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Abstract

We present the design and a prototype of Exodus, a system that
consumes a collection of router configurations (e.g., in Cisco 10S),
compiles these into a common, intermediate semantic form, and
then produces corresponding SDN controller software in a high-level
language. Exodus generates networks that are functionally similar
to the original networks, with the advantage of having centralized
programs that are verifiable and evolvable. Exodus supports a wide
array of 10S features, including non-trivial kinds of packet-filtering,
reflexive access-lists, NAT, VLANS, static and dynamic routing. Im-
plementing Exodus has exposed several limitations in both today’s
languages for SDN programming and in OpenFlow itself. We briefly
discuss these lessons learned and provide guidance for future SDN
migration efforts.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network management; D.2.4 [Soft-
ware/Program Verification]: Formal Methods; D.3 [Programming
Languages]: Miscellaneous

General Terms

Design, Languages, Management

Keywords
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1. INTRODUCTION

Managing enterprise networks is notoriously challenging [2, 6, 9,
18, 29, 30]. Software-defined networking (SDN) holds the promise
of making this problem easier by centralizing configuration and
management, thereby easing the evolvability of the network, and
enabling the use of novel languages and verification techniques.

However, migrating from an existing, working network environ-
ment to an SDN presents a formidable hurdle [14]. Enterprises and
administrators quite likely depend upon the behavior of their ex-
isting configurations. Unfortunately, these networks can be large
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and complex [18, 20, 29, 31], with behavior defined by myriad dis-
tributed policies, usually specified for each individual device, in a
variety of configuration languages. The scale and complexity of the
aggregate behavior of these rules means the process of creating a
controller program for an equivalent SDN is non-trivial. A common
deficiency of current SDN migration paths [6, 8, 20] is the need to
rewrite network policies and configurations from scratch; for some,
this may be reason enough not to migrate.

This paper addresses the problem of migrating existing network
configurations to corresponding SDN controller programs, and
presents Exodus, a system for performing this conversion. Exo-
dus consumes configurations (Sec. 2) using a significant subset of
Cisco IOS, and generates SDN controller software (Sec. 3) that mim-
ics to a large extent the behavior of the original network. Exodus
uses Flowlog [24], a high-level language for SDN programming
that provides a compiler and run-time system for controlling Open-
Flow switches. Atop this, Exodus generates both a single, unified
controller program and a specification for the OpenFlow switches it
controls—maintaining the existing topology to ease the initial tran-
sition. The resulting SDN controller can then run in the production
network, or be used to evaluate the new configuration in a laboratory
or emulation environment.

It is not a goal of Exodus to produce a network that is provably
equivalent to the original, but rather one comparable in policy and
functionality. As we discuss in Sec. 4, we used HSA [17] to show
the equivalence of static behavior (e.g. ACLs), and formally ver-
ified some correctness properties of dynamic behavior. Not only
is equivalence difficult to prove, it may not be productive in many
cases. The centralized approach of SDNs, for example, obviates
many of the complications of distributed routing protocols. NAT on
OpenFlow, on the other hand, requires the controller to be involved,
and will necessarily behave differently. While this paper focuses on
converting 10S configurations, Exodus can handle other configura-
tion languages as well, such as Linux iptables and Juniper JunOS
configurations, limited only by parsing and translation into Flowlog.

2. OVERVIEW AND BACKGROUND

Our goal is the workflow of Fig. 1: Exodus accepts a set of IOS
configurations (possibly involving multiple routers) and produces an
SDN system implementing the network behavior they dictate. Exo-
dus specifies a per-router set of OpenFlow tables that are instantiated
on the network, (Sec. 3.1) and a single Flowlog controller program
(Sec. 3.2) that uses these tables. This program is synthesized from
standard Flowlog modules, such as ARP cache or VLAN forward-
ing, which are independent of the configuration, and from modules
(Tab. 1) that are specialized to the network, Exodus generates the lat-
ter by feeding information from the parsed configurations to Flowlog
templates. Exodus also initializes Flowlog with configuration data,
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Figure 1: Workflow: Exodus produces Flowlog libraries and a network
specification, which can be prototyped in Mininet [19].

such as VLANSs, subnets, and OSPF weights.

