
Configtron: Tackling network diversity with heterogeneous configurations.

Usama Naseer and Theophilus Benson
Duke University

Abstract
The web server’s network protocol stack is constantly
changing and evolving to tackle technological shifts in
networking infrastructure and website complexity. For
example, Cubic to tackle high throughput, SPDY to
tackle loss and QUIC to tackle security issues and lower
connection setup time. Accordingly, there are a plethora
of protocols and configuration parameters that enable the
web server’s network protocol stack to address a variety
of realistic conditions. Yet, despite the diversity in end-
user networks and devices, today, most content providers
have adopted a “one-size-fits-all” approach to configur-
ing user facing web stacks (CDN servers).

In this paper, we illustrate the drawbacks through em-
pirical evidence that this “one-size-fits-all” approach re-
sults in sub-optimal performance and argue for a novel
framework that extends existing CDN architectures to
provide programmatic control over the configuration op-
tions of the CDN serving stack.

1 Introduction

With the internet entering the zettabyte era and con-
necting billions of users, there is a huge disparity in
the network conditions (bandwidth, latency and loss
rates) faced by end-users [5]. To address this dispar-
ity and improve quality of experience (QoE), online ser-
vice providers (OSP) are constantly developing new pro-
tocol algorithms and exploring new configuration stan-
dards for their content distribution network (CDN). Over
the last several decades, the networking community has
developed a broad range of protocols across various lay-
ers of the networking stack from New Reno, Vegas,
Compound TCP to Cubic, from HTTP1.1, and SPDY to
HTTP2.

While the community continues to develop new pro-
tocols and establish new configuration standards, there
is an erroneous assumption that the newest protocols al-
gorithms and configuration standards are strictly better

than the older ones. To simplify the text, in this paper we
refer to protocol algorithms and configurations as config-
uration parameters. For example, Cubic and HTTP2 are
wildly deployed despite proven [31, 8, 25] evidence that
these protocols are sub-optimal under certain conditions
(§ 2.1).

The optimal choice of protocol and parameters is con-
tingent on the network infrastructure [31, 8, 20], website
complexity [4, 22], and end-user device. Furthermore,
the constant evolution of networking infrastructure, end-
user devices, and web complexity results in the constant
churn of recommended and default configuration param-
eters. Although different regions and ISPs leverage rad-
ically different infrastructures and host radically differ-
ent devices, OSPs continue to employ a “one size fits
all” which results in sub-optimal performance in some
regions [2]. Motivated by this sub-optimal performance,
online service providers are taking drastic steps to ed-
ucate and motivate their developers to explicitly tackle
underlying network and end-user heterogeneity. For ex-
ample, Facebook instituted “2G Thursday” — on Thurs-
day all traffic is throttled to 2G speeds forcing developers
and network operators to face and, subsequently, tackle
issues faced by users on 2G networks [9].

In this paper, we eschew the notion of a “one size fits
all” approach to protocol and configuration selection for
CDN servers and instead argue for a “curated” approach
to tuning and selecting configuration parameters. In par-
ticular, we argue that CDN servers should be configured
and setup with the optimal protocol and configuration
parameters for serving each connection. For example,
a CDN server serving high loss, low bandwidth con-
nections may employ a lower initial window size than
a server serving low loss, high bandwidth connections.

To this end, we propose a framework for practically
improving end-user performance by introducing hetero-
geneity into the CDN server’s networking configuration
in a principled manner. We argue for introducing a sim-
ple but standard interface to the CDN server’s network

1



Figure 1: Infrastructure for OSPs (e.g. Facebook [30]).

stack that exposes existing heterogeneity (e.g. TCP ver-
sions, HTTP protocol, or Peering link) and enables re-
mote and automated configuration. Additionally, our
framework includes a learning entity that determines
the optimal configuration for each end-user based on a
combination of emulations and passive measurements.
Together our interface and the learning entity enables
a CDN to systematically introduce heterogeneity into
the server’s network stack and improve end-user perfor-
mance in a principled manner.

