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Abstract Does a specific rule control decisions on certain traf-

. L ! . fic? What prevents a particular rule from applying to a
Writing and maintaining firewall configurations can be packet? Will a policy edit permit or block more traffic

challenging, even for experienced system admipistratlor%an intended? These questions demand flexibility from
Tools that uncover the consequences of Conf'gurat'onﬁrewall-analysis tools: they cover various levels of gran-

and edits to them can help sysadmins prevent subtle Y&}, (from individual rules to networks of policies), as
serious errors. Our tool, Margrave, offers powerful fea- o a5 reasoning about multiple versions of policies (to

tures for firewall a_nalysi_s, incl_uding e”‘%mefaﬂng CON- check the impact of edits). Margrave handles all these
sequences of configuration edits, detecting overlaps ang,, more, offering more functionality than other pub-
conflicts among rules, tracing firewall behavior to spe-|ishead firewall tools

cific rules, and verification against security goals. Mar- M , - S
. : . ; argrave'’s flexibility comes from thinking about pol-
grave differs from other firewall-analysis tools in sup-

orting queries at multiple levels (rules, filters, firewall icy analysis from an end-users perspective. The ques-
P 94 b ' BT 4ions that users wish to ask about policies obviously af-

Sfect modeling decisions, but so does our form of answer.

in a.single query, supporting reflexivects, ?”d pre- Margrave’s core paradigm iscenario finding when a
senting exhaustive sets of concrete scenarios that em-

. . user poses a query, Margrave produces a (usually exhaus-
body queries. Margrave supports real-world firewall- P query g P ( y

. } . . .tive) set of scenarios that witness the queried behavior.
configuration languages, decomposing them into multi;

o . i Whether a user is interested in the impact of changes or
ple policies that capture different aspects of firewall func : . .
. . . . how one rule can override another, scenarios concretize
tionality. We present evaluation on networking-forum

; o ! . a policy’s behavior. Margrave also allows queries to be
posts and on an in-use enterprise flrewall—conﬁguratlon.b o . : )
uilt incrementally, with new queries refining the results
from previous ones.
1 Introduction Margrave’s power comes from choosing an appropri-
ate model. Embracing both scenario-finding and multi-
Writing a sensible firewall policy from scratch can be level policy-reasoning leads us to model policies in first-
difficult; maintaining existing policies can be terrifying order logic. While many firewall-analysis tools are
Oppenheimer, Ganapathi, and Patterson [31] have showgrounded in logic, most use propositional models for
that operator errors, specifically configuration errors, ar which analysis questions are decidable and efficient. In
a major cause of online-service failure. Configurationgeneral, one cannot compute an exhaustive and finite
errors can result in lost revenue, breached security, anglet of scenarios witnessing first-order logic formulas.
even physical danger to co-workers or customers. Théortunately, the formulas corresponding to many com-
pressure on system administrators is increased by the frgnon firewall-analysis problems do yield such sets. Mar-
netic nature of their work environment [6], the occasionalgrave identifies such cases automatically, thus providing
need for urgent changes to network configurations, ané@xhaustive analysis for richer policies and queries than
the limited window in which maintenance can be per-other tools. Demonstrating that firewall analyzers can
formed on live systems. benefit from first-order logic without undue cost is a key
Many questions arise in checking a firewall’s behav-contribution of this paper.
ior: Does it permit or block certain traffic? Does a col-  Our other key contribution lies in how we decompose
lection of policies enforce security boundaries and goals?os configurations into policies for analysis. Single fire-



wall configurations cover many functions, such as accessnterface fe0
filtering, routing, and switching. Margravetes com- 2|!P address 10.150. 1.1 255.255.255. 254
. . 3|ip access-group 101 in
piler generates separate policies for each task, thus gn-
abling analysis of either specific functionality or wholes| i nterface vl an1
firewall behavior. Task-specific policies aid in isolating i p address 192.128. 5.1 255.255.255.0
causes of problematic behaviors. Our firewall mode;Isf, p access-group 102 in
support standard and most extendezls, StaticNAT, | access-1ist 101 deny ip host 10.1.1.2 any
ACL-based and map-based dynamir, static routing, | access-1ist 101 permit tcp
and policy-based routing. Our support for state is limited ~any host 192.168.5.10 eq 80
to reflexive access-lists; it does not include general dﬁ-access" st ;gi el 5.9;??68. 5.11 eq 25
namicNAT, deep packet inspection, routing \O8FR OF | access-1ist 101 deny any
adaptive policies. Margrave has an iptables compilerdn
development; other types of firewalls, such as Junipef/@ccess-1list 102 permt any
JunOS, fit our model as well.
A reader primarily interested in a tool description can
read Sections 2, 6, and 7 for a sense of Margrave and how
it differs from other firewall-analysis tools. Section 2 il- Packet. This firewall allows inbound web and mail traffic
lustrates Margrave’s query language and scenario-basdf the corresponding servers (tho and. 11 hosts), but
output using a multi-step example. Section 3 describe&lenies a certain blacklisted IP address (toe1. 1. 2
the under'ying theory (based on first-order |Ogic)’ inc'ud_host). All traffic arriVing at the inside'facing interface
ing our notion of p0|icies_ Section 4 shows how fire- vl anl iS a.”OWed. As thIS f|lter iS Only Concerned W|th
wall questions map into Margrave. Section 5 describedackets as they arrive at the firewall, our queries refer to
the implementation, including the compiler for firewall- the filter as nboundACL.
configurations and a query-rewriting technique that often
improves performance. Section 6 presents experimerBasic Queries: All firewall analyzers support basic
tal evaluation on both network-forum posts and an in-queries about which packets traverse the firewall. The
use enterprise firewall. Section 7 describes related workiollowing Margrave query asks for an inbound packet
Section 8 concludes with perspective and future work. thatl nboundACL permits:

EXPLORE | nboundACL: Perm t ( <r eg>)

Figure 1: Sampleios configuration

2 Margrave in Action on Firewalls SHOW ONE

Query 1
Margrave presents scenarios that satisfy user-specifigdyp| ore clauses describe firewall behavior; here, the
queries about firewall behavior. Queries state a behaviogapavioris simply to permit packets: eq> is shorthand

of interest and optional controls on which data to con-fo 4 sequence of variables denoting the components of a
sider when computing scenarios. Scenarios contain afrequest (detailed in Section 4):

tributes of packet contents that make the query hold. A
separate command language controls how scenarios are (ahostnamgsrc-addr-in src-port-in protocol ...).
qllsplayed. The'extended 'example in this sgcnon h'.ghUsers can manually define this shorthand within Mar-
lights Margrave’s features; Table 1 summarizes which i . ; . . L

. ..~ grave; details and instructions for passing queries into
of these features are supported by other available (eith

N argrave are in the tool distribution [22]SHOW ONE
free or commercial) firewall analyzers. The Margrave. . . ;
. . is an output-configuration command that instructs Mar-
website [22] contains sources for all examples.

In this paper, afirewall encompasses filtering (via grave to display only a single scenario. The resulting

. . . output indicates the packet contents:
access-lists)NAT transformation, and routing; we re-
serve the termouter for the latter component. Thes 1 |*******+x SOLUTI ON FOUND at size = 15
configuration in Figure 1 defines a simple firewall witf ;:gt ﬁgglrf' 2;01 _Pfggress
only filtering. This firewall controls two interfacesd0 , | dest - addr-in: 192. 168. 5. 10
andvl anl). Each has an IP address and an access-igsrc-port-in: port
to filter traffic as it enters the interface; in lines 3 angl| €xi t-interface: interface
7, the number (101 or 102) is a label that associates égg;yp'oft ?ir];]écg(')rz_ego
cess rules (lines 9-16) with each interface, whileithe ¢ || ength: | eng{ h
keyword specifies that the rules should apply on entry| ahost name: host nane-r out er
Rules are checked in order from top to bottom; the figst ST ¢-addr-out: | PAddress

L . . . 2 | message: icnpnessage
rule whose conditions apply determines the decision on g P 9% Resul t




ITVal | Fireman| Prometheug ConfigChecker| Fang/AlgoSec| Vantage

Which packets v v v v v v
User-defined querieg v ? v v P
Rule Responsibility v ? v ~ v v
Rule Relationships ~ v v v P v
Change-impact ? v VP v
First-order queries ? ? ?
Support NAT v v v v

Support Routing v v v v P
Firewall Networks v v v v v Vi
Language integration v
Commercial Tool? | no no yes no yes yes

Table 1: Feature comparison between Margrave and othdablafirewall-analysis tools. In each celf, denotes
included featuresy ™ denotes features reported by the authors in private conuation but not described in pub-
lished papersy’~ denotes included features with more limited scope than irgké&e;~ denotes features that can be
simulated, but aren’t directly supportetidenotes cases for which we aren’t sure about support. 8ectiescribes
nuances across shared features and discusses additeesiate for which tools are not currently available.

