Natural Language and Spatial Reasoning

Stefanie Tellex

What is he doing?

Where should the robot go?

With your back to the windows, walk straight through the door near the elevators. Continue to walk straight, going through one door until you come to an intersection just past a whiteboard. Turn left, turn right, and enter the second door on your right (sign says "Administrative Assistant").

What semantic structures can enable a system to understand and use spatial language in realistic situations?

Methodology

- Pick a subset of language.
- Collect a corpus focusing on that subset.
- Make a program that understands language in the corpus.
- See how well the program works.
- Analyze why the program works.

Methodology

- Pick a subset of language.
- Collect a corpus focusing on that subset.
- Make a program that understands language in the corpus.
- See how well the program works.
- Analyze why the program works.
- Do this in more than one domain.

Outline

- Problem Statement
- Spatial Prepositions
- Spatial Language Video Retrieval
- Direction Understanding
- Next Steps
- Contributions

Spatial Language is Pervasive

"Where is the bus stop?"

"Take a right at the elevators."

"Through the years you've never let me down."

"This book jumps across many different topics."

Grounding

He's going across the kitchen.

Grounding

He's going across the kitchen.

Grounding He's going across the kitchen.

Grounding He's going across the kitchen.

Grounding He's going across the kitchen.

Spatial Prepositions

Spatial Prepositions in English

about, above, across, after, against, along, alongside, amid(st), among(st), around, at, atop, behind, below, beneath, beside, between, betwixt, beyond, by, down, from, in, inside, into, near, nearby, off, on, onto, opposite, out, outside, over, past, through, throughout, to, toward, under, underneath, up, upon, via, with, within, without, far from, in back of, in between, in front of, in line with, on top of, to the left of, to the right of, to the side of

(from Landau and Jackendoff, 1993)

the, of, and, to, a, in, that, is, was, he, for, it, with, as, his, on, be, at, by, i, this, had, not, are, but, from, or, have, an, they, which, one, were, you, all, her, she, there, would, their, we, him, been, has, when, who, will, no, more, if, out, its, so, up, said, what, about, than, into, them, can, only, other, time, new, some, could, these, two, may, first, then, do, any, like, my, now, over, such, our, man, me, even, most, made, after, also, well, did, many, before, must, years, back, through, much, where, your, way, down, should, because, long, each, just, state, people, those, too, how, Mr., little, good, world, make, very, year, still, see, own, work, men, day, get, here, old, between, both, life, being, under, three, never, know, same, last, another, while, us, off, might, great, states, go, come, since, against, right, came, take, used, himself, few, house, American, use, place, during, high, without, again, home, around, small, however, found, mrs, part, school, thought, went, say, general, once, upon, every, left, war, don't, does, got, united, number, hand, course, water, until, always, away, public, something, fact, less, through, far, put, head, think, called, set, almost, enough, end, took, government, night, yet, system, better, four, nothing, told, eyes, city, going, president, why, days, present, point, didn't, look, find, asked, second, group, later, next, room, social, business, knew, program, give, half, side, face, toward, white, five, let, young, form, given, per, order, large, several, national, important, possible, rather, big, among, case, often, early, john, things, looked, ever, become, best, need, within, felt, along, children, saw, church, light, power, least, family, development, interest, others, open, thing, seemed, want, area, god, members, mind, help, country, service, turned, door, done, law, although, whole, line, problem, sense, certain, different, kind, began, thus, means, matter, perhaps, name, times, york, itself, action, human, above, week, company, free, example, hands, local, show, history, whether, act, either, gave, death, feet, today, across, body, past, guite, taken, anything, field, having, seen, word, car, experience, I'm, money, really, class, words, already, college, information, tell, making, sure, themselves, together, full, air, shall, held, known, period, keep, political, real, miss, probably, century, question, seems, behind, cannot, major, office, brought, special, whose, boy, cost, federal, economic, self, south, problems, heard, six, study, ago, became, moment, run, available, job, street, result, short, west, age, change, position, board, individual, reason, 17