This paper takes the first step towards realizing our
system, Configtron, for reconfiguring CDN server’s net-
working stacks. Specifically, we make the following con-
tributions: First, we present a clear demonstration that
one configuration, does not fit all network conditions and
web site complexities and moreover no one configuration
is strictly better than another, thus motivating the case
for heterogeneity within the CDN’s networking infras-
tructure. Second, the design of a framework for system-
atically learning optimal configurations and practically
reconfiguring CDN web servers without loss of function-
ality. And lastly, a strawman implementation of our Con-
figtron, demonstrating the feasibility and practicality of
our approach.

Roadmap. Next, we present background (§ 2) with a
brief overview of motivating studies and related works.
§ 3 analyzes and quantifies the benefits of optimizing the
CDN’s networking stack. § 4 explores the design choice
we adopted for Configtron. § 5 presents our prototype
and § 6 expands on the design challenges. Finally, § 7
provides concluding remarks.

2 Background and Related Works

We broadly define the CDN servers of an online service
provider’s network (Figure 1) as the user-facing servers
that end-users interact with. Specifically, the online ser-
vice provider’s servers in the points-of-presence (PoPs)
and content distribution networks (CDNs) – more com-
monly referred to as edge servers or CDNs severs. In
this paper, we will use the term CDN or CDN server,
interchangeably, to refer to the online service provider’s
servers located in the PoP and CDN.

The CDN’s networking stack, Figure 2, consists of the

Figure 2: CDN server’s networking stack.

TCP protocol implementations, the web server applica-
tion (e.g., Apache), and content provider’s web applica-
tion (e.g., PHP or Java code). Traditional, these CDN
servers employ broadly two different networking stacks
– one for user facing connections and another for the data
center facing connections. The data center facing con-
nections are often optimized to fully utilize the backhaul
links. Whereas, the user facing connections are often
fine-tuned to provide optimal performance in aggregate
rather than to provide optimal performance per-client.
To account for differences between a user’s local con-
ditions, the edge often deploys special web applications
that infer properties of the user’s local conditions and
adjust multimedia images, html, and javascript to opti-
mize (Figure 2). Essentially, the predominant approach
is to reconfigure the CDN stack at the content layer. For
example, upon detecting a mobile client, many content
providers redirect users to the mobile site.

This paper explores the benefits of extending recon-
figuration from the content layer down to the server ap-
plication and the TCP/IP stack – and presents a system
for realizing reconfiguration in a principled manner. In
particular, there is a large space of potential parameters
that can be explored from the application to the TCP/IP
layers. To demonstrate the richness of the CDN server’s
networking parameter space, in Table 1, we present a rep-
resentative list of these parameters and in Section 3, we
explore the impact of reconfiguring a subset of these pa-
rameters.

2.1 Motivating Measurement Studies

Next, we discuss existing studies that motivate the need
for heterogeneity within the CDN’s networking stack:

Heterogeneity at the congestion layer (TCP): Al-
though Cubic is used as the default congestion avoidance
algorithm, the Linux kernel includes over 10 variants of
TCP. Moreover various measurement studies show that
different variants are optimal for different networking
conditions [27, 10]. Orthogonally, others [6, 2] have ex-
plored the impact of varying configuration parameters.

More recently, Google adopted UDP over TCP in their
design of QUIC (Quick UDP Internet Connections) [14],
thereby introducing more diversity into the stack. Exist-
ing studies of QUIC [20] show that QUIC outperforms

2



Layer Configuration Parameters
Network IP version, peering link.(IP)

Transport initial retransmission timeout (initRTO), autocork,
(TCP) congestion avoidance algorithm, send buffer size (wmem),

initial congestion window (initcwnd), window scaling [19],
receive buffer size(rmem), Nagle’s Algo, TCP low latency.

Session TLS version, OSCP stapling, TLS false start,
(TLS) dynamic record sizing.

Application HTTP version, push algorithm (HTTP/2),
(HTTP) pipelining configuration (HTTP/1.1).
Content video/img resolution, caching, compression algorithm.

Table 1: Representative list of configuration parameters.

