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ABSTRACT
Spatial language video retrieval is an important real-world
problem that is also a natural test bed for evaluating seman-
tic structures for natural language descriptions of motion on
naturalistic data. This paper describes first steps towards
a system that grounds the meaning of spatial prepositions
in geometric features. This system can be used to search
a corpus of surveillance video for clips that match spatial
language queries such as “along the hallway” and“across the
kitchen.” We present experiments characterizing the perfor-
mance of models for the prepositions “across” and “along,”
and present a methodology for modeling other spatial prepo-
sitions.

Categories and Subject Descriptors
H.3 [Information Search and Retrieval]: Search process

Keywords
video retrieval, spatial language

1. INTRODUCTION
In the United States, there are an estimated 30 million

surveillance cameras installed, which record four billion hours
of video per week. [21] However, analyzing and understand-
ing the content of video data remains a challenging prob-
lem. To address aspects of this problem, we are developing
interfaces that allow people to use natural language queries
to naturally and flexibly find what they are looking for in
video collections.

We are building an interface that finds video clips in surveil-
lance video that contain people moving in ways that match
natural language queries such as“across the living room”and
“along the right side of the island.” A core problem in build-
ing a natural language query system for surveillance video is
encoding robust visually-grounded models of the meaning of
words such as “along”and“across”. We present a framework
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and methodology for computationally grounding the mean-
ing of spatial prepositions. We developed a system that uses
these meanings to retrieve clips from a corpus of surveillance
video that match natural language queries.

In our approach, the meanings of spatial prepositions are
modeled by visual classifiers that take spatial paths as input.
These classifiers are trained using labeled path examples.
Continuous geometric paths of people in video are converted
into a set of features motivated by theories of human spatial
language [8, 11, 20]. We evaluate the models by measuring
their performance in retrieving video clips that match a nat-
ural language query. As part of the evaluation we analyze
which features contribute most to the system’s performance,
and thus best capture the semantics of the spatial preposi-
tion in a form usable by a decision tree. Features that work
well in this classification task have been empirically shown to
capture important aspects of the meaning of spatial preposi-
tions. This methodology is a way to computationally specify
and then evaluate theories of spatial semantics.

This work is motivated by the data analysis needs of the
Human Speechome Project (HSP) [19], an effort to analyze
one child’s language development based on a densely sam-
pled long-term audio-visual record of life at home. Approx-
imately 90,000 hours of 960x960 resolution video have been
recorded using fisheye lens cameras mounted in the ceiling
of rooms in the child’s home over a three-year period. Sam-
ple frames from this corpus, retrieved by the system for the
query “across the kitchen,” are shown in Figure 1.

Although this corpus is unique in its purpose and scope,
the nature of the video content – people interacting indoors
over extended periods of time – is representative of a much
larger class of domains. Airports, retailers, and many other
organizations are amassing millions of hours of video from
statically placed surveillance cameras. Beyond video, our
spatial-semantic models may be applied to other kinds of
space-time data, from searching GPS logs to generating nat-
ural language directions.

Previous work in video surveillance has focused on track-
ing objects in video (e.g., [6, 24]), automatically recognizing
unusual events in video such as unattended luggage in public
areas or unusual behavior in a home (e.g., [3, 9]), and inte-
grated retrieval interfaces (e.g., [7, 22]). Our work points to-
wards a method of bridging the semantic gap in surveillance
video retrieval by enabling users to type a natural language
description of the activity in the video, and find clips that
match that description. A more detailed literature review
appears in Section 4.
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Figure 1: Frames from two clips returned for the
query “across the kitchen.” The start point of the
trajectory is green, and the end point is red.

2. SYSTEM ARCHITECTURE
Our system finds video clips that match natural language

queries such as “along the hallway.” When a user enters a
natural language query, the system first parses it, then uses
a classifier to find matches in the corpus. Prepositions such
as “across” and “along” are treated as two-argument func-
tions which take an ordered list of points (the figure) and
a polygon (the ground). For the query “along the hallway,”
the figure is the trajectory of a person in the video clip, and
the ground is a polygon representing the hallway. The func-
tion returns a boolean representing whether the situation
matches the spatial preposition. Other prepositions take
different types of arguments: “in” takes a point and a poly-
gon, and “between” takes a point and two polygons. Noun
phrases such as“the kitchen”are resolved to polygons by hu-
man annotations. A parser extracts the function/argument
structure from the query and resolves referring expressions
in the query to an annotation. The parser can also extract
parts of annotations, understanding expressions such as“the
right side of the island.” For classification, the path and
polygon representation is converted to a set of features. A
decision tree for each preposition is learned from labeled ex-
amples, making it easy to inspect the resulting classifier and
determine which features are most important. The system
uses the classifier to find video clips that match the query.

