
The Margrave Tool for Firewall Analysis

Timothy Nelson
Worcester Polytechnic Institute

tn@cs.wpi.edu

Christopher Barratt
Brown University

cbarratt@cs.brown.edu

Daniel J. Dougherty
Worcester Polytechnic Institute

dd@cs.wpi.edu

Kathi Fisler
Worcester Polytechnic Institute

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

Abstract

Writing and maintaining firewall configurations can be
challenging, even for experienced system administrators.
Tools that uncover the consequences of configurations
and edits to them can help sysadmins prevent subtle yet
serious errors. Our tool, Margrave, offers powerful fea-
tures for firewall analysis, including enumerating con-
sequences of configuration edits, detecting overlaps and
conflicts among rules, tracing firewall behavior to spe-
cific rules, and verification against security goals. Mar-
grave differs from other firewall-analysis tools in sup-
porting queries at multiple levels (rules, filters, firewalls,
and networks of firewalls), comparing separate firewalls
in a single query, supporting reflexiveACLs, and pre-
senting exhaustive sets of concrete scenarios that em-
body queries. Margrave supports real-world firewall-
configuration languages, decomposing them into multi-
ple policies that capture different aspects of firewall func-
tionality. We present evaluation on networking-forum
posts and on an in-use enterprise firewall-configuration.

1 Introduction

Writing a sensible firewall policy from scratch can be
difficult; maintaining existing policies can be terrifying.
Oppenheimer, Ganapathi, and Patterson [31] have shown
that operator errors, specifically configuration errors, are
a major cause of online-service failure. Configuration
errors can result in lost revenue, breached security, and
even physical danger to co-workers or customers. The
pressure on system administrators is increased by the fre-
netic nature of their work environment [6], the occasional
need for urgent changes to network configurations, and
the limited window in which maintenance can be per-
formed on live systems.

Many questions arise in checking a firewall’s behav-
ior: Does it permit or block certain traffic? Does a col-
lection of policies enforce security boundaries and goals?

Does a specific rule control decisions on certain traf-
fic? What prevents a particular rule from applying to a
packet? Will a policy edit permit or block more traffic
than intended? These questions demand flexibility from
firewall-analysis tools: they cover various levels of gran-
ularity (from individual rules to networks of policies), as
well as reasoning about multiple versions of policies (to
check the impact of edits). Margrave handles all these
and more, offering more functionality than other pub-
lished firewall tools.

Margrave’s flexibility comes from thinking about pol-
icy analysis from an end-user’s perspective. The ques-
tions that users wish to ask about policies obviously af-
fect modeling decisions, but so does our form of answer.
Margrave’s core paradigm isscenario finding: when a
user poses a query, Margrave produces a (usually exhaus-
tive) set of scenarios that witness the queried behavior.
Whether a user is interested in the impact of changes or
how one rule can override another, scenarios concretize
a policy’s behavior. Margrave also allows queries to be
built incrementally, with new queries refining the results
from previous ones.

Margrave’s power comes from choosing an appropri-
ate model. Embracing both scenario-finding and multi-
level policy-reasoning leads us to model policies in first-
order logic. While many firewall-analysis tools are
grounded in logic, most use propositional models for
which analysis questions are decidable and efficient. In
general, one cannot compute an exhaustive and finite
set of scenarios witnessing first-order logic formulas.
Fortunately, the formulas corresponding to many com-
mon firewall-analysis problems do yield such sets. Mar-
grave identifies such cases automatically, thus providing
exhaustive analysis for richer policies and queries than
other tools. Demonstrating that firewall analyzers can
benefit from first-order logic without undue cost is a key
contribution of this paper.

Our other key contribution lies in how we decompose
IOS configurations into policies for analysis. Single fire-

wall configurations cover many functions, such as access
filtering, routing, and switching. Margrave’sIOS com-
piler generates separate policies for each task, thus en-
abling analysis of either specific functionality or whole-
firewall behavior. Task-specific policies aid in isolating
causes of problematic behaviors. Our firewall models
support standard and most extendedACLs, staticNAT,
ACL-based and map-based dynamicNAT, static routing,
and policy-based routing. Our support for state is limited
to reflexive access-lists; it does not include general dy-
namicNAT, deep packet inspection, routing viaOSFP, or
adaptive policies. Margrave has an iptables compiler in
development; other types of firewalls, such as Juniper’s
JunOS, fit our model as well.

A reader primarily interested in a tool description can
read Sections 2, 6, and 7 for a sense of Margrave and how
it differs from other firewall-analysis tools. Section 2 il-
lustrates Margrave’s query language and scenario-based
output using a multi-step example. Section 3 describes
the underlying theory (based on first-order logic), includ-
ing our notion of policies. Section 4 shows how fire-
wall questions map into Margrave. Section 5 describes
the implementation, including the compiler for firewall-
configurations and a query-rewriting technique that often
improves performance. Section 6 presents experimen-
tal evaluation on both network-forum posts and an in-
use enterprise firewall. Section 7 describes related work.
Section 8 concludes with perspective and future work.

2 Margrave in Action on Firewalls

Margrave presents scenarios that satisfy user-specified
queries about firewall behavior. Queries state a behavior
of interest and optional controls on which data to con-
sider when computing scenarios. Scenarios contain at-
tributes of packet contents that make the query hold. A
separate command language controls how scenarios are
displayed. The extended example in this section high-
lights Margrave’s features; Table 1 summarizes which
of these features are supported by other available (either
free or commercial) firewall analyzers. The Margrave
website [22] contains sources for all examples.

In this paper, afirewall encompasses filtering (via
access-lists),NAT transformation, and routing; we re-
serve the termrouter for the latter component. TheIOS

configuration in Figure 1 defines a simple firewall with
only filtering. This firewall controls two interfaces (fe0

andvlan1). Each has an IP address and an access-list
to filter traffic as it enters the interface; in lines 3 and
7, the number (101 or 102) is a label that associates ac-
cess rules (lines 9-16) with each interface, while thein

keyword specifies that the rules should apply on entry.
Rules are checked in order from top to bottom; the first
rule whose conditions apply determines the decision on a

1 interface fe0
2 ip address 10.150.1.1 255.255.255.254
3 ip access-group 101 in
4 !
5 interface vlan1
6 ip address 192.128.5.1 255.255.255.0
7 ip access-group 102 in
8 !
9 access-list 101 deny ip host 10.1.1.2 any

10 access-list 101 permit tcp
11 any host 192.168.5.10 eq 80
12 access-list 101 permit tcp
13 any host 192.168.5.11 eq 25
14 access-list 101 deny any
15 !
16 access-list 102 permit any

Figure 1: SampleIOS configuration

packet. This firewall allows inbound web and mail traffic
to the corresponding servers (the.10 and.11 hosts), but
denies a certain blacklisted IP address (the10.1.1.2

host). All traffic arriving at the inside-facing interface
vlan1 is allowed. As this filter is only concerned with
packets as they arrive at the firewall, our queries refer to
the filter asInboundACL.

Basic Queries: All firewall analyzers support basic
queries about which packets traverse the firewall. The
following Margrave query asks for an inbound packet
thatInboundACL permits:

EXPLORE InboundACL:Permit(<req>)

SHOW ONE
Query 1

EXPLORE clauses describe firewall behavior; here, the
behavior is simply to permit packets.<req> is shorthand
for a sequence of variables denoting the components of a
request (detailed in Section 4):

〈ahostname, src-addr-in, src-port-in, protocol, ...〉.

Users can manually define this shorthand within Mar-
grave; details and instructions for passing queries into
Margrave are in the tool distribution [22].SHOW ONE

is an output-configuration command that instructs Mar-
grave to display only a single scenario. The resulting
output indicates the packet contents:

1 ********* SOLUTION FOUND at size = 15
2 src-addr-in: IPAddress
3 protocol: prot-tcp
4 dest-addr-in: 192.168.5.10
5 src-port-in: port
6 exit-interface: interface
7 entry-interface: fe0
8 dest-port-in: port-80
9 length: length

10 ahostname: hostname-router
11 src-addr-out: IPAddress
12 message: icmpmessage

Result

2

ITVal Fireman Prometheus ConfigChecker Fang/AlgoSec Vantage
Which packets X X X X X X

User-defined queries X ? X X X
nip

Rule Responsibility X ? X
− ∼ X X

Rule Relationships ∼ X
−

X X
−

X
nip

X

Change-impact ? X X
nip

X
−

First-order queries ? ? ?
Support NAT X X X X

Support Routing X X X X X
nip

Firewall Networks X X X X X X
nip

Language integration X

Commercial Tool? no no yes no yes yes

Table 1: Feature comparison between Margrave and other available firewall-analysis tools. In each cell,X denotes
included features;Xnip denotes features reported by the authors in private communication but not described in pub-
lished papers;X− denotes included features with more limited scope than in Margrave;∼ denotes features that can be
simulated, but aren’t directly supported;? denotes cases for which we aren’t sure about support. Section 7 describes
nuances across shared features and discusses additional research for which tools are not currently available.

This scenario shows aTCP packet (line 3) arriving on the
fast-ethernet interface (line 7), bound for the web server
(line 4, with line 11 of Figure 1) on port 80 (line 8). The
genericIPaddress in lines 2 and 11 should be read as
“any IP address not mentioned explicitly in the policy”;
lines 5 and 6 are similarly generic. Section 5 explains the
size=15 report on line 1.