This scenario shows®cP packet (line 3) arriving on the  fines two formulas for every rule in a policy (wheReis

fast-ethernet interface (line 7), bound for the web servea unique name for the rule):

(line 4, with line 11 of Figure 1) on port 80 (line 8). The ¢ R mat ches( <r eg>) is true wherxr eq> satisfies the

genericl Paddr ess in lines 2 and 11 should be read as  ryle’s conditions, and

ine% and 6 are smilary generic, Secton 5 explains the® /=29 1€5(<reG) s ttue when the rule both
' matchesr eq> and determines the decision eneg>

si ze=15 reporton line 1, (as the first matching rule within the policy).

A user can ask for additional scenarios that iIIustrateD_ ) ishi h . ined . b
the previous query via the commasHOWNEXT: Once istinguishing these supports fine-grained queries about

Margrave has displayed all unique scenarios, it respond@“le l;aelhawor._ Mzalrgra¥e £0S coTpller constru|<_:t§ theF
to SHOWNEXT queries witho resul ts. R labels to uniquely reference rules across policies. For

é'nstanceACL rules that govern an interface have labels
of the formhostname-interfacéi ne#, wherehostname
aﬁndinterfacespecify the names of the host and interface
to which the rule is attached a#ds the line number at
which the rule appears in the firewall configuration file.
The following query refines query 2 to ask for deci-
sion justification: thé&EXPLORE clause now asks fadeny
packets, while thé NCLUDE clause instructs Margrave to
EXPLORE compute scenarios over the t@eny rules as well as the

| nboundACL: Perni t (<req>) AND ; .
10.1.1.2 = sre-addr-in AND formulas in theEXPLORE clause:

To check whether the filter accepts packets from th
blacklisted server, we constrasinc- addr - i n to match
the blacklisted IP address and examine only packets th
arrive on the external interface. Bathc- addr -i n and
entry-interface are variable names iareg>. The
I S POSSI BLE? command instructs Margrave to display
false or true, rather than detailed scenarios.

fe0 = entry-interface EXPLORE
I nboundACL: Deny(<req>) AND
I'S PCSSI BLE? Query 2 10.1.1.2 = src-addr-in AND
y fe0 = entry-interface

| NCLUDE
‘I nboundACL1: Rout er-fe0-1ine9_applies(<req>),
fnboundACL1: Rout er - f e0- | i neld_applies(<req>)

In this case, Margrave returns false. Had it returned true
the user could have inspected the scenarios by issuing

SHOWONE or SHOWALL command.
SHOW REALI ZED

I nboundACL1: Rout er-f e0-1i ne9_applies(<reg>),
Rule-level Reasoning: Tracing behavior back to the |InboundACL1: Router-erJ(()a-rIyi rée14_app| i es(<reqg>)

responsible rules in a firewall aids in both debugging and
confirming that rules are fulfilling their intent. To support The SHOW REALI ZED command asks Margrave to dis-
reasoning about rule effects, Margrave automatically deplay the subset of listed facts that appear in some result-




ing scenario. The following results indicate that the rulein a host language (Racket [13], a descendent of Scheme)
at line 9 does (at least sometimes) apply. More telling through which we can write scripts over query results. In
however, the absence of the rule at line 14 (the catch-alhhis case, our script uses a Margrave command to obtain
deny) indicates that that ruteeverapplies to any packet lists of rules that yield each d#fermitandDeny, then is-
from the blacklisted address. Accordingly, we concludesues queries to isolate overshadowing rules for each su-
that line 9 processes all blacklisted packets. perfluous rule. These are similar to other queries in this

section. Scripts could also compute hotspot rules that
‘ overshadow a large percentage of other rules.

‘< I nboundACL: | i ne9_a|gp| ilets( <req>) >
esu

Thel NCLUDE clause helps control Margrave’s perfor- . o .
mance. Large policies induce many rule-matching for-Change-Impact: Sysadmins edit firewall configura-
mulas; enabling these formulas only as needed trims thHONS t0 provide new services and correct emergent prob-
scenario space.SHOW REALI ZED (and its dual,SHow  1ems. Edits are risky because they can have unexpected
UNREAL| ZED) controls the level of detail at which users consequences such as allowing or restricting traffic that
view scenarios. The lists of facts that do (or do not) ap-the edit should not have affected. Expecting sysadmins
pear in scenarios often raise red flags about firewall bel0 have formal security requirements against which to
havior (such as an unexpected port being involved in pro€st policy edits is unrealistic. In the spirit of lightwdig
cessing a packet). Unlike many verification tools, Mar-analyses that demand less of users, Margrave computes
grave does not expect users to have behavioral requirécenarios illustrating packets whose decision or applica-
ments or formal security goals on hand. LightweightPle rule changes in the face of edits.

summaries such a8HOW REALI ZED try to provide in- For example, suppose we add the new boldface rule
formation that suggests further queries. below to access-list01 (the line numbers start with 14 to

indicate that lines 1-13 are identical to those in Figure 1):

Computing Overshadowed Rules through Scripting: 14 |access-1ist 101 deny tcp

Query 3 checks the relationship between two rules 91 host 10.1.1.2 host 192.168.5.10 eq 80
particular packets. A more general question asks which . i

rulesneverapply toanypacket; we call such rulesiper- If we call the modified filterl nboundACL _new, the

fluous The following query computes superfluous rules: 0llowing query asks whether the original and new
I nboundACLs ever disagree oPer ni t decisions:

EXPLORE true
UNDER | nboundACL EXPLORE _
| NCLUDE (1 nboundACL: Permi t (<req>) AND
I nboundACL: rout er - f e0- 1 i ne9_appl i es(<req>), NOT | nboundACL_new. Permi t (<reg>)) OR
I nboundACL: r out er - f e0- 1 i ne10_appl i es(<req>), (1 ”bOU”dACL—”eW: Pernit (<req>) AND
I nboundACL: rout er - f e0- | i ne12_appl i es(<reqg>), NOT | nboundACL: Permi t (<reg>)))
I nboundACL: rout er-feO-1ineld_applies(<reqg>),
I nboundACL: rout er-vl anl-1inel6_applies(<reqg>) I'S PCBSI BLE? Query 5
SHOW UNREALI ZED _ _ Margrave returns false, since the rule at line 9 always
I nboundACL: rout er - f e0- i ne9_appl i es(<reg>), overrides the new rule. If instead the new rule were:
I nboundACL: rout er-fe0-1inel0_applies(<reg>),
| nboundACL: rout er-fe0O-1inel2_applies(<reg>), 14 |access-1ist 101 deny tcp
I nboundACL: rout er-fe0-1ineld_applies(<reqg>), 15 host 10.1.1.3 host 192.168.5.10 eq 80
I nboundACL: rout er-vl anl-1inel6_applies(<req>)
Query 4

Margrave would return true on query 5. The correspond-

As this computation doesn't care about request coning scenarios show packet headers that the two firewalls
tents, theEXPLORE clause is Slmplyt rue. The heart treat diﬁerenﬂy’ such as the fo”owing:
of this query lies in the NCLUDE clause and th&HOW ——
UNREAL| ZED command: the first asks Margrave to con- . """ *"*". ﬁ?lfg' lONlF(SJUND at size =15
sider all rules; the second asks for listed facts that arepr ot ocol : prot-tcp
never true in any scenari®NDER clauses load policies | dest-addr-in: 192.168.5. 10
referenced in NCLUDE but notEXPLORE clauses. src-port-in: port

While the results tell us which rules never apply, they| &t nterface: interface

o . pply, yentry-interface: fel

don'tindicate which rules overshadow each unused rule.dest - port-in: port-80
Such information is useful, especially if an overshadow- Resul't
ing rule ascribes the opposite decision. Writing queriesAs we might expect, this scenario involves packets from
to determine justification for each superfluous rule, how-10. 1. 1. 3. A subsequent query could confirm that no
ever, is tedious. Margrave’s query language is embeddedther hosts are affected.




Despite the explicit rule on lines 19-20 in the external
firewall, the manager cannot access the web. We have
edited the configurations to show only those lines rele-
vant to the manager and web traffic.

Corporate LAN

Contractors
(192.168.4.%)

Employees
(192.168.3.%)

Manager
(192.168.1.2)

host nane ext
!
interface out _dne

ip access-group 103 in

ip address 10.1.1.2 255.255.255.0
!

