MP-HULA: Multipath Transport Aware Load Balancing Using
Programmable Data Planes

Cristian Hernandez Benet
Karlstad University

Theophilus Benson

Brown University

ABSTRACT

Datacenter networks offer a large degree of multipath in order to
provide large bisectional bandwidth. The end-to-end performance
is determined by the load-balancing strategy which needs to be
designed to effectively manage congestion. Consequently, conges-
tion aware load-balancing strategies such as CONGA or HULA
have been designed. Recently, more and more applications that are
hosted on cloud servers use multipath transport protocols such
as MPTCP. However, in the presence of MPTCP, existing load-
balancing schemes including ECMP, HULA or CONGA may lead to
suboptimal forwarding decisions where multiple MPTCP subflows
of one connection are pinned on the same bottleneck link.

In this paper, we present MP-HULA, a transport layer multi-path
aware load-balancing scheme using Programmable Data Planes.
First, instead of tracking congestion information for the best path
towards the destination, each MP-HULA switch tracks congestion
information for the best-k paths to a destination through the neigh-
bor switches. Second, we design MP-HULA using Programmable
Data Planes, where each leaf switch can identify, using P4, which
MPTCP subflow belongs to which connection. MP-HULA then
load-balances different MPTCP subflows of a MPTCP connection
on different next hops considering congestion state while aggregat-
ing bandwidth. Our evaluation shows that MP-HULA with MPTCP
outperforms HULA in average flow completion time (2.1x at 50%
load, 1.7x at 80% load).

CCS CONCEPTS

» Networks — Programmable networks;

KEYWORDS

In-Network Load Balancing; Programmable Switches; Network
Congestion; Multipath.

ACM Reference Format:

Cristian Hernandez Benet, Andreas J. Kassler, Theophilus Benson, and Ger-
gely Pongracz. 2018. MP-HULA: Multipath Transport Aware Load Balancing
Using Programmable Data Planes. In NetCompute’18: Morning Workshop
on In-Network Computing, August 20, 2018, Budapest, Hungary, Jennifer B.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NetCompute’18, August 20, 2018, Budapest, Hungary

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5908-5/18/08...$15.00
https://doi.org/10.1145/3229591.3229596

Andreas J. Kassler
Karlstad University

Gergely Pongracz

Networking Research - Ericsson

Sartor, Theo D'Hondt, and Wolfgang De Meuter (Eds.). ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3229591.3229596

1 INTRODUCTION

In recent years, many applications have been hosted inside data
centers that are increasingly demanding in terms of data transfer.
For example, [3] shows that 90% of the traffic in data centers belong
to long flows (more than 1MB). In addition, with the recent support
for multi-path transport layer inside modern Operating Systems,
more and more applications are enabled to use Multipath TCP
(MPTCP). Apples Siri is just a prominent example of such Cloud
based MPTCP service. Such multipath transport protocols attempt
to exploit the path diversity by splitting traffic between multiple sub-
flows which has several benefits. It allows to aggregate capacity of
multiple paths, shifts traffic adaptively to less congested sub-flows
and improves the fault tolerance to link failures. Consequently, data
centers should be designed for multipath transports [20]. With the
recent development of stateless MPTCP server load balancers [17],
MPTCP is expected to be more prevalent in the data center.

Despite the effort made in the transport layer, today many data
centers still use Equal-Cost Multi-Path (ECMP) as a routing strat-
egy, which assigns each flow to one of several least cost paths
randomly based on a hash function. Unfortunately, when using
MPTCP combined with ECMP, hash collisions may occur resulting
in under-utilized links and unbalanced load across multiple paths
[20]. Hedera [1] develops a dynamic flow scheduling system using
a centralized solution which suffer from high control loop latency.
Other load-balancing schemes such as CONGA [2] and HULA [15]
propose distributed solutions attempting to cope with the slow
decision making of centralized solutions for high volume of data.
HULA performs flowlet routing along least congested paths, which
are updated based on distributed probing taking advantage of the
emerging capabilities provided by data plane programmability such
as P4 [4]. Because Conga and HULA are not designed for multipath
transport, they cannot exploit the features of multipath transport
efficiently thus resulting in low performance.