A user can ask for additional scenarios that illustrate
the previous query via the commandSHOW NEXT: Once
Margrave has displayed all unique scenarios, it responds
to SHOW NEXT queries withno results.

To check whether the filter accepts packets from the
blacklisted server, we constrainsrc-addr-in to match
the blacklisted IP address and examine only packets that
arrive on the external interface. Bothsrc-addr-in and
entry-interface are variable names in<req>. The
IS POSSIBLE? command instructs Margrave to display
false or true, rather than detailed scenarios.

EXPLORE
InboundACL:Permit(<req>) AND
10.1.1.2 = src-addr-in AND
fe0 = entry-interface

IS POSSIBLE?
Query 2

In this case, Margrave returns false. Had it returned true,
the user could have inspected the scenarios by issuing a
SHOW ONE or SHOW ALL command.

Rule-level Reasoning: Tracing behavior back to the
responsible rules in a firewall aids in both debugging and
confirming that rules are fulfilling their intent. To support
reasoning about rule effects, Margrave automatically de-

fines two formulas for every rule in a policy (whereR is
a unique name for the rule):

• R matches(<req>) is true when<req> satisfies the
rule’s conditions, and

• R applies(<req>) is true when the rule both
matches<req> and determines the decision on<req>
(as the first matching rule within the policy).

Distinguishing these supports fine-grained queries about
rule behavior. Margrave’sIOS compiler constructs the
R labels to uniquely reference rules across policies. For
instance,ACL rules that govern an interface have labels
of the formhostname-interface-line#, wherehostname
andinterfacespecify the names of the host and interface
to which the rule is attached and# is the line number at
which the rule appears in the firewall configuration file.

The following query refines query 2 to ask for deci-
sion justification: theEXPLORE clause now asks forDeny
packets, while theINCLUDE clause instructs Margrave to
compute scenarios over the twoDeny rules as well as the
formulas in theEXPLORE clause:

EXPLORE
InboundACL:Deny(<req>) AND
10.1.1.2 = src-addr-in AND
fe0 = entry-interface
INCLUDE
InboundACL1:Router-fe0-line9_applies(<req>),
InboundACL1:Router-fe0-line14_applies(<req>)

SHOW REALIZED
InboundACL1:Router-fe0-line9_applies(<req>),
InboundACL1:Router-fe0-line14_applies(<req>)

Query 3

The SHOW REALIZED command asks Margrave to dis-
play the subset of listed facts that appear in some result-

3

ing scenario. The following results indicate that the rule
at line 9 does (at least sometimes) apply. More telling,
however, the absence of the rule at line 14 (the catch-all
deny) indicates that that ruleneverapplies to any packet
from the blacklisted address. Accordingly, we conclude
that line 9 processes all blacklisted packets.

< InboundACL:line9_applies(<req>) >
Result

TheINCLUDE clause helps control Margrave’s perfor-
mance. Large policies induce many rule-matching for-
mulas; enabling these formulas only as needed trims the
scenario space.SHOW REALIZED (and its dual,SHOW
UNREALIZED) controls the level of detail at which users
view scenarios. The lists of facts that do (or do not) ap-
pear in scenarios often raise red flags about firewall be-
havior (such as an unexpected port being involved in pro-
cessing a packet). Unlike many verification tools, Mar-
grave does not expect users to have behavioral require-
ments or formal security goals on hand. Lightweight
summaries such asSHOW REALIZED try to provide in-
formation that suggests further queries.

Computing Overshadowed Rules through Scripting:
Query 3 checks the relationship between two rules on
particular packets. A more general question asks which
rulesneverapply toanypacket; we call such rulessuper-
fluous. The following query computes superfluous rules:

EXPLORE true
UNDER InboundACL
INCLUDE
InboundACL:router-fe0-line9_applies(<req>),
InboundACL:router-fe0-line10_applies(<req>),
InboundACL:router-fe0-line12_applies(<req>),
InboundACL:router-fe0-line14_applies(<req>),
InboundACL:router-vlan1-line16_applies(<req>)

SHOW UNREALIZED
InboundACL:router-fe0-line9_applies(<req>),
InboundACL:router-fe0-line10_applies(<req>),
InboundACL:router-fe0-line12_applies(<req>),
InboundACL:router-fe0-line14_applies(<req>),
InboundACL:router-vlan1-line16_applies(<req>)

Query 4

As this computation doesn’t care about request con-
tents, theEXPLORE clause is simplytrue. The heart
of this query lies in theINCLUDE clause and theSHOW
UNREALIZED command: the first asks Margrave to con-
sider all rules; the second asks for listed facts that are
never true in any scenario.UNDER clauses load policies
referenced inINCLUDE but notEXPLORE clauses.

While the results tell us which rules never apply, they
don’t indicate which rules overshadow each unused rule.
Such information is useful, especially if an overshadow-
ing rule ascribes the opposite decision. Writing queries
to determine justification for each superfluous rule, how-
ever, is tedious. Margrave’s query language is embedded

in a host language (Racket [13], a descendent of Scheme)
through which we can write scripts over query results. In
this case, our script uses a Margrave command to obtain
lists of rules that yield each ofPermitandDeny, then is-
sues queries to isolate overshadowing rules for each su-
perfluous rule. These are similar to other queries in this
section. Scripts could also compute hotspot rules that
overshadow a large percentage of other rules.

Change-Impact: Sysadmins edit firewall configura-
tions to provide new services and correct emergent prob-
lems. Edits are risky because they can have unexpected
consequences such as allowing or restricting traffic that
the edit should not have affected. Expecting sysadmins
to have formal security requirements against which to
test policy edits is unrealistic. In the spirit of lightweight
analyses that demand less of users, Margrave computes
scenarios illustrating packets whose decision or applica-
ble rule changes in the face of edits.

For example, suppose we add the new boldface rule
below to access-list101 (the line numbers start with 14 to
indicate that lines 1–13 are identical to those in Figure 1):

14 access-list 101 deny tcp
15 host 10.1.1.2 host 192.168.5.10 eq 80

If we call the modified filterInboundACL new, the
following query asks whether the original and new
InboundACLs ever disagree onPermit decisions:

EXPLORE
(InboundACL:Permit(<req>) AND
NOT InboundACL_new:Permit(<req>)) OR
(InboundACL_new:Permit(<req>) AND
NOT InboundACL:Permit(<req>)))

IS POSSIBLE?
Query 5

Margrave returns false, since the rule at line 9 always
overrides the new rule. If instead the new rule were:

14 access-list 101 deny tcp
15 host 10.1.1.3 host 192.168.5.10 eq 80

Margrave would return true on query 5. The correspond-
ing scenarios show packet headers that the two firewalls
treat differently, such as the following:

********* SOLUTION FOUND at size = 15
src-addr-in: 10.1.1.3
protocol: prot-tcp
dest-addr-in: 192.168.5.10
src-port-in: port
exit-interface: interface
entry-interface: fe0
dest-port-in: port-80

Result

As we might expect, this scenario involves packets from
10.1.1.3. A subsequent query could confirm that no
other hosts are affected.

4

Corporate LAN

Contractors
(192.168.4.*)

Manager
(192.168.1.2)

Employees
(192.168.3.*)

Internal
Firewall

 in_lan

Internet

 in_dmz

External
Firewall

 out_inet

WWW
Server

(10.1.1.4)

Mail
Server

(10.1.1.3)

 out_dmz

Figure 2: A small-business network-topology

Networks of Firewalls: So far, our examples have
considered only single firewalls. Margrave also han-
dles networks with multiple firewalls andNAT. Figure
2 shows a small network with web server, mail server,
and two firewalls to establish aDMZ. The internal fire-
wall performs bothNAT and packet-filtering, while the
external firewall only filters. The firewall distinguishes
machines for employees (192.168.3.*), contractors
(192.168.4.*), and a manager (192.168.1.2). This
example captures the essence of a real problem posted to
a networking help-forum.

1 hostname int
2 !
3 interface in_dmz
4 ip address 10.1.1.1 255.255.255.0
5 ip nat outside
6 !
7 interface in_lan
8 ip access-group 102 in
9 ip address 192.168.1.1 255.255.0.0

10 ip nat inside
11 !
12 access-list 102 permit tcp any any eq 80
13 access-list 102 deny any
14 !
15 ip nat inside source list 1 interface
16 in_dmz overload
17 access-list 1 permit 192.168.1.1 0.0.255.255
18 !
19 ip route 0.0.0.0 0.0.0.0 in_dmz
20

Internal Firewall

Lines 15–17 in the internal firewall applyNAT to traffic
from the corporateLAN .1 Line 11 in the external firewall
blacklists a specific external host (10.200.200.200).

1In this example, we use the 10.200.* private address space torep-
resent the public IP addresses.

Despite the explicit rule on lines 19–20 in the external
firewall, the manager cannot access the web. We have
edited the configurations to show only those lines rele-
vant to the manager and web traffic.

