable of carrying out a
variety of complex tasks autonomously, such as folding laun-
dry [21], cooking dinner [1], and assembling furniture [18].
However, when robots execute these tasks autonomously,
failures often occur due to perceptual errors, manipulation
failures, and other issues. A key aim of current research
is addressing these types of failures but eliminating them
completely remains an elusive goal.

We propose an alternative approach to recovering from the
inevitable failures which occur when robots execute complex
tasks in real-world environments: when the robot encounters
failure, it verbally asks for help from a human partner. After
receiving help, it continues executing the task autonomously.
As a test domain, we focus on the problem of assembling
IKEA furniture, as shown in Fig. 1. We assume the robot has
a pre-existing model of the piece to be assembled and a plan
for assembling it. However, due to perceptual and mechanical
failures, parts of the plan might be difficult or impossible to
carry out. Although the human nominally directs the robot’s
activity, they have delegated a task to the robot and focused
their attention elsewhere. Consequently, a vague request such
as “Help me” does not provide enough context for the human
to effectively aid the robot. Instead, it is desirable for the
robot to verbally express its need with a targeted request such
as “Please hand me the white table leg.” The goal of our
algorithm is to formulate the pithiest unambiguous natural
language request so that a human not otherwise cognitively
engaged can render appropriate aid.

In order to implement this strategy, the robot must first be
able to detect its own failures and identify a strategy to recover
from them. Next, it must communicate this strategy to the
human partner. And finally, it must detect when the human has

1The first two authors contributed equally to this paper.

Please hand me the 
white table leg near me.

Hand me
the white table
leg near me.

Fig. 1. When a robot needs human help with an assembly task, effective
communication requires intuitive formulation of the request. Simple canned
expressions like “Help me” or “Hand me white leg 2.” fail to exploit available
information that could disambiguate the request. Our aim is to enable the robot
to effectively communicate context-appropriate relations, such as “Hand me
the white table leg near me.”

successfully or unsuccessfully provided help to the robot, in
order to plan its next actions. Our algorithm generates natural
language requests for help by searching for an utterance
that maximizes the probability of a correspondence between
the words in the language and the action the robot desires
the human to perform, making use of the G3 (Generalized
Grounding Graph) model of a person’s language understanding
faculty [33]. Our hypothesis is that by modeling and bounding
the probability of a human misinterpreting the request, the
robot is able to generate targeted requests that work better
than baselines involving either generic requests (e.g., “Help
me”) or template-based non-context-specific requests. We are
able to compute the probability of correspondence by inverting
our previous work [33], which used language to generate a
graphical model that allowed us to infer the semantic meaning
of the language in the robot’s frame of reference. In the present
work, the robot searches for language that corresponds to the
action it wants the person to take. This paper presents the
approach and preliminary results, but our research is ongoing,
and we have not completed our experiments.

II. RELATED WORK

In a well known-paper, Grice [13] introduces a theory of dia-
log expressed as maxims which participants in a conversational
exchange follow in order to cooperate with each other. Clark
[5] emphasizes common ground and joint activity between two
participants in a dialog, which enable a conversational dyad
to understand each other. Our approach aims to achieve these
goals by enabling a robot to generate concise, unambiguous



Please
hand me the

white table leg
near me.

OK.

(a) (b) (c)

Fig. 2. During autonomous assembly, circumstances occasionally arise that the robot cannot correct. When the arrangement of parts does not permit the
robot to reach its target, it may request human assistance (a). After this brief human intervention (b), autonomous operation resumes (c).

natural language requests by semantically modeling the lis-
tener’s ability to understand them.

Traditional methods for generating language rely on a
dedicated language-generation system that is not integrated
with a language-understanding framework [17, 25]. Striegnitz
et al. [31] give an overview of the GIVE challenge, a language
generation task in which systems automatically generate in-
structions for humans moving through virtual environments;
one typical system is described by Garoufi and Koller [11].
These approaches typically consist of a sentence planner
combined with a surface realizer to guide decision making
of what to say, but contain no principled model of how an
instruction-follower would comprehend the instruction. Our
approach differs in that it inverts a module for language
understanding in a principled way.