the, of, and, to, a, in, that, is, was, he, for, it, with, as, his, on, be, at, by, i, this, had, not, are, but, from, or, have, an, they, which, one, were, you, all, her, she, there, would, their, we, him, been, has, when, who, will, no, more, if, out, its, so, up, said, what, about, than, into, them, can, only, other, time, new, some, could, these, two, may, first, then, do, any, like, my, now, over, such, our, man, me, even, most, made, after, also, well, did, many, before, must, years, back, through, much, where, your, way, down, should, because, long, each, just, state, people, those, too, how, Mr., little, good, world, make, very, year, still, see, own, work, men, day, get, here, old, between, both, life, being, under, three, never, know, same, last, another, while, us, off, might, great, states, go, come, since, against, right, came, take, used, himself, few, house, American, use, place, during, high, without, again, home, around, small, however, found, mrs, part, school, thought, went, say, general, once, upon, every, left, war, don't, does, got, united, number, hand, course, water, until, always, away, public, something, fact, less, through, far, put, head, think, called, set, almost, enough, end, took, government, night, yet, system, better, four, nothing, told, eyes, city, going, president, why, days, present, point, didn't, look, find, asked, second, group, later, next, room, social, business, knew, program, give, half, side, face, toward, white, five, let, young, form, given, per, order, large, several, national, important, possible, rather, big, among, case, often, early, john, things, looked, ever, become, best, need, within, felt, along, children, saw, church, light, power, least, family, development, interest, others, open, thing, seemed, want, area, god, members, mind, help, country, service, turned, door, done, law, although, whole, line, problem, sense, certain, different, kind, began, thus, means, matter, perhaps, name, times, york, itself, action, human, above, week, company, free, example, hands, local, show, history, whether, act, either, gave, death, feet, today, across, body, past, guite, taken, anything, field, having, seen, word, car, experience, I'm, money, really, class, words, already, college, information, tell, making, sure, themselves, together, full, air, shall, held, known, period, keep, political, real, miss, probably, century, question, seems, behind, cannot, major, office, brought, special, whose, boy, cost, federal, economic, self, south, problems, heard, six, study, ago, became, moment, run, available, job, street, result, short, west, age, change, position, board, individual, reason, 18

With your back to the windows, walk straight through the door near the elevators. Continue to walk straight, going through one door until you come to an intersection just past a whiteboard. Turn left, turn right, and enter the second door on your right (sign says "Administrative Assistant"). the windows, walk the elevators. Continue to walk you come an intersection turn right, and enter the second door "Administrative Assistant").

the door , going one door a whiteboard. Turn left, (sign says

Modeling Spatial Prepositions

- Functions that take geometric arguments.
- Classifiers for "to," "across," "towards," "through," "around," etc.
- Library of features.
- Train and test on labeled examples.

Across Video

peakDistanceToAxes = max(dist(figure, axes))

endPointsInGroundBoundingBox

displacementFromGround=d2 - d1

Two Different Domains

Video Retrieval

Direction
Understanding

The person is going...

Corpus

to the counter. along the east side of the island from the refrigerator. to the cabinet. across the kitchen.

Training Classifiers for Spatial Prepositions

Binary classifiers.

Positive examples of "across" are negative examples of "to."

Some exceptions (e.g., "to" and "towards.")

Corpus

Positive example of "to the counter" Negative example of "across the counter"

endPointsInGroundBoundingBox

"to the sink"

Full model: 0.99 Bounding boxes: 0.76

"to the sink"

Full model: 0.10 Bounding boxes: 0.63

Results

- Modeled six spatial prepositions.
- Evaluated on a corpus of natural language descriptions of video clips.
- Analyzed which features work.

Limitations

- Phrases, not sentences or paragraphs.
- All in one room.
- Only six spatial prepositions.

Direction Understanding

Joint work with Thomas Kollar

Where should the robot go?

Structure of Natural Language Directions

Sequential

Structure of Natural Language Directions

- Sequential.
- Directive verbs.

Directive Verbs

Structure of Natural Language Directions

- Sequential.
- Directive verbs.
- Landmarks.

Landmarks

Structure of Natural Language Directions

- Sequential.
- Directive verbs.
- Landmarks.
- Spatial relations.

Spatial Relations

Structure of Natural Language Directions

- Sequential.
- Directive verbs.
- Landmarks.
- Spatial relations.

Go through the door.

- Figure: <you>
- Verb: "Go"
- Spatial relation: "through"
- Landmark: "the door."

Continue to walk straight, going through one door until you come to an intersection just past a white board.

V: Continue to walk, SR: straight

Continue to walk straight, going through one door until you come to an intersection just past a white board.

V: going, SR: through, L: one door

Continue to walk straight, going through one door until you come to an intersection just past a white board.

V: going, SR: until, L: you come to an intersection just past a white board

Continue to walk straight, going through one door until you come to an intersection just past a white board.

F: you, V: come, SR: to, L: an intersection just past a white board

Continue to walk straight, going through one door until you come to an intersection just past a white board.