The system searches over a database of person tracks.
Each person track is an ordered list of points and timestamps
corresponding to a person’s motion over several seconds of
video. Person tracks are automatically extracted from the
video using a motion based tracker implemented using the
SwisTrack open source tracking pipeline [13]. When a per-
son moves in the video, the tracker detects the location of
the motion with motion templates [2], and either creates a
new track, or adds the detected point to an existing track.
When a person stops moving, the track is ended. These
boundaries are often, but not always, reasonable places to
start and stop video playback, since they correspond to the
start and stop of motion in the scene.

For the evaluation, tracks were filtered in several ways.
First, only tracks longer than four seconds in time and three
feet in distance were included in the evaluation, in order
to eliminate tracks that appear and disappear very quickly.
Second, all tracks that any annotator labeled as “bad track-
ing” were excluded from the evaluation in order to focus the
evaluation on the models for spatial prepositions.

Figure 2: Schematic view of the clips shown in Fig-
ure 1. The axes that the figure imposes on the
ground are overlayed in green.

3. MODELS FOR SPATIAL PREPOSITIONS
The system retrieves tracks matching a query by creating

a computational model of the meaning of spatial preposi-
tions in the query. The computational model is instantiated
as a decision tree classifier that decides whether a track is
a valid or invalid example of a spatial preposition based on
a feature vector. The features are designed to computation-
ally capture the meaning of spatial prepositions, and are
described in the following section.

3.1 Across
An important underlying concept inherent in the meaning

of many spatial prepositions is the idea of coordinate axes.
“Across”has been defined as a two argument spatial relation
that requires the figure to be perpendicular to the major
axis of the ground. [11, 20]. However this definition does
not specify how to find the major axis of the ground. In
many contexts, there is no single set of axes: there are many
paths across a square room. The system solves this problem
by finding the unique axes that the figure imposes on the
ground, and then quantifying how well those axes match the
ground. These axes are computed by finding the line that
connects the first and last point in the figure, and extending
this line until it intersects the ground. The origin of the axes
is the midpoint of this line segment, and the endpoints are
the two points where the axes intersects the ground. The
axes for two scenes are illustrated in Figure 2. Once the
axes are known, the system computes features that capture
how well the figure follows the axes, and how well the axes
fit the ground. The features used by a decision tree learner
to train a classifier for “across” are listed below.

averageDistance The normalized1 average distance between
the figure and the axes it imposes on the ground.

axesToFigureSum The normalized distance between the
start of the axes and the start of the figure, plus the
distance between the end of the axes and the end of
the figure.

centroidToAxesOrigin The normalized distance between
the origin of the axes and the centroid of the ground.

distAlongGroundBtwnAxes The minimum distance along
the perimeter of the ground between the endpoints of
the axes, normalized by the perimeter of the ground.

1Normalized distances are computed by dividing by the size
of the diagonal of the bounding box of the figure and the
ground together or in some cases the figure alone, in order
to make the model scale invariant.



figureCenterOfMassToAxesOrigin The normalized dis-
tance between the center of mass of the figure and the
origin of the axes.

figureCenterOfMassToGroundCentroid The normalized
distance between the center of mass of the figure and
the centroid of the ground.

figureLengthByCrow The ratio of the length of the figure
and the distance between its start and end points.

peakDistance The normalized maximum distance between
the figure (over all points on the figure) and the axes
(over all points on the axes.

ratioFigureToAxes The ratio of the distance between the
start and end points of the figure and the axes it im-
poses on the ground.

standardDeviation The standard deviation of the nor-
malized distance between the figure and the axes.