Some previous work has approached the generation problem
by inverting a semantics model. Golland et al. [12] use a
game-theoretic approach combined with a semantics model to
generate referring expressions. Roy [28] presents an algorithm
for generating referring expressions in a two-dimensional
geometric scene which uses an ambiguity score to assess
the quality of candidate descriptions in a two-dimensional
domain. Chen et al. [4] describe a system that learns to gen-
erate language describing robot soccer games. Our algorithm,
in contrast, generates complete commands rather than noun
phrases and asks the listener to follow a complex command
rather than simply selecting an object.

Our approach views the language generation problem as
inverse language understanding, building on the G3 approach
described by Tellex et al. [33]. A large body of work focuses
on language understanding for robots [9, 19, 20, 22]. The G3

framework particularly lends itself to inversion because it is a
probabilistic framework which explicitly models the mapping
between words in language and aspects of the external world,
so metrics based on entropy may be used to assess the quality
of generated utterances.

Robotic assembly of complex objects has been explored in
isolation, including planning [2, 6, 15, 26] and control [3,
16, 24, 27]. Complete assembly systems have largely been
targeted at the space domain due to the adverse conditions
for supporting human life in orbit and on other planets [7,
8, 24, 29, 30, 32]. Such approaches can assume that human
partners, if present, are highly trained astronauts. Less work

has targeted assembly tasks for untrained users, such as in the
home environment.

Cooperative human-robot activities, including assembly,
have been broadly studied. Ogata and Takahashi [23] explore
a visual virtual interface enabling a human to teach a robot to
perform an action. Wilson [34] explores automated planning
with human help. Systems presented by Simmons et al. [29]
and Dorais et al. [8] perform assembly in the space domain
with human intervention for failure recovery. The architectures
permit various granularities of human intervention through a
sliding autonomy framework. A failure triggers the replay of
video of the events preceding failure, from which the human
must glean situational awareness. In contrast, our approach
leverages natural language to convey to the user exactly how
the problem should be resolved.

Fong et al. [10] explore an interface for robot-assisted tele-
operation with robot-initiated dialog to help avoid or resolve
various failures. Dialog is implemented through a text-based
modal interface on a handheld device. Similar to our approach,
the authors treat the human as a resource for the robot,
interfaced through natural language. However, Fong et al. use
fixed templates to convey information, whereas our focus is on
maximizing comprehension and situational awareness through
flexible language choice.

III. ASSEMBLING FURNITURE WITH ROBOTS

Knepper et al. [18] describe the complete system for fur-
niture assembly used in this paper. This framework consists
of a team of youBots which collaborated to autonomously
assemble a piece of furniture. The robotic team often succeeds
but occasionally encounters failures which require human
intervention. In this paper we explore strategies for enabling
a human to render assistance to the robot team.

This section gives an overview of the assembly system
and describes how we have augmented it with the ability
to recognize a failure condition and generate a symbolic
(non-linguistic) solution to the problem that has occurred.
This symbolic request will form the input to the language
generation system. Since perception is not a focus of this
paper, we employ a VICON motion capture system to track
the location of each participating robot, human and furniture
part throughout the course of the assembly process.

A team of robots receives assembly instructions encoded
in ABPL (A Better Planning Language) [18]. The ABPL



symbolic planner is implemented as a wrapper around Fast-
Forward [14], an off-the-shelf symbolic planning package. In
this paper, we focus on the example of the IKEA Lack table,
which comprises one table top and four legs. The hand-coded
ABPL specification for its assembly involves twelve actions.
The symbolic planner requires two seconds to return a solution
of 48 steps for two robots using both their native grippers and
a custom screwing tool to assemble and reorient the table.