1 hostname ext
2 !
3 interface out_dmz
4 ip access-group 103 in
5 ip address 10.1.1.2 255.255.255.0
6 !
7 interface out_inet
8 ip access-group 104 in
9 ip address 10.200.1.1 255.255.0.0

10 !
11 access-list 104 deny 10.200.200.200
12 access-list 104 permit tcp any host 10.1.1.4
13 eq 80
14 access-list 104 deny any
15 !
16 access-list 103 deny ip any
17 host 10.200.200.200
18 access-list 103 deny tcp any any eq 23
19 access-list 103 permit tcp host 192.168.1.2
20 any eq 80
21 access-list 103 deny any
22

External Firewall

The following query asks “What rules deny a connec-
tion from the manager’s PC (line 2) to port 80 (line 10)
somewhere outside our network (line 8) other than the
blacklisted host (line 9)?”

1 EXPLORE prot-TCP = protocol AND
2 192.168.1.2 = fw1-src-addr-in AND
3 in_lan = fw1-entry-interface AND
4 out_dmz = fw2-entry-interface AND
5 hostname-int = fw1 AND
6 hostname-ext = fw2 AND
7

8 fw1-dest-addr-in IN 10.200.0.0/255.255.0.0
9 NOT 10.200.200.200 = fw1-dest-addr-in AND

10 port-80 = fw1-dest-port-in AND
11

12 internal-result(<reqfull-1>) AND
13

14 (NOT passes-firewall(<reqpol-1>) OR
15 internal-result(<reqfull-2>) AND
16 NOT passes-firewall(<reqpol-2>))
17

18 UNDER InboundACL
19 INCLUDE
20 InboundACL:int-in_lan-line-12_applies
21 (<reqpol-1>),
22 InboundACL:int-in_lan-line-17_applies
23 (<reqpol-1>),
24 InboundACL:ext-out_dmz-line-19_applies
25 (<reqpol-2>),
26 InboundACL:ext-out_dmz-line-21_applies
27 (<reqpol-2>),
28 InboundACL:ext-out_dmz-line-24_applies
29 (<reqpol-2>)

Query 6

Lines 12–16 capture both network topology and
the effects of NAT. The internal-result and
passes-firewall formulas capture routing in the face

5

of NAT and passing through the complete firewall (in-
cluding routing,NAT andACLs) whose hostname appears
in the request, respectively; Section 4 describes them in
detail. The variables sent to the twopasses-firewall
formulas through<reqpol-1> and <reqpol-2> en-
code the topology: for example, these shorthands use
the same variable name fordest-addr-outin the inter-
nal firewall andsrc-addr-inin the external firewall. The
fw1-entry-interface andfw2-entry-interface
variables (bound to specific interfaces in lines 3–4)
appear as the entry interfaces in<reqpol-1> and
<reqpol-2>, respectively.

A SHOW REALIZED command over theINCLUDE
terms (as in query 3) indicates that line 21 of the exter-
nal firewall configuration is denying the manager’s con-
nection. Asking Margrave for a scenario for the query
(using theSHOW ONE command) reveals that the internal
firewall’s NAT is changing the packet’s source address:

1 ...
2 fw1-src-addr-out=fw2-src-addr_=
3 fw2-src-addr-out: 10.1.1.1
4 fw1-src-addr_=fw1-src-addr-in: 192.168.1.2

Result

The external firewall rule (supposedly) allowing the
manager to access the Internet (line 19) uses the internal
pre-NAT source address; it never matches the post-NAT

packet. Naı̈vely editing theNAT policy, however, can
leak privileges to contractors and employees. Change-
impact queries are extremely useful for confirming that
the manager, andonly the manager, gain new privileges
from an edit. An extended version of this example with
multiple fixes and the change-impact queries, is provided
in the Margrave distribution.

Summary: These examples illustrate Margrave’s abil-
ity to reason about both combinations of policies and
policies at multiple granularities. The supported query
types include asking which packets satisfy a condi-
tion (query 1), verification (query 2), rule responsibility
(query 3), rule relationships (query 4) and change-impact
(query 5). A formal summary of the query language and
its semantics is provided with the Margrave distribution.

3 Defining Scenarios

Margrave views apolicy as a mapping from requests to
decisions. In a firewall, requests contain packet data
and some routing data, while decisions includePer-
mit and Deny (for ACLs), Drop (for routing), and a
few others. Policies often refer to relationships be-
tween objects, such as “permit access by machines
on the same subnet”. Queries over policies often re-
quire quantification: “Every host on the local subnet

can accesssomegateway router”. First-order logic ex-
tends propositional logic with relational formulas (such
asSameSubnet(121.34.42.133,121.34.42.166))
and quantifiers (∀ and∃). For firewall policies, the avail-
able relations include the decisions,R matches and
R applies (as shown in Section 2) and unary relations
capturing sets of IP addresses, ports, and protocols.

Margrave maps both policies and queries into first-
order logic formulas. To answer a query, Margrave first
conjoins the query formula with the formulas for all poli-
cies referenced in the query, then computes solutions to
the combined formula. Asolutionto a first-order formula
contains a set of elements to quantify over (theuniverse)
and two mappings under which the formula is true: one
maps each relation to a set of tuples over the universe,
and another maps each unquantified variable in the query
to an element of the universe.2 For example, the formula

∀x host(x) =⇒ ∃y (router(y) ∧ CanAccess(x, y))

says that “every host can access some router”. One so-
lution has a universe of{h1, r1, r2} and relation tuples
host(h1), router(r1), router(r2), and CanAccess(h1,r2)
(the formula has no unquantified variables). Other so-
lutions could include more hosts and routers, with more
access connections between them. Solutions may map
multiple variables to the same universe element. This
is extremely useful for detecting corner cases in policy
analysis; while humans often assume that different vari-
ables refer to different objects, many policy errors lurk
in overlaps (such as a host being used a both web server
and mail server).Scenariosare simply solutions to the
formula formed of a query and the policies it references.

In general, checking whether a first-order formula has
a solution (much less computing them all) is undecid-
able. Intuitively, the problem lies in determining a suffi-
cient universe size that covers all possible solutions. This
problem is disconcerting for policy analysis: we would
like to show users an exhaustive set of scenarios to help
them ensure that their policies are behaving as intended
in all cases. Fortunately, Margrave can address this prob-
lem in most cases; Section 5 presents the details.

4 Mapping Firewalls to the Theory

There is a sizeable gap between the theory in Sec-
tion 3 and a policy in a real-world language, such as
the example in Figure 1. To represent policies in the
theory, we must describe the shapes of requests, the
available decisions, what relations can appear in formu-
las, and how policy rules translate into formulas. Sec-
tion 2 used several relations relevant to firewalls, such

2In logical terms, a solution combines a first-order model andan
environment binding free variables to universe elements.

6

(Policy InboundACL uses IOS-vocab
(Rules
...
(Router-fe0-line10 =
(Permit hostname, ...) :-
(hostname-Router hostname)
(fe0 entry-interface)
(IPAddress src-addr-in)
(prot-tcp protocol)
(Port src-port-in)
(192.168.5.10 dest-addr-in)
(port-80 dest-port-in))

...)
(RComb FAC))

Figure 3: A Margrave policy specification

aspassed-firewall. Margrave defines these relations
and other details automatically via several mechanisms.

Policies: Figure 3 shows part of the result of com-
piling the IOS configuration in Figure 1 to Margrave’s
intermediate policy language. The fragment captures
the IOS rule on line 10. (Permit hostname, ...)

specifies the decision and states a sequence of variable
names corresponding to a request. The:- symbol sepa-
rates the decision from the conditions of the rule. For-
mula (prot-tcp protocol), for example, captures
thatTCP is the expected protocol for this rule. Margrave
represents constants (such as decisions, IP addresses, and
protocols) as elements of singleton unary relations. A
scenario that satisfies this rule will map theprotocolvari-
able to some element of the universe that populates the
prot-tcp relation. The other conditions of the original
rule are captured similarly. The(RComb FAC) at the end
of the policy tells Margrave to check the policy rules in
order (FAC stands for “first applicable”). The first line of
the policy ascribes the nameInboundACL.

Decomposing IOS into policies: Figure 4 shows our
high-level model ofIOS configurations. Firewalls per-
form packet filtering, packet transformation, and internal
routing; the first two may occur at both entry to and exit
from the firewall. Specifically, packets pass through the
inboundACL filter, insideNAT transformation, internal
routing, outsideNAT transformation, and finally the out-
boundACL filter on their way through the firewall. The
intermediate stages define additional information about
a packet (as shown under the stage names): insideNAT

may yield new address and port values; internal routing
determines the next-hop and exit interface; outsideNAT

may yield further address and port values.
Internal routing involves five substages, as shown in

Figure 6. Margrave creates policies (à la Figure 3) for
each of the five substages. The -Switching policies
determine whether a destination is directly connected to

the firewall; the -Routing policies bind thenext-hop
IP address for routing. In addition, Margrave generates
four policies calledInboundACL, OutboundACL,
InsideNAT, andOutsideNat. The two -ACL poli-
cies contain filtering rules for all interfaces.

Requests and Decisions: Margrave automatically de-
fines a relation for each decision rendered by each of the
9 subpolicies (e.g.,InboundACL:Permit in query 1).
Each relation is defined over requests, which contain
packet headers, packet attributes, and values generated
in the intermediate stages; the boxes in Figure 4 col-
lectively list the request contents. As Margrave is not
stateful, it cannot update packet headers with data from
intermediate stages. The contents of a request reflect
the intermediate stages’ actions: for example, if the val-
ues ofsrc-addr andsrc-addr-out are equal, then
OutsideNAT did not transform the request’s packet.
Currently, Margrave shares the same request shape
across all 9 subpolicies (even thoughInboundACL, for
example, only examines the packet header portion).