F: an intersection, SR: just past, L: a white board

Model

*argmax*_{path} p(path, directions, observations)

Model

p(path, directions, observations) =

p(*directions*|*path*, *observations*)*p*(*path*, *observations*) (definition of conditional probability)

p(directions | path, observations) p(path) p(observations)(path and observations are independent)

 $p(sdc_1...sdc_M|vp_1...vp_{M+1}, o_1...o_K) p(vp_1...vp_{M+1}) p(o_1...o_K)$ (topological map of viewpoints, and a sequence of SDCs)

Topological Map

Model

p(path, directions, observations) =

p(*directions*|*path*, *observations*)*p*(*path*, *observations*) (definition of conditional probability)

p(directions | path, observations) p(path) p(observations)(path and observations are independent)

 $p(sdc_1...sdc_M|vp_1...vp_{M+1}, o_1...o_K) p(vp_1...vp_{M+1}) p(o_1...o_K)$ (topological map of viewpoints, and a sequence of SDCs)

 $\prod_{i=1}^{M} p(sdc_{i}|vp_{i}, vp_{i+1}, o_{1}...o_{K}) \prod_{i=1}^{M} p(vp_{i+1}|vp_{1}...vp_{i}) p(o_{1}...o_{K})$ (Paths are Markov)

Model

p(path, directions, observations) =

p(*directions*|*path*, *observations*)*p*(*path*, *observations*) (definition of conditional probability)

p(directions | path, observations) p(path) p(observations)(path and observations are independent)

 $p(sdc_1...sdc_M|vp_1...vp_{M+1}, o_1...o_K) p(vp_1...vp_{M+1}) p(o_1...o_K)$ (topological map of viewpoints, and a sequence of SDCs)

 $\prod_{i=1}^{M} p(sdc_{i}|vp_{i},vp_{i+1},o_{1}...o_{K}) \prod_{i=1}^{M} p(vp_{i+1}|vp_{1}...vp_{i}) p(o_{1}...o_{K})$ (Paths are Markov)

Probability of Directions Given a Possible Movement

 $p(sdc_i|vp_i,vp_{i+1},o_1...o_K)$

= $p(figure_i, verb_i, spatial_relation_i, landmark_i | vp_i, vp_{i+1}, o_1...o_K)$ (The structure of a spatial description clause.)

Spatial Description Clause

Go through the door.

- Figure: <you>
- Verb: "Go"
- Spatial relation: "through"
- Landmark: "the door."

Probability of Directions Given a Possible Movement

 $p(sdc_i|vp_i,vp_{i+1},o_1...o_K)$

= $p(figure_i, verb_i, spatial_relation_i, landmark_i|vp_i, vp_{i+1}, o_1...o_K)$ (The structure of a spatial description clause.)

 $= p(figure_i | vp_i, vp_{i+1}, o_1 \dots o_K) p(verb_i | vp_i, vp_{i+1}) \times p(spatial_relation_i | landmark_i, v_i, v_{i+1}, o_1 \dots o_K) \times p(landmark_i | v_i, v_{i+1}, o_1 \dots o_K)$

(Factor according to certain independence assumptions.)

Probability of Directions Given a Possible Movement

 $p(sdc_i|vp_i,vp_{i+1},o_1...o_K)$

= $p(figure_i, verb_i, spatial_relation_i, landmark_i|vp_i, vp_{i+1}, o_1...o_K)$ (The structure of a spatial description clause.)

 $= p(figure_i | vp_i, vp_{i+1}, o_1 \dots o_K) p(verb_i | vp_i, vp_{i+1}) \times p(spatial_relation_i | landmark_i, v_i, v_{i+1}, o_1 \dots o_K) \times p(landmark_i | v_i, v_{i+1}, o_1 \dots o_K)$

(Factor according to certain independence assumptions.)

Observations

Contextual relationships

Tags include: desktop, monitor, computer, keyboard, and mouse

Probability of Directions Given a Possible Movement

 $p(sdc_i|vp_i,vp_{i+1},o_1...o_K)$

= $p(figure_i, verb_i, spatial_relation_i, landmark_i|vp_i, vp_{i+1}, o_1...o_K)$ (The structure of a spatial description clause.)

 $= p(figure_i | vp_i, vp_{i+1}, o_1 \dots o_K) p(verb_i | vp_i, vp_{i+1}) \times p(spatial_relation_i | landmark_i, v_i, v_{i+1}, o_1 \dots o_K) \times p(landmark_i | v_i, v_{i+1}, o_1 \dots o_K)$

(Factor according to certain independence assumptions.)

Probability of Directions Given a Possible Movement

 $p(sdc_i|vp_i,vp_{i+1},o_1...o_K)$

= $p(figure_i, verb_i, spatial_relation_i, landmark_i|vp_i, vp_{i+1}, o_1...o_K)$ (The structure of a spatial description clause.)

 $= p(figure_{i} | vp_{i}, vp_{i+1}, o_{1}...o_{K}) p(verb_{i} | vp_{i}, vp_{i+1}) \times \frac{p(spatial_relation_{i} | landmark_{i}, v_{i}, v_{i+1}, o_{1}...o_{K})}{p(landmark_{i} | v_{i}, v_{i+1}, o_{1}...o_{K})}$

(Factor according to certain independence assumptions.)