Internal
Firewall

WWW
Server
(10.1.1.4)

Mail
Server
(10.1.1.3)

interface out_inet

ip access-group 104 in

i p address 10.200.1.1 255.255.0.0
|

© ® N o g~ W N P

10

11 |access-1ist 104 deny 10.200. 200. 200

External

Firewall 12 |access-list 104 permt tcp any host 10.1.1.4
13 eq 80
14 |access-1ist 104 deny any
15 | !

Internet 16 |access-1ist 103 deny ip any

17 host 10.200. 200. 200

18 |access-1ist 103 deny tcp any any eq 23

19 |access-list 103 permit tcp host 192.168.1.2
20 any eq 80

access-list 103 deny any

Figure 2: A small-business network-topology

Networks of Firewalls: So far, our examples havé;
considered only single firewalls. Margrave also han-
dles networks with multiple firewalls andaT. Figure The following query asks “What rules deny a connec-
2 shows a small network with web server, mail server.tion from the manager’s PC (line 2) to port 80 (line 10)

and two firewalls to establishmmvz. The internal fire- somewhere outside our network (line 8) other than the
wall performs bothNAT and packet-filtering, while the blacklisted host (line 9)?”

external firewall only filters. The firewall distinguishes
machines for employees 2. 168. 3. »), contractors ; 192 168 1.2 = fwl-src-addr-in AND
(192. 168. 4. *), and a managen@2. 168. 1. 2). ThiS ; |in_lan = fwl-entry-interface AND

example captures the essence of a real problem posted|teut _dme = fw2-entry-interface AND

a networking help-forum. s |hostname-int = fwl AND
host nane-ext =

Ext ernal Firewal |

EXPLORE prot-TCP = protocol AND

© © N e U AW N R

N R O
S © ® N ® o M ®w N P O

!
access-list 102 permit tcp any any eq 80
access-list 102 deny any
!
ip nat inside source list 1 interface

in_dnz overl oad
access-list 1 permt 192.168.1.1 0.0.255.255
|

iproute 0.0.0.0 0.0.0.0 in_dnz

Internal Firewall

Lines 15-17 in the internal firewall appRaT to traffic

17
18
19
20
21
22
23
24
25
26
27
28

6 fw2 AND
host nane i nt 7
1 s [fwl-dest-addr-in I N 10.200. 0. 0/ 255. 255.0.0
interface in_dnz 9 | NOT 10.200. 200. 200 = fwl-dest-addr-in AND
ip address 10.1.1.1 255. 255, 255.0 10 |port-80 = fwl-dest-port-in AND
i p nat outside 1
1 12 [internal-result(<reqfull-1>) AND
interface in_lan 13 _
i p access-group 102 in 14 | (NOT passes-firewal |l (<reqgpol -1>) OR
ip address 192.168.1.1 255.255.0.0 15| internal-result(<reqgfull-2>) AND
i p nat inside 16 | NOT passes-firewal |l (<reqgpol -2>))

UNDER | nboundACL

I NCLUDE

I nboundACL: int-in_lan-1ine-12_applies
(<reqpol -1>),

I nboundACL:int-in_lan-1ine-17_applies
(<reqpol -1>),

| nboundACL: ext - out _dne-1ine-19_applies
(<reqpol -2>)

| nboundACL: ext - out _dne-1ine-21_applies
(<regpol -2>),

| nboundACL: ext - out _dne-1i ne-24_applies
(<reqpol -2>)

Query 6

Lines 12-16 capture both network topology and
the effects of NAT. The internal -result and
passes-firewal | formulas capture routing in the face

from the corporateAN.! Line 11 in the external firewall”
blacklists a specific external hostQ. 200. 200. 200).

1In this example, we use the 10.200.* private address spa@pto
resent the public IP addresses.
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of NAT and passing through the complete firewall (in- can accessomegateway router”. First-order logic ex-
cluding routing NAT andAcLs) whose hostname appears tends propositional logic with relational formulas (such
in the request, respectively; Section 4 describes them ias SaneSubnet (121. 34. 42. 133, 121. 34. 42. 166))
detail. The variables sent to the twasses-firewal | and quantifiersy andd). For firewall policies, the avail-
formulas through<r egpol - 1> and <reqpol - 2> en-  able relations include the decision&_mat ches and
code the topology: for example, these shorthands us®&_appl i es (as shown in Section 2) and unary relations
the same variable name foest-addr-outin the inter-  capturing sets of IP addresses, ports, and protocols.
nal firewall andsrc-addr-inin the external firewall. The Margrave maps both policies and queries into first-
fwl-entry-interface andfw2-entry-interface  orderlogic formulas. To answer a query, Margrave first
variables (bound to specific interfaces in lines 3—4)conjoins the query formula with the formulas for all poli-
appear as the entry interfaces #meqgpol - 1> and cies referenced in the query, then computes solutions to
<r egpol - 2>, respectively. the combined formula. Aolutionto a first-order formula

A SHOW REALI ZED command over the NCLUDE  contains a set of elements to quantify over (tinéversé
terms (as in query 3) indicates that line 21 of the exter-and two mappings under which the formula is true: one
nal firewall configuration is denying the manager's con-maps each relation to a set of tuples over the universe,
nection. Asking Margrave for a scenario for the queryand another maps each unquantified variable in the query
(using theSHOWONE command) reveals that the internal to an element of the univergeFor example, the formula

firewall's NAT is changing the packet’s source address:
Yz host(x) = Ty (router(y) A CanAccess(x,y))

fwl-src-addr-out=fw2-src-addr_= says that “every host can access some router”. One so-
fw2-src-addr-out: 10.1.1.1 luti h - 11 rl 2 d relation tupl
fwl-src-addr_=fwl-src-addr-in: 192.168.1.2 ution has a unwerse O{f L, T } and relation tuples
Resul t host(h1) router(rl), router(r2), and CanAccess(h1,r2)

(the formula has no unquantified variables). Other so-
(Lthions could include more hosts and routers, with more
access connections between them. Solutions may map
multiple variables to the same universe element. This

The external firewall rule (supposedly) allowing the
manager to access the Internet (line 19) uses the intern
preNAT source address; it never matches the pagt-

packet. Nalively editing thelAT policy, however, can . : .
leak privileges to contractors and employees. Change'—s extremely useful for detecting corner cases in policy

impact queries are extremely useful for confirming thatanalyS'S; while humans often assume thqt different vari-
the manager, andnly the manager, gain new privileges gbles refer to different objects_, many policy errors lurk
from an edit. An extended version of this example with in overlaps (such as a host being used a both web server

multiple fixes and the change-impact queries, is provideq‘nOI mail server).Scenariosare simply .SF)IUt.'OnS o the
in the Margrave distribution. ormula formed of a query and the policies it references.

In general, checking whether a first-order formula has

a solution (much less computing them all) is undecid-
Summary: These examples illustrate Margrave’s abil- able. Intuitively, the problem lies in determining a suffi-
ity to reason about both combinations of policies andcient universe size that covers all possible solutionss Thi
policies at multiple granularities. The supported queryproblem is disconcerting for policy analysis: we would
types include asking which packets satisfy a condidike to show users an exhaustive set of scenarios to help
tion (query 1), verification (query 2), rule responsibility them ensure that their policies are behaving as intended
(query 3), rule relationships (query 4) and change-impacin all cases. Fortunately, Margrave can address this prob-
(query 5). A formal summary of the query language andiem in most cases; Section 5 presents the details.
its semantics is provided with the Margrave distribution.

4 Mapping Firewalls to the Theory
3 Defining Scenarios _ _ ,

There is a sizeable gap between the theory in Sec-
Margrave views olicy as a mapping from requests to tion 3 and a policy in a real-world language, such as
decisions. In a firewall, requests contain packet datdne example in Figure 1. To represent policies in the
and some routing data, while decisions inclueer- theory, we must describe the shapes of requests, the
mit and Deny (for AcLs), Drop (for routing), and a available decisions, what relations can appear in formu-
few others. Policies often refer to relationships be-1as, and how policy rules translate into formulas. Sec-
tween objects, such as “permit access by machinetion 2 used several relations relevant to firewalls, such
On_ the Sam_e_ Su_bn’Qt Queries over policies often re- 2|n logical terms, a solution combines a first-order model and
quire quantification: Every host on the local subnet environment binding free variables to universe elements.




(Policy I nboundACL uses | GS-vocab
(Rul es

(Router-fe0-1inel0 =
(Permit hostnane, ...) :-
(host nanme- Rout er host nane)
(fe0 entry-interface)
(1 PAddr ess src-addr-in)
(prot-tcp protocol)
(Port src-port-in)
(192. 168. 5. 10 dest-addr-in)
(port-80 dest-port-in))

S
(RConb FAQ))

Figure 3: A Margrave policy specification

aspassed- firewal | . Margrave defines these relations

the firewall; the Rout i ng policies bind thenext - hop

IP address for routing. In addition, Margrave generates
four policies calledl nboundACL, Qut boundACL,

I nsi deNAT, andQut si deNat . The two ACL poli-
cies contain filtering rules for all interfaces.