Flows between subpolicies: Margrave encodes flows
among the 9 subpolicies through three relations (over re-
quests) that capture the subflows marked in Figure 4.

• Internal routing either assigns an exit interface and
a next-hop to a packet or drops the packet internally.
Margrave uses a special exit-interface value to mark
dropped packets; theint-dropped relation con-
tains requests with this special exit-interface value.
Any request that is not inint-dropped success-
fully passes through internal routing.

• Unlike internal routing, NAT never drops pack-
ets. At most, it transforms source and destina-
tion ports and addresses. Put differently,NAT is
a function on packets.internal-result cap-
tures this function: it contains all requests whose
next-hop, exit-interface, andOutsideNAT
components are consistent with the packet header
andInsideNAT components (as if the latter were
inputs to aNAT function).

• ACLs permit or deny packets. The relation
passes-firewall contains requests that the two
ACLs permit, are ininternal-result (i.e., are
consistent withNAT), and are not inint-dropped
(i.e., are not dropped in internal routing).

Our IOS compiler automatically defines each of these
relations as a query in terms of the 9IOS subpolicies
(capturing topology as in query 6). Margrave provides a
RENAME command that saves query results under a user-
specific name for use in later queries. Users can name
any set of resulting scenarios in this manner.

7

exit−interface
next−hop src−addr−out

dest−addr−out
src−port−out
dest−port−out

protocol
src−addr−in
dest−addr−in
src−port−in
dest−port−in
tcp−flags

PACKET HEADER

InsideNAT Internal Routing OutsideNAT OutboundACL

NOT int−dropped

internal−result

passes−firewall

entry−interface
hostname
length
message

ADD’L INFO

InboundACL

src−addr_
dest−addr_
src−port_
dest−port_

Figure 4: Margrave’s decomposition of firewall configurations

(PolicyVocab IOS-vocab
(Types
(Interface : interf-drop

(interf-real vlan1 fe0))
(IPAddress :
192.128.5.0/255.255.255.0
10.1.1.0/255.255.255.254
192.168.5.11
192.168.5.10
10.1.1.2)

(Protocol : prot-ICMP prot-TCP prot-UDP)
(Port: port-25 port-80)
(Decisions Permit Deny ...)
...
(disjoint-all Protocol)
(nonempty Port)
...

)

Figure 5: A Margrave vocabulary specification

Vocabularies: The 9 subpolicies share ontology about
ports and IP addresses. Margrave puts domain-
knowledge common to multiple policies in avocabulary
specification; the first line of a policy specification refer-
ences its vocabulary through theuses keyword. Figure 5
shows a fragment of the vocabulary forIOS policies: it
defines datatypes (such asProtocol) and their elements
(correspondingly,prot-ICMP, prot-TCP, prot-UDP).

Vocabularies also capture domain constraints such as
“all protocols are distinct” or “there must be at least one
port” (both shown in Figure 5). While these constraints
may seem odd, they support Margrave’s scenario-finding
model. Some potential “solutions” (as described in Sec-
tion 3) are nonsensical, such as one which assigns two
distinct numbers to the same physical port. Domain con-
straints rule out nonsensical scenarios.

Generalizing Beyond Firewalls

The policy- and vocabulary-specifications in Figures 3
and 5 show how to map specific domains into Mar-
grave. Datatypes, constraints, and rules capture many

other kinds of policies, including access-control poli-
cies, hypervisor configurations, and product-line specifi-
cations. Indeed, this general-purpose infrastructure is an-
other advantage of Margrave over other firewall-analysis
tools: Margrave can reason about interactions between
policies from multiple languages for different configura-
tion concerns. For example, if data security depends on
a particular interaction between a firewall and an access-
control policy, both policies and their interaction can be
explored using Margrave. We expect this feature to be-
come increasingly important as enterprise applications
move onto the cloud and are protected through the in-
terplay of multiple policies from different sources.

5 Implementation

Margrave consists of a frontend read-eval-print loop
(REPL) written in Racket [13] and a backend written in
Java. The frontend handles parsing (of queries, com-
mands, policies, and vocabularies) and output presenta-
tion. The actual analysis and scenario generation occurs
in the backend.

5.1 The Scenario-Finding Engine

Margrave’s backend must produce sets of solutions to
first-order logic formulas. We currently use a tool called
Kodkod [32] that produces solutions to first-order for-
mulas usingSAT solving.3 SAT solvers handle propo-
sitional formulas. Kodkod bridges the gap from first-
order to propositional formulas by asking users for a fi-
nite universe-size; under a finite universe-size, first-order
formulas translate easily to propositional ones. Figure 7
shows an example of the rewriting process. Every so-
lution produced using a bounded size is legitimate (in
logical terms, our analysis issound). However, analysis
will miss solutions that require a universe larger than the
given size (in logical terms, it is notcomplete).

3Within Kodkod, we use aSAT-solver calledSAT4J [8].

8

Packet Arrives LocalSwitching

Packet Departs

 Fwd

PolicyRouting

 Pass

 Fwd

StaticRouting

 Pass

NetworkSwitching

 Route Fwd

DefaultPolicyRouting

 Pass

 Route

 Fwd

 Route

 Fwd

Figure 6: Internal flow of packets within a router. Edges are labeled with decisions rendered by the policies at the
source of the edge. Routing policies determine the next-hopIP address, while switching policies send traffic to directly
to a connected device.

Fortunately, most firewall queries (including those
in this paper) correspond to formulas with no univer-
sal (∀) quantifiers. For such formulas, the number
of existentially-quantified variables provides a sufficient
universe size to represent all solutions. Margrave auto-
matically supplies Kodkod with the universe bound for
such formulas. For queries that do not have this form,
such as “caneveryhost reach some other machine on the
network”, either Margrave or the user must supply a uni-
verse size for the analysis. The query language has an
optionalCEILING clause whose single argument is the
desired universe size. IfCEILING is omitted, Margrave
uses a default of 6. Experience with Kodkod in other
domains suggests that small universe sizes can yield use-
ful scenarios [15]. If Margrave can compute a sufficient
bound but the user provides a lowerCEILING, Margrave
will only check up to theCEILING value. Whenever
Margrave cannot guarantee that scenario analysis is com-
plete, it issues a warning to the user. Thesize=15 state-
ment in the first line of scenarios shown in Section 2 re-
port the universe-size under which Margrave generated
the scenario.

CEILING settings may impact the results of com-
mands. Margrave includes aSHOW UNREALIZED com-
mand that reports relations that are not used in any re-
sulting scenario. However, a relationT might be unpop-
ulated at oneCEILING value yet populated at a higher
value. For example, in the formula∃x¬T (x), T is never
used atCEILING 1, but can be realized atCEILING 2.
Margrave users should only supplyCEILING values if
they appreciate such consequences.

Overall, we believe sacrificing exhaustiveness for the
expressive power of first-order logic in policies and
queries is worthwhile, especially given the large number
of practical queries that can be checked exhaustively.

5.2 Rewriting Firewall Queries

Under large universe sizes, both the time to compute sce-
narios and the number of resulting scenarios increase.
The latter puts a particular burden on the end-user who
has to work through the scenarios. Query language con-
structs likeSHOW REALIZED summarize details about
the scenarios in an attempt to prevent the exhaustive
from becoming exhausting. However, query optimiza-
tions that reduce universe sizes have more potential to
target the core problem.

Most firewall queries have the form∃ req α, whereα

typically lacks quantifiers. Requests have 16 or 20 com-
ponents (as shown in Figure 4), depending on whether
they referenceinternal-result. Margrave therefore
analyzes all-existential queries under a universe size of
16 or 20. However, these queries effectively reference
a single requestwith attributes as detailed inα. This
suggests that we could rewrite this query with a single
quantified variable for a request and additional relations
that encode the attributes. For example:

∃ pt in ∃ pt out : route(pt in, pt out)

becomes

∃ pkt : is ptIn(pkt, i)∧ is ptOut(pkt, o)∧ route(i, o)

Effectively, these new relations lift attributes from the in-
dividual packet fields to the packet as a whole.

Formulas rewritten in this way require a universe size
of only 1, for which scenario generation stands to be
much faster and to yield fewer solutions. The tradeoff,
however, lies in the extra relations that Margrave intro-
duces to lift attributes to the packet level. Additional re-
lations increase the time and yield of scenario computa-
tions, so the rewriting is not guaranteed to be a net win.