Learning Distributions for Spatial Relations

Learning Distributions for Spatial Relations

Draw a path going down the hallway.

Performance of Classifiers

85

High Scoring Examples of "past"

Low Scoring Examples of "past"

Corpus of Natural Language Directions

Instructions:

Write, in whatever way is natural to you, directions from the start label to the end label, with the goal of communicating this route to another person who does not have a map.

Corpus of Natural Language Directions

- Study 1 (Stata 3)
 - 10 people, 16 routes
- Study 2 (Stata 8)
 - 15 people, 10 routes
- Study 3 (Stata 1)
 - 15 people, 10 routes
- Study 4 (outdoors)
 - ongoing

Human Performance

	Stata 3	Stata 8	Stata 1
All directions	63%	85%	86%
Best Direction Giver	87%	100%	100%
Worst Direction Giver	43%	30%	20%

Inference

- Global.
 - Viterbi-style algorithm.
 - Last-SDC only.
 - Landmarks only.
- Local.
- Random.

Improving Direction Understanding Results

- Polygon landmarks.
- Add more spatial relations.
- Use more complex environments.
- Changing the model.
 - Alignment.
 - Conditional Random Fields.
- Exploration.

Next Steps

- Video retrieval.
 - Collect a corpus of paragraph-length descriptions of a person's activity.
- Direction generation.
- Compare spatial prepositions across domains.
- Create a lexicon of spatial prepositions.

Schedule

- December 15, 2010 JAIR, direction understanding
- January 22, 2010 SIGIR, video retrieval
- March 1, 2010 TiCS on generation.
- April 1, 2010 JAIR, lexicon of spatial prepositions.
- April 14, 2010 thesis outline to Deb.
- May 14, 2010 thesis draft to Deb.
- May 31, 2010 thesis draft to committe.
- July, 2010 thesis defense

Related Work

Related Work – Video Retrieval

- Katz et al. (2004) "Show me all the cars leaving the garage."
- Ivanov and Wren (2006) Query by example trajectory
- Fleischman et al. (2006) "Show me people making coffee."
- Naphade et al. (2006) Large-Scale Concept Ontology for Multimedia

Contributions

- Create a library of features for grounding spatial prepositions.
- Analyze which features perform best for specific prepositions.
- Compare semantics of spatial prepositions in two different domains.
- Model higher level structures.

Acknowledgements

Tom Kollar Deb, Yuri, Boris, Cynthia, Cogmac ML support staff Gremio, Dave, Carie, Kai-yuh, Lin Ania & Seth & Moby Grandma Patches and Grandma Nicholas Mom, Dad, Staci & Seth, Shannon & Jon, Scott

Contributions

- Create a library of features for grounding spatial prepositions.
- Analyze which features perform best for specific prepositions.
- Compare semantics of spatial prepositions in two different domains.
- Model higher level structures.

Collaboration

- My thesis
 - Library of features for spatial prepositions.
 - Analyze which features perform the best.
 - Comparison of meanings of spatial relations in different domains.
- Tom's thesis
 - Grounding landmarks with flickr.
 - Planning to find objects.
- Both
 - Spatial description clauses.
 - MRF model of spatial language.

Directions With Only Landmarks

the windows,

the elevators.

you

an intersection the second door

"Administrative Assistant").

the door one door a whiteboard. (sign

Why is this a Media Lab thesis?

- Towards a new (or old) form of human-machine interaction.
- Multi-modal, multi-domain interface.
- Defining a new problem, with a new corpus.

- CRF chunker tags each word.
- Trained from annotated data.
- Features (tri-grams)
 - o Words
 - Part-of-speech tags
 - Label sequence
- Greedy algorithm groups tagged words together.

Continue to walk straight, going through one door until you come to an intersection just past a white board.

Continue to walk straight, going through one door until you come to an intersection just past a white board.

V: Continue to walk straight

Continue to walk straight, going through one door until you come to an intersection just past a white board.

V: going, SR: through, L: one door

Continue to walk straight, going through one door <mark>until</mark> you come to an intersection just past a white board.

SR: until, L: you come to an intersection

Continue to walk straight, going through one door until you come to an intersection just past a white board.

SR: just past, L: a white board

Computational Linguistics

- Maron (1961)
 - First bag-of-words paper, using Naïve Bayes.
- Cleverdon (1967)
 - First corpus-based information retrieval evaluation.

Related Work

- Cognitive Semantics
 - Landau and Jackendoff (1993)
 - Talmy (2005)
- Cognitive Science
 - Regier (1992)
 - Regier and Carlson (2001) attention vector sum for "above"
 - Carlson and Covey (2005) "How far is near? Inferring distance from spatial descriptions."

Related Work

- Turing (1950)
- Winograd (1971)

- Shrdlu

• Harnad (1990)

- Grounding