
How is the Weather tomorrow?
Towards a Benchmark for the Cloud

Carsten Binnig Donald Kossmann Tim Kraska Simon Loesing

Systems Group, Department of Computer Science, ETH Zurich
{firstname.lastname}@inf.ethz.ch

ABSTRACT
Traditionally, the goal of benchmarking a software system is to
evaluate its performance under a particular workload for a fixed
configuration. The most prominent examples for evaluating trans-
actional database systems as well as other components on top (such
as a application-servers or web-servers) are the various TPC bench-
marks.

In this paper we argue that traditional benchmarks (like the TPC
benchmarks) are not sufficient for analyzing the novel cloud ser-
vices. Moreover, we present some initial ideas how such a new
benchmark should look like that fits better to the characteristics of
cloud computing (e.g., scalability, pay-per-use and fault-tolerance).
The main challenge of such a new benchmark is to make the re-
ported results comparable because different providers offer differ-
ent services with different capabilities and guarantees.

1. INTRODUCTION
Traditionally, the goal of benchmarking a software system (called

system under test or short SUT) is to evaluate its average perfor-
mance under a particular workload. The most prominent examples
for evaluating transactional database systems as well as other com-
ponents on top (such as a application-servers or web-servers) are
the various TPC-benchmarks that define workloads derived from
different real-world application scenarios (e.g., TPC-H for OLAP
[14], TPC-C for OLTP [15], or TPC-W [13] for an e-commerce
application).

All the TPC-benchmarks require that the system under test is de-
ployed in a managed environment using a fixed configuration (e.g.,
a static set of software- and hardware-components) which is de-
scribed in a full disclosure report. Consequently, the primary met-
rics of all the TPC-benchmarks reflect the average performance of
a static non changing system. Another primary metric that is often
reported by the TPC-benchmarks are the total costs of ownership
for such a static system over its lifetime (i.e., the costs for hard-
and software, maintenance as well as administration). Moreover, as
all TPC-benchmarks focus on transactional database systems they
force these systems to provide the ACID properties as well as dif-
ferent levels of isolation as defined by the SQL standard.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest’09, June 29, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

Recently, the cloud computing paradigm [3] has lead to novel
solutions for storing and processing data in the cloud. Examples
are Amazon’s S3, Google’s Bigtable, or Yahoo’s PNUTS. Com-
pared to traditional transactional database systems, the major ad-
vantage of these novel storage services is their elasticity in the face
of changing conditions. For example, in order to adapt dynami-
cally to the load, cloud providers automatically allocate and deal-
locate resources (i.e., computing nodes) on the fly while offering a
pay-as-you-go computing model for billing. However, in terms of
query processing the functionality provided by these novel storage
services is often far away from a full SQL support.

Another important difference of the cloud storage services com-
pared to the traditional transactional database systems are the con-
sistency guarantees provided by these services. In order to offer
fault-tolerance and high-availability, most providers replicate the
data within one data or even across data centers. Following the
CAP theorem [10], it is not possible to provide availability and
strong consistency (as defined by the ACID properties) together
in the presence of network failures. Consequently, most cloud
providers sacrifice strong consistency for availability and offer only
some weaker forms of consistency (e.g., Amazons’s S3 guarantees
only eventual consistency).

In addition to the storage services, many cloud providers also
offer additional services that allow developers to bring the com-
plete application stack into the cloud while offering the same ad-
vantages as for the storage services (pay-per-use, scalability, fault-
tolerance). Examples for these services are Amazon’s EC2 or
Google’s App Engine which provide an application server in the
cloud or Amazon’s SQS which provides a messaging service.

In this paper we want to start a discussion why traditional bench-
marks (like the various TPC-benchmarks) are not sufficient for an-
alyzing these novel cloud services. Moreover, we present some
initial ideas how a new benchmark should look like that fits better
to the characteristics of the cloud (scalability, pay-per-use, fault-
tolerance). The main challenge of such a new benchmark is to
make the reported results (i.e., the primary metrics) comparable
because different providers offer different services with different
capabilities and guarantees of these services (e.g., the consistency
guarantees of the storage services).

An important difference to most existing benchmarks is that a
new cloud benchmark should not require to use a static configura-
tion of software- and hardware-components because dynamic allo-
cation and deallocation of resources as well as the pay-as-you-go
model are the inherent features of these services. Consequently,
we think that a new benchmark for the cloud must report different
metrics than the existing benchmarks: Instead of measuring the av-
erage performance of a static system under maximal load, the new
metrics should reflect the ability of the cloud services to adapt to a

changing load with regard to performance and costs. Moreover, an
additional metric should also cover the robustness of these services
against failures of single nodes as well as the outage of complete
data centers.

We also think that a new cloud benchmark should focus on an-
alyzing the complete stack of web applications instead of intro-
ducing micro benchmarks for single cloud services. Consequently,
a new cloud benchmark should not only analyze the storage ser-
vices in the cloud but also the other cloud services (e.g., applica-
tion servers, message systems). However, compared to the existing
TPC-W benchmark, a new benchmark for the cloud should define
additional Web 2.0 like interactions and be based on modern tech-
nologies such as AJAX which change the access patterns of a web
application.