This paper proposes MP-HULA, a data-plane load-balancing ap-
proach that is multi-path transport aware. By using P4, MP-HULA
switches parse MPTCP header fields thus being able to associate
MPTCP subflows to a MPTCP connection. Instead of tracking only
the least utilized path towards each Top-of-Rack (ToR) switch, MP-
HULAs adaptive probing mechanism keeps congestion state for
the best-k next hops per destination. MPTCP sub-flows are then
split into flowlets [13], which is a long enough burst of packets
of a MPTCP subflow to avoid reordering. The MP-HULA switch
then uses the congestion state for best-k next hops together with

https://doi.org/10.1145/3229591.3229596
https://doi.org/10.1145/3229591.3229596

NetCompute’18, August 20, 2018, Budapest, Hungary

the MPTCP sub-flowlet information to route different MPTCP sub-
flowlet towards different next hops taking into account congestion
information. Our evaluation in the NS2 network simulator demon-
strates the effectiveness of MP-HULA in reducing flow completion
time between 1.7x and 2.1x compared to HULA with MPTCP and
uncoupled congestion control. When compared with HULA and
TCP, MPTCP combined with MP-HULA reduces average flow com-
pletion time (3.4x at 50% load, 2.9x at 80% load).

2 MULTI-PATH TRANSPORT AWARE LOAD
BALANCING IN THE DATA PLANE

A MPTCP connection can be seen as a single socket connection
from an application’s perspective. It is composed of one or more sub-
flows, each one with its own sequence number space and congestion
window so that it can adapt to congestion along each path. MPTCP
can run multiple sub-flows on a single path. When using ECMP,
different sub-flows may be routed over different paths, which may
lead to hash collisions and several flows of a single MPTCP con-
nection may end up on the same bottleneck link leading to loss
of throughput [23]. The key idea of MP-HULA is to load-balance
different sub-flows of a given MPTCP connection over different
paths on a per flowlet basis, taking congestion into account.

As in HULA, probes are used to convey congestion information
which is used for MPTCP flowlet routing. In contrast to HULA,
however, probes are replicated to track the best-k paths from each
leaf switch throughout the network. This is because we route each
sub-flow of a given MPTCP connection over disjoint paths to ag-
gregate bandwidth. In this section, we describe how the multiple
sub-flows of a given MPTCP connection are identified and tracked
by MP-HULA capable switches, how congestion information is used
for congestion aware flowlet routing of multiple MPTCP sub-flows
and how the probe replication and processing logic tracks the best-k
paths using custom data structures expressed in P4 [4].

2.1 MPTCP header processing in P4

In MPTCP, each sub-flow has a port/IP-address that is different
from other sub-flows of the same connection. In order to iden-
tify, which sub-flow belongs to a given MPTCP connection, ToRs
need to parse MPTCP protocol header extensions during connec-
tion establishment and sub-flow opening in order to obtain tokens,
which uniquely identify the MPTCP connection [7] (Figure 1). This
functionality is assigned to the ToR since all MPTCP messages ex-
changed during connection establishment and sub-flow opening
pass through it. As the load-balancing may spread out the packets
after the ToR on different paths, other switches might not receive all
messages which are required in order to successfully correlate the
MPTCP sub-flows. Alternatively, correlating sub-flows to a given
MPTCP connection might also be done on the hypervisor or P4
programmable NIC of the sender. A custom register data structure
MPTCP Association Table (Figure 2) is used by the ToR to store, per
sub-flow, the 5-tuple sub-flow Hash, Token A, Token B, Sub-flow
counter, Sub-flow number, MPTCP connection ID.

During the three-way handshake, the source sends a SYN with
the MP_CAPABLE option set and a random 64-bit key (Key A). The
ToR parses the SYN packets sent by the hosts and checks, if the
MP_CAPABLE option exists (Figure 1 step 1). Then, it computes

Hernandez Benet et al.

Hest A Host B

[SYN] MP_CAPABLE {Key A}

1

Initial [SYN/ACK] MP_GAPABLE {Key B}
o B I i (2)

[ACK] MP_CAPABLE {Key A, Key B} @)

[SYN] MP_JOIN {Token B, nonce A}

(4a)

[SYN/ACK] MP_JOIN {HMAC B, nonce B}
D (4b)

[ACK] MP_JOIN {HMAC A}

Aditional
Subflow

HMAC A = HMAC(Key=(Key A+Key B), Msg=(nonce A+ nonce B))
HMAC B = HMAC(Key=(Key B+Key A), Msg=(nonce B+ nonce A})

Figure 1: MPTCP sub-flow establishment

a five-tuple hash with the source and destination IP, source and
destination port, and the layer 4 protocol. It uses this hash index to
store the sender key in an auxiliary table (Figure 2 step (1)), which
will be used later to calculate the tokens.