TCP in mobile networks with high RTTs but performs
sub-optimally (to TCP) in high bandwidth networks.

Heterogeneity at the App layer (HTTP): SPDY [21],
now HTTP/2, is used uniformly by Google and others
over HTTP/1.1. However, recent studies [31, 8, 7, 20]
provide strong empirical evidence that HTTP/1.1 outper-
forms SPDY (HTTP/1) under high packet loss rates and
complex web-page dependencies, where multiple TCP
connections perform better than SPDY’s single, multi-
plexed TCP connection [31].

2.2 Related Work
Finally, we discuss related work on cross layer optimiza-
tions, standardizing the interface to the CDN’s network-
ing stack, and configuration management.

Cross-layer optimizations: The most closely related
work [2] explores the impact of cross layer configura-
tion optimization for a limited set of configuration pa-
rameters, i.e., initial congestion window, HTTP pipelin-
ing, Appropriate Byte Count, and autocorking. Con-
figtron explores a broader set of parameters (see Ta-
ble 2) and presents a framework to systematically tune
these parameters in real time. While Configtron ex-
plores the transport and application layers, other have
examined making changes at the content layer [26], i.e.,
changing compression algorithms. Yet, others have ex-
plored the orthogonal space of cross layer optimizations
at the lower layers of the wireless and mobile networking
stack [11, 18, 29, 17].

Configuration Management: Configtron’s configu-
ration management interface is motivated by existing at-
tempts to expose TCP parameters and standardize the
management interface for configuring TCP [13, 16].
Configtron extends on these approaches by encompass-
ing more parameters and extending the management in-
terface beyond TCP and into the application (HTTP) and
networking layers. Whereas orthogonal approaches [13]
directly collect information from the network, Con-
figtron passively infers the state of the network condi-
tions. Existing approaches to managing server configu-
rations, focus on ensuring correct functionality and de-
tecting misconfiguration [3, 28]. These approaches can
be used to help improve the manageability of Configtron

and debug problems that arise while using Configtron.
Takeaway While various measurement studies

demonstrate the need for heterogeneous configurations,
today’s internet employs a ”one size fits all strategy”
where one set of configurations, suitable for a subset of
the population, is used for the entirety of the internet.
We note that unlike these prior studies that explore
a single protocol or configuration parameter, in § 3
we present a more holistic exploration across multiple
protocols, parameters and layers of the protocol stack.
Furthermore, unlike prior work [2] we present a concrete
system (§ 4) to reconfigure and optimize the different
protocols and discuss design challenges (§ 6).

3 Empirical Study

To understand and quantify the benefits of reconfiguring
the networking stack, we conducted a large scale study
on the impact of selecting the optimal configurations
over the default configuration parameters across differ-
ent network conditions and websites.

3.1 Experiment Setup

To ensure reproducible and precise experiments across
the different configuration combinations, we leverage
MahiMahi [23], a proven network emulator for running
and re-running web page load experiments. MahiMahi
allows us to eradicate the variations in page load time
(PLT) that may arise due to unpredictable network con-
ditions. Moreover, MahiMahi includes tools, called
shells, that enable us to systematically modify and con-
trol network conditions – specifically, loss, bandwidth,
and RTTs. Each page is loaded five times and the mean
PLT is computed after filtering outliers.

In our experiments, we explore these dimensions:
Network conditions: We explore traditional network
properties: loss, latency, and bandwidth. To control these
network properties, we use the following MahiMahi
shells. To ground our study, we adjust the network la-
tency, bandwidth, and loss to reflect realistic network
conditions from various regions and networking infras-
tructure [1]. The network conditions tested include band-
width of {0.3, 1, 5}Mbps, loss rates of {0, 1, 2.5, 5}%
and delay of {50, 150, 250, 500}ms.
Server Network stack: Table 2 presents the list of net-
working stack configurations explored. Column 3 rep-
resents the default configuration values for Linux’s net-
working stack [24]. To reconfigure the CDN’s network-
ing stack, the Linux kernel provides a variety of options
that can be tuned by changing kernel modules, using
IOCTL socket calls, modifying IP tables or modifying
application modules.