To the best of our knowledge, currently there exists no bench-
mark for cloud services with similar goals as those that we dis-
cussed before. However, there exists a study [9] which evaluates
the different cloud services of Amazon in terms of cost and per-
formance but it does not provide a general benchmark which al-
lows the comparison of different cloud providers. Another work
[7] compares the cloud computing technology with current transac-
tional database systems and proposes a list of comparison elements.
However, they also do not discuss how a benchmark for comparing
the cloud services of different providers should look like.

Thus, the contributions of this paper are:

• We first reiterate the most important characteristics of cloud
services and derive a list of requirements that a new bench-
mark for these cloud services should fulfill (Section 2).

• Afterwards, we analyze the existing TPC-W benchmark and
its metrics and discuss why the TPC-W benchmark does sat-
isfy the requirements for benchmarking cloud services (Sec-
tion 3)1.

• As a last contribution, we discuss some initial ideas for such
a new cloud benchmark that tackles the shortcomings of the
TPC-W benchmark (Section 4).

2. CLOUD COMPUTING
Cloud computing allows users to access technology-enabled ser-

vices from the Internet ("in the cloud") without owning the technol-
ogy infrastructure that supports them [11]. The range of services
today varies from basic infrastructure services, such as providing
storage space, to rather specialized services for payment, identity
authentication and others. This section reiterates the advantages of
using cloud services. It provides an overview of the services of-
fered today and sketches the requirements for a benchmark for the
cloud.

2.1 Why Cloud Computing?
Generally, three different types of cloud services are differenti-

ated. At the core, Infrastructure as a Service (IaaS) provision re-
sources such as servers (often in form of virtual machines), network
bandwidth, storage, and related tools necessary to build an applica-
tion environment from scratch (see Figure 1). The business model
is pay-per-use. Thus the users do not need to make an investment
upfront and pay for the hardware resources they consume. Further-
more, most providers guarantee virtually infinite resources. Hence,
resources are provided on demand and there is no need to plan far
ahead for provisioning. Although infrastructure services provide
1We did not compare to the TPC-App benchmark because this
benchmark focuses more on Web-Services and not on the complete
web-application stack.

PaaS

IaaS

SaaS
SalesForce
GMail
NetSuite

Microsoft Azure
Google AppEngine
Heroku
Sausalito

Amazon EC2, S3, SQS
GoGrid
Mosso

Cl
ou

d
Se

rv
ice

 C
on

tin
uu

m

Figure 1: Cloud Service Continuum

the highest flexibility, developers still have to deal with low level
details such as maintaining virtual machines or load-balancing.

Platform as a Service (PaaS) often build on top of IaaS and pro-
vide a higher-level environment, a platform, on which developers
write customized applications. Those platforms are managed by the
service provider. The maintenance, load-balancing and scale-out of
the platform are done by the service provider and the developer can
concentrate on the main functionalities of his application. In ex-
change for the built-in scalability the developer is accepting some
restrictions on the type of software he can write. Again the busi-
ness model is pay-per-use and the platform is virtually infinitely
scalable.

Finally, Software as a Service (SaaS) refers to special-purpose
software made available through the Internet. Well-known exam-
ples of SaaS are GMail or Salesforce. However, those services are
not suited for building individual applications and are excluded in
the further discussion.

The success of cloud computing for all service classes is based
on economy of scale. The cloud provider can offer services to mil-
lions of users at a lower price than users accommodating these ser-
vices themselves. In addition to the price, the quality of the ser-
vice is a major incentive for using cloud services. In particular, the
cloud provider is responsible for guaranteeing high availability and
reliability. Users expect almost 100% availability and (virtually)
constant response times independent of the number of concurrent
users. Furthermore, users of cloud services do not need to worry
about scalability because the offer is virtually infinite. The IT cost
grows linearly with the business rather than step-wise as is the case
for traditional computing in which businesses need to buy hard-
ware in the granularity of machines (rather than CPU cycles). In
summary, the goal of cloud computing is to provide more for less.

2.2 Cloud Services Today
By today, a huge variety of services exists offering different in-

frastructure or platform services.

IaaS. The most flexible form of IaaS are server-hosting services
like Amazon’s Elastic Computing Cloud (EC2) or GoGRID. These
services allow to rent virtual machines (VM) running the different
flavors of Unix/Linux or Windows. Those virtual machines can be
freely configured and enable to run almost every kind of software.

Although the general concept of renting a virtual machine is sim-
ilar for all providers, the services differ in the way they are priced,
how they persist data over failures, SLA, geographical location,
and the tooling they provide. Most critical for developing an appli-
cation is how persistent data is stored and handled. Generally the
virtual machines loose their data if they get shut down (e.g. by the
user or by a hardware failure). In the case of GoGRID, the devel-
oper himself has to take care of persistence. To help the developer,

GoGRID offers a persistent (single data center replicated) network
attached storage for backups. Amazon on the other hand offers
two additional services to store data persistently: Amazon’s Simple
Storage Service (S3) and the Elastic Block Store (EBS). S3 can be
used by several clients simultaneously, is highly reliable due to dis-
tributing the data across data centers, provides eventual consistency
guarantees and is optimized for reads of larger files. On the other
hand, the Elastic Block Store is a special storage service which can
only be accessed by a single virtual machine at a time, is optimized
for writes, but only replicated in one data center. Using one or the
other storage service results in completely different guarantees and
limitations. With S3, the data is always readable - even in the case
of network partitioning or data center failure, there is no restriction
in the scale-out. However, the data itself is just eventual consistent.
With EBS the data is highly consistent but at the same time can
only be accessed by one VM. Thus, the scalability is limited.