To implement a centralized replacement for OSPF!, we built an
all-pairs shortest-path engine (“Route Service” in Fig. 1), imple-
mented in under 300 lines of Python, that accepts OSPF weights
from the original configuration and produces routes which it pro-
vides to Flowlog.

To enable the instantiation of an Exodus network, the compiler
produces a network specification that describes the topology of
OpenFlow switches with which the controller expects to interact. In
our implementation we use this specification to create a Mininet [19]
network with the required switches, but this could also be used as a
blueprint for a physical network.

1I0S provides many different features that together define de-
sired behavior. Many IOS routers are “dual-layer”: physical ports
can be configured for either traditional layer-3 subnet access or as
switchports to a VLAN. Accordingly, Exodus’s output reflects not
only the original static and dynamic IP routing behavior, but also
VLAN encapsulation and trunking.

We present the subset of IOS that Exodus supports via the net-
work in Fig. 2. Listing 1 shows the dual-layer configuration on “A”,
trimmed for brevity. This router provides layer-2 access to VLANs
2 and 3 (lines 1-6), as well as switched virtual interfaces for those
VLAN:S (lines 7-10) so that arriving traffic can be IP routed. Lines
11-14 declare a VLAN trunk. Lines 15-20 define ordinary routing
ports to two subnets along with associated OSPF costs. Finally, the
router has a default static route to 192.168.2.2. The example net-
work (Fig. 2) contains 4 other routers; we omit their configurations
for space. Routers A and B are connected via a VLAN trunk; A, C,
and D form a loop to exercise dynamic routing; and ext uses stateful
filtering and NAT to protect the internal network.

2.1 Scope of I0S Support in Exodus
The full IOS language exposes many additional features and a
plethora of variant syntax. Rather than attempting to support all the
complexities and dialects of IOS, we have focused on a core subset
of IOS features. To date, Exodus supports:
1. interface declarations, either with primary subnet or layer-2
switchport, including switched virtual interfaces;
2. standard and most extended IOS ACLs, including reflexive
access-lists;

3. ACL-based “overload” NAT;

' As a proof of concept, we only support a single OSPF area.
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Figure 2: Example Topology. Dotted lines represent VLAN connections;
solid lines represent layer-3 connections across subnets.

1| interface GigabitEthernetl/1 ! VLan 2
2| switchport access vlan 2

3| switchport mode access

4| interface GigabitEthernetl/2 ! VLan 3
5| switchport access vlan 3

6| switchport mode access

7| interface vlan 2 ! For L3
8| ip address 10.5.102.1 255.255.255.0 Routing
9| interface vlan 3

10| ip address 10.5.103.1 255.255.255.0

11| interface TenGigabitEthernetl/1 ! To B
12| switchport trunk encapsulation dotlg

13| switchport trunk allowed vlan 2,3

14| switchport mode trunk

15| interface GigabitEthernetl/3 ! To C
16 ip address 192.168.1.1 255.255.255.0

17 ospf cost 20

18| interface GigabitEthernetl/4 ! To D
19 ip address 192.168.2.1 255.255.255.0

20 ospf cost 5

21| ip route 0.0.0.0 0.0.0.0 192.168.2.2

Listing 1: Router A configuration

4. trunk and access switchports with VLANS; and
5. static and dynamic routing via OSPF (one area).

This set is non-trivial, incorporating many different commonly-used
aspects of router functionality. These features are also common to
multiple vendors—although configuration syntax may differ—and
are not 10S specific. Supporting new vendors is thus a matter of
expanding Exodus’s parser, not modifying its core modules.

2.2 Flowlog Overview

Flowlog is a tierless rule-based language for SDN controller pro-
gramming; programs describe network behavior and the underlying
compiler automatically issues updates to switch flow-tables. We
chose to use Flowlog for multiple reasons: it supports mutable state
on the controller, allowing Exodus to translate stateful features such
as NAT; it is fairly high-level, resulting in programs that are read-
able and maintainable after migration; it provides a rich suite of
automated verification tools; and its runtime manages OpenFlow
rules automatically, simplifying the resulting code.

Nevertheless, our choice of target language is not canonical: some
might prefer Java or C++ generated for Floodlight or NOX to pro-
grams in a rule-based language. Flowlog does provide a stateful,
proactively-compiled (i.e., OpenFlow rules are produced before
packets arrive) language which serves as an excellent target for
compilation; therefore, we can view Flowlog as merely an API for
its proactive compiler. The ideas of this paper apply just as well to
other compilation targets, though some engineering decisions would
likely differ.