3



Layer Protocol Parameters Default Values Tested

tcp congestion control Cubic Reno, Cubic,
Vegas, BBR

initcwnd 10 3, 6, 9, 12, 15, 18
Transport tcp slow start after idle 1 0, 1

(TCP) tcp low latency 0 0, 1
tcp pacing 0 0, 1

tcp autocorking 1 0, 1

Table 2: Networking stack configuration parameters.

Website complexity: We tested a variety of websites on
the Alexa top 100 list belonging to various categories;
news, social networks, sports, business, e-commerce,
and entertainment.

3.2 Empirical Study on Reconfiguration

How inefficient is the “one-size-fits-all” strategy? We
begin by exploring the implications of using a single de-
fault configuration. In Figure 3, we present the differ-
ence in PLT between the default and the best configu-
ration. We observe that in the median case, there is a
10% improvement in performance and in the tail (95th
percentile) over a 40% improve in performance. We note
that the tail conditions explored in our experiments are in
fact representative of a large fraction of realistic connec-
tions (e.g., 2G connections in developing and emerging
regions in Africa and Asia): Specifically, 68% of the tail
conditions have loss rates greater than 2.5% and band-
width below 1Mbps. Moreover, over 40% of the gains
are for content rich websites, e.g., msn.com, tmall.com,
espn.com and qq.com. We note that while these net-
works will eventually get updated with newer infrastruc-
ture, the heterogeneity between different networks will
always persist due to socioeconomic differences between
regions and thus the need for heterogeneity will persist.
Are some configurations strictly better than others?
Figure 4 presents a comparison of the top four config-
urations from the experiments for www.bbc.com. The
coverage percentage (in circles) represents the percent-
age of conditions in which the given configuration works
better than others, e.g., C1 is optimal for 37.5% of the

Figure 3: Benefits of using optimal configurations.

conditions. Rectangular box show the PLT for the des-
tination configuration over the source configuration for
a specific network condition (bandwidth, loss rate, de-
lay), e.g., C1 is 2.7% better than C2 for condition (1Mb,
1% loss, 50ms). Figure 4 shows that no configuration is
strictly better than others — there is at-least one condi-
tion were each configuration is better or worst than the
other configurations. Moreover the differences are stag-
gering.
Is it easy to learn the best configuration for a spe-
cific network property? Next, we attempt to answer
the following question: “Is it possible to learn a map-
ping of configuration parameters to network conditions?”
To do this, we start with a simple learning algorithm,
specifically, decision trees. To that end, we built a C4.5
decision tree using the data from our experiments: the
leaves of the tree are the configuration parameters in Ta-
ble 2 and the nodes are the predictive network condi-
tions. To build the decision tree, we binned the differ-
ent network conditions based on values. In Figure 5,
we present decision tree for www.youtube.com — a rep-
resentative decision tree. We summarized the decision
tree and pruned nodes for more predictable configuration
parameters: slow start after idle, low latency and auto-
corking. Our decision trees demonstrate that it is pos-
sible to learn the mapping of “optimal configuration” to
network conditions. We suspect that with a larger config-
uration and with more dynamic networks, we will need
to explore more complex learning algorithms.

4 Architecture

In Figure 6, we present the architecture for Configtron,
our framework for proactively supporting the reconfigu-

Figure 4: Comparison of top four optimal configurations.

4



ration of CDN server’s network stack at large scale. We
illustrate the functionality of the different components by
exploring the life cycle of a request.

When a new request arrives, the request router (our
Layer 4 load balancer) sends the request to a front-end
server. Unlike traditional, Layer 4 load balancers, the
request router contains meta-data mapping IP-prefixes
to pools of VMs containing the appropriate configura-
tion (for the specific IP-addresses). For IP addresses that
the request router contains no mappings for, the request
router uses the default load balancing rules that sends
the request to a pool of “default” servers — which are
servers with default configuration. Requests for IP ad-
dresses with known configurations are directed to the ap-
propriate pool of servers with those conditions. This pool
of servers consists of a farm of appropriately configured
VMs. In Configtron, the VM represents the granularity
of reconfiguration — the level with which Configtron is
able to configure (and reconfigure) the CDN’s network
stack. Moreover, configurations are done once, at the be-
ginning of the connection. We discuss the implications
of these design choices in sections 6 and 8.