MPTCP Association Table
HASH 1 ¥ D1
A B (3b 1

(3a) (3b) 2 (5a) (5b)

HASH 2 2 ID1

(6a) . - 2 6b) | (6c)

Token table Auxiliary table for keys
A @0 HASH 1 HASH1 A(1) | B (2

Figure 2: MPTCP association, token and auxiliary tables

The ToRs parse the SYN/ACK messages sent from the receiver
which also have the MP_CAPABLE option set in order to extract
the receiver key (Key B, step (2)). The hash is computed exchanging
sender information for the receiver’s (destination IP, source IP,
destination port, source port and protocol) and the ToR stores the
receiver key B in the auxiliary table (Figure 2 step (2)). Once Key
B is inserted in the table, the ToR generate the Tokens A and B
and inserts them into the MPTCP Association table (step (3)). The
token is a truncation of the 32 most significant bits of the SHA-1
of the key, calculated using external functions in P4. Once step (3)
is complete, the entry in the auxiliary table for that hash might
be deleted. A new entry is created in the Token Table (steps (3c)
and (3d)), which is needed in order to associate new sub-flows to
a given MPTCP connection. Using the token as an index in the
table may lead to a collision risk [7], especially if a large number
of sub-flows pass through that ToR from different servers and we
suggest to implement the detection and identification function in
the hypervisor or NIC of the sender. Alternatively, we could create
a token table per incoming port and using another table to relate

MP-HULA: Multipath Transport Aware Load Balancing in P4

the incoming port with port token table, which would consume
more memory. The token will be utilized when new sub-flows are
created in order to identify the initial sub-flow and thus the MPTCP
connection ID.

When MPTCP creates a new sub-flow, the sender sends a SYN
packet with MP_JOIN containing the token and a generated random
number (nonce A), as shown in Figure 1 step (4a). The ToR parses
this message and obtains the sent token that is subsequently used
to look up the hash of the initial MPTCP sub-flow in the token
table, step (4) in Figure 2. The hash index obtained in the token
table is used to update the counter of that MPTCP connection in
the MPTCP Association table and at the same time, calculate the
MPTCP connection ID (step (5a) and (5b)). The MPTCP ID can be
created in different ways, however to simplify, we will take the
32-bit Token A and the 32-bit from Token B to generate a unique
64-bit ID, which is stored in step (5b) in the MPTCP Association
table. Then, we add a new entry for the new sub-flow together with
the 5-tuple hash, its sub-flow number (current state of the counter)
and MPTCP connection ID as shown in Figure 2 step (6a), (6b) and
(6¢). Therefore, the sub-flow counter is used to enumerate the new
sub-flows. For example, when the new sub-flow is initiated, the
counter increases from one to two as shown in Figure 2 step (5a),
which indicates the sub-flow number of the MPTCP Association
table step (6b). For security and validation reasons, the nonces (A
and B) exchanged during the MP_JOIN process, shown in Figure
1 step (4a) and (4b), could be stored also in an additional auxiliary
table to later generate the HMAC A and HMAC B and thus verify
the correct establishment of the sub-flows. We assume a secure data
center environment and omitted this step.

2.2 Multipath sub-flow association mapping

Although the ToR is able to correlate different sub-flows to a MPTCP
connection, upper layer switches might not have information on all
token and keys exchanged due to the flowlet switching. Therefore,
the ToR needs to augment MPTCP data packets by an additional
header which allows each switch to uniquely identify the MPTCP
connection and sub-flow, if more than one sub-flow exists. This
header is removed by the target ToR switch and intermediate ag-
gregation and core switches use only this additional header for
forwarding decisions after correlating MPTCP sub-flows to their
respective connection. When the MPTCP ID is created by the ToR
and the sub-flow counter is greater than one, Figure 1 step (6b) and
(6¢), the ToR adds the following header to all MPTCP packets after
identifying the correct sub-flow and MPTCP ID:
e MPTCP_ID (64 bits): This ID is used to uniquely identify
the MPTCP connection.
e sub-flow_num (4 bits): identifies the sub-flow number within
the MPTCP connection.

We assume that the 64-bit ID can uniquely identify each MPTCP
connection within the data center. Likewise, 4-bits are used for the
sub-flow index within a given MPTCP connection, which supports
16 possible sub-flows. However, these values can be easily modified.

2.3 Hop-by-hop Probe Processing

The original HULA uses 64 byte probe packets containing the id
of the originator ToR and a field to aggregate link utilization. The

NetCompute’18, August 20, 2018, Budapest, Hungary

probes update a table that the switches use to store the best next
hop for each destination ToR and its respective link utilization. In
contrast to HULA, we maintain k tables to store the best-k next
hop switches and their corresponding link utilization. We now
detail, how we modify the HULA probe processing logic to track
congestion information for the best-k paths along with the next
hop information. We do not modify the HULA probe packet format.