Although the robots are capable of assembling the ta-
ble in parallel, we employ a centralized assembly exec-
utive in this work to avoid the situation in which sev-
eral robots require human assistance at the same time.
The centralized executive takes as input the symbolic plan
and executes each plan step in sequence. Each symbolic
action corresponds to a manipulation or perception ac-
tion to be performed by one or two robots. Examples in-
clude locate_part, navigate_to_part, pick_up_leg,
hand_off_table_leg, and attach_table_leg. Execution
of the 48-step plan takes approximately ten minutes when no
failures occur.

A. Detecting Failures
To detect and address failures, the system tracks and com-

pares the states of the symbolic plan and the external world.
A robot can recognize that a failure has occurred when the
internal state of the assembly executive, qs, does not match
the state of the external world, qw. The fluent state vectors qw
and qs are binary vectors where each entry corresponds to a
predicate calculus expression. Following the execution of each
action on the robot, the system updates the internal state qs
according to the post-conditions of that action. Thus, qs can
only change with the knowledge of the assembly executive.

The external symbolic state, qw, is computed from the
tracked pose of every rigid body known to the VICON system,
including each furniture part, each robot chassis and hand,
and each human. The VICON state, xw ∈ Rn, is continuous
and high-dimensional. A function f maps xw onto the lower-
dimensional vector qw, with the same interpretation as qs.
The function f is fast to evaluate and is suitable for frequent
execution during the course of assembly. At present, it is
coded by hand based on the furniture assembly context.
Automatically learning f remains a subject for future work.
The external state, qw, may change independently of any
deliberate robot action, such as by human intervention or as
an unintended side-effect of some robot action.

The two fluent vectors, qs and qw, can each be used to
verify the truth of pre- or post-conditions at any time. During
the course of executing a symbolic plan, the symbolic planner
guarantees that any such condition is trivially consistent with
qs. Prior to executing each action, the assembly executive
verifies the action’s preconditions against qw. Likewise, fol-
lowing each action, the post-conditions are similarly verified.
Any unsatisfied condition indicates a failure and triggers the
assembly executive to pause the assembly process and initiate
error recovery.

B. Recovery Strategy
When a failure occurs, its description takes the form of an

unsatisfied condition. Example failure conditions include

• ¬visible(table leg 2),
• ¬arm holding(robot0, table leg 2), and
• ¬attached to(table leg 2, white table top hole1).
Such unsatisfied expressions do not inherently contain a

remedy. We regard the source of initiative for communicating
the problem and generating an appropriate remedy as an exper-
imental variable in this work. Various approaches considered
in this paper span a spectrum of initiative, aiming for a robot
that can work autonomously some of the time, but rely on
human help when it encounters failure.

.
One solution, which places all initiative on the robot, is

to assign qs = qw and rerun the symbolic planner from this
new initial state. The likely outcome is that the symbolic
planner will retry the failed action. We refer to this method as
Approach 0. This solution is not complete since some failures
could result in infinite retry loops.

A second approach is for the robot to ask the human to
address the problem. The robot first computes actions that,
if taken, would resolve the failure and enable it to continue
assembling the piece autonomously. The system computes
these actions by processing failed conditions. At present, a
single symbolic action is hard-coded for each commonly-
observed failure. Remedy requests are expressed in a simple
symbolic language. This symbolic request, a, specifies the
action that the robot would like the person to take to help
it recover from failures. The symbolic language consists of
the following types of requests:

• align_with_hole(leg, table)

• give_part(robot, leg)

• pick_up(leg)

• put_near(leg)

• locate_part(leg)

• screw_in_table_leg(leg, hole)

However these symbolic forms are not appropriate for
speaking to an untrained user. In the following section, we
explore a series of approaches that take as input the symbolic
request for help and generate a language expression asking a
human for assistance.