Configuration Manager: The configuration manager
generates a mapping of IP-addresses to optimal configu-
ration parameters. To ensure scalability, the IP-addresses
are aggregated (and clustered) by prefixes with similar
network conditions and the configuration parameters are
aggregated to N different templates (where N is empiri-
cally derived using methodology described in Section 3).
Aggregation along both directions minimizes the state
maintained at the configuration manager and minimizes
fragmentation of resources while incurring a slight per-
formance inefficiency.

Additionally, the configuration manager leverages a
realistic emulator to test out different configuration val-
ues with different networking conditions and use a learn-

Figure 5: Decision tree for youtube.com.

Figure 6: System Architecture.

ing function to learn the optimal configuration. The ex-
act details of the learning function are beyond the scope
of this work and we merely sketch out the functional re-
quirements. We expect that the learning function can be
implemented using a variety of machine learning tech-
niques, e.g., deep reinforcement learning or decision
trees, or more traditional testing techniques, e.g., A-B
testing [30]. Abstractly, the learning function takes as
input the inferred (measured) RTT, loss rate, bandwidth,
and website structure, then explores different configura-
tion parameters, and selects the parameters that optimize
web page load times.

Finally, the configuration manager maintains a con-
stant pool of “free servers” each configured with the “N”-
golden templates. This pool of “free servers” ensures that
new requests do not have to be delayed waiting for a new
server to be configured.

Config Agent: This runs within the hypervisor of the
different physical servers, instantiating VMs with pre-
specified configurations. The agent provides the con-
figuration manager with a standard and a uniform inter-
face across different servers regardless of the OS (Linux,
Windows) and the web-server application (Apache, NG-
inx). Moreover, the agent collects and reports statis-
tics for each connection (IP address) including the RTTs,
loss, bandwidth, and jitter.

5 Prototype Implementation

To explore the feasibility and viability of Configtron, we
have developed an initial prototype and are exploring the
implications of deploying it on Amazon AWS. We have
implemented the Config agent in Python in 890 lines of
code. The Config agent provides controls over the con-
figuration parameters discussed in § 3. In our AWS de-
ployment, the Config Agent runs locally because we do
not have access to the hypervisor. The networking stack
for our VMs consist of Ubuntu 16 and Apache. The
Configuration manager uses an offline learning function
based on a decision tree generated from our MahiMahi
experiments. Our current prototype provides control

5



over the parameters in Table 2 as well as the HTTP
version. The request router is implemented as an SDN
switch running in a VM and acting as a proxy between
the clients and front-end VMs.

6 Design Challenges and Future Works

Our design and prototype explore a single point in the
design space. In this section, we discuss alternate design
points and their implications.
Inferring Network Conditions: Our current design in-
fers the client’s network conditions based on packets
exchanged between servers and the clients; in a simi-
lar manner to how TCP learns a client’s network con-
ditions. An alternate and more direct approach is to have
the clients explicitly probe, capture and exchange net-
work condition information with the servers. This can be
done by modifying the client software stack [32] to ac-
tively collect measurements and inform the CDN server
or adding javascript or invisible images into the webpage
that enables the webserver to collect client-side statis-
tics [12]. As part of future work, we plan to explore the
more accepted approach: embedding javascript or im-
ages for performance profiling.
Online Versus Offline Learning: Section 3 demon-
strates that we can build decision trees and learn optimal
configurations for different network conditions, however,
this requires brute force and extensive testing which may
be infeasible when we explore the broader space of con-
figuration parameters and explore the more nuanced net-
work conditions that appear in practice. We plan to ex-
plore the use of online learning techniques, e.g., A-B
testing [30], and compare the effectiveness of online with
against learning techniques.
Configuration Granularity: Our current design recon-
figures the stack at the granularity of a VM — with each
VM containing a distinct set of configuration parame-
ters. While heavy weight, VM-level configurations al-
lows us to reuse existing and mature tools while provid-
ing full control over all configuration parameters. Al-
ternatively, we could explore containers (e.g., Docker)
as the granularity of control. However, since containers
share the same networking stack, we would need to use
userspace TCP/IP protocols to provide control over cer-
tain TCP configurations, e.g., TCP version. As part of fu-
ture work, we plan to explore a fusion of both extremes.
Namely, leverage VM-level granularity for controlling
kernel-level global parameters, e.g., TCP version, and
container-level granularity for controlling connection-
level local parameters, e.g., HTTP protocol version.
Reconfiguration Frequency: Our current design recon-
figures the CDN’s networking stack at the beginning
of each connection. This limits the flexibly of Con-
figtron and prevents us from adapting to drastic changes