Requests and Decisions: Margrave automatically de-
fines a relation for each decision rendered by each of the
9 subpolicies (e.g., nboundACL: Per mi t in query 1).
Each relation is defined over requests, which contain
packet headers, packet attributes, and values generated
in the intermediate stages; the boxes in Figure 4 col-
lectively list the request contents. As Margrave is not
stateful, it cannot update packet headers with data from
intermediate stages. The contents of a request reflect

and other details automatically via several mechanisms € intermediate stages’ actions: for example, if the val-

Policies: Figure 3 shows part of the result of com-
piling the 10s configuration in Figure 1 to Margrave’s

ues ofsrc-addr _ andsr c- addr - out are equal, then
Qut si deNAT did not transform the request’'s packet.
Currently, Margrave shares the same request shape
across all 9 subpolicies (even thoughboundACL, for

intermediate policy language. The fragment capture%xamme, only examines the packet header portion).

the 10s rule on line 10. (Pernit host nane,

specifies the decision and states a sequence of variabll_q

names corresponding to a request. Thesymbol sepa-

rates the decision from the conditions of the rule. For-

mula (prot-tcp protocol), for example, captures
thatTcpis the expected protocol for this rule. Margrave

ows between subpolicies: Margrave encodes flows
among the 9 subpolicies through three relations (over re-
quests) that capture the subflows marked in Figure 4.

¢ Internal routing either assigns an exit interface and

represents constants (such as decisions, IP addresses, and a next-hop to a packet or drops the packet internally.

protocols) as elements of singleton unary relations. A

scenario that satisfies this rule will map ghretocolvari-

able to some element of the universe that populates the

pr ot - t cp relation. The other conditions of the original
rule are captured similarly. THeRConmb FAC) at the end
of the policy tells Margrave to check the policy rules in
order FAC stands for “first applicable”). The first line of
the policy ascribes the nanh@boundACL.

Decomposing I0OS into policies: Figure 4 shows our
high-level model ofios configurations. Firewalls per-
form packet filtering, packet transformation, and internal
routing; the first two may occur at both entry to and exit
from the firewall. Specifically, packets pass through the
inboundAcL filter, inside NAT transformation, internal
routing, outsidenAT transformation, and finally the out-
boundacL filter on their way through the firewall. The
intermediate stages define additional information about
a packet (as shown under the stage names): inside
may yield new address and port values; internal routing
determines the next-hop and exit interface; outsigde
may yield further address and port values.

Margrave uses a special exit-interface value to mark
dropped packets; thient - dr opped relation con-
tains requests with this special exit-interface value.
Any request that is not ifnnt - dr opped success-
fully passes through internal routing.

Unlike internal routing, NAT never drops pack-
ets. At most, it transforms source and destina-
tion ports and addresses. Put differentt is

a function on packets.i nternal -result cap-
tures this function: it contains all requests whose
next - hop, exi t-i nterface,andQut si deNAT

components are consistent with the packet header
andl nsi deNAT components (as if the latter were
inputs to aNAT function).

ACLs permit or deny packets. The relation
passes-firewal | contains requests that the two
ACLS permit, are ininternal -result (i.e., are
consistent wittNAT), and are not ini nt - dr opped
(i.e., are not dropped in internal routing).

Our 10s compiler automatically defines each of these
relations as a query in terms of thei®@s subpolicies

Internal routing involves five substages, as shown in(capturing topology as in query 6). Margrave provides a
Figure 6. Margrave creates policies (a la Figure 3) forRENAME command that saves query results under a user-

each of the five substages. THawi t chi ng policies

specific name for use in later queries. Users can name

determine whether a destination is directly connected t@ny set of resulting scenarios in this manner.



i I PACKET HEADER
passes—firewa protocol
internal—-result src-addr-in

dest-addr-in
‘ NOT int-dropped ‘ src—port=in
InboundACL —» InsideNAT —» Internal Routing—s OutsideNAT—=  OutboundACL Scis_tagg;t_'n
src—addr_| next-ho src—addr—ouit
dest-addr_ exit-interfac dest-addr-opt ADD'L INFO
src—port_ src—port—out entry—interface
dest-port | dest-port-out hostname
length
message

Figure 4: Margrave's decomposition of firewall configurations

(PolicyVocab | CS-vocab other kinds of policies, including access-control poli-
((legfzrf ace : interf-dro cies, hypervisor configurations, and product-line specifi-
' (interf- regl vl ani fe0)) cations. Indeed, this general-purpose infrastructune-is a
(1 PAddress : other advantage of Margrave over other firewall-analysis
192.128. 5. 0/ 255. 255. 255. 0 tools: Margrave can reason about interactions between
18'2,1'125%,2?? 255.255. 254 policies from multiple languages for different configura-
192. 168. 5. 10 tion concerns. For example, if data security depends on
10.1.1.2) a particular interaction between a firewall and an access-
(Protocol : prot-ICM prot-TCP prot-UDP) control policy, both policies and their interaction can be

(Port: port-25 port-80)

(Deci sions Permit Deny ...) explored using Margrave. We expect this feature to be-

o come increasingly important as enterprise applications
(disjoint-all Protocol) move onto the cloud and are protected through the in-
(nonenpty Port) terplay of multiple policies from different sources.

Figure 5: A Margrave vocabulary specification 5 Implementation

Margrave consists of a frontend read-eval-print loop

Vocabularies: The 9 subpolicies share ontology about (REPL) written in Racket [13] and a backend written in

ports and IP addresses. Margrave puts domainJava. The_fr_ontend handles parsing (of queries, com-

knowledge common to multiple policies invacabulary ~Mands, policies, and vocabularies) and output presenta-

specification; the first line of a policy specification refer- tion. The actual analysis and scenario generation occurs

ences its vocabulary through thees keyword. Figure5  in the backend.

shows a fragment of the vocabulary fiars policies: it

defines datatypes (suchRt ocol ) and theirelements 51 The Scenario-Finding Engine

(correspondinglypr ot - | CVP, pr ot - TCP, pr ot - UDP). )
Vocabularies also capture domain constraints such a¥largrave’s backend must produce sets of solutions to

“all protocols are distinct” or “there must be at least onefirst-order logic formulas. We currently use a tool called

port” (both shown in Figure 5). While these constraints Kodkod [32] that produces solutions to first-order for-

o A : 3 i
may seem odd, they support Margrave’s scenario-finding1ulas USINGSAT solving”  SAT solvers handle propo

model. Some potential “solutions” (as described in SecSitional formulas. Kodkod bridges the gap from first-

tion 3) are nonsensical, such as one which assigns tw8"der o propositional formulas by asking users for a fi-
nite universe-size; under a finite universe-size, firseord

distinct numbers to the same physical port. Domain con- : v i
straints rule out nonsensical scenarios. formulas translate easily to propositional ones. Figure 7
shows an example of the rewriting process. Every so-
lution produced using a bounded size is legitimate (in
Generalizing Beyond Firewalls logical terms, our analysis sound. However, analysis
will miss solutions that require a universe larger than the

The policy- and vocabulary-specifications in Figures 3given size (in logical terms, it is nabmplets.

and 5 show how to map specific domains into Mar-
grave. Datatypes, constraints, and rules capture many 3within Kodkod, we use &AT-solver calledsat4J[8].
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Figure 6: Internal flow of packets within a router. Edges are labeletth wecisions rendered by the policies at the
source of the edge. Routing policies determine the nextHhapldress, while switching policies send traffic to dingctl
to a connected device.