9

The original sentence:

∀x host(x) =⇒ ∃y (router(y)∧ CanAccess(x, y))

Assume a universe of size 2 with elementsA andB. Expand
the∀-formula with a conjunction over each ofA andB for x:

host(A) =⇒ ∃y (router(y)∧ CanAccess(A, y)) ∧

host(B) =⇒ ∃y (router(y)∧ CanAccess(B, y))

Next, expand each∃-formula with a disjunction over each ofA

andB for y:

host(A) =⇒ (router(A) ∧ CanAccess(A,A)) ∨

(router(B) ∧ CanAccess(A,B)) ∧

host(B) =⇒ (router(A) ∧ CanAccess(B,A)) ∨

(router(B) ∧ CanAccess(B,B))

Replace each remaining formula with a propositional variable
(e.g.,router(A) becomesp2):

p1 =⇒ (p2 ∧ p3) ∨

(p4 ∧ p5) ∧

p6 =⇒ (p2 ∧ p7) ∨

(p4 ∧ p8)

Figure 7: Converting a first-order formula to a proposi-
tional one at a bounded universe size

Table 2 presents experimental results on original ver-
sus rewritten queries. In practice, we find performance
improves when the query is unsatisfiable or the smallest
model is large. A user who expects either of these con-
ditions to hold can enable the rewriting through a query-
language flag calledTUPLING. All performance figures
in this paper were computed usingTUPLING.

6 Evaluation

We have two main goals in evaluating Margrave. First,
we want to confirm that our query language and its
results support debugging real firewall configuration-
problems; in particular, the scenarios should accurately
point to root causes of problems. We assume a user who
knows enough firewall basics to ask the questions under-
lying a debugging process (Margrave does not, for ex-
ample, pre-emptively try queries to automatically isolate
a problem). Second, we want to check that Margrave
has reasonable performance on large policies, given that
we have traded efficient propositional models for richer
first-order ones.

We targeted the first goal by applying Margrave to
problems posted to network-configuration help-forums
(Sections 6.1 and 6.2). Specifically, we phrased the

Rules # Vars Min Size Not Tupled Tupled
100 3 3 694ms 244ms
1000 14 6 7633ms 1221ms
1000 14 10 17659ms 1219ms
1000 14 14 32116ms 1205ms

Table 2: Run-time impact ofTUPLING on ACL queries.
The first column contains the number of rules in
each ACL . The second column lists the number of
existentially-quantified variables in the query; we in-
clude one 3-variable (non-firewall) query to illustrate the
smaller gains on smaller variable counts. The 14-variable
ACLs are older firewall examples with smaller request tu-
ples. The “Min Size” column indicates the universe size
for the smallest scenario that satisfied the query. Larger
minimum sizes have a larger search space.

poster’s reported problem through Margrave queries and
sought fixes based on the resulting scenarios. In addition,
we used Margrave to check whether solutions suggested
in follow-up posts actually fixed the problem without af-
fecting other traffic. The diversity of firewall features
that appear in forum posts demanded many compiler ex-
tensions, including reflexive access-lists andTCP flags.
That we could do this purely at the compiler level attests
to the flexibility of Margrave’s intermediate policy- and
vocabulary-languages (Section 4).

We targeted the second goal by applying Margrave
to an in-use enterprise firewall-configuration containing
several rule sets and over 1000 total rules (Section 6.3).
Margrave revealed some surprising facts about redun-
dancy in the configuration’s behavior. Individual queries
uniformly execute in seconds.

Notes on Benchmarking Our figures report Mar-
grave’s steady-state performance; they omit JVM
warmup time. Policy-load times are measured by loading
different copies of the policy to avoid caching bias. All
performance tests were run on an Intel Core Duo E7200
at 2.53 Ghz with 2 GB ofRAM, running Windows XP
Home. Performance times are the mean over at least 100
individual runs; all reported times are±200ms at the 95-
percent confidence level. Memory figures report private
(i.e., not including shared) consumption.

6.1 Forum Help: NAT and ACL s

”My servers cannot get access into the internet, even
though I will be able to access the website, or even

FTP... I don’t really know what’s wrong. Can you please
help? Here is my current configuration...”

10

In our first forum example [4], the poster is having
trouble connecting to the Internet from his server. He
believes thatNAT is responsible, and has identified the
router as the source of the problem. The configuration
included with the post appears in Figure 8 (with a slight
semantics-preserving modification4).

A query (not shown) confirms that the firewall is
blocking the connection. Our knowledge of firewalls in-
dicates that packets are rejected either enroute to, or on
return from, the webserver. Queries for these two cases
are similar; the one checking for response packets is:

EXPLORE
NOT src-addr-in
IN 192.168.2.0/255.255.255.0 AND

FastEthernet0 = entry-interface AND
prot-TCP = protocol AND
port-80 = src-port-in AND
internal-result(<reqfull>) AND
passes-firewall(<reqpol>)

IS POSSIBLE?
Query 7

Margrave reports that packets to the webserver are per-
mitted, but responses are dropped. The resulting scenar-
ios all involve source ports 20, 21, 23, and 80 (easily con-
firmed by re-running the query with aSHOW REALIZED

command asking for only the port numbers). This is
meaningful to a sysadmin: an outgoing web request is
always made from anephemeralport, which is never less
than 1024. This points to the problem: the router is re-
jecting all returning packets.ACL 102 (Figure 8, lines
25–29) ensures that the server sees only incomingHTTP,
FTP, andTELNET traffic, at the expense of rejecting the
return traffic for any connections that the server initiates.

Enabling the server to access other webservers in-
volves allowing packetscoming fromthe proper desti-
nation ports. Methods for achieving this include:

1. PermitTCP traffic from port 80, via the edit:

28 access-list 102 permit tcp
29 any host 209.172.108.16 eq 23
30 access-list 102 permit tcp any eq 80 any
31 access-list 102 deny tcp
32 any host 209.172.108.16

2. Allow packets whoseack flags are set via thees-
tablishedkeyword (or, in more recent versions, the
match-all +ack option). This suggestion guards
against spoofing a packet’s source port field and al-
lows servers to listen on unusual ports.

3. Use stateful monitoring of theTCP protocol via re-
flexive access-lists or theinspectcommand. This
guards against spoofing of theTCP ACK flag.

4We replaced named interface references in staticNAT statements
with actual IP addresses; our compiler does not support the former.

Follow-up posts in the forum suggested options 1 and 3.
Margrave can capture the first two options and the re-
flexive access-list approach in the third (it does not cur-
rently supportinspectcommands). For each of these,
we can perform verification queries to establish that the
InboundACL no longer blocks return packets, and we
can determine the extent of the change through a change-
impact query.

Space precludes showing the reflexiveACL query in
detail. ReflexiveACLs allow return traffic from hosts to
which prior packets were permitted. Margrave encodes
prior traffic through a series ofconnection- relations
over requests. Intuitively, a request is in aconnection-
relation only if the same request with the source- and
destination-details reversed would pass through the fire-
wall. Although the connection state is dynamic in prac-
tice, its stateless definition enables Margrave to handle it
naturally through first-order relations.

Performance: Loading each version of the configura-
tion took between 3 and 4 seconds. The final change-
impact query took under 1 second. After loading, run-
ning the full suite of queries (including those not shown)
required2751ms. The memory footprint of the Java en-
gine (including all component subpolicies) was 50 MB
(19 MB JVM heap, 20 MB JVM non-heap).

6.2 Forum Help: Routing

“there should be a way to let the network
10.232.104.0/22 access the internet, kindly advise a

solution for this...”

In our second example [29], the poster is trying to
create two logical networks: one “primary” (consist-
ing of 10.232.0.0/22 and 10.232.100.0/22) and
one “secondary” (consisting of10.232.4.0/22 and
10.232.104.0/22). These logical networks are con-
nected through a pair of routers (TAS and BAZ) which
share a serial interface (Figure 9). Neither logical net-
work should have access to the other, but both net-
works should have access to the Internet—the primary
via10.232.0.15 and the secondary via10.232.4.10.

The poster reports two problems: first, the two com-
ponents of the primary network—10.232.0.0/22 and
10.232.100.0/22—cannot communicate with each
other; second, the network10.232.104.0/22 cannot
access the Internet. The poster suspects errors in the TAS
router configuration (omitted for sake of space).

We start with the first problem. The following query
confirms that network10.232.0.0/22 cannot reach
10.232.100.0/22 via the serial link. Thehostname
formulas introduce names for each individual router

11

1 name-server 207.47.4.2
2 name-server 207.47.2.178
3 !
4 interface FastEthernet0
5 ip address 209.172.108.16 255.255.255.224
6 ip access-group 102 in
7 ip nat outside
8 speed auto
9 full-duplex

10 !
11 interface Vlan1
12 ip address 192.168.2.1 255.255.255.0
13 ip nat inside
14 !
15 ip route 0.0.0.0 0.0.0.0 209.172.108.1
16 !
17 ip nat pool localnet 209.172.108.16 prefix-length 24
18 ip nat inside source list 1 pool localnet overload
19 ip nat inside source list 1 interface FastEthernet0
20 ip nat inside source static tcp 192.168.2.6 80 209.172.108.16 80
21 ip nat inside source static tcp 192.168.2.6 21 209.172.108.16 21
22 ip nat inside source static tcp 192.168.2.6 3389 209.172.108.16 3389
23 !
24 access-list 1 permit 192.168.2.0 0.0.0.255
25 access-list 102 permit tcp any host 209.172.108.16 eq 80
26 access-list 102 permit tcp any host 209.172.108.16 eq 21
27 access-list 102 permit tcp any host 209.172.108.16 eq 20
28 access-list 102 permit tcp any host 209.172.108.16 eq 23
29 access-list 102 deny tcp any host 209.172.108.16

Figure 8: The original configuration for the forum post for Section 6.1

TAS
Router

 GigabitEthernet0/0
10.232.0.0/22 primary

10.232.4.0/22 secondary

Serial0/3:0
10.254.1.129/30

10.232.4.10/22

 GigabitEthernet0/1
10.232.8.1/22

10.232.0.15/22

BAZ Router
GigabitEthernet0/0

10.232.100.0/22 primary
10.232.104.0/22 secondary

Serial0/3:0
10.254.1.130/30

Figure 9: Structure of the network for the forum post for Section 6.2

12

based on the hostname specification in theIOS config-
uration; these names appear in thetasvector- and
bazvector- requests. (The -full- requests extend the
corresponding -pol- requests with additional variables
needed forinternal-routing.