in the end-user’s networking conditions. Alternatively,
we could reconfigure the stack at finer granularities,
i.e., before every packet or before every object. Al-
though reconfiguration at the finer granularity enables
us to react more finely, and ultimately to improve per-
formance, finer granularity introduces several signifi-
cant challenges, e.g., managing reconfiguration over-
heads and tackling the implications of reconfiguration on
existing state for the connection.
Reconfiguration Overheads: There are some over-
heads associated with reconfiguring the CDN’s network-
ing stack, specifically, VM setup cost (e.g., image trans-
fer and bootup) and kernel reconfiguration (e.g., chang-
ing the protocol version). To tackle these overheads, we
plan to explore a combination of approaches to amelio-
rate this overheads, e.g., maintaining a fleet of preconfig-
ured VMs and proactively scale-up this fleet in respond
to fluctuations in demand.
Deployment Scenario: The current design explores a
point in the design space that requires content-providers
to modify and improve their infrastructure. Yet, there
are also points in the design space; where the content-
provider and the end-user cooperate, these points in the
design space enable us to explore a broader range of
configuration options including configuration on the end-
user client and explicitly exchange of client side informa-
tion. Although this approach appears altruistic, this point
in the design space can be easily explored by large online
service providers, e.g., Facebook and Google. As part of
future work, we plan to explore the additional benefits
that arise from leveraging client (end-user) cooperation.

7 Conclusion

In this paper, we argue that content providers should
eschew the “one-size-fits-all” approach to configuring
CDN network stacks and instead embrace heterogene-
ity in CDN network stack configurations. To support our
argument, we perform an empirical evaluation of the im-
plication of configuration and find that heterogeneity can
lead to significant improvements.

This paper takes the first step towards realizing het-
erogeneity by proposing an open but simple interface for
configuring the network serving stack and introducing a
framework that enables a CDN to practically leverage
heterogeneity. Our framework learns network conditions
and enables the use of machine learning techniques to
determine the optimal configuration for the different net-
work conditions.

6



8 Discussion

In this paper, we proposed that “one-size-fits-all” ap-
proach to tuning/configuring server networking stacks
result in sub-par performance for some end-users, espe-
cially those users in emerging regions. Due to the ever-
expanding nature of internet, all end-users do not face
similar network conditions and improvement in under-
lying protocols do not uniformly benefit all users [31, 8].
This argument stands in stark contrast to the traditional
setup of server networking stacks where a single network
configuration is used for a divergent set of users.

Expected Feedback: Our proposal for dynamic re-
configuration of the CDN network stack is grounded on
emulations and prototype implementations. We are look-
ing for feedback on challenges that can arise when de-
ployed in large scale, production environment.
• Management Overheads: Dynamically reconfig-

uring the CDN protocol stack complicates perfor-
mance diagnosis and troubleshoot. We plan to
investigate methods for reducing this complexity,
e.g., minimizing the number of active configuration
combinations.
• QuiC: Google employs QuiC, which utilizes UDP

and not TCP. Yet, QuiC has a number of configura-
tion options thus making the underlying principles
of Configtron immediately applicable to QuiC.
• Long-lived Connections: Configtron configures