Fortunately, most firewall queries (including those 5.2 Rewriting Firewall Queries
in this paper) correspond to formulas with no univer-
sal () quantifiers. For such formulas, the number
of existentially-quantified variables provides a suffitien
universe size to represent all solutions. Margrave auto
matically supplies Kodkod with the universe bound for

such formulas. For queries that do not have this form!th A, t 1 t th haust
such as “camveryhost reach some other machine on the € scenarios 1h an attempt to prevent the exnaustive
from becoming exhausting. However, query optimiza-

network”, either Margrave or the user must supply a uni- ) . .
verse size for the analysis. The query language has attj,'ons that reduce universe sizes have more potential to

optional CEl LI NG clause whose single argument is thet"’m;](at the core problem.

desired universe size. Gl LI NG is omitted, Margrave ¢ I\_/Ios”t fllrevlall quert|$s havs the fotrEhr:“Tq O‘l’gv he;%a
uses a default of 6. Experience with Kodkod in other ypically lacks quantilers. Requests have 16 or 2L com-

domains suggests that small universe sizes can yield usgﬁOnents (as shown in Figure 4), depending on whether

ful scenarios [15]. If Margrave can compute a sufficientt ey reference nt er n.al o eS.UI t Margrave_ therefo_re
bound but the user provides a lowel LI NG, Margrave analyzes all-existential queries under a universe size of
will only check up to theCEl LI NG value. Whenever 16 or 20. However, these queries effectively reference
Margrave cannot guarantee that scenario analysis is corr?—Slngle requeswith attrlbute_s as _deta|led . Th'?
plete, it issues a warning to the user. Eige=15 state- suggests that we could rewrite this query with a single
ment’in the first line of scenarios shown in Section 2 re_quantified variable for a request and additional relations

port the universe-size under which Margrave generategjat encode the attributes. For example:

the scenario. Apt_in 3 pt_out : route(pt_in, pt_out)
CEl LI NG settings may impact the results of com-

mands. Margrave includesSHOW UNREALI ZED com- ~ becomes

mand that reports relations that are not used in any re- W N ,

sulting scenario. However, a relatidghmight be unpop- pkt : is_ptin(pkt, i) A is-ptOut(pht, 0) Aroutefi, o)

ulated at oneCEl LI NG value yet populated at a higher Effectively, these new relations lift attributes from tine i

value. For example, in the formutr—~T(x), T'is never  dividual packet fields to the packet as a whole.

Under large universe sizes, both the time to compute sce-
narios and the number of resulting scenarios increase.
The latter puts a particular burden on the end-user who
has to work through the scenarios. Query language con-
structs like SHOW REALI ZED summarize details about

used atCEl LI NG 1, but can be realized &Fl LI NG 2. Formulas rewritten in this way require a universe size
Margrave users should only suppl! LI NG values if  of only 1, for which scenario generation stands to be
they appreciate such consequences. much faster and to yield fewer solutions. The tradeoff,

Overall, we believe sacrificing exhaustiveness for thehowever, lies in the extra relations that Margrave intro-
expressive power of first-order logic in policies and duces to lift attributes to the packet level. Additional re-
queries is worthwhile, especially given the large numbedations increase the time and yield of scenario computa-
of practical queries that can be checked exhaustively. tions, so the rewriting is not guaranteed to be a net win.



The original sentence: Rules | # Vars | Min Size | Not Tupled| Tupled
100 3 3 694ms 244ms
Vx host(x) == Iy (router(y) A CanAccess(z,y)) 1000 14 6 7633ms | 1221ms
Assume a universe of size 2 with elemertsind B. Expand 1000 14 10 17659ms | 1219ms
theV-formula with a conjunction over each df and B for z: 1000 | 14 14 32116ms | 1205ms

host(A) = 3y (router(y) A CanAccess(A,y)) A
host(B) = 3y (router(y) A CanAccess(B,y)) Table 2 Run-time impact OfUPLI NG on ACL queries. _

The first column contains the number of rules in
Next, expand eacB-formula with a disjunction over each of eachAcL. The second column lists the number of
andB for y: existentially-quantified variables in the query; we in-
clude one 3-variable (non-firewall) query to illustrate the

host(4) = (router(4) A CanAccess(A, 4)) vV smaller gains on smaller variable counts. The 14-variable
(router(B) A CanAccess(4, B)) A AcLs are older firewall examples with smaller request tu-

host(B) == (router(A) A CanAccess(B, A)) v ples. The “Min Size” column indicates the universe size
(router(B) A CanAccess(B, B)) for the smallest scenario that satisfied the query. Larger

- , .y | minimum sizes have a larger search space.
Replace each remaining formula with a propositional vaeiab

(e.g.,router(A) becomew,):

pr = (p2/Aps)V poster’s reported problem through Margrave queries and
(pa Aps) A soughtfixes based on the resulting scenarios. In addition,

ps = (p2Apr)V we used Margrave to check whether solutions suggested
(pa A ps) in follow-up posts actually fixed the problem without af-

fecting other traffic. The diversity of firewall features
that appear in forum posts demanded many compiler ex-

Figure 7: Converting a first-order formula to a proposi- tensions, including reflexive access-lists arab flags.

tional one at a bounded universe size That we could do this purely at the compiler level attests
to the flexibility of Margrave’s intermediate policy- and
vocabulary-languages (Section 4).

Table 2 presents experimental results on original ver- We targeted the second goal by applying Margrave

sus rewritten queries. In practice, we find performanc . o ' . -
) ) - 0 an in-use enterprise firewall-configuration containing
improves when the query is unsatisfiable or the smalles

) . several rule sets and over 1000 total rules (Section 6.3).
model is large. A user who expects either of these cons o
. o Margrave revealed some surprising facts about redun-
ditions to hold can enable the rewriting through a query- : . o . o .
' dancy in the configuration’s behavior. Individual queries
language flag calle@uPLI NG. All performance figures

NG : uniformly execute in seconds.
in this paper were computed usimgPL| NG. y

Notes on Benchmarking Our figures report Mar-
grave's steady-state performance; they omit JVM
warmup time. Policy-load times are measured by loading
different copies of the policy to avoid caching bias. All
performance tests were run on an Intel Core Duo E7200

6 Evaluation

We have two main goals in evaluating Margrave. First,
we want to confirm that our query language and its

results support debugging real firewall conflgurat|on—at 2,53 Ghz with 2 GB oRAM, running Windows XP

pgqr?:?gnrsgc:?cgazgsg’ Egﬁlzcéfsnavr\'/zsazzoumlg :ccsué?terl]ﬁome. Performance times are the mean over at least 100

pol u prot ' UME a USEr wh ;v iqual runs; all reported times a#200ms at the 95-

knows enough firewall basics to ask the questions under- fid level. M fi .

lying a debugging pracess (Margrave does not, for eX_p.ercent confidence level. Memory figures report private

y ; ) R (i.e., notincluding shared) consumption.

ample, pre-emptively try queries to automatically isolate

a problem). Second, we want to check that Margrave

has reasonable pe_rfqrmance on I_arge policies, givgn thg 1 Forum Help: NAT and ACLS

we have traded efficient propositional models for richer

first-order ones. "My servers cannot get access into the internet, even
We targeted the first goal by applying Margrave to  though | will be able to access the website, or even

problems posted to network-configuration help-forumsFTP... | don’t really know what’s wrong. Can you please

(Sections 6.1 and 6.2). Specifically, we phrased the help? Here is my current configuration..”
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In our first forum example [4], the poster is having Follow-up posts in the forum suggested options 1 and 3.
trouble connecting to the Internet from his server. HeMargrave can capture the first two options and the re-
believes thaiNAT is responsible, and has identified the flexive access-list approach in the third (it does not cur-
router as the source of the problem. The configuratiorrently supportinspectcommands). For each of these,
included with the post appears in Figure 8 (with a slightwe can perform verification queries to establish that the
semantics-preserving modificatfn I nboundACL no longer blocks return packets, and we

A query (not shown) confirms that the firewall is can determine the extent of the change through a change-
blocking the connection. Our knowledge of firewalls in- impact query.
dicates that packets are rejected either enroute to, or on Space precludes showing the reflexaeL query in
return from, the webserver. Queries for these two casegdetail. ReflexiveacLs allow return traffic from hosts to
are similar; the one checking for response packetsis:  which prior packets were permitted. Margrave encodes

EXPLORE prior traffic through a series afonnect i on- relations
NOT src-addr-in over requests. Intuitively, a request is in@nect i on-

I'N 192. 168. 2. 0/ 255. 255. 255. 0 AND relation only if the same request with the source- and
FastEthernet0 = entry-interface AND destination-details reversed would pass through the fire-

prot-TCP = protocol AND

pOrt-80 = src-port-in AND v_vaII._AIthough the cgqnection state is dynamic in prac-
internal -resul t(<reqful | >) AND tice, its stateless definition enables Margrave to handle it
passes-firewal | (<regpol >) naturally through first-order relations.

I S POSSI BLE?