1 EXPLORE hostname-tas = tas AND
2 hostname-baz = baz AND
3

4 internal-result(<tasvectorfull-fromtas>) AND
5 internal-result(<bazvectorfull-fromtas>) AND
6 passes-firewall(<tasvectorpol-fromtas>) AND
7 passes-firewall(<bazvectorpol-fromtas>) AND
8

9 GigabitEthernet0/0 = tas-entry-interface AND
10 tas-src-addr-in IN
11 10.232.0.0/255.255.252.0 AND
12 tas-dest-addr-in IN 10.232.100.0/255.255.252.0
13 AND "Serial0/3/0:0" = tas-exit-interface AND
14

15 "Serial0/3/0:0" = baz-entry-interface AND
16 GigabitEthernet0/0 = baz-exit-interface
17

18 IS POSSIBLE?
Query 8

Margrave returns false, which means that no packets
from 10.232.0.0/22 reach10.232.100.0/22 along
this network topology.

By the topology in Figure 9, packets reach the TAS
router first. We check whether packets pass through
TAS by manually restricting query 8 to TAS (by remov-
ing lines 2, 5, 7, 14, and 15); Margrave still returns
false. Firewall knowledge suggests three possible prob-
lems with the TAS configuration: (1) internal routing
could be sending the packets to an incorrect interface, (2)
internal routing could be dropping the packets, or (3) the
ACLs could be filtering out the packets. Margrave’s for-
mulas for reasoning about internal firewall behavior help
eliminate these cases: by negatingpassed-firewall
on line 6, we determine that the packet does pass through
the firewall, so the problem lies in the interface or next-
hop assigned during routing. This example highlights
the utility of not only having access to these formulas,
but also having the ability to negate (or otherwise manip-
ulate) them as any other subformula in a query.

To determine which interfaces the packets are sent on,
we relax the query once again to remove the remaining
reference toSerial0/3/0:0 (on line 12) and execute
the followingSHOW REALIZED command:

SHOW REALIZED
GigabitEthernet0/0 = exit-interface,
"Serial0/3/0:0" = exit-interface,
GigabitEthernet0/1 = exit-interface

Query 9

The output contains only one interface name:

{ GigabitEthernet0/0[exit-interface] }
Result

According to the topology diagram, packets from
10.232.0.0/22 to 10.232.100.0/22 should be us-

ing exit interfaceSerial0/3/0:0; the results, instead,
indicate exit interfaceGigabitEthernet0/0. Firewall
experience suggests that the router is either switching the
correct next-hop address (10.254.1.130) to the wrong
exit interface, or using the wrong next-hop address. The
next query produces the next-hop address:

1 EXPLORE hostname-tas = tas AND
2 internal-result(<tasvectorfull-fromtas>) AND
3 passes-firewall(<tasvectorpol-fromtas>) AND
4 GigabitEthernet0/0 = tas-entry-interface AND
5 tas-src-addr-in IN
6 10.232.0.0/255.255.252.0 AND
7 tas-dest-addr-in IN 10.232.100.0/255.255.252.0
8

9 INCLUDE
10 10.232.0.15 = tas-next-hop,
11 10.232.4.10 = tas-next-hop,
12 tas-next-hop IN 10.254.1.128/255.255.255.252,
13 tas-next-hop IN 10.232.8.0/255.255.252.0
14

15 SHOW REALIZED
16 10.232.0.15 = tas-next-hop,
17 10.232.4.10 = tas-next-hop,
18 tas-next-hop IN 10.232.8.0/255.255.252.0,
19 tas-next-hop IN 10.254.1.128/255.255.255.252

Query 10

{ 10.232.0.15[tas-next-hop] }
Result

The next-hop address is clearly wrong for the given
destination address. To determine the extent of the prob-
lem, we’d like to know whetherall packets from the
given source address are similarly misdirected. That
question is too strong, however, asLocalSwitching
may (rightfully) handle some packets. To ask Mar-
grave for next-hops targeted by some source packet
that LocalSwitching ignores, we replace line 7 in
query 10 with:

NOT LocalSwitching:Forward(<routingpol-tas>)
Query 11

This once again highlights the value of exposing
LocalSwitching as a separate relation. The revised
query yields the same next-hop, indicating that all non-
local packets are routing to10.232.0.15, despite the
local routing policies. A simple change fixes the prob-
lem: insert the keyworddefault into the routing policy:

route-map internet permit 10
match ip address 10
set ip default next-hop 10.232.0.15

This change ensures that packets are routed to the In-
ternet only as a last resort (i.e., when static destination-
based routing fails). Running the original queries against
the new specification confirms that the primary subnets
now have connectivity to each other. Another query
checks that this change does not suddenly enable the
primary sub-network10.232.0.0/22 to reach the sec-
ondary sub-network10.232.4.0/22.

13

Now we turn to the poster’s second problem: the sec-
ondary network10.232.4.0/22 still cannot access the
Internet. As before, we confirm this then compute the
next-hop and exit interface that TAS assigns to traffic
from the secondary network with an outside destination.
The following query (withSHOW REALIZED over inter-
faces and potential next-hops) achieves this:

EXPLORE
tas = hostname-tas AND

internal-result2(<tasvectorfull-fromtas>) AND
firewall-passed2(<tasvectorpol-fromtas>) AND

GigabitEthernet0/0 = tas-entry-interface AND
tas-src-addr-in IN
10.232.4.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.232.4.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.232.104.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.232.0.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.232.100.0/255.255.252.0 AND

NOT tas-dest-addr-in IN
10.254.1.128/255.255.255.252 AND

NOT tas-dest-addr-in IN
192.168.1.0/255.255.255.0 AND

NOT tas-dest-addr-in IN
10.232.8.0/255.255.252.0

Query 12

{ gigabitethernet0/0[tas-exit-interface],
10.232.4.10[tas-next-hop] }

Result

The next-hop for the secondary network’s Inter-
net gateway is as expected, but the exit-interface
is unexpectedlyGigabitEthernet0/0 (instead of
GigabitEthernet0/1). In light of this scenario, the
network diagram reveals a fundamental problem: the
gateway10.232.4.10 should be “on” the same net-
work as theGigabitEthernet0/1 interface (address
10.232.8.1/22); otherwiseLocalSwitching will
send the packet to the wrong exit interface.

This problem can be resolved by changing the ad-
dress of either theGigabitEthernet0/1 interface
or the next-hop router (10.232.4.10). We chose
the latter, selecting an arbitrary unused address in the
10.232.8.0/22 network:

39 route-map internet permit 20
40 match ip address 20
41 set ip default next-hop 10.232.8.10

Re-running the queries in this new configuration con-
firms that both goals are now satisfied.

Performance: Loading each version of the configura-
tion took between 3 and 4 seconds. Query 12 took351

Query Time (ms)
Permit pkt from addr X on interface Y? 1587
Previous with rule responsibility 23317
Change-impact after 1 decision edit 3167
Previous with rule responsibility 24039
Detect all superfluous rules 22578
List overshadows per rule in previous 72178

Table 3: Run-time performance of various queries on
the enterpriseACLs. For the change-impact query, we
switched the decision fromdenyto permit on one non-
superfluous rule. The overshadowing-rules computation
asked only for overshadows with the opposite decision.

ms. After loading, running the full suite of queries (in-
cluding those not shown) finished in8725ms. The mem-
ory footprint of the Java engine (including all component
subpolicies) was 74 MB (49 MB JVM heap, 21 MB JVM
non-heap).

6.3 Enterprise Firewall Configuration

Our largest test case to date is an in-use enterprise ipta-
bles configuration. In order to stress-test ourIOS com-
piler, we manually converted this configuration toIOS.
The resulting configuration containsACLs for 6 inter-
faces with a total of 1108InboundACL rules (not
counting routing subpolicies). The routing component
of this firewall was fairly simple; we therefore focus our
performance evaluation onInboundACL.

From a performance perspective, this paper has il-
lustrated three fundamentally different types of queries:
(1) computing over a single policy or network with
just the default relations (which-packets and verification
queries), (2) computing over a single policy or network
while including additional relations (rule-responsibility
and rule-relationship queries), and (3) computing over
multiple, independent policies or networks (change-
impact queries). The third type introduces more vari-
ables than the first two (to represent requests through
multiple firewalls); it also introduces additional relations
to capture the policies of multiple firewalls. The second
type has the same number of variables, but more rela-
tions, than the first type. We therefore expect the best
performance on the first type, even underTUPLING.

Table 3 reports run-time performance on each type of
query over the enterprise firewall-configuration. Load-
ing the policy’s InboundACL component required
10694ms and consumed51 MB of memory. Of that,40
MB was JVM heap and7 MB was JVM non-heap.