These features capture the degree to which the figure fol-
lows the axes, and the appropriateness of the axes to the
ground. Our methodology was to invent features, and then
let the system learn how to use those features for classifica-
tion. By seeing what features were most important at this
real-world task, we can gain insight into semantic structures
underlying the meaning of spatial prepositions. Our eval-
uation shows that ratioFigureToAxes was most important
for retrieval on its own. This feature is high when the fig-
ure goes from one point on the boundary of the ground to
another, but does not capture the appropriateness of the
two points: the two points might be very close together.
Other features, such as centroidToAxesOrigin and distAlong-
GroundBtwnAxes, model this requirement.

To measure the generality of our model for “across,” and
qualitatively assess its performance, we asked an annota-
tor to draw examples and counter-examples of “across,” and
measured the system’s accuracy on this data set. For this
task, the annotator used a mouse to draw a polygon rep-
resenting the ground, and a series of line segments repre-
senting the figure, and labeled the example as “across” or
“not across.” We asked the annotator to only create clear
examples about which other people would agree. Some ex-
amples that the system correctly classified from this data set
are shown in Figure 3. The overall accuracy of the system
(trained only on tracks annotated for “across the kitchen”)
was 0.68 and the F-score was 0.78. This performance shows
that the model for across can handle diverse geometries, be-
yond what appears in our video data set.

3.2 Along
“Along” is a two argument spatial relation, in which the

figure and ground are both conceptualized as linear: the
figure must be coaxial to the ground, or parallel with the
ground’s major axis [11, 20]. The system does a preliminary
segmentation of the track by sliding a window 75% of the
figure’s length along the figure, and only uses the part of the
figure that minimizes the average distance to the ground,
visualized in Figure 4. In this way, the model reduces noise
from the beginning or end of the path if the person started
out far away from the ground object but quickly approaches
it. The features used to train a decision tree learner to
recognize examples of “along” are listed below.

angleBetweenLinearizedObjects The angle between fig-
ure and ground when each is modeled by a best-fit line.

(a) Positive examples.

(b) Negative examples.

Figure 3: Examples of “across” from a data set cre-
ated by one of our annotators. The annotator was
free to draw any polygon for the ground and any
line segment for the figure. The system correctly
classified each of these examples.

(a) A frame of video. (b) Schematic view of the
clip, showing the distances
used to compute the aver-
ageDistance feature in green.

peakDistance < 0.266 (value: 0.112)
| distStartGround < 0.548 (value: 0.340)
| Class: True
| distStartGround >= 0.548 (value: 0.340)

...
peakDistance >= 0.266 (value: 0.112)

...

(c) Part of the decision tree that classified this example.

Figure 4: A clip retrieved by the system for “along
the right side of the island,” showing the distances
used to compute the averageDistance feature.



stdErrOfRegression The standard error of a regression
line fit to the figure.

figureStartToEnd The normalized distance between the
first and last points in the figure.

averageDistance The normalized average distance between
the figure and the ground. The algorithm steps along
the figure at a fixed resolution, and for each point com-
putes the distance to the closest point on the ground.

standardDeviation The standard deviation of the distance
between the figure and the ground.

peakDistance The normalized maximum distance between
the figure and the ground.

These features capture the degree to which the figure fol-
lows the boundary of the ground, and the degree to which
the figure and the ground are linear.

4. RELATED WORK
Our system transforms spatial language queries into a

function/argument structure based on the theories of Jack-
endoff [8], Landau and Jackendoff [11] and Talmy [20]. Their
definitions of “across” and “along” focus on the relationship
of the figure to the axes of the ground. This work proposes a
specific algorithm for computing the axes the figure imposes
on the ground, and specifies features to precisely ground the
meanings of these prepositions.

Others have implemented and tested models of spatial se-
mantics. Regier [17] built a system that assigns labels such
as “through” to a movie showing a figure moving relative to
a ground object. Our system uses some of the same features,
such as center-of-mass distance between the figure and the
ground, but uses decision trees, in order to give more insight
into the operation of the model. By testing our model on
annotations of real video, we are also using a more realis-
tic test set. Regier and Carlson [15] describe the attention
vector sum (AVS) algorithm, a precise computational model
for the geometric meaning of the word“above” that captures
many nuances of human judgements for this term. We ex-
pect the AVS algorithm to be an effective feature for a query
such as “to the left of the island.”