When a probe packet arrives, the switch calculates the maximum
of the utilization field in the packet and the TX link utilization
of the packet’s input port, MaxUtil. Min_hop_util calculates the
minimum of the lowest link utilization value obtained from the
best hop table k=1) and MaxUtil. Then, Min_hop_util is compared
with the entries of all best-k next hop tables. The tables are updated
in order to maintain a sorted array of best best-k hops along with
their utilization using if-else logic. For example, for k = 3, if the
second value (e.g. 65%) is lower than the Min_hop_util (e.g. 67%), the
second value is copied to the k=3 table position and the 2nd entry is
replaced with the Min_hop_util value. Finally, the utilization field of
the probe packet is updated with the new Min_hop_util value and
replicated to all the ports, except for the one where it was received
from, until it reaches the next pod, where it is only replicated to
the lower hierarchy switches.

24 MPTCP Flowlet Routing

As in HULA, the load-balancing granularity is the flowlet in order to
avoid packet reordering. All packets belonging to the same flowlet
are routed over the same path p1 over the same next hop until the
flowlet gap f; has expired. Once this timer expires, a new flowlet is
created in the Flowlet table, updating the time stamp. Depending
on the network conditions, when the new flowlet is created, it can
be assigned to a new path p2. In our case, as we want to aggregate
the bandwidth across multiple MPTCP sub-flows, when the flowlet
belonging to an MPTCP sub-flow for a given MPTCP connection
expires, we check if there is another flowlet, which belongs to the
same MPTCP connection, assigned to the best available path. If this
is the case, we do not send this new flowlet over the best next hop
because that may lead to situations, where multiple flows of the
same MPTCP connection share the same bottleneck link. Instead,
we send it over the best next hop not used by another sub-flow
of the same MPTCP connection. However, other schemes are also
possible in case more sub-flows are opened as alternative next hops
are available. The first sub-flow will always be routed over the least
congested next hop, which is important for short flows.

2.5 Path selection and MPTCP association
under partial information

When an MPTCP connection has more than one sub-flow, the ToR
adds the header described in Section 2.2 to all packets belonging
to any of these sub-flows. MP-HULA switches at higher level (e.g.
core, aggregation) perform a 5-tuple hash and check if the header is
present in the packet. If this header does not exist, we use the same
technique as HULA and therefore the packet is sent on the best-next
hop. In case more than one sub-flow has been opened by MPTCP, the
ToR attaches the additional header to each packet which contains
the MPTCP_ID and sub-flow_num. The Flowlet table stores those

NetCompute’18, August 20, 2018, Budapest, Hungary

MPTCP sub-flow mapping

Flowlet table

HASH1 TOR1 1 2 D1 | A1 D1 1 A3
HASH2 TOR1| 2 1 D1 | A3
|HASH3 | TOR1 | 3 3 D1 | A2
i D1 2 Al
: Best khop tables i - 3
{[ToR 1 A1 [50% | ToR1 A |e5% o1 s 2

ToR 1

A2 | 75%

Figure 3: Best k next hop switch and flowlet tables

values as illustrated in Figure 3. Then, the switch obtains the best-
next hop from the best-k-hop tables, hop;, checks the MPTCP sub-
flow mapping tables if this best-next hop has already been assigned
previously to any other sub-flow of this MPTCP_ID. If this best-
next hop does not exist in the mapping tables, this best-next hop is
assigned and stored in the Flowlet table as the best hop. Otherwise,
if hop; is found, the hop; is discarded and we identify the second
best-next hop, hop,. These steps are repeated until hopy in case
of finding the selected best-hop in any of the MPTCP sub-flow
mapping tables. If in the last step, i.e. the hopy, the best-hop is
found again in the MPTCP sub-flow mapping tables, the hop; is
assigned as the best hop for that flowlet implementing a round-
robin scheme but other schemes are possible, too.

2.6 Feasibility of MP-HULA in P4

As Hula, implementing MP-HULA in P4 requires stateless (header
field reading and writing) and stateful (record and manipulate con-
gestion and forwarding state) operations. In addition, we require
external function support from P4 (which can be implemented using
extern block [26]) to implement the SHA-1 algorithm to obtain the
token. However, in our case, the SHA-1 function is called only once
per MPTCP connection and implementing the SHA-1 in FPGA adds
a small overhead [16, 19]. We can outsource the SHA-1 computa-
tion to crypto acceleration blocks of P4 enabled NICs! or switches.
MP-HULA requires more congestion state compared to HULA to
track k paths and requires forwarding state per MPTCP sub-flowlet
(instead of per flowlet). Note, that k allows to make a trade-off
between the path diversity, memory consumption and processing
overhead at the switch which is subject to future study.

Parsing State: MP-HULA requires state information to correlate
the MPTCP sub-flow to the MPTCP connection using the MPTCP
Association table (19 bytes per sub-flow), Token table (6 bytes per
sub-flow) and Auxiliary table for keys (10 bytes per sub-flow), see

le.g. using https://www.netronome.com/media/redactor_files/WP_NFP4000_TOO.pdf

10

Hernandez Benet et al.