Section 2 described how we compute superfluous
rules through scripting. For this example, these queries

14

yielded surprising results:900 of the 1108 rules in
InboundACL were superfluous. Even more,270 of the
superfluous rules were (at least partially) overshadowed
by a rule with a different decision. The sysadmins who
provided the configuration found these figures shocking
and subsequently expressed interest in Margrave.

7 Related Work

Studies of firewall-configuration errors point to the
need for analysis tools. Oppenheimer,et al. [31] sur-
vey failures in three Internet services over a period
of several months. For two of these services, oper-
ator error—predominately during configuration edits—
was the leading cause of failure. Furthermore, conven-
tional testing fails to detect many configuration prob-
lems. Wool [35] studies the prevalence of 12 common
firewall-configuration errors. Larger rule-sets yield a
much higher ratio of errors to rules than smaller ones;
Wool concludes that complex rule sets are too difficult
for a human administrator to manage unaided.

Mayer, Wool and Ziskind [26, 27] and Wool [34] de-
scribe a tool called Fang that has evolved into a commer-
cial product called the AlgoSec Firewall Analyzer [3].
AlgoSec supports most of the same analyses as Mar-
grave, coveringNAT and routing, but it does not sup-
port first-order queries or integration with a program-
ming language. AlgoSec captures packets that satisfy
queries through sub-queries, which are a form of abstract
scenarios.

Marmorstein and Kearns’ [23, 24] ITVal tool uses
Multi-way Decision Diagrams (MDDs) to executeSQL-
like queries on firewall policies. ITVal supportsNAT,
routing, and chains of firewall policies. Later work [25]
supports a useful query-free analysis: it generates an
equivalence relation that relates two hosts if identical
packets (modulo source address) from both are treated
identically by the firewall. This can detect policy anoma-
lies and help administrators understand their policies.
Additional debugging aids in later work includes trac-
ing decisions to rules and showing examples similar to
scenarios. Margrave is richer in its support for change-
impact and first-order queries.

Al-Shaeret al.’s ConfigChecker [1, 2] is aBDD-based
tool that analyses networks of firewalls usingCTL (tem-
poral logic) queries. Rules responsible for decisions can
be isolated manually through queries over sample pack-
ets. For performance reasons, the tool operates at the
level of policies, rather than individual rules (other of the
group’s papers do consider rule-level reasoning); Mar-
grave, in contrast, handles both levels.

Bhattet al.’s Vantage tool [5, 9, 10] supports change-
impact on rule-sets and other user-defined queries over
combinations ofACLs and routing; it does not support

NAT. Some of their evaluations [9] exploit change-
impact to isolate configuration errors. This work also
supports generatingACLs from specifications, which is
not common in firewall-analysis tools.

Liu and Gouda [20, 21] introduce Firewall Decision
Diagrams (FDDs) to answerSQL-like queries about fire-
wall policies. FDDs are an efficient variant ofBDDs for
the firewall packet-filtering domain. Extensions of this
work by Khakpour and Liu [17] present algorithms for
many firewall analysis discussed in this paper, includ-
ing user-defined queries, rule responsibility, and change-
impact, generally in light ofNAT and routing. A down-
loadable tool is under development.

Yuan, et al.’s Fireman tool [36] analyzes large net-
works of firewallACLs using Binary Decision Diagrams
(BDDs). Fireman supports a fixed set of analyses, in-
cluding whitelist and blacklist violations and computing
conflicting, redundant, or correlated rules between differ-
ent ACLs. Fireman examines all paths between firewalls
at once, but does not considerNAT or internal routing.
Margrave’s combination of user-defined queries and sup-
port for NAT and routing makes it much richer. Oliveira,
et al. [30] extend Fireman withNAT and routing tables.
Their tool, Prometheus, can also determine whichACL

rules are responsible for a misconfiguration. It does not
handle change-impact across firewalls, though it does de-
termine when different paths through the same firewall
render different decisions for the same packet. In certain
cases, Prometheus suggests corrections to rule sets that
guarantee desired behaviors. Margrave’s query language
is richer.

Verma and Prakash’sFACE tool [33] aids both con-
figuration of distributed firewalls and analyzing existing
distributed firewalls expressed in iptables. It supports
user-defined queries, as well as a form of change-impact
over multiple firewalls. Its depth-first-search approach to
propagating queries through a network resembles Mayer,
Ziskind, and Wool’s work. It does not handle routing or
NAT. The tool is no longer available.

Gupta, LeFevre and Prakash [14] give a framework
for the analysis of heterogeneous policies that is simi-
lar to ours. While both works provide a general policy-
analysis language inspired bySQL, there are distinct dif-
ferences. Their tool,SPAN, does not allow queries to
directly reference rule applicability and the work does
not discuss request-transformations such asNAT. How-
ever, SPAN provides tabular output that can potentially
be more concise than Margrave’s scenario-based output.
SPAN is currently under development.

Lee, Wong, and Kim’s NetPiler tool [18, 19] analyzes
the flow graph of routing policies. It can be used to both
simplify and detect potential errors in a network’s routing
configurations. The authors have primarily applied Net-
Piler to BGP configurations, which address the propaga-

15

tion of routes rather than the passage of packets. How-
ever, their methods could also be applied to firewall poli-
cies. Margrave does not currently support BGP, though
its core engine is general enough to support them.

Jeffrey and Samak [16] present a formal model and
algorithms for analyzing rule-reachability and cyclicity
in iptables firewalls. This work does not addressNAT or
more general queries about firewall behavior.

Eronen and Zitting [11] perform policy analysis on
Cisco routerACLs using a Prolog-based Constraint Logic
Programming framework. Users are allowed to define
their own custom predicates (as in Prolog), which en-
ables analysis to incorporate expert knowledge. The Pro-
log queries are also first-order. This work is similar to
ours in spirit, but is limited toACLs and does not support
NAT or routing information.

Youssefet al.[7] verify firewall configurations against
security goals, checking both for configurations that vio-
late goals and goals that configurations fail to cover. The
work does not handleNAT or routing.

Margrave as described in this paper extends an ear-
lier tool of the same name [12] developed by Tschantz,
Meyerovich, Fisler and Krishnamurthi. The original
Margrave targeted simple access-control policies, encod-
ing them as propositional formulas that we analyzed us-
ing BDDs. Attempts to model enterprise access-control
policies inspired the shift to first-order models embodied
in the present tool. Not surprisingly, there is an extensive
literature on logic-based tools for access-control policies;
our other papers [12, 28] survey this literature.

8 Perspective and Future Work

Margrave is a general-purpose policy analyzer. Its most
distinctive features lie in and arise from embracing sce-
nario finding over first-order models. First-order lan-
guages provide the expressive power of quantifiers and
relations for capturing both policies and queries. Expres-
sive power generally induces performance cost. By au-
tomatically computing universe bounds for key queries,
however, Margrave gets the best of both worlds: first-
order logic’s expressiveness with propositional logic’s
efficient analysis. Effectively, Margrave distinguishes
between propositionalmodelsand propositionalimple-
mentations. Most logic-based firewall-analysis tools
conflate these choices.

First-order modeling lets Margrave uniformly capture
information about policies at various levels of granular-
ity. This paper has illustrated relations capturing pol-
icy decisions, individual rule behavior, and the effects
of NAT and internal routing. The real power of our
first-order modeling, however, lies in building new re-
lations from existing ones. Each of the relations captur-
ing behavior internal to a firewall (passes-firewall,

internal-routing, and int-dropped) is defined
within Margrave’s query language and exported to the
user through standard Margrave commands. While
our firewall compilers provide these three automatically,
users can add their own relations in a similar manner.
Technically, Margrave allows users to define their own
named views (in a database sense) on collections of poli-
cies. Thus, Margrave embraces policy-analysis in the se-
mantic spirit of databases, rather than just the syntactic
level of SQL-style queries.

Useful views build on fine-grained atomic informa-
tion about policies. Margrave’s unique decomposition of
IOS configurations into subpolicies for nine distinct fire-
wall functions provides that foundation. Our pre-defined
firewall views would have been prohibitively hard to
write without a clean way to refer to components of fire-
wall functionality. Margrave’s intermediate languages
for policies and vocabularies, in turn, were instrumental
in developing the subpolicies. Both languages use gen-
eral relational terms, rather than domain-specific ones.
Vocabularies allow authors to specify decisions beyond
those typically associated with policies (such asPermit
and Deny). Our IOS compiler defines separate deci-
sions for the different types of flows out of internal rout-
ing, such as whether packets are forwarded internally or
translated to another interface. The routing views are de-
fined in terms of formulas capturing these decisions. The
policy language defines the formulas through rules that
yield each decision (our rule language is effectively strat-
ified Datalog). Had we defined Margrave as a firewall-
specific analyzer, rather than a general-purpose one, we
likely would have hardwired domain-specific concepts
that did not inherently support this decomposition.

User-defined decisions and views support extending
Margrave from within. Integrating Margrave into a
programming language supports external extension via
scripting over the results of commands. Margrave pro-
duces scenarios as structured (XML) objects that can
be traversed and used to build further queries.SHOW

REALIZED produces lists of results over which programs
(such as superfluous rule detection in Section 2) can it-
erate to generate additional queries. Extending our inte-
gration with iterators over scenarios would yield a more
policy-specific scripting environment.