To give some intuition about Flowlog, we provide a small exam-
ple: a program that implements a flood-forward switching policy
while keeping track of who is sending packets to a certain subnet:

TABLE seen (ipaddr);
ON ip_packet (pkt) :
DO forward(new) WHERE
new.locPt != pkt.locPt;
INSERT (pkt.nwSrc) INTO seen WHERE
pkt.nwDst IN 10.0.0.0/16;

N v E W =

As tables are a common representation of network data, used for
routing, ARP caches, NAT state, and more, Flowlog maintains state
in the form of a database. Line 1 declares a one-column table to
hold the log of sender IP addresses.

The remainder of the program comprises two rules, both of which
are triggered by any IP packet arrival (line 2) on the network. The
first rule (lines 3-4) implements a basic “flood” forwarding policy;
the pkt.locpt term represents the incoming packet’s arrival port,
and the new. 1ocpt term the egress port. If multiple valid egress ports
exist, the packet will be sent out of all of them. The second rule
(lines 5-7) inserts the packet’s source IP address into the table if the
packet is destined for the 10.0.0.0/16 subnet.

Although the program’s text makes it appear that every packet is
explicitly processed by the controller, Flowlog’s proactive compiler
ensures that the only packets that actually reach the controller are
ones that will change its internal state (i.e., packets with as-yet-
unseen source addresses).

Since Flowlog’s core semantics are relational, program behav-
ior can be analyzed using relational model-finding tools such as
Alloy [13]; Flowlog’s tool-suite includes an automatic compiler to
Alloy, enabling verification without requiring the programmer to
express their program in Alloy by hand. We make use of this in our
evaluation (Sec. 4).

3. DESIGN AND IMPLEMENTATION

We now describe the flow tables used, see how they map to
current OpenFlow hardware, and discuss deploying and running the
resulting system. We also show how Exodus maps IOS features to
Flowlog.

3.1 Router Internals and Configuration

To reflect the semantics of I0S and the requirements [1] for IP
routers, Exodus creates eight logical OpenFlow tables per router in
the original configuration: two for VLAN-switching, two for access-
control, two for routing, and one each for Layer-2 rewriting and NAT,
as shown in Fig. 3(a). These tables alone cannot fully implement
all features, as some require support from the controller. Rather,
they implement the corresponding stage of the packet-processing
pipeline as dictated by the controller.

The sequential composition of tables in Fig. 3(a) maps to Open-
Flow 1.1+’s pipeline of multiple tables, and echoes the hardware
pipelines of traditional routers. The VLAN table handles intra-
VLAN traffic before passing packets up to the ACL for layer-3
processing. The ACL filters packets before forwarding them to
the routing table, which also determines if the packet needs to be
address-translated. If so, it goes through the NAT, and then through
a second round of routing. The rewriting stage sets the destination
MAC address. The outbound ACL performs a final access check
before the VLAN table sends the packet out the appropriate port.

In OpenFlow 1.0, which we use due to its mature support, se-
quential composition is known to create large numbers of rules due
to the necessary cross-products. To keep this in check, the Exodus
prototype physically performs the composition by wiring single-
table (OpenFlow 1.0) switches in series, one for each logical table

=
Layer 2
Connections
ACL Table
L3 Routing
L3 Routing
Layer 2
Connections

"— """""""" LN
® 1
S:IQ o Q o 1
;34—'>% 2 = 5 el
,m‘_",'_ — 3 & < | !
= Z — x Z |
S ' < ™
o S5 O o~ a3 1
o 'ls < = 1

-t
. 1

Figure 3: Logical flow tables in an Exodus router implementation (a), and
via physical switches in OF 1.0 (b). Arrows denote physical ports. Internal
lines show links between tables: one connection to and from the NAT table,
and one per subnet otherwise.
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Figure 4: Exodus prototyping subnets and hosts adjacent to router A (other
routers not shown). Every non-VLAN subnet is assigned a root switch, and
every root has an edge switch per attached router. VLAN access ports are
assigned one host each.