Figure 2. For example, when processing 100K MPTCP connections, 6
sub-flows, in total 21 MB are required. This state can be outsourced
to the Hypervisor/programmable NIC at the server.

Forwarding State: MP-HULA requires per sub-flow forwarding
state implemented by the Flowlet table (25 bytes per MPTCP sub-
flowlet), Best hop tables (16 bytes per ToR and table) and MPTCP
sub-flow mapping (13 bytes per sub-flow) as shown in 3. Assuming
10K ToRs, 6 sub-flows, 4 best paths, 100K MPTCP connections, the
memory requirement is around 25 MB.

Processing at ToR/Hypervisor: In addition to calculating the
SHA-1, the ToR/Hypervisor need to insert/remove the header to
identify the MPTCP connection (Section 2.2) per packet, which
can be done at line rate similar to INT-operations. In addition, it
requires additional parsing operations related to MPTCP in order to
create state for the MPTCP association, token and auxiliary tables,
which is required for each sub-flow opening.

Processing at aggregation/core: In addition to parsing the
additional header to correlate the MPTCP subflows, all switches
(including the ToRs) need to process the Flowlet table, MPTCP
sub-flow mapping and best hop tables. Since there is no for-loop in
P4, all search operations must be implemented using if-else, which
makes the search in the MPTCP sub-flow mapping table complex
for a high number of sub-flows. The same complexity is required
when ordering the best hop tables for a large k.

3 EVALUATION AND RESULTS

We evaluate MP-HULA using packet level simulation in NS2. We
use a 3-tier Fat-Tree topology (Figure 4) with two Core switches (C1,
C2) connecting two pods with two Aggregation switches and ToRs
using 40Gbps links. 16 compute nodes are connected to each ToR
using 10Gbps links. We use two different workloads to generate
traffic based on the traces from [15], which emulate Web-search and
data mining jobs. The compute nodes run a client-server application
to initiate a TCP or MPTCP connection, which generates traffic
using flow size distribution obtained from the CDF samples of the
workload traces. Each of the 16 clients (located in pod 1) selects
randomly any of the 16 servers (from pod2). The flow inter-arrival
pattern is modeled by an exponential Poisson process. We scale the
request rate to increase the load from 10% to 90%.

Agg.

ToR

dudu doda

Figure 4: Evaluation Topology

https://www.netronome.com/media/redactor_files/WP_NFP4000_TOO.pdf

MP-HULA: Multipath Transport Aware Load Balancing in P4

We compare MP-HULA against ECMP and HULA [15], which
forwards all packets in a flowlet towards a given destination ToR
only over the single best next hop. We use a flowlet inter-packet
gap of 100us, which is in the order of the network RTT to minimize
packet re-ordering at the receiver as in [2, 15]. The probing interval
is set to 200us as in [15]. For MPTCP, we use two sub-flows per
connection and we evaluate uncoupled and coupled [21] congestion
control. The parameter that determines the number of best-k next
hops is set to 2. This paper does not intended to optimize the k
parameter but rather intends to demonstrate the benefits of the
proposed approach and the relevance of this parameter. A k value
lower than the number of sub-flows may imply a reduction in the
bandwidth aggregation. This is because some sub-flows can result
in the same best-hop, and therefore are more likely to travel through
the same bottleneck. In addition, another aspect which must not be
neglected when selecting the k parameter is the number of output
ports in the switch to send the flowlets.

Figure 5 shows the average FCT for the web-search workload
using coupled congestion control. Using MPTCP with MP-HULA
(MPTCP-COUPLED_MP-HULA) performs significantly better than
all of the other schemes because of the large flow sizes in the
trace which enable MPTCP to take advantage of the diverse paths.
Similarly, MP-HULA performs best also for the small mice flows
from the same web-search trace (<100KB transfer) as can be seen
from Figure 6. This is also, because the larger elephant flows finish
earlier taking advantage of the multipath (omitted due to space
constraints). Using uncoupled congestion control reduces flow com-
pletion time even more (3.4x at 50% load, 2.9x at 80% load) because
of the more aggressive congestion control (Figure 7). This shows
that MP-HULA benefits both, coupled and uncoupled congestion
control schemes for MPTCP and reduces flow completion time sig-
nificantly compared to just using HULA and MPTCP. For all the
schemes evaluated, ECMP performs the worst when combined with
MPTCP due to hash collisions leading to poor link utilization.