IV. ASKING FOR HELP FROM A HUMAN PARTNER

Our aim is to find the words Λ which effectively commu-
nicate the robot’s desired action a to an untrained human.
Our framework generates a request for help by inverting a
model of natural language semantics. We use the G3 semantics
model to identify sentences that unambiguously specify the
action the robot wishes the human to take. The G3 model
imposes a distribution over groundings in the external world,
γ1 . . . γN , given a natural language sentence Λ. Groundings
are the specific physical concepts that are referred to by the
language and can be objects (e.g., a truck or a door), places
(e.g., a particular location in the world), paths (e.g., a trajectory
through the environment), or events (e.g., a sequence of actions
taken by the robot). Each grounding corresponds to a particular
constituent λi ∈ Λ. For example, for a sentence such as
“Pick up the table leg,” the grounding for the phrase “the
table leg” corresponds to an actual table leg in the external
world, and the grounding for the entire sentence corresponds
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Fig. 3. Grounding graph for the command, “Pick up the table leg.” Random
variables and edges are created in the graphical model for each constituent
in the parse tree. The λ variables correspond to language; the γ variables
correspond to groundings in the external world. Edges in the graph are created
according to the parse structure of the command

to the trajectory of a person as they execute the command.
Understanding a sentence in the G3 framework amounts to
the following inference problem:

argmax
γ1...γN

p(γ1 . . . γN |Λ,M) (1)

The environment model M consists of the robot’s location
along with the locations and geometries of objects in the
external world. A robot computes the environment model using
sensor input; in the domain of furniture assembly, the system
creates the environment model using input from VICON.
The computed environment model defines a space of possible
values for the grounding variables, γ1 . . . γN .

To invert the model, the system converts the symbolic action
request a to the grounding variable, γa, which corresponds
to the entire sentence. It then searches for the most likely
sentence Λ given that variable according to the semantics
model:

argmax
Λ

p(Λ|γa,M) (2)

Maximizing this objective is equivalent to maximizing the
joint distribution:

argmax
Λ

p(Λ, γa,M) (3)

Since Λ may consist of more than one linguistic constituent,
we need to introduce γi variables for each constituent, which
we marginalize out:

argmax
Λ

∑
γ1...γa−1,γa+1...γN

p(Λ, γ1 . . . γN ,M) (4)

To factor the model, we introduce a correspondence vector,
Φ, as in Tellex et al. [33]. Each entry φi ∈ Φ corresponds
to whether linguistic constituent λi ∈ Λ corresponds to the
groundings associated with that constituent. For example, the
correspondence variable would be True for the phrase “the
white table leg” and a grounding of a white leg, and False
if the grounding was a different object, such as a black table
top. We assume that γ1 . . . γN are independent of Λ unless Φ
is known. Introducing Φ enables factorization according to the
structure of language with local normalization at each factor
over a space of just the two possible values for φi.

The optimization then becomes:

argmax
Λ

∑
γ1...γa−1,γa+1...γN

p(Φ|Λ, γ1 . . . γN ,M) (5)

We factor the expression according to the compositional
syntactic structure of the language Λ. This factorization can
be represented as a directed graphical model where random
variables and edges in the model are created according to the
structure of the language. We refer to one of these graphical
models as a grounding graph. The details of the factorization
are described by Tellex et al. [33].

argmax
Λ

∑
γ1...γa−1,γa+1...γN

∏
i

p(φi|λi, γ1 . . . γN ,M) (6)

We can compute the inner term in Equation 6 directly using
the G3 framework, as described in Tellex et al. [33]. Briefly,
each factor is a log-linear model whose features are trained
from a labeled corpus of language aligned with corresponding
groundings in the external world.

To train the model, we collected a new dataset of natural
language commands given by a human to another human in
the furniture assembly domain. We created twenty-one videos
of a person executing a task involved in assembling a piece of
furniture. For example, one video showed a person screwing
a table leg into a table, and another showed a person handing
a table leg to a second person. The people and objects in
the video were tracked with VICON so each video has an
associated context consisting of the locations, geometries, and
trajectories of the people and objects. We asked annotators
on Amazon Mechanical Turk to view the videos and write a
natural language command they would give to ask one of the
people to carry out the action depicted in the video. Then we
annotated commands in the video with associated groundings
in the VICON data. The corpus contains 326 commands with
a total of 3279 words.