Also using video from the Human Speechome Project,
Fleischman et al. [4] built a system that recognizes events
in video recorded in the kitchen. Their system learns hier-
archical patterns of motion in the video, creating a lexicon
of patterns. The system uses the lexicon to create feature
vectors from video events, which are used to train a classifier
that can recognize events in the video such as “making cof-
fee.” Our system also uses classifiers to recognize events, but
focuses on events that match natural language descriptions
rather than finding higher level patterns of activity.

More generally, Naphade et al. [14] describe the Large-
Scale Concept Ontology for Multimedia (LSCON), an effort
to create a taxonomy of concepts that are automatically ex-
tractable from video, that are useful for retrieval, and that
cover a wide variety of semantic phenomena. Retrieval sys-
tems such as Li et al. [12] automatically detect these con-
cepts in video, and map queries to the concepts in order to
find relevant clips. In contrast to our work, LSCON focuses
on open-class coarse-grained semantic events for retrieval
from corpora of broadcast news, including movement cate-
gories such as “Exiting A Vehicle” and “People Marching.”
This paper describes a complementary effort to recognize

fine-grained spatial events in video, focusing on finding move-
ment trajectories that match a natural language description.

Ren et al. [18] review video retrieval methods based on
matching spatio-temporal information. They describe sym-
bolic query languages for video retrieval, trajectory-matching
approaches, and query-by-example systems. Our work points
towards a system that uses a subset of natural language as a
query language: users describe their information need, and
the system finds clips that match that description.

Katz et al. [10] built a natural language interface to a
video corpus which can answer questions about video, such
as “Show me all cars leaving the garage.” Objects are au-
tomatically detected and tracked, and the tracks are con-
verted into an intermediate symbolic structure based on
Jackendoff [8] that corresponds to events detected in the
video. Our work focuses on handling complex spatial prepo-
sitions such as “across” while they focus on understanding a
range of questions involving geometrically simpler preposi-
tions. Harada et al. [5] built a system that finds images that
match natural language descriptions such as “a cute one”
with color features.

Researchers have developed video retrieval interfaces us-
ing non-linguistic input modalities which are complementary
to linguistic interfaces. Ivanov and Wren [7] describe a user
interface to a surveillance system that visualizes information
from a network of motion sensors. Users can graphically
specify patterns of activation in the sensor network in order
to find events such as people entering through a particu-
lar door. Yoshitaka et al. [23] describe a query-by-example
video retrieval system that allows users to draw an exam-
ple object trajectory, including position, size, and velocity,
and finds video clips that match that trajectory. Natural
language text-based queries complement these interfaces in
several ways. First, queries expressed as a text string are
easily repeatable; in contrast, it is difficult to draw (or tell
someone else to draw) the exact same path in a pen-based
system. Second, language can succinctly express paths such
as “towards the sink”, which would need to be drawn as
many radial lines to express graphically. The combination
of a pen-based interface and a natural language interface is
more powerful than either interface on its own.

5. EVALUATION
We evaluate our models for the meanings of “across” and

“along” by measuring the performance of a system that uses
the models to retrieve tracks that match a natural language
query. Data for training and testing were labeled by an-
notators, who saw a video clip paired with a natural lan-
guage phrase. The location of a person was marked at each
frame of the clip, and annotators were instructed to mark
whether the motion of the person in the clip matched the
phrase. There was no capability to move the boundaries
of video clips or join successive clips; such tracks were sim-
ply marked “invalid.” In order to measure inter-annotator
agreement, two annotators marked each clip.

Table 1 shows agreement scores for the data used in this
evaluation. The results are well above chance, indicating
that the task is achieving some level of consistency across
annotators. However, it was surprisingly difficult to achieve
good levels of inter-annotator agreement on this task. We
had to iterate several times with annotators to develop a
set of instructions. The instructions emphasized that only
clear examples should be marked valid, and that there might



Query Agreement

across the kitchen 0.65
across the living room 0.27
across the dining room 0.39
along the right side of the island 0.66
along the hallway 0.83
through the kitchen 0.68

Table 1: Chance corrected agreement scores for two
annotators for various queries using Multi-π as de-
scribed in Artstein and Poesio [1]. Zero is agree-
ment at chance assuming all coders were drawing
from the same underlying distribution, and one is
perfect agreement.

not be very many “valid” examples. They also specified that
the whole path should match the query: if only part of it
matched, it should be marked “invalid” (e.g., a path where
someone goes back and forth across the kitchen should be
marked “invalid” for the query “across the kitchen”). The
instructions included examples of tracks in each category.
We chose this annotation methodology because it is fast to
annotate, and it directly asks annotators to code the piece
of information that we are interested in: whether the track
should appear in a result set.