To evaluate MP-HULA under link failures, we use an asymmet-
ric topology, where we bring down one of the links that connect
the core switches to the aggregation switches reducing bisectional
bandwidth. As we can see from Figure 8, again, MP-HULA out-
performs all other schemes using the web-search trace showing
its effectiveness to shift traffic away from congested paths even in
asymmetric topologies. Interestingly, MPTCP with ECMP performs
very poor because of the congestion unaware nature of ECMP that
routed the traffic towards the core where only one link was avail-
able. Figure 9 shows the average link utilization (e.g. 0.72 = 72%)
for the web-search workload using MPTCP uncoupled congestion
control for different links in the topology, shown in Figure 4. As
can be seen, MP-HULA with MPTCP leads to higher link utilization
compared to HULA (when run with TCP or MPTCP) because it
spreads different MPTCP sub-flowlets more equally on different
next hops leading to lower overall flow completion time.

Figure 10 shows the average FCT for the data-mining work-
load using coupled congestion control for MPTCP. Using MPTCP
with HULA (MPTCP-COUPLED_HULA) performs better than TCP
with HULA (1_TCP-Hula). In addition, we can see how using MP-
HULA (MPTCP_MP-HULA) improves performance by using dif-
ferent paths for each of the sub-flowlets. However, because the

11

NetCompute’18, August 20, 2018, Budapest, Hungary

data-mining workload is comprised of mostly small flows, the ben-
efits of MP-HULA is not so pronounced.

4 RELATED WORK

Centralized Algorithms: Hedera [1], B4 [12] or Planck [22] are
centralized approaches, where the controller uses global informa-
tion in order to route the flows. Under varying traffic patterns and
many small flows, common to data centers, those schemes have a
high cost and scalability limitations. [18] has a slightly different
design goal to influence endpoints congestion control decisions
based on centralized control and relies on e.g. ECMP routing.

Host-based: MPTCP [20] is a host-based load balancing scheme
which splits an end-to-end connection into multiple TCP sub-flows.
It uses end-to-end feedback to shift packets to less congested sub-
flows. Typically, MPTCP is augmented with ECMP routing, which
uses random hashing of subflows onto paths leading to hash colli-
sions and low performance. In addition, MPTCP may suffer from
incast [2]. Due to the importance of MPTCP for data center net-
working, many drawbacks have been addressed e.g. in [6, 24, 28].
NDP [10] is a novel transport layer stack for low latency and high
throughput data centers which requires additional router support
but does not have multipath transport support.

In-Network distributed: Distributed load balancing schemes
either use local link utilization (Drill [9]) or global congestion state
(Conga [2], Hula [15]) to route packets. While local state has difficul-
ties to react to asymmetric links, approaches that require complete
global state, e.g. [2], have scalability issues. In general, all those
approaches do not consider the properties of multipath transport
protocols and may lead to poor capacity aggregation performance.

Edge based: Schemes as Presto [11], Juggler [8], LetItFlow [25],
Clove [14], Hermes [27]) do not need to modify the router or the
end-host. Instead, they run in the virtual switch on each server,
rely on support from network feedback (e.g. [27]) and consequently
need to update each server software.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we design MP-HULA, a scalable, multi-path trans-
port protocol aware load-balancing scheme designed for emerging
programmable data planes such as P4. Based on periodic probing
messages, switches track the utilization and next hop for the k-
best paths for a given destination. MP-HULA splits up the MPTCP
flows into flowlets and decides locally, which next hop to use for a
given MPTCP flowlet based on congestion state and information
to which MPTCP connection the flowlet belongs to. MP-HULA
capable switches parse transport layer protocol headers in order to
correlate MPTCP sub-flows to MPTCP connections to avoid hash
collisions. Our evaluation shows that MP-HULA exploits the trans-
port layer multipath characteristics of MPTCP, reducing the flow
completion times compared to other load balancing schemes.

As future work, we intend to implement and evaluate MP-HULA
on P4 capable hardware and evaluate the performance with more
path diversity and different settings. We will also extend the load-
balancing features to consider different flow priorities and other
emerging multipath transport protocols such as Multipath QUIC
[5], which will require less state management due to the presence
of the path ID of each subflow in an unencrypted header.

NetCompute’18, August 20,

Average FCT (ms)

Figure 5: Average FCT using MPTCP-
Coupled for web-search traffic

Average FCT (ms)

2018, Budapest, Hungary

Hernandez Benet et al.