(Fig. 3(b)). This pipeline is designed to minimize the number of
switches; we “fold” the tables symmetrically around the NAT, and
packets flow in both directions. In the inbound direction, the L2
Rewrite table is just a pass-through. This design prepares Exodus for
transition to newer versions of OpenFlow with support for multiple
tables and makes clear the features needed by each. Of the five
types of flow tables used by Exodus, four — ACL, routing, NAT,
and VLAN-switching — are managed by code generated from the
IOS configuration (Sec. 3.2). The fifth, Layer-2 rewriting, simply
sets the destination MAC address on outgoing, routed traffic, and is
managed by the ARP Cache module (see Tab. 1).

Exodus produces a description of these tables, the wiring between
them, and the connectivity information for the network and outputs
it in a custom Google Protocol Buffers format [25]. This serves
as a blueprint for a physical network that implements the same
policies as the original network. The blueprint allows us to create
a running prototype of the network in an emulation environment
such as Mininet [19]. We have written a Python script that loads
the network into Mininet for experiments, and also creates sample
subnets and hosts (Fig. 4). Forwarding within these subnets is pro-
vided by Flowlog’s MAC Learning module, although any form of
Layer-2 connectivity will suffice. Since trunks may connect multi-
ple VLANs and VLAN subnets do not use a root-switch, Exodus
accepts an optional list of trunk connections at runtime. Finally, the
script launches SSH and web servers on each host to support testing.



3.2 Code Generation

The majority of the Flowlog code produced is unchanged across
different configurations. Exodus uses a set of standard Flowlog
modules, several of which it then supplements with configuration-
specific rules. Tab. 1 lists the modules used in Exodus and their
functionality, along with their size. It also indicates which modules
are generated per-migration and which are standalone.

Some modules (e.g., L3 ACL) correspond directly to nodes in
Fig. 3. Others provide supporting functionality. For instance, the
Network Information Base (NIB) feeds up-to-date link-state data
to the routing engine, which provides the routes used by the L3
External module. The IOS module is generated afresh for each run
of Exodus. It contains configuration information extracted from the
original IOS files. Because the module keeps this information in a
database, rather than hard-coding it into other modules, operators
can make simple changes easily while still retaining the power to
make more complex changes in the code itself.

Packet-Filtering via Static ACLs ACLs can be trivially repre-
sented as forwarding rules in Flowlog. Since Flowlog has no explicit
drop action, Exodus embeds higher-priority deny rules as negative
conditions. IOS allows interfaces with separate ingress and egress
filters, and so Exodus produces distinct Flowlog rule-sets for each.
This does not add any notable complexity to the output, and con-
forms to the router pipeline in Sec. 3.1.

Static Routes Exodus maintains static-routing information in its
I0S module. Each static-routing directive (e.g., line 21 of Listing 1)
produces a database entry on the controller which is then added to
the global routing table, using longest-prefix matching to resolve
conflicts.

Stateful Filtering Stateful firewalling can be configured in I0S
using reflexive access-lists, and requires controller interaction to
implement via OpenFlow. Exodus uses a state table on the controller
for the firewall state. The table contains a row for each hole to be
opened in the firewall, indexed by packet-header fields. The L3 ACL
module adds rows to this table as outgoing traffic is seen, and uses
the table to determine what return traffic to allow.

VLANSs Exodus’s VLAN module provides connectivity between
switchports, using pre-configured values stored in the IOS module.
Frames sent on a trunk will be encapsulated with the VLAN tag of
their arrival access-port, and de-tagged and sent out to the appro-
priate VLAN upon exit. To achieve this layer-2 connectivity, the
module runs a MAC-learning routine that defaults to sending along
the spanning tree (provided by the NIB module) for the VLAN in
question.

Dynamic Routing Exodus’s external-routing module maintains
a table of routes to non-directly attached destinations. The routing
service updates this table as the network evolves, re-computing
routes globally via an all-pairs shortest-path algorithm inspired by
OSPF. Edge-costs come from the original configuration.

Network Address Translation Cisco IOS supports three forms
of NAT: overload, static, and pooled, which correspond with N-1,
N-N, and N-M translation of private to public IP addresses. Exo-
dus implements overload NAT; the translation is similar to that for
reflexive ACLs, except that it must modify packet headers. Static
NAT is trivial as it requires no controller, and pool NAT would only
require a new table of available public IPs.

4. EVALUATION

The feasibility of Exodus’s approach depends on both its own
methods, and current OpenFlow technology. We ran Exodus over
the full example network in Fig. 2, launched it for prototyping in
Mininet, and exercised the new program to verify its compliance.