the online service provider’s CDN networking stack
at the beginning of the connection and this prevents
us from dealing with drastic changes in the network
which may require reconfiguring existing connec-
tions. Fortunately, TCP’s congestion avoidance al-
gorithms are designed to explicitly handle these dy-
namic situations. Configtron attacks an orthogonal
problem and focuses on improving TCP (and other
protocols) by tuning the configuration of their inter-
nal algorithms.
• Broader Evaluations and QoE Metrics: As part

of ongoing work, we are planning to understand the
limits of Configtron by evaluating Configtron across
a larger space of configuration parameters; a wide
range of network conditions (e.g., mobile networks
or buffer-bloat) and dynamics (e.g., time of day ef-
fects); and a broader set of web page QoE metrics
(e.g. SpeedIndex [15]) and Video QoE metrics.

References

[1] Akamai. Akamai state of the internet.
https://www.akamai.com/us/en/our-

thinking/state-of-the-internet-report.

[2] Mohammad Al-Fares, Khaled Elmeleegy, Ben-
jamin Reed, and Igor Gashinsky. Overclocking the
yahoo!: Cdn for faster web page loads. In Proceed-
ings of the 2011 ACM SIGCOMM conference on
Internet measurement conference, pages 569–584.
ACM, 2011.

[3] Mona Attariyan and Jason Flinn. Automating con-
figuration troubleshooting with dynamic informa-
tion flow analysis. In Proceedings of the 9th Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI), pages 1–11, 2010.

[4] Michael Butkiewicz, Harsha V Madhyastha, and
Vyas Sekar. Understanding website complexity:
measurements, metrics, and implications. In Pro-
ceedings of the 2011 ACM SIGCOMM conference
on Internet measurement conference, pages 313–
328. ACM, 2011.

[5] Cisco. White paper: Cisco vni fore-
cast and methodology, 2015-2020. http:

//www.cisco.com/c/en/us/solutions/

collateral/service-provider/visual-

networking-index-vni/complete-white-

paper-c11-481360.html.

[6] Nandita Dukkipati, Tiziana Refice, Yuchung
Cheng, Jerry Chu, Tom Herbert, Amit Agarwal,
Arvind Jain, and Natalia Sutin. An argument for
increasing tcp’s initial congestion window. Com-
puter Communication Review, 40(3):26–33, 2010.

[7] Yehia Elkhatib, Gareth Tyson, and Michael Welzl.
Can spdy really make the web faster? In Network-
ing Conference, 2014 IFIP, pages 1–9. IEEE, 2014.

[8] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana,
and Kadangode K Ramakrishnan. Towards a
spdyier mobile web? IEEE/ACM Transactions on
Networking, 23(6):2010–2023, 2015.

[9] Facebook. Building for emerging markets: The
story behind 2g tuesdays. https://code.

facebook.com/posts/1556407321275493/

building-for-emerging-markets-the-

story-behind-2g-tuesdays/.

[10] Sally Floyd. Highspeed tcp for large congestion
windows. 2003.

[11] Majid Ghaderi, Ashwin Sridharan, Hui Zang, Don
Towsley, and Rene Cruz. Tcp-aware resource al-
location in cdma networks. In Proceedings of the
12th annual international conference on Mobile
computing and networking, pages 215–226. ACM,
2006.

7



[12] Mojgan Ghasemi, Partha Kanuparthy, Ahmed
Mansy, Theophilus Benson, and Jennifer Rex-
ford. Performance characterization of a commer-
cial video streaming service. In Proceedings of the
2016 ACM on Internet Measurement Conference,
pages 499–511. ACM, 2016.

[13] Monia Ghobadi, Soheil Hassas Yeganeh, and
Yashar Ganjali. Rethinking end-to-end congestion
control in software-defined networks. In Proceed-
ings of the 11th ACM Workshop on Hot Topics in
networks, pages 61–66. ACM, 2012.

[14] Google. Quic, a multiplexed stream transport over
udp. https://www.chromium.org/quic.

[15] Google. Speed index. https://sites.google.

com/a/webpagetest.org/docs/using-

webpagetest/metrics/speed-index.