1-TCP_Hula
MPTCP-COUPLED_MP-Hula
MPTCP-COUPLED_Hula
1-TCP_ecmp_flow

~ MPTCP-COUPLED_ecmp_flo

1-TCP_Hula

MPTCP-COUPLED_MP-Hula
MPTCP-COUPLED_Hula
1-TCP_ecmp_flow

~ MPTCP-COUPLED_ecmp_flow

MPTCP_UNCOUPLED_MP-Hula
MPTCP_UNCOUPLED_ecmp_flo
1-TCP_Hula

—

MPTCP_UNCOUPLED_Hula
1-TCP_ecmp_flow

°
°

15|

Average FCT (ms)

. ,

Average FCT (ms)

4

=

5 - e
ﬁr‘é‘

—

—i
%.—f/a

P

TS G
—x 4'/

~ v

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%
Load (%)

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%
Load (%)

Figure 6: Average FCT for mice flows
(<100KB), coupled, web-search

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%
Load (%)

Figure 7: Average FCT using MPTCP-
Uncoupled for web-search traffic

+—4 MPTCP_UNCOUPLED_MP-Hula b 0.68 0.66 0.65 0.72 +—+ 1-TCP_Hula
30| = MPTCP_UNCOUPLED_ecmp_flo — 16{| +— MPTCP-COUPLED_MP-Hula
+~— 1-TCP_Hula ® .60 44 MPTCP-COUPLED_Hula
v—v MPTCP_UNCOUPLED_Hula 14| @ © 1-TCP_ecmp_flow
25f oo 1-TCP_ecmp_flow @ _ - MPTCP-COUPLED_ecmp_flo
&t 0.67 0.67 i
20|] E
23 0.67 0.68 2
g ©
15 o -0.68 g
E ~ 0.71 0.64 0.67 ¢ g
a <
10| o] © _
— & - 0.67 0.73 6
o ~ -0.66
i i g 0.68 0.71 4
— //1:7 ° —— g
" " l’/A.,’—‘r’—A
10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% S 0.67 0.68 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%
Load (%) . . . Load (%)
1-TCP_Hula MPTCP_Hula MPTCP_MP-Hula

Schemes

Figure 8: Asymmetric topology for web-

search

ACKNOWLEDGMENTS

The

authors would like to thank Ricardo Santos and Jonathan Vestin

for their valuable feedback. The authors would also like to thank
the anonymous referees for their valuable comments and helpful
suggestions. This work is supported by the Knowledge Foundation
of Sweden through the Profile HITS under Grant No.: 20140037.

REFERENCES

(1]

(2]

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. 2010. Hedera: Dynamic flow scheduling for data
center networks. In Nsdi, Vol. 10. 19-19.

Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,
Navindra Yadav, George Varghese, and others. 2014. CONGA: Distributed
congestion-aware load balancing for datacenters. In ACM SIGCOMM Computer
Communication Review, Vol. 44. ACM, 503-514.

Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic char-
acteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 267-280.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87-95. DOI:http://dx.doi.
org/10.1145/2656877.2656890

Quentin De Coninck and Olivier Bonaventure. 2017. Multipath QUIC: Design
and Evaluation. In Conext’17. See also http://www.multipath-quic.org.
Gregory Detal, Christoph Paasch, Simon van der Linden, Pascal MALrindol,
Gildas Avoine, and Olivier Bonaventure. 2013. Revisiting Flow-Based Load
Balancing: Stateless Path Selection in Data Center Networks. Computer Networks
57, 5 (April 2013).

Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. 2013. RFC
6824: TCP extensions for multipath operation with multiple addresses. Technical
Report.

12

Figure 9: Link utilization (web-search)

Figure 10: Average FCT using MPTCP-
Coupled for data-mining traffic

[8] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, and Mohammad Alizadeh.

[o

[10

[11

[12

(13

[14

[15

2016. Juggler: A Practical Reordering Resilient Network Stack for Datacenters.
In Proceedings of the Eleventh European Conference on Computer Systems (EuroSys
’16). ACM, New York, NY, USA, Article 20, 16 pages. DOI:http://dx.doi.org/10.
1145/2901318.2901334

Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-latency Data Center
Networks. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, 225-238. DOI:
http://dx.doi.org/10.1145/3098822.3098839

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-architecting Datacenter
Networks and Stacks for Low Latency and High Performance. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). ACM, New York, NY, USA, 29-42. DOI:http://dx.doi.org/10.1145/3098822.
3098825

Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. 2015. Presto: Edge-based Load Balancing for Fast Datacenter Networks.
SIGCOMM Comput. Commun. Rev. 45, 4 (Aug. 2015), 465-478. DOI : http://dx.doi.
org/10.1145/2829988.2787507

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, and others.
2013. B4: Experience with a globally-deployed software defined WAN. In ACM
SIGCOMM Computer Communication Review, Vol. 43. ACM, 3-14.

Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. 2007. Dy-
namic Load Balancing Without Packet Reordering. SIGCOMM Comput. Commun.
Rev. 37, 2 (March 2007), 51-62. DOI:http://dx.doi.org/10.1145/1232919.1232925
Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, and Jennifer Rexford. 2017. Clove: Congestion-Aware Load Balancing at
the Virtual Edge. In Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies (CONEXT ’17). ACM, New York, NY,
USA, 323-335. DOI:http://dx.doi.org/10.1145/3143361.3143401

Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In
Proceedings of the Symposium on SDN Research. ACM, 10.