6. RESULTS
For the preposition “across,” we report the system’s per-

formance for three queries: “across the kitchen,” (Figure 5)
as well as “across the living room” and “across the dining
room” (Figure 6). In all cases the system was trained on one
day of data annotated by one of the authors, using tracks
only from the kitchen. Annotations for “across the living
room” and “across the dining room” were not used during
development of the system. We compare the system to a
baseline heuristic that returns all long tracks in the kitchen.
The length threshold of the baseline was chosen to maximize
the F-score over the same training data seen by the system.

The two annotators did not have high agreement for“across
the living room” and “across the dining room.” Table 2
shows that most of the differences are examples that Coder
C marked “valid,” and Coder D marked “invalid.” This sug-
gests that Coder D was setting the threshold for “across”
higher than Coder C.
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Figure 5: Results for “across the kitchen.”
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Figure 6: Results for “across the living room” and
“across the dining room”

TP FP FN TN F-score

Coder C/Baseline 256 242 424 1477 0.43
Coder D/Baseline 104 329 105 1578 0.32

Coder C/System 315 82 365 1637 0.58
Coder D/System 172 200 37 1707 0.59

Coder C/Coder D 197 12 440 1467 0.47

Table 2: The system’s performance for “across the
living room” and “across the dining room” as confu-
sion matrices showing the number of true positives,
false positives, true negatives and false negatives.
F-scores for this data are graphed in Figure 6

Our framework is designed to model a variety of spatial
prepositions. Here we report preliminary results for the
prepositions “along” and “through.” Figures 7 and 8 show
the system’s performance for two queries using the prepo-
sition “along.” The baseline selects all tracks that intersect
the region between the island and the counter. This base-
line gives perfect recall, but lower precision and lower overall
F-score than the system. Figure 9 shows the system’s per-
formance on the query“through the kitchen.” The“through”
classifier uses the same features as the“across” classifier, but
is trained on different data. The baseline for“through” is the
“across” classifier.
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Figure 7: Results for “along the right side of the
island.”
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Figure 8: Results for “along the hallway.”
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Figure 9: Results for “through the kitchen.”

6.1 Discussion
Although our system performs better than a baseline and

approaches human performance, it is troubling that there is
not a larger spread between baseline performance and hu-
man judgements. Our relatively low agreement scores imply
a problem with the formulation of the task. For the data
graphed for “across the living room” and “across the dining
room” in Figure 6, the average track length in pixels is 488.
But the length of tracks where the two annotators agree is
449, compared to 635 over tracks where they disagree. These
longer tracks may be harder to annotate because they are
more likely to contain non-matching activity at the begin-
ning and end of the track. Better event segmentation could
solve this problem. Agreement scores may also be low be-
cause categorizing hundreds of video clips based on a spatial
preposition is an unnatural task. Annotators may also in-
corporate judgements about a person’s intentions and goals
into their classification decision.

A key result of the evaluation is insight into what features
are important to capturing the meaning of spatial prepo-
sitions. We present the performance of the classifier when
trained on various subsets of features in Figures 12 and 13.
In these figures, each horizontal bar represents the F-score of
a classifier trained using only certain features. The colors in
the bar encode what features were used to train a classifier
for that run.

Figure 12(a) shows the performance of each feature on its
own for the query “across the kitchen.” This graph shows
that the single best-performing feature for “across” is ra-
tioFigureToAxes, a measure of the length of the figure com-

ratioFigureToAxes<0.786 (value: 0.874)
...

ratioFigureToAxes>=0.786 (value: 0.874)
| peakDistance<0.440 (value: 0.058)
| | axesToFigureSum<0.000 (value: 0.076)
| | ...
| | axesToFigureSum>=0.000 (value: 0.076)
| | | distAlongGroundBtwnAxes<0.252 (value: 0.337)
| | | ...
| | | distAlongGroundBtwnAxes>=0.252 (value: 0.337)
| | | Class: True
| peakDistance>=0.440 (value: 0.058)
| ...