Module Property

VLAN  Output on a trunk is always tagged.
Output on an access port is never tagged.
Intra-VLAN traffic is isolated to its VLAN.

ARP No requests are generated for cached addresses.
Reply to requests for cached addresses.

NAT Private addresses map to < 1 public address.

Translation is reversed at outside gateway.

Table 2: Example verified properties.

For example, we were able to successfully connect via HTTP to
hosts in the 10.100.0.0/16 subnet from hosts in 10.200.1.0/24.

We also evaluated how the number of OpenFlow rules produced
scales as the system grows. To test scalability, we ran Exodus on
each of 16 publicly available router configurations from the Stanford
network [31], each of which has between 15 and 84 interfaces,
with a combined total of 1500 ACL entries. On a 1.7 GHz Core
i7 laptop, the translation to Flowlog required under a second for
each configuration. Scaling factors differ across the tables. The table
implementing IP routing depends mainly on the number of attached
subnets and longest-prefix matches in the routing database. The
VLAN table, in contrast, scales with the number of VLANS and the
structure of their configuration. The size of each ACL table depends
on the number of attached subnets and complexity of individual
ACL configurations.

With respect to these factors, we have observed both linear and
quadratic scaling. Previous runs on the Stanford configurations—
before adding dynamic routing or VLANs—yielded rule counts with
mostly linear scaling: the switches implementing IP routing each
required only two or three more OpenFlow rules than the number
of subnets (maximum 86). Layer-2 rewrite tables ranged from 55 to
325 rules, depending on the number of attached subnets. The ACL
tables ranged from 31 to 581 OpenFlow rules (2840 in total across
all 16 configurations).

Separating functionality into different tables lets hand-optimized
tables scale linearly. However, Flowlog’s automatic compiler pro-
duced a quadratic number of rules in some cases, most notably
the layer-2 translator with O((subnets + hosts)?) rules. This is not
fundamental, and a hand-optimized layer-2 translator table only
requires a rule for each attached subnet, one for each longest-prefix
match in the routing table, and one for each attached host. Work is
ongoing to further optimize Flowlog’s compiler.

Validating Correctness.

We used a modified version of header-space analysis [17] to
sanity-check examples similar to the ext router (Fig. 2). We con-
firmed that the generated ACL modules, which vary most by con-
figuration, were translated equivalently. However, since it applies
to only an instantaneous view of a network, HSA is not suitable for
validating dynamic behavior.

A more appealing option is to statically prove that the compiler’s
output is always correct. Flowlog’s logical underpinnings make it
easy to put this work on formal foundations. However, while one
might first equate “correctness” with “equivalence”, this view is
problematic. A formal proof of equivalence would require a com-
prehensive semantics for IOS, for which there are only partial so-
lutions [5, 23, 32]. Moreover, equivalent behavior can even be un-
desirable or unattainable in an SDN. Unlike the original devices,
OpenFlow switches may interact with the controller—whether to
overcome their limitations or to take advantage of the controller’s
global knowledge. For these reasons, our validation focuses on com-



Module # Rules Template? Description
NIB 27 Network Information Base. Provides up-to-date topology and spanning-tree information.
VLANSs 10 Handles inter- and intra-VLAN switching.
L3 ACL Varies v Applies access-control lists from configuration. Each ACL entry becomes a Flowlog rule.
L3 Router 9 v Routing to directly-attached subnets, L2 translation.
L3 External 4 v Routing to non-attached subnets via routing-table.
ARP Cache 7 Captures, directs, and responds to ARP requests.
NAT 18 v Network Address Translation.
10S Varies v Contains static configuration information such as VLAN assignments.

Table 1: Exodus modules written in Flowlog. # Rules gives the number of Flowlog rules in each module. A check in the Template? column indicates that
Exodus fills in pieces for each configuration. Un-templated modules can be used as standalone Flowlog applications.

ponent correctness rather than equivalence, using Flowlog’s built-in
verification support. Since Flowlog programs abstract out switch-
controller interaction, it is straightforward to describe properties
that would otherwise involve the intricacies of the OpenFlow pro-
tocol. Tab. 2 gives a selection of properties that describe partial
correctness of three distinct Exodus modules. Each property has
been verified, increasing our confidence that Exodus does in fact
implement correct behavior.