Ritu Kaur Makkad and Anil Kumar Sahu. 2016. Novel design of fast and compact
SHA-1 algorithm for security applications. In Recent Trends in Electronics, Infor-
mation & Communication Technology (RTEICT), IEEE International Conference on.

http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1145/2901318.2901334
http://dx.doi.org/10.1145/2901318.2901334
http://dx.doi.org/10.1145/3098822.3098839
http://dx.doi.org/10.1145/3098822.3098825
http://dx.doi.org/10.1145/3098822.3098825
http://dx.doi.org/10.1145/2829988.2787507
http://dx.doi.org/10.1145/2829988.2787507
http://dx.doi.org/10.1145/1232919.1232925
http://dx.doi.org/10.1145/3143361.3143401

MP-HULA: Multipath Transport Aware Load Balancing in P4

[17]

[18]

[19]

[20

[21

[22]

[23

[24

[25

[26]

[27]

[28]

IEEE, 921-925.

Vladimir Olteanu and Costin Raiciu. 2016. Datacenter Scale Load Balancing
for Multipath Transport. In Proceedings of the 2016 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization (HotMIddlebox ’16). ACM, New
York, NY, USA, 20-25. DOI:http://dx.doi.org/2940147.2940154

Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. 2017. Flowtune: Flowlet
Control for Datacenter Networks. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 421-435. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/perry

Tang Qiong and Ye Jianwu. 2012. Implementation and Optimization of the High
Performance SHA-1 Model Based on FPGA. In Computer Science & Service System
(CSSS), 2012 International Conference on. IEEE, 687-690.

Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. 2011. Improving Datacenter Performance and
Robustness with Multipath TCP. In Proceedings of the ACM SIGCOMM 2011
Conference (SIGCOMM °11). ACM, New York, NY, USA, 266-277. DOI :http://dx.
doi.org/10.1145/2018436.2018467

Costin Raiciu, Mark Handley, and D. Wischik. 2011. RFC 6356: Coupled Congestion
Control for Multipath Transport Protocols. Technical Report.

Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agarwal,
John Carter, and Rodrigo Fonseca. 2014. Planck: Millisecond-scale monitoring and
control for commodity networks. In ACM SIGCOMM Computer Communication
Review, Vol. 44. ACM, 407-418.

Marcus Sandri, Alan Silva, Lucio A Rocha, and Fabio L Verdi. 2015. On the
benefits of using multipath tcp and openflow in shared bottlenecks. In Advanced
Information Networking and Applications (AINA), 2015 IEEE 29th International
Conference on. IEEE, 9-16.

Jiyan Sun, Yan Zhang, Xin Wang, Shihan Xiao, Zhen Xu, Hongjing Wu, Xin
Chen, and Yanni Han. 2017. DC" 2-MTCP: Light-Weight Coding for Efficient
Multi-Path Transmission in Data Center Network. In Parallel and Distributed
Processing Symposium (IPDPS), 2017 IEEE International. IEEE, 419-428.

Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let It Flow: Resilient Asymmetric Load Balancing with Flowlet Switching.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). USENIX Association, Boston, MA, 407-420. https://www.usenix.org/
conference/nsdil7/technical-sessions/presentation/vanini

Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate
Foster, and Hakim Weatherspoon. 2017. P4fpga: a rapid prototyping framework
for p4. In Proceedings of the Symposium on SDN Research. ACM, 122-135.

Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury. 2017.
Resilient Datacenter Load Balancing in the Wild. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM ’17). ACM,
New York, NY, USA, 253-266. DOI :http://dx.doi.org/10.1145/3098822.3098841
Jia Zhao, Jiangchuan Liu, Haiyang Wang, and Chi Xu. 2017. Multipath TCP
for datacenters: From energy efficiency perspective. In INFOCOM 2017-IEEE
Conference on Computer Communications, IEEE. IEEE, 1-9.

13

NetCompute’18, August 20, 2018, Budapest, Hungary

http://dx.doi.org/2940147.2940154
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/perry
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/perry
http://dx.doi.org/10.1145/2018436.2018467
http://dx.doi.org/10.1145/2018436.2018467
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
http://dx.doi.org/10.1145/3098822.3098841

	Abstract
	1 Introduction
	2 Multi-path Transport Aware Load Balancing in the Data Plane
	2.1 MPTCP header processing in P4
	2.2 Multipath sub-flow association mapping
	2.3 Hop-by-hop Probe Processing
	2.4 MPTCP Flowlet Routing
	2.5 Path selection and MPTCP association under partial information
	2.6 Feasibility of MP-HULA in P4

	3 Evaluation and Results
	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