We carry out the inference in Equation 6 by generating
candidate sentences using a context-free grammar (CFG). Our
CFG defines a structured search space for the Λ variable
and appears in Figure 4. The inference procedure creates a
grounding graph for each candidate sentence using the parse
structure derived from the CFG and then scores it according to
Equation 6. Marginalizing over the grounding variables takes
significant computation, so we approximate the summation
using high-probability values found using beam search.

Since even with a carefully coded grammar the search
space is large, we are exploring heuristics for quickly scoring
candidate sentences. We plan to use a discriminative proba-
bilistic model that approximates the likelihood of a particular
parse structure given the symbolic request and features of the
environment. The model is trained using features that capture
the influence of the environment such as the presence of
objects that are similar in appearance. Our hypothesis is that
when there is more ambiguity in the environment, there will
be a bias towards more complex syntactic structures which
can uniquely specify the desired action.

For comparison, we report the performance of two base-
lines. The simplest approach from the assembly executive’s
perspective is to delegate diagnosis and solution of the problem



S → V B NP

S → V B NP PP

PP → TO NP

V B → align|give|hand|lift|pick up|place|put|screw

NP → the white leg|the black leg|me|the leg|
the hole|the white table|the black table

TO → above|by|near|under|with

Fig. 4. Part of the context-free grammar defining the linguistic search space.

Symbolic request give_part(robot3, white_leg_0)
“Help me” baseline “Help me.”
Template baseline “Please hand me white leg 0.”

G3 “Hand me the white leg.”

Fig. 5. Initial scene from our dataset, the command in the symbolic language,
and the instructions generated by each approach.

to the human with the simple fixed request, Λ = “Help me.”
Whereas this inference might be easy for the system designer,
it is often very challenging for an untrained user who does not
understand the inner workings of the robotic system.

A second baseline delegates initiative for diagnosis of the
problem to the programmer in advance by constructing a look-
up table of templates comprising commands to a human helper,
similar to the approach of Fong et al. [10] among others. These
generic requests take the following form:

• “Place table leg 2 where I can see it,”
• “Put table leg 2 in robot 0’s hand,” and
• “Attach table leg 2 at location 1 on the table top.”

V. EXPERIMENTAL RESULTS

Our experimental work is ongoing. We provide a prelimi-
nary report on our evaluation plan and initial results. We plan
to assess the performance of the system by performing a quan-
titative corpus-based evaluation. Our evaluation consists of a

TABLE I
FRACTION OF CORRECTLY FOLLOWED COMMANDS

Metric % Success

Chance 20
“Help me” Baseline 21 ±8.0
Template Baseline 64 ±9.4
G3 Inverse Semantics (no graph search) 50 ±9.8
Oracle 100

dataset of conditions in which the robot generates a request
for help. In each scene, the robot has a partially assembled
piece of furniture and asks for human assistance to complete
the next step in its task. We manually generated five different
help requests in the symbolic language based on typical failure
modes for the robot. Then we filmed an actor responding to
the request. This paradigm results in several different actions
being filmed for each initial condition, corresponding to each
symbolic request for help. The four scenes appear in Figure 6,
together with the natural language help requests intended by
the authors. The positions and geometries of the objects in the
scene were tracked with VICON, as well as the movements
of the actor. Finally, we annotated each video with a symbolic
request for help as described Section III-B.

We automatically generated requests for help for each
scenario in the evaluation using several different methods. The
input is the locations and geometries of objects in the scene, as
well as the symbolic request for help. The output is a natural
language request for help, using one of the approaches from
Section IV. Our implementation of the G3 inverse semantics
model is incomplete and searches through a hardcoded set of
graphical structures. The results exhibited for the G3 model
assumed a single sentence structure determined by the type
of symbolic request. Figure 5 shows an initial scene together
with a request for help in the symbolic language and language
from each of the three approaches.