Query 7 . . .
Performance: Loading each version of the configura-
Margrave reports that packets to the webserver are pefion took between 3 and 4 seconds. The final change-

mitted, but responses are dropped. The resulting scenggnpact query took under 1 second. After loading, run-
ios all involve source ports 20, 21, 23, and 80 (easily conyjng the full suite of queries (including those not shown)
firmed by re-running the query with$HOW REALI ZED  yequired2751ms. The memory footprint of the Java en-
command asking for only the port numbers). This iSgine (including all component subpolicies) was 50 MB

meaningful to a sysadmin: an outgoing web request ig19 MB JVM heap, 20 MB JVM non-heap).
always made from aephemeraport, which is never less

than 1024. This points to the problem: the router is re-
jecting all returning packetsacL 102 (Figure 8, lines 6.2 Forum Help: Routing
25-29) ensures that the server sees only incomirigp,

FTP, andTELNET traffic, at the expense of rejecting the “there should be a way to let the network
return traffic for any connections that the server initiates 10- 232. 104. 0/ 22 access the internet, kindly advise a
Enabling the server to access other webservers in- solution for this..”
volves allowing packetsoming fromthe proper desti-
nation ports. Methods for achieving this include: In our second example [29], the poster is trying to
create two logical networks: one “primary” (consist-
1. Permitrcp traffic from port 80, via the edit: ing of 10. 232. 0. 0/ 22 and 10. 232. 100. 0/ 22) and
one “secondary” (consisting of0. 232. 4. 0/ 22 and
- access-|ist 222 Eg;ﬁ 20;0272 108, 16 oq 23 10. 232. 104. 0/ 22). These logical networks are con-
w0 | access- i st 10; per i t t;:p ahy eﬁ 80 gny nected thrOL_Jgh_ a pair of rquters (TAS a_md BAZ_) which
a |access-list 102 deny tcp share a serial interface (Figure 9). Neither logical net-
32 any host 209.172.108. 16 work should have access to the other, but both net-

works should have access to the Internet—the primary

tablishedkeyword (or, in more recent versions, the ~ The poster reports two problems: first, the two com-
match-all +ack option). This suggestion guards ponents of the primary network#6. 232. 0. 0/ 22 and

against spoofing a packet’s source port field and al0. 232. 100. 0/ 22—cannot communicate with each
lows servers to listen on unusual ports. other; second, the netwod0. 232. 104. 0/ 22 cannot

o _ access the Internet. The poster suspects errors in the TAS
3. Use stateful monitoring of thecp protocol viare-  router configuration (omitted for sake of space).
flexive access-lists or thimspectcommand. This  \ye start with the first problem. The following query

guards against spoofing of thiep Ack flag. confirms that networkL0. 232. 0. 0/ 22 cannot reach
4We replaced named interface references in stetic statements 10 232. 190- 0/ 22 via the serial link. Th¢95t name
with actual IP addresses; our compiler does not supporotines. formulas introduce names for each individual router

11
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name-server 207.47.4.2
nane-server 207.47.2.178
!
interface FastEthernetO

i p address 209.172.108. 16 255. 255. 255. 224
ip access-group 102 in

i p nat outside

speed auto

full -dupl ex

!
interface VI anl

i p address 192.168.2.1 255.255.255.0
ip nat inside

!

iproute 0.0.0.0 0.0.0.0 209.172.108.1
1

ip nat pool |ocalnet 209.172.108. 16 prefix-length 24

ip nat inside source list 1 pool |ocalnet overl oad

ip nat inside source list 1 interface FastEthernetO

ip nat inside source static tcp 192.168.2.6 80 209.172.108.16 80

ip nat inside source static tcp 192.168.2.6 21 209.172.108.16 21

ip nat inside source static tcp 192.168.2.6 3389 209.172.108. 16 3389
|

access-list 1 permt 192.168.2.0 0.0.0.255

access-list 102 permt tcp any host 209.172.108.16 eq 80
access-list 102 pernmit tcp any host 209.172.108.16 eq 21
access-list 102 permt tcp any host 209.172.108.16 eq 20
access-list 102 pernmit tcp any host 209.172.108.16 eq 23
access-list 102 deny tcp any host 209.172.108. 16

Figure 8: The original configuration for the forum post for Section 6.1

10.232.4.10/22

GigabitEthernet0/1
10.232.8.1/22

Serial0/3:0 Serial0/3:0 I
GigabitEthernet0/0
10.254.1.129/30 10.254.1.130/30 BAZ Router 10.232.100.0/22 primary
10.232.104.0/22 secondary

GigabitEthernet0/0
10.232.0.0/22 primary
10.232.4.0/22 secondary

TAS
Router

10.232.0.15/22

Figure 9: Structure of the network for the forum post for Section 6.2
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based on the hostname specification in the config-  ing exit interfaceSer i al 0/ 3/ 0: 0; the results, instead,
uration; these names appear in thasvector- and indicate exit interfac& gabi t Et her net 0/ 0. Firewall
bazvect or - requests. (Theful | - requests extend the experience suggests that the router is either switching the
correspondingpol - requests with additional variables correct next-hop addressq. 254. 1. 130) to the wrong
needed fof nt er nal - r out i ng. exit interface, or using the wrong next-hop address. The
next query produces the next-hop address:

EXPLORE host nane-tas = tas AND
host name-baz = baz AND

EXPLORE host nane-tas = tas AND
internal -result(<tasvectorfull-frontas>) AND
passes-firewal | (<tasvectorpol -frontas>) AND
G gabitEthernet0/0 = tas-entry-interface AND
tas-src-addr-in IN

10. 232. 0. 0/ 255. 255. 252. 0 AND
tas-dest-addr-in I N 10.232. 100. 0/ 255. 255. 252. 0

internal -result(<tasvectorfull-frontas>) AND
internal -result(<bazvectorfull-frontas>) AND
passes-firewal | (<tasvectorpol -frontas>) AND
passes-firewal | (<bazvectorpol -frontas>) AND

G gabitEthernet0/0 = tas-entry-interface AND
tas-src-addr-in IN

10. 232. 0. 0/ 255. 255. 252. 0 AND ;goigzDEo 5= .
tas-dest-addr-in I N 10.232. 100. 0/ 255. 255. 252. 0| | 9. 232.9. as-next-nop,

AND "Serial 0/3/0: 0" = tas-exit-interface AND |  |10-232.4.10 = tas-next-hop,
rea as-exit-intertace 1> |tas-next-hop I N 10. 254. 1. 128/ 255. 255. 255. 252,

13 |[tas-next-hop IN 10.232. 8. 0/ 255. 255. 252. 0
14
15 | SHOW REALI ZED

16 | 10. 232. 0. 15 = tas- next - hop,

© O N O N W N R

"Serial 0/3/0:0" = baz-entry-interface AND
G gabi tEthernet0/0 = baz-exit-interface

I S POSSI BLE?

Query 8 17 | 10. 232. 4. 10 = tas- next - hop,

. 18 [tas-next-hop IN 10.232. 8. 0/ 255. 255. 252. 0,
Margrave returns false, which means that no packgts; as-next-hop I N 10. 254. 1. 128/ 255. 255, 255. 252
Query 10

from 10. 232. 0. 0/ 22 reach10. 232. 100. 0/ 22 along
this network topology. ‘ { 10.232.0.15[tas-next-hop] }
By the topology in Figure 9, packets reach the TAS Resul't
router first. We check whether packets pass through The next-hop address is clearly wrong for the given
TAS by manually restricting query 8 to TAS (by remov- destination address. To determine the extent of the prob-
ing lines 2, 5, 7, 14, and 15); Margrave still returns lem, we'd like to know whetheall packets from the
false. Firewall knowledge suggests three possible probgiven source address are similarly misdirected. That
lems with the TAS configuration: (1) internal routing question is too strong, however, ascal Swi t chi ng
could be sending the packets to an incorrect interface, (2nay (rightfully) handle some packets. To ask Mar-
internal routing could be dropping the packets, or (3) thegrave for next-hops targeted by some source packet
ACLs could be filtering out the packets. Margrave’s for- that Local Swi t chi ng ignores, we replace line 7 in
mulas for reasoning about internal firewall behavior helpquery 10 with:
eliminate these cases: by negatipassed-firewal |
on line 6, we determine that the packet does pass throu

the firewall, so the problem lies in the interface or next-__ i o ,
This once again highlights the value of exposing

hop assigned during routing. This example highlights | Svi t chi lati h od
the utility of not only having access to these formulas,"oCa S t chi ng as a separate relation. The revise

but also having the ability to negate (or otherwise manip-lquerly ylell(ds the same next-hop, |nd|cat|ng tha_t allhnon-
ulate) them as any other subformulain a query. ocal packets are routing 0. 232. 0. 15, despite the

To determine which interfaces the packets are sent o gcal _routing policies. A simplle change fi_xes th? prob-
we relax the query once again to remove the remainin em: insert the keywordefault into the routing policy:
reference tcSeri al 0/ 3/ 0: 0 (on line 12) and execute |route-nap internet pernit 10

the following SHOW REALI ZED command: match ip address 10
set ip default next-hop 10.232.0.15

Il}l() Local Swi t chi ng: For war d( <r out i ngpol -t as>
CL g Query l{ 9p )