Extensibility.

Exodus produces code that has a relatively clear mapping from
the original IOS configuration (enhanced by compiler-inserted com-
ments). Modifying the network’s global ACL only requires editing
the Flowlog rules in the ACL module. The rest of the configuration
is governed by static table entries loaded on startup, which can be
edited even more easily than ACLs. Moreover, Flowlog’s analysis
tools can guide operators in their changes. Even if the SDN is even-
tually reimplemented, the Exodus version is valuable as an oracle
for systematic testing of the new controller.

To further evaluate Exodus’s extensibility, we created a novel
SDN application not present in 10S. This program first blocks
mDNS traffic, then implements tunnels, on-demand, for end-users
who wish to stream content to registered Apple devices. The ap-
plication required only seven Flowlog rules and an additional state
table.

S. DISCUSSION

The output from Exodus is very clearly a hybrid: a central-
ized SDN controller with explicit mappings to a set of distributed
switches. Exodus does not output a policy expressed over a single
“big switch” abstraction [7, 22, 27]. However, armed with the com-
bined policies translated to a high-level SDN language, we can now
consider a range of SDN designs. Furthermore, Exodus can give
insight into the resources required to migrate.

An organization may consider at least two paths for migrating
to an SDN. They might leave their existing edge switches in place,
and upgrade the network core to support OpenFlow. The recent
Panopticon work suggests that even a single, upgraded core switch
can be beneficial [20], and the Exodus prototype applies to this
scenario. Alternatively, they might upgrade edge switches, in an
architecture similar to that proposed by Casado, et al. [8], in which
policy moves outward from the core to the edge, and here Exodus’s
current design can only offer general guidance about resources
required.

Implementing the Exodus prototype exposed shortcomings in
OpenFlow (which remain in OpenFlow 1.4), as well as in some
existing SDN language abstractions:

OpenFlow: Idle Timeout for NAT OpenFlow only offers idle
timeouts for single rules, which makes it difficult to correctly imple-

ment NAT. A NAT installs two rules per flow, one in each direction,
and the timeout should be triggered only when both rules have been
idle for the specified period. Extending OpenFlow 1.4’s FlowMod
“bundles,” which support atomic transactions, to be a unit over which
an Idle Timeout could be set, would solve this problem. OpenFlow
switches should ideally also support Idle Timeouts triggered by TCP
packets with the FIN or RST flags, as has been the case with an
Open vSwitch extension since version 1.5.90.

OpenFlow: Additional ICMP Fields OpenFlow lacks support
for matching on and rewriting the identifier field of ICMP queries.
RFC 3022 instructs NATs to remap this field, otherwise ICMP
queries (such as Echo) cannot be multiplexed [28].Without this,
OpenFlow-based NATs must send ICMP traffic to the controller.

Composing Actions without Matches High-level SDN languages
can simplify the composition of multiple policies (e.g., via paral-
lel [11], sequential [22], or hierarchical merge [10]). Prior to this
work, none of these approaches could compose an arbitrary header
modification without first exactly matching on the field being mod-
ified. In other words, a (match, action) pair would be required for
every observed source MAC address. However, wildcard match-
ing is necessary for scalable flow tables. We have removed the
exact-match restriction in NetCore (which Flowlog is built atop)
by carefully ordering modifications, although correct re-ordering is
only possible if the policy composes at most one such update with-
out match in parallel. Later versions of OpenFlow provide features
to access the original header values, and we believe that high-level
SDN languages which offer parallel composition should support
this variant.

Suspending Packet Processing We have found the need to occa-
sionally suspend execution, process new packets, and later return
to the buffered packet. As a concrete example, consider rewriting
a packet’s destination MAC address when the router does not have
a corresponding entry in its ARP table. The router must first emit
an appropriate ARP request, and wait for an asynchronous reply
before processing the original packet. We encourage designers of
high-level SDN languages to support suspending evaluation.

Stable Flow Table Output Semantically-equivalent policies in
high-level languages can produce syntactically-different OpenFlow
rule sets. While harmless from the packets’ perspective, a canonical
representation for rules would make debugging SDN applications
less onerous. Ideally, automated optimization will improve this
situation; we are encouraged by recent efforts [15, 16].