In separate projects, we have applied Margrave to
other kinds of policies, including access-control, simple
hypervisors, and product-line configuration. Margrave’s
general-purpose flexibility supports reasoning aboutin-
teractionsbetween firewalls and other types of policies
(increasingly relevant in cloud deployments). This is an-
other exciting avenue for future work.

Margrave’s performance is reasonable, but slower than
other firewall analyzers. This likely stems partly from
additional variables introduced during the encoding into

16

propositional logic. In particular, we expect Margrave
will scale poorly to large networks of firewalls, as our
formulas grow linearly with the number of firewalls. Our
use ofSAT-solving instead ofBDDs may be another fac-
tor, though Jeffrey and Samak’s comparisons between
these for firewall analysis [16] are inconclusive. Ex-
ploring alternative backends—whether based onBDDs
or other first-order logic solvers—is one area for future
work. However, we believe the more immediate ques-
tions lie at the modeling level. For example:

• Firewall languages include stateful constructs such
as inspect. Existing firewall analysis tools, includ-
ing Margrave, largely ignore state (we are limited to
reflexiveACLs). How do we effectively model and
reason about state without sacrificing performance?

• Modeling IP addresses efficiently is challenging.
Many tools use one propositional variable per bit;
Margrave instead uses one per IP address. This
makes it harder to model arithmetic relationships
on IP addresses (i.e., subranges), though it provides
finer-grained control over which IP addresses are
considered during analysis. Where is the sweet-spot
in IP-address handling?

Margrave is in active development. We are extend-
ing our firewall compilers to support VPN and BGP. We
would like to automatically generate queries for many
common problems (such as overshadowing rule detec-
tion and change-impact). Section 2 also hinted at a prob-
lem with reusing queries in the face of policy edits: the
compiler names rules by line-numbers, so edits may in-
validate existing queries. We need to provide better sup-
port for policy-management including regression testing.

Acknowledgments:

Support for this research came from several National Sci-
ence Foundation grants. Cisco supported an early phase
of this project. We thank John Basik, Jeff Coady, Mark
Dieterich, Jason Montville and Richard Silverman for
sysadmins’ perspectives on this project. Craig Wills ex-
plained how to report performance data. Our LISA shep-
herd, Matt Disney, provided useful suggestions. In com-
piling our related work, we contacted many authors with
questions about their projects. We thank them for their
prompt and cheerful responses and hope we have repre-
sented their work accurately; any errors are our own.

References

[1] Ehab S. Al-Shaer and Hazem H. Hamed. Firewall
Policy Advisor for Anomaly Discovery and Rule

Editing. InIntegrated Network Management, pages
17–30, 2003.

[2] Ehab S. Al-Shaer and Hazem H. Hamed. Discovery
of Policy Anomalies in Distributed Firewalls. In
IEEE Conference on Computer Communications,
2004.

[3] The AlgoSec Firewall Analzyer.www.algosec.
com.

[4] azsquall. “ACL and NAT conflict each other. router
stop working”. www.networking-forum.
com/viewtopic.php?f=33&t=7635, Au-
gust 2008. Access Date: July 20, 2010.

[5] Sruthi Bandhakavi, Sandeep Bhatt, Cat Okita, and
Prasad Rao. End-to-end network access analysis.
Technical Report HPL-2008-28R1, HP Laborato-
ries, November 2008.

[6] Rob Barrett, Eser Kandogan, Paul P. Maglio,
Eben M. Haber, Leila Takayama, and Madhu
Prabaker. Field Studies of Computer System
Administrators: Analysis of System Management
Tools and Practices. InACM Conference on Com-
puter Supported Cooperative Work, pages 388–
395, 2004.

[7] Nihel Ben Youssef, Adel Bouhoula, and Florent
Jacquemard. Automatic Verification of Confor-
mance of Firewall Configurations to Security Poli-
cies. InIEEE Symposium on Computers and Com-
munications, pages 526 – 531, July 2009.

[8] Daniel Le Berre and Anne Parrain. The Sat4j li-
brary, release 2.2.Journal on Satisfiability, Boolean
Modeling and Computation, 2010. To appear.

[9] Sandeep Bhatt, Cat Okita, and Prasad Rao. Fast,
Cheap, and in Control: A Step Towards Pain-Free
Security! InLarge Installation System Administra-
tion Conference, pages 75–90, 2008.

[10] Sandeep Bhatt and Prasad Rao. Enhancements to
the Vantage Firewall Analyzer. Technical Report
HPL-2007-154R1, HP Laboratories, June 2008.

[11] Pasi Eronen and Jukka Zitting. An expert system
for analyzing firewall rules. InProceedings of the
Nordic Workshop on Secure IT Systems, pages 100–
107, 2001.

[12] Kathi Fisler, Shriram Krishnamurthi, Leo
Meyerovich, and Michael Tschantz. Verifica-
tion and change impact analysis of access-control
policies. InInternational Conference on Software
Engineering, pages 196–205, 2005.

17

[13] Matthew Flatt and PLT. Reference: Racket. Techni-
cal Report PLT-TR2010-1, PLT Inc., June 7, 2010.
racket-lang.org/tr1/.

[14] Swati Gutpa, Kristen LeFevre, and Atul Prakash.
SPAN: A unified framework and toolkit for query-
ing heterogeneous access policies. InUSENIX
Workshop on Hot Topics in Security, 2009.

[15] Daniel Jackson.Software Abstractions. MIT Press,
2006.

[16] Alan Jeffrey and Taghrid Samak. Model Checking
Firewall Policy Configurations. InIEEE Interna-
tional Symposium on Policies for Distributed Sys-
tems and Networks, 2009.

[17] Amir R. Khakpour and Alex X. Liu. Quantify-
ing and querying network reachability. InProceed-
ings of the International Conference on Distributed
Computing Systems, June 2010.

[18] Sihyung Lee, Tina Wong, and Hyong S. Kim.
Improving Dependability of Network Configura-
tion through Policy Classification. InIEEE/IFIP
Conference on Dependable Systems and Networks,
2008.

[19] Sihyung Lee, Tina Wong, and Hyong S. Kim. Net-
Piler: Detection of Ineffective Router Configura-
tions. IEEE Journal on Selected Areas in Commu-
nications, 27(3):291–301, 2009.

[20] Alex X. Liu and Mohamed G. Gouda. Diverse fire-
wall design. IEEE Transactions on Parallel and
Distributed Systems, 19(8), August 2008.

[21] Alex X. Liu and Mohamed G. Gouda. Firewall
policy queries.IEEE Transactions on Parallel and
Distributed Systems, 20(6):766–777, June 2009.

[22] The Margrave Policy Analzyer. www.
margrave-tool.org/v3/.

[23] Robert Marmorstein and Phil Kearns. A Tool for
Automated iptables Firewall Analysis. InUSENIX
Annual Technical Conference, 2005.

[24] Robert Marmorstein and Phil Kearns. An Open
Source Solution for Testing NAT’d and Nested ipt-
ables Firewalls. InLarge Installation System Ad-
ministration Conference, 2005.

[25] Robert Marmorstein and Phil Kearns. Firewall
Analysis with Policy-Based Host Classification. In
Large Installation System Administration Confer-
ence, 2006.

[26] Alain Mayer, Avishai Wool, and Elisha Ziskind.
Fang: A Firewall Analysis Engine. InIEEE Sym-
posium on Security and Privacy, pages 177–187,
2000.

[27] Alain Mayer, Avishai Wool, and Elisha Ziskind.
Offline firewall analysis. International Journal of
Information Security, 2005.

[28] Timothy Nelson. Margrave: An Improved Ana-
lyzer for Access-Control and Configuration Poli-
cies. Master’s thesis, Worcester Polytechnic Insti-
tute, April 2010.

[29] oelolemy. “problem with policy based routing-
urgent please !”. www.experts-exchange.
com/Networking/Network_Management/
Q_24113014.html, February 2009. Access
Date: July 20, 2010.

[30] Ricardo M. Oliveira, Sihyung Lee, and Hyong S.
Kim. Automatic detection of firewall misconfigu-
rations using firewall and network routing policies.
In DSN Workshop on Proactive Failure Avoidance,
Recovery and Maintenance, 2009.

[31] David Oppenheimer, Archana Ganapathi, and
David A. Patterson. Why do Internet services fail,
and what can be done about it? InUSENIX Sympo-
sium on Internet Technologies and Systems, 2003.

[32] Emina Torlak and Daniel Jackson. Kodkod: A
Relational Model Finder. InConference on Tools
and Algorithms for the Construction and Analysis
of Systems, pages 632–647, 2007.

[33] Pavan Verma and Atul Prakash. FACE: A Firewall
Analysis and Configuration Engine. InProceedings
of the Symposium on Applications and the Internet,
2005.

[34] Avishai Wool. Architecting the Lumeta Firewall
Analyzer. InProceedings of the USENIX Security
Symposium, 2001.

[35] Avishai Wool. A Quantitative Study of Fire-
wall Configuration Errors.Computer, 37(6):62–67,
2004.

[36] L. Yuan, J. Mai, Z. Su, H. Chen, C-N. Chuah, and
P. Mohapatra. FIREMAN: A Toolkit for FIREwall
Modeling and ANalysis. InIEEE Symposium on
Security and Privacy, 2006.

18