SHOW REALI ZED
G gabitEthernet0/0 = exit-interface,

"Serial 0/3/0:0" = exit-interface, This change ensures that packets are routed to the In-

G gabi t Et her net(gjlelr y= 9exi t-interface ternet only as a last resort (i.e., when static destination-
based routing fails). Running the original queries against

The output contains only one interface name: the new specification confirms that the primary subnets
{ G gabi t Et her net 0/ %exi t-interface] } now have connectivity to each other. Another query

esul t checks that this change does not suddenly enable the

According to the topology diagram, packets from primary sub-networlk0. 232. 0. 0/ 22 to reach the sec-
10. 232. 0. 0/ 22 to 10. 232. 100. 0/ 22 should be us- ondary sub-network0. 232. 4. 0/ 22.
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40
41

Now we turn to the poster’s second problem: the sec
ondary networkl0. 232. 4. 0/ 22 still cannot access the
Internet. As before, we confirm this then compute the
next-hop and exit interface that TAS assigns to traffic
from the secondary network with an outside destination
The following query (withSHOW REALI ZED over inter-
faces and potential next-hops) achieves this:

EXPLORE
tas = hostnane-tas AND

internal -result2(<tasvectorfull-frontas>) AND
firewal | - passed2(<tasvectorpol -frontas>) AND

G gabitEthernet0/0 = tas-entry-interface AND
tas-src-addr-in IN
10. 232. 4. 0/ 255. 255. 252. 0 AND

NOT tas-dest-addr-in IN

10. 232. 4. 0/ 255. 255. 252. 0 AND
NOT tas-dest-addr-in IN

10. 232. 104. 0/ 255. 255. 252. 0 AND
NOT tas-dest-addr-in IN

10. 232. 0. 0/ 255. 255. 252. 0 AND
NOT tas-dest-addr-in IN

10. 232. 100. 0/ 255. 255. 252. 0 AND
NOT tas-dest-addr-in IN

10. 254. 1. 128/ 255. 255. 255. 252 AND
NOT tas-dest-addr-in IN

192. 168. 1. 0/ 255. 255. 255. 0 AND
NOT tas-dest-addr-in IN

10. 232. 8. 0/ 255. 255. 252. 0

Query 12

gi gabitethernetO/0[tas-exit-interface],
10. 232. 4. 10[ t as- next - hop] }
Resul t

{

The next-hop for the secondary network’s Inter-

Query Time (ms)
Permit pkt from addr X on interface YP 1587
Previous with rule responsibility 23317
Change-impact after 1 decision edit 3167
Previous with rule responsibility 24039
Detect all superfluous rules 22578
List overshadows per rule in previous| 72178

Table 3: Run-time performance of various queries on
the enterprise\cLs. For the change-impact query, we
switched the decision frordenyto permiton one non-
superfluous rule. The overshadowing-rules computation
asked only for overshadows with the opposite decision.

ms. After loading, running the full suite of queries (in-
cluding those not shown) finished §725ms. The mem-
ory footprint of the Java engine (including all component
subpolicies) was 74 MB (49 MB JVM heap, 21 MB JVM
non-heap).

6.3 Enterprise Firewall Configuration

Our largest test case to date is an in-use enterprise ipta-
bles configuration. In order to stress-test ong com-
piler, we manually converted this configurationitus.

The resulting configuration contaimscLs for 6 inter-
faces with a total of 1108 nboundACL rules (not
counting routing subpolicies). The routing component
of this firewall was fairly simple; we therefore focus our
performance evaluation dmboundACL.

net gateWay is as eXpeCted, but the exit-interface From a performance perspective’ this paper has il-

is unexpectedlyG gabi t Et hernet 0/ 0 (instead of
G gabi t Et hernet 0/ 1). In light of this scenario, the

lustrated three fundamentally different types of queries:
(1) computing over a single policy or network with

network diagram reveals a fundamental problem: thgyst the default relations (which-packets and verification
gateway10. 232. 4. 10 should be “on” the same net- queries), (2) computing over a single policy or network

work as theG gabi t Et her net 0/ 1 interface (address
10. 232. 8. 1/ 22); otherwiseLocal Swi t chi ng will
send the packet to the wrong exit interface.

while including additional relations (rule-responsityili
and rule-relationship queries), and (3) computing over
multiple, independent policies or networks (change-

This problem can be resolved by changing the adimpact queries). The third type introduces more vari-

dress of either theG gabi t Et her net 0/ 1 interface
or the next-hop router10. 232. 4. 10). We chose
the latter, selecting an arbitrary unused address in th
10. 232. 8. 0/ 22 network:

route-map internet pernit 20
mat ch i p address 20
set ip default next-hop 10.232.8.10

Re-running the queries in this new configuration con-
firms that both goals are now satisfied.

Performance: Loading each version of the configura-
tion took between 3 and 4 seconds. Query 12 8%k
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ables than the first two (to represent requests through
multiple firewalls); it also introduces additional relat®

& capture the policies of multiple firewalls. The second
type has the same number of variables, but more rela-
tions, than the first type. We therefore expect the best
performance on the first type, even un@iePLI NG.

Table 3 reports run-time performance on each type of
query over the enterprise firewall-configuration. Load-
ing the policy’s | nboundACL component required
10694ms and consuméd MB of memory. Of that40
MB was JVM heap and MB was JVM non-heap.

Section 2 described how we compute superfluous
rules through scripting. For this example, these queries



yielded surprising results:900 of the 1108 rules in  NAT. Some of their evaluations [9] exploit change-
I nboundACL were superfluous. Even moi&,0 of the  impact to isolate configuration errors. This work also
superfluous rules were (at least partially) overshadowedupports generatingcLs from specifications, which is
by a rule with a different decision. The sysadmins whonot common in firewall-analysis tools.

provided the configuration found these figures shocking Liu and Gouda [20, 21] introduce Firewall Decision

and subsequently expressed interest in Margrave. Diagrams EDDs) to answesQL-like queries about fire-
wall policies. FDDs are an efficient variant &DDs for
7 Related Work the firewall packet-filtering domain. Extensions of this

work by Khakpour and Liu [17] present algorithms for

Studies of firewall-configuration errors point to the Many firewall analysis discussed in this paper, includ-
need for analysis tools. Oppenheimet,al. [31] sur- N9 user-defined queries, rule responS|b_|I|ty, and change-
vey failures in three Internet services over a periodmpPact, generally in light oNAT and routing. A down-

of several months. For two of these services, operloadable toolis under development.

ator error—predominately during configuration edits— Yuan, et al's Fireman tool [36] analyzes large net-
was the leading cause of failure. Furthermore, convenWorks of firewallacLs using Binary Decision Diagrams
tional testing fails to detect many configuration prob- (BDDS). Fireman supports a fixed set of analyses, in-

lems. Wool [35] studies the prevalence of 12 commoncluding whitelist and blacklist violations and computing
firewall-configuration errors. Larger rule-sets yield a conflicting, redundant, or correlated rules between differ

much higher ratio of errors to rules than smaller ones€NtACLS. Fireman examines all paths between firewalls
Wool concludes that complex rule sets are too difficultat once, but does not consideaT or internal routing.
for a human administrator to manage unaided. Margrave’s combination of user-defined queries and sup-
Mayer, Wool and Ziskind [26, 27] and Wool [34] de- Port for NAT and routing makes it much richer. Oliveira,
scribe a tool called Fang that has evolved into a commeret al. [30] extend Fireman wituAT and routing tables.
cial product called the AlgoSec Firewall Analyzer [3]. Their tool, Prometheus, can also determine which
AlgoSec supports most of the same analyses as Mafules are responsible for a misconfiguration. It does not
grave, coveringNAT and routing, but it does not sup- handle change-impactacross firewalls, though it does de-
port first-order queries or integration with a program- termine when different pathS through the same firewall
ming language. AlgoSec captures packets that satisfjender different decisions for the same packet. In certain
queries through sub-queries, which are a form of abstrac¢ases, Prometheus suggests corrections to rule sets that

scenarios. guarantee desired behaviors. Margrave’s query language
Marmorstein and Kearns’ [23, 24] ITVal tool uses IS richer. _
Multi-way Decision DiagramsMDDS) to executesqL- Verma and Prakash'sAcE tool [33] aids both con-