To assess the performance of each method, we showed
annotators on Amazon Mechanical Turk the generated com-
mand, along with the five videos generated for each initial
scene. We asked annotators to identify the video that is most
closely shows the action they would perform in response to
the natural language command. This evaluation enables us to
identify which commands generate understandable instructions
that uniquely specify which actions the human should take to
best assist the robot. Results appear in Table I. We report 95%
confidence intervals. Chance performance is 20%. Each of the
twenty generated commands was issued to five different sub-
jects, for a total of 100 trials. Seventeen subjects participated
in the study.

Our initial results show that the “Help me” baseline per-
forms at chance, whereas the Template baseline and the G3 in-
verse semantics model both improve performance significantly.
Perfect performance is 100%, accurately choosing the correct
video for each of the twenty tasks. The inverse semantics
model using G3 is outperformed by the Template baseline.
This result is not surprising since this initial implementation
does not search over the space of different syntactic structures.
We hypothesize that as we add the CFG and discriminative
model the richer commands will outperform the template
baseline. We are actively continuing our experiments and plan
to add additional results for the inverse semantics model.

VI. DISCUSSION AND FUTURE WORK

This work represents a step toward the goal of mixed-
initiative human-robot cooperative assembly. Our aim is to
create an algorithm for enabling a robot to generate natural
language help requests. A human teammate can provide tar-
geted help to the robot without requiring detailed situational



Hand me the leg on the table.
Hand me the leg under the table.
Hand me the leg near the table.
Pick up the leg on the table.
Put the leg on the table near me.

(a)

Screw in the white leg.
Screw in the black leg.
Place the white leg in the hole.
Place the white leg near the table.
Put the white table near the white leg.

(b)

Bring me the white leg near the table.
Bring me the black leg near the table.
Bring me the leg far from the table.
Hand me the white leg on the table.
Pick up the white leg near the table.

(c)

Flip the white table.
Flip the black table.
Put the white table near me.
Pick up the white table.
Hand me the white table.

(d)

Fig. 6. The four initial scenes from the evaluation dataset, together with the manually-generated help requests

awareness of the robot and its failure modes. Our technical
approach is to invert a model of semantics and use it to
generate natural language requests that are easy for a human
to understand.

After completing our initial experiments, we plan to extend
our approach to inverse semantics by evaluating a command
based on the entropy over actions it produces according to the
semantics model: good commands are ones with low entropy
over the resulting distribution of actions that that human
partner should take. By modeling the listener’s uncertainty,
our hypothesis is that the robot can generate high-quality com-
mands that enable it to recover from failure. A forthcoming
complexity analysis will demonstrate the feasibility of the
approach.

Our framework could be extended to support a variety of
failure recovery actions, so that the robot can choose between
natural language actions and other types of non-social actions
that may gather additional information or resolve the problem
in other ways. Such an approach would assign a cost to each
action that incorporates factors such as a human’s capabilities
in relation to the robots needs, the social cost of disturbing a
person, and the time and energy required by the action. Each
cost should be weighted by an estimate of the probability
of successfully resolving the failure by each action. Over
time, the robot would then learn which situations are most
appropriate for seeking human intervention. In order for such
a model to evaluate the efficacy of a human’s attempt at
assistance, the robot must be capable of detecting human
failures, which requires understanding of human intent.

As we move from robot-initiative to mixed-initiative com-
munication, the reliance on common ground and context
increase significantly. Since our models can be expected to
remain imperfect, the demand for unambiguous sentences be-
comes less satisfiable. We could tolerate increased ambiguity
on the part of both the human and robot by engaging in back-
and-forth dialog between the two. During conversation, recent
utterances serve to identify salient aspects of the environment
and situation, thus simplifying the inference problem.

In the long term, we aim to develop robots with increased
task-robustness in a variety of domains by leveraging the
ability and willingness of human partners to assist robots in
recovering from a wide variety of failures.
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