[16] Jens Heuschkel, Michael Stein, Lin Wang, and Max
Mühlhäuser. Beyond the core: Enabling software-
defined control at the network edge. In Networked
Systems (NetSys), 2017 International Conference
on, pages 1–6. IEEE, 2017.

[17] Fan Li and Guizhong Liu. Cross-layer optimiza-
tion for multiuser video streaming over wireless
networks. 2008.

[18] Xiaojun Lin, Ness B Shroff, and Rayadurgam
Srikant. A tutorial on cross-layer optimization in
wireless networks. IEEE Journal on Selected areas
in Communications, 24(8):1452–1463, 2006.

[19] Linux Programmer’s Manual. tcp - tcp pro-
tocol. http://man7.org/linux/man-pages/

man7/tcp.7.html.

[20] Péter Megyesi, Zsolt Krämer, and Sándor Molnár.
How quick is quic? In Communications (ICC),
2016 IEEE International Conference on, pages 1–
6. IEEE, 2016.

[21] Roberto Peon Mike Belshe. Spdy proto-
col. https://tools.ietf.org/id/draft-

mbelshe-httpbis-spdy-00.txt.

[22] Ravi Netravali, Ameesh Goyal, James Mickens,
and Hari Balakrishnan. Polaris: Faster page loads
using fine-grained dependency tracking. In 13th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). USENIX Associa-
tion, 2016.

[23] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens,
and Hari Balakrishnan. Mahimahi: Accurate

record-and-replay for http. In USENIX Annual
Technical Conference, pages 417–429, 2015.

[24] Linux programmer’s manual. Tcp protocol man
page. http://man7.org/linux/man-pages/

man7/tcp.7.html.

[25] Feng Qian, Alexandre Gerber, Zhuoqing Morley
Mao, Subhabrata Sen, Oliver Spatscheck, and Wal-
ter Willinger. Tcp revisited: a fresh look at tcp
in the wild. In Proceedings of the 9th ACM SIG-
COMM conference on Internet measurement con-
ference, pages 76–89. ACM, 2009.

[26] Shailendra Singh, Harsha V Madhyastha,
Srikanth V Krishnamurthy, and Ramesh Govindan.
Flexiweb: Network-aware compaction for acceler-
ating mobile web transfers. In Proceedings of the
21st Annual International Conference on Mobile
Computing and Networking, pages 604–616.
ACM, 2015.

[27] Kun Tan Jingmin Song, Q Zhang, and M Sridharan.
Compound tcp: A scalable and tcp-friendly conges-
tion control for high-speed networks. Proceedings
of PFLDnet 2006, 2006.

[28] Ya-Yunn Su, Mona Attariyan, and Jason Flinn.
Autobash: improving configuration management
with operating system causality analysis. In ACM
SIGOPS Operating Systems Review, volume 41,
pages 237–250. ACM, 2007.

[29] Srisakul Thakolsri, Wolfgang Kellerer, and Ecke-
hard Steinbach. Qoe-based rate adaptation scheme
selection for resource-constrained wireless video
transmission. In Proceedings of the 18th ACM in-
ternational conference on Multimedia, pages 783–
786. ACM, 2010.

[30] Kaushik Veeraraghavan, Justin Meza, David Chou,
Wonho Kim, Sonia Margulis, Scott Michelson, Ra-
jesh Nishtala, Daniel Obenshain, Dmitri Perelman,
and Yee Jiun Song. Kraken: leveraging live traffic
tests to identify and resolve resource utilization bot-
tlenecks in large scale web services. In Proceedings
of the 12th USENIX conference on Operating Sys-
tems Design and Implementation, pages 635–650.
USENIX Association, 2016.

[31] Xiao Sophia Wang, Aruna Balasubramanian,
Arvind Krishnamurthy, and David Wetherall. How
speedy is spdy? In NSDI, pages 387–399, 2014.

[32] Yiannis Yiakoumis, Sachin Katti, and Nick McKe-
own. Neutral net neutrality. In Proceedings of the
2016 conference on ACM SIGCOMM 2016 Confer-
ence, pages 483–496. ACM, 2016.

8