Flowlog Deficiencies The lack of an explicit “drop” action in
Flowlog can lead to its compiler creating additional OpenFlow rules
in the ACL tables (Sec. 3.2). Because Flowlog currently gives no
way to extract just a single port out of potentially many expired ports,
our NAT could not reuse the Layer-4 ports assigned to connections
it learned had closed.



6. RELATED WORK

Migrating enterprise networks to networks with centralized con-
trol is an important topic in the SDN literature. While early propos-
als, such as 4D [12] or SANE [9], were understandably “clean-slate”
designs, with no upgrade path other than starting from scratch, a
subsequent strategy was safe co-existence. Ethane [6] required no
host modifications, and allowed its switches to be incrementally
deployed alongside regular switches. OpenFlow, from the start, in-
troduced hybrid switches that could operate with Layer-2/3 control
protocols or be managed by a controller, and had the requirement
that OF switches would keep OpenFlow traffic isolated from pro-
duction traffic [21]. Even in the case of incremental upgrades, these
strategies are “dual-stack”, meaning that the SDN and the traditional
network are independent.

In a fully virtualized environment, one can run virtual SDN
switches in the hypervisors in the edge, and provide network vir-
tualization [8]. This approach is not feasible in many enterprise
and campus networks where the edge terminates in legacy access
switches. Panopticon [20] provides another migration strategy that
is more integrated than a dual-stack approach. With strategic switch
placement, it can almost match the benefits of a full SDN deploy-
ment for any flow that goes through at least one OpenFlow switch.
It provides the illusion that the entire network is a single SDN to
controller applications. In contrast to these approaches, Exodus per-
forms a partial migration of the existing configuration and does not
require the policies for the controller be written afresh.

Another approach to SDN migration is to progressively replace
existing routers with functionally equivalent OpenFlow components,
and then later benefit from the evolvability of such components.
B4 [14] used such a strategy to replace BGP border routers in their
WAN with custom OpenFlow switches. They replaced the BGP
logic in the routers with a Quagga BGP node and a proxy applica-
tion between the two. In doing this, they had to migrate the BGP
configuration from the routers to Quagga. RouteFlow [26] allows
for a similar strategy by running Quagga instances inside Linux
containers and translating the routing tables from each instance into
OpenFlow rules. RouteFlow thus benefits from Quagga’s complete
implementation of OSPF, but is tied to existing, distributed, routing
algorithms. In Exodus, dynamic routing uses centralized knowl-
edge of the network state, with all that promises for efficiency and
customization.

Others (e.g., [3, 5, 17, 23, 32]) have translated IOS router con-
figurations into intermediate logical form. However, these works
are largely concerned with analysis or reduction in configuration
size. The EDGE [4] tool converts configurations to a database for
reporting, analysis, and automated provisioning. Exodus goes fur-
ther by producing a unified SDN controller program with behavior
comparable to the original.

Exodus is built atop Flowlog [24], but required significant en-
hancements to the original language. To create an ARP cache and
proxy, we added a general hierarchy of packet types that provides
access to ARP payloads. To translate ACLs and static routes, which
can use address masking, we added support for matching on IP ad-
dress ranges. We added an event type that allows Flowlog programs
to react when OpenFlow table entries expire, with corresponding
support in NetCore. We enhanced the Flowlog compiler to handle
joins over multiple state relations, and added longest-prefix match-
ing, which was previously unsupported.

7. THE ROUTE AHEAD

Exodus is a step toward SDN’s overall promise of simplified
management. An exciting future prospect is to refactor additional

features of the network, such as VLANs or ACLs, to better express
operators’ high-level policies. Another path is to generate alterna-
tive network topologies, i.e., provide the same functionality over
a different set of switches. Targeting OpenFlow 1.1+’s chained ta-
bles, together with compiler improvements, will greatly improve
the scalability and feasibility of Exodus, as well as allow support
for more router features, e.g., MPLS and modifying the IP time-to-
live value (currently left unchanged by Exodus routers). There is
also future work to be done at the border of the Exodus network,
e.g. migrating BGP configurations and producing announcement
messages, possibly using the same proxy techniques as B4 [14] and
RouteFlow [26]. No matter the migration strategy eventually em-
ployed, Exodus gives administrators a concrete, working prototype
from which to begin discussion and compare solutions. We hope
that Exodus will motivate further development of migration tools.
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