Figure 10: The decision tree used to classify the
example shown in Figure 1 for “across the kitchen.”
The branches that the system took are shown in red.

pared to the length the axes it imposes on the ground. Fig-
ure 12(b) shows the performance of every pair of features.
None of the features that measure the distance between the
figure and the axes perform particularly well, except when
paired with ratioFigureToAxes. Many of the other high scor-
ing features measure how well the figure cuts across the
ground, dividing it into two roughly equal parts. The im-
portance of ratioFigureToAxes is also evident when look-
ing directly at the decision tree used to classify examples
of “across,” shown in Figure 1(a). Here ratioFigureToAxes
is the first feature used to separate the data. The other
features used straightness of the path, and the second two
measure the degree to which the path divides the ground
into two equal pieces.

(a) The last frame of video
in the clip.

(b) Schematic view of the
clip.

ratioFigureToAxes<0.786 (value: 0.508)
| ratioFigureToAxes<0.461(value: 0.508)
| ...
| ratioFigureToAxes>=0.461 (value: 0.508)
| | figureLengthByCrow<0.796 (value: 0.935)
| | ...
| | figureLengthByCrow>=0.796 (value: 0.935)
| | Class: True

ratioFigureToAxes >= 0.786 (value: 0.508)
...

(c) Part of the decision tree that classified this example.

Figure 11: A clip that the system misclassified as
“across the kitchen.”

For “along,” the best performing features measure the dis-
tance between the figure and the ground. distEndGround
and distStartGround perform poorly on their own, but are
present in all the highest performing pairs. These features
involve the start and end points in the video clip, consis-
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(b) F-scores for all pairs of features

Figure 12: Performance of subsets of features on
“across the kitchen.”

tent with evidence that people pay more attention to the
endpoints of a spatial motion event [16]. Finding a more
principled algorithm for identifying boundaries in our video
clips could further exploit this heuristic and lead to better
performance. Some of the tracks returned for “along the
right side of the island” were actually along the left side of
the island. When one considers only the geometry of the
right side of the island and the figure, as the system does,
this makes sense, since the system only sees “the right side
of the island” and not anything else in environment. To
solve this problem we plan to introduce features involving
the visibility of the ground from the figure, with respect to
obstacles in the environment.

7. FUTURE WORK
Our next goal is to expand the vocabulary of our system

so that it handles open-ended spatial queries. Using our
library of geometric features we plan to add spatial preposi-
tions whose meanings rely primarily on geometric informa-
tion: “through”, “around”, “toward”, and “away from.” We
have developed an annotation task in which annotators write
a natural language description of the motion of a person in
the surveillance video. Annotators will fill in the sentence
“The person is going ...” with whatever ending makes sense
to them given the person’s motion. This methodology will
enable us to collect a set of potential queries together with
video clips that match them. We can then use these anno-
tations to train and evaluate a retrieval system on a much
larger vocabulary.

Once the system’s lexicon is large enough, it may be pos-
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Figure 13: Performance of subsets of features on
“along the right side of the island.”

sible to define higher-level events by composing lower-level
primitives into compound concepts. For example, “chase”
could be defined in terms of a sequence of “towards” events.
In addition, compound events could be described from sim-
pler events: “putting away the dishes” is when someone goes
“from the drying rack to the cupboards over and over.” This
idea has the potential to enable rapid expansion of the sys-
tem’s vocabulary, but in a context where the quality of def-
initions of new terms can be robustly tested and evaluated.

8. CONTRIBUTIONS
We presented the first steps towards a system that can

find video clips that match a natural language description
using models for the meanings of spatial prepositions. Our
system models the meaning of the words“across”and“along”
with a set of computationally grounded features, and we
have identified specific features that enable a classifier to find
examples of these prepositions. The library of features can
be used to ground the meanings of other spatial prepositions
as well. This framework is enabling us to build a retrieval
system that starts to bridge the semantic gap, by finding
clips that open-ended spatial-language queries.
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