like queries on firewall policies. ITVal supportsat,  figuration of distributed firewalls and analyzing existing
routing, and chains of firewall policies. Later work [25] distributed firewalls expressed in iptables. It supports
supports a useful query-free analysis: it generates aHser-defined queries, as well as a form of change-impact
equivalence relation that relates two hosts if identicalover multiple firewalls. Its depth-first-search approach to
packets (modulo source address) from both are treate@ropagating queries through a network resembles Mayer,
identically by the firewall. This can detect policy anoma- Ziskind, and Wool's work. It does not handle routing or
lies and help administrators understand their policiesNAT. The tool is no longer available.
Additional debugging aids in later work includes trac- Gupta, LeFevre and Prakash [14] give a framework
ing decisions to rules and showing examples similar tdfor the analysis of heterogeneous policies that is simi-
scenarios. Margrave is richer in its support for changedar to ours. While both works provide a general policy-
impact and first-order queries. analysis language inspired gL, there are distinct dif-
Al-Shaeret al’s ConfigChecker [1, 2] is abb-based ferences. Their toolsPAN, does not allow queries to
tool that analyses networks of firewalls usiogL (tem-  directly reference rule applicability and the work does
poral logic) queries. Rules responsible for decisions camot discuss request-transformations suchias. How-
be isolated manually through queries over sample packever, SPAN provides tabular output that can potentially
ets. For performance reasons, the tool operates at tHege more concise than Margrave’s scenario-based output.
level of policies, rather than individual rules (other oéth SPANis currently under development.
group’s papers do consider rule-level reasoning); Mar- Lee, Wong, and Kim’s NetPiler tool [18, 19] analyzes
grave, in contrast, handles both levels. the flow graph of routing policies. It can be used to both
Bhattet al’s Vantage tool [5, 9, 10] supports change- simplify and detect potential errors in a network’s routing
impact on rule-sets and other user-defined queries ovaronfigurations. The authors have primarily applied Net-
combinations ofacLs and routing; it does not support Piler to BGP configurations, which address the propaga-
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tion of routes rather than the passage of packets. Howi-nt er nal -routi ng, and i nt - dropped) is defined
ever, their methods could also be applied to firewall poli-within Margrave’s query language and exported to the
cies. Margrave does not currently support BGP, thoughuser through standard Margrave commands. While
its core engine is general enough to support them. our firewall compilers provide these three automatically,
Jeffrey and Samak [16] present a formal model andusers can add their own relations in a similar manner.
algorithms for analyzing rule-reachability and cyclicity Technically, Margrave allows users to define their own
in iptables firewalls. This work does not addregs or  named views (in a database sense) on collections of poli-
more general queries about firewall behavior. cies. Thus, Margrave embraces policy-analysis in the se-
Eronen and Zitting [11] perform policy analysis on mantic spirit of databases, rather than just the syntactic
Cisco routercLs using a Prolog-based Constraint Logic level of sQL-style queries.
Programming framework. Users are allowed to define Useful views build on fine-grained atomic informa-
their own custom predicates (as in Prolog), which en-tion about policies. Margrave’s unique decomposition of
ables analysis to incorporate expert knowledge. The Protos configurations into subpolicies for nine distinct fire-
log queries are also first-order. This work is similar to wall functions provides that foundation. Our pre-defined
ours in spirit, but is limited taCcLs and does not support firewall views would have been prohibitively hard to
NAT or routing information. write without a clean way to refer to components of fire-
Youssetfet al.[7] verify firewall configurations against wall functionality. Margrave’s intermediate languages
security goals, checking both for configurations that vio-for policies and vocabularies, in turn, were instrumental
late goals and goals that configurations fail to cover. Theén developing the subpolicies. Both languages use gen-
work does not handIBAT or routing. eral relational terms, rather than domain-specific ones.
Margrave as described in this paper extends an eanocabularies allow authors to specify decisions beyond
lier tool of the same name [12] developed by Tschantzthose typically associated with policies (suchResmit
Meyerovich, Fisler and Krishnamurthi. The original and Deny). Our 10s compiler defines separate deci-
Margrave targeted simple access-control policies, encodsions for the different types of flows out of internal rout-
ing them as propositional formulas that we analyzed using, such as whether packets are forwarded internally or
ing BDDs. Attempts to model enterprise access-controkranslated to another interface. The routing views are de-
policies inspired the shift to first-order models embodiedfined in terms of formulas capturing these decisions. The
in the present tool. Not surprisingly, there is an extensivepolicy language defines the formulas through rules that
literature on logic-based tools for access-control peici  yield each decision (our rule language is effectively strat
our other papers [12, 28] survey this literature. ified Datalog). Had we defined Margrave as a firewall-
specific analyzer, rather than a general-purpose one, we
likely would have hardwired domain-specific concepts
that did not inherently support this decomposition.

Margrave is a general-purpose policy analyzer. Its most User-defined decisions and views support extending
distinctive features lie in and arise from embracing sceMargrave from within. Integrating Margrave into a
nario finding over first-order models. First-order lan- Programming language supports external extension via
guages provide the expressive power of quantifiers angcripting over the results of commands. Margrave pro-
relations for capturing both policies and queries. Expresduces scenarios as structuredv() objects that can
sive power generally induces performance cost. By aube traversed and used to build further queriegHon
tomatically computing universe bounds for key queries,REALI ZED produces lists of results over which programs
however, Margrave gets the best of both worlds: first-(such as superfluous rule detection in Section 2) can it-
order logic's expressiveness with propositional logic'serate to generate additional queries. Extending our inte-
efficient analysis. Effectively, Margrave distinguishes gration with iterators over scenarios would yield a more
between propositionahodelsand propositionaimple-  Policy-specific scripting environment.
mentations Most logic-based firewall-analysis tools In separate projects, we have applied Margrave to
conflate these choices. other kinds of policies, including access-control, simple
First-order modeling lets Margrave uniformly capture hypervisors, and product-line configuration. Margrave’s
information about policies at various levels of granular-general-purpose flexibility supports reasoning about
ity. This paper has illustrated relations capturing pol-teractionsbetween firewalls and other types of policies
icy decisions, individual rule behavior, and the effects(increasingly relevant in cloud deployments). This is an-
of NAT and internal routing. The real power of our other exciting avenue for future work.
first-order modeling, however, lies in building new re- Margrave’s performance is reasonable, but slower than
lations from existing ones. Each of the relations captur-other firewall analyzers. This likely stems partly from
ing behavior internal to a firewalp@sses-firewal |,  additional variables introduced during the encoding into

8 Perspective and Future Work
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propositional logic. In particular, we expect Margrave
will scale poorly to large networks of firewalls, as our
formulas grow linearly with the number of firewalls. Our
use ofsAT-solving instead oBDDS may be another fac-

tor, though Jeffrey and Samak’s comparisons between
these for firewall analysis [16] are inconclusive. Ex-
ploring alternative backends—whether basedeams

or other first-order logic solvers—is one area for future 3
work. However, we believe the more immediate ques-
tions lie at the modeling level. For example:

Editing. InIntegrated Network Managemepiges
17-30, 2003.

] Ehab S. Al-Shaer and Hazem H. Hamed. Discovery

of Policy Anomalies in Distributed Firewalls. In
IEEE Conference on Computer Communications
2004.

] The AlgoSec Firewall Analzyermww. al gosec.

com

[4] azsquall. “ACL and NAT conflict each other. router

e Firewall languages include stateful constructs such
asinspect Existing firewall analysis tools, includ-
ing Margrave, largely ignore state (we are limited to
reflexiveAcLs). How do we effectively model and

stop working”. www. net wor ki ng- f orum
coni vi ewt opi c. php?f =33&t =7635, Au-
gust 2008. Access Date: July 20, 2010.

reason about state without sacrificing performance? [5] Sruthi Bandhakavi, Sandeep Bhatt, Cat Okita, and

Modeling IP addresses efficiently is challenging.
Many tools use one propositional variable per bit;
Margrave instead uses one per IP address. This

makes it harder to model arithmetic relationships [6]

on IP addresses (i.e., subranges), though it provides
finer-grained control over which IP addresses are
considered during analysis. Where is the sweet-spot
in IP-address handling?

Margrave is in active development. We are extend-

ing our firewall compilers to support VPN and BGP. We 7]
would like to automatically generate queries for many

common problems (such as overshadowing rule detec-
tion and change-impact). Section 2 also hinted at a prob-
lem with reusing queries in the face of policy edits: the

compiler names rules by line-numbers, so edits may in-
validate existing queries. We need to provide better sup-[8]
port for policy-managementincluding regression testing.

Supportfor this research came from several National Sci-
ence Foundation grants. Cisco supported an early phase
of this project. We thank John Basik, Jeff Coady, Mark
Dieterich, Jason Montville and Richard Silverman for 1o
sysadmins’ perspectives on this project. Craig Wills ex-
plained how to report performance data. Our LISA shep-
herd, Matt Disney, provided useful suggestions. In com-
piling our related work, we contacted many authors with[11]
guestions about their projects. We thank them for their
prompt and cheerful responses and hope we have repre-
sented their work accurately; any errors are our own.
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