Additionally, a huge range of open source and commercial so-
lutions exists to build own infrastructure services. For example,
Cassandra [8] or HBase [2] are solutions which could be deployed
on top of EC2 or self-owned machines to provide persistent stor-
age. Again, the different solutions vary in the form of consistency
guarantees they provide, the ability to replicate across data centers,
performance, index support etc.

A variety of additional IaaS offerings such as queue services or
content delivery exists which can help to build distributed, highly
available applications. To list them all is out of scope of this paper.

PaaS. For PaaS, the most prominent examples are Google’s App
Engine and Microsoft’s Azure platform. Google’s App Engine
hosts python programs in a highly scalable manner. Similar to
IaaS, data persistence is one of the critical differentiators between
the different platforms. Google provides a datastore API allowing
to permanently persist data. The system behind the datastore is
most likely MegaStore [6]. With this API, the developer can take
advantage of the notion of transactions and even a simple query lan-
guage. However, data is required to be grouped into so-called en-
tity groups. Transactions are only possible inside such entity group.
Although there is no restrictions on the size of an entity group, the
scalability is limited as per entity group only one transaction can
operate at a time. That is, all transactions are serialized.

The Azure Service platform is Microsoft’s PaaS offering. In-
stead of Python, Azure is based on the .Net language. Similar to
Google’s App Engine it has a dedicated API to store and retrieve
data called SQL Services. The underlying system for these SQL
Services is Microsoft SQL Server. Although not all functionalities
of Microsoft SQL Server are exposed via the API, the user can run
transactions and use a restricted SQL query language. Similar to
Google’s App Engine, the user has to partition the data manually
into so-called containers. Transactions and queries are restricted to
one container at a time. In contrast to Google’s App Engine, in-
side one container several transactions can run simultaneously. But
containers are restricted with regard to their size (i.e., 2GB).

There also exists a wide variety of startups offering different
platforms for different languages like XQuery or Ruby on RailsP
[1, 12]. Again, next to the language and offered libraries, all the
providers mainly vary in how they handle persistent data.

2.3 Requirements to a Cloud Benchmark
As indicated above, today’s cloud services differ among oth-

ers by cost, performance, consistency guarantees, load-balancing,
caching, fault tolerance, SLA and programming language. Sys-
tem architects and developers are confronted with this variety of
services and trade-offs. Hence, the purpose of a cloud benchmark

should be to help the developer when choosing the right architec-
ture and services for their applications.

Features and Metrics. Arguable, the main advantages of cloud
computing are scalability, pay-per-use and fault-tolerance [11, 3].
Despite the promises of cloud providers those features are often
differently fulfilled. For example, most cloud providers claim to
provide nearly infinite scalability for their services, but it is not
self-evident that the combination or some of the limitations of one
or more services does not yield a scalability limit (e.g., the limita-
tions on the persistent storage).

Furthermore, price plans and the granularity of the pricing lead
to different overall costs. For example, for PaaS pricing is typically
based on CPU utilization. A web application which has to support a
single transaction per hour, is priced exactly for this single transac-
tion. In contrast, for IaaS virtual machine instances are often priced
on a per hour basis. The costs for a VM instance, however, are the
same regardless if one or 1000 transactions are performed per hour.
In economics, this is often referred to as lot-size problem. The in-
terested reader might notice, that it is possible to see the classical
architecture with self-owned hardware as an extreme case having
really high lot-sizes.

Finally, fault-tolerance differs significantly between providers.
The number of faulty services the system can resist without user
notice, or single data-center vs. multi data-center replication are
just some examples.

As mentioned before, the traditional benchmarks are mainly con-
cerned with performance and cost of static systems. Those metrics
still have relevance for the cloud applications but we need differ-
ent ways for measuring them for scalable (i.e., dynamic) systems
where resources come and go. Moreover, a benchmark for the
cloud should additionally test the cloud-specific features (scalabil-
ity, pay-per-use and fault-tolerance) and provide appropriate met-
rics for them.

Architectures. By today, there exists no agreement on the right
architecture and use of cloud services. Different services can be
used and extended in different ways to achieve the same goal. For
example, it is not obvious if using S3 with indexes built on top is
superior to using SimpleDB. It is also not obvious, if S3 is better
than a similar offering hosted in the EC2 environment or if a plat-
form as a service is the better overall solution.

Furthermore, it is often the case that services from different
providers can not be freely combined (e.g., Microsoft SQL Data
Services with Google’s App Engine) and they have completely dif-
ferent guarantees. It is more important to know how different ser-
vices play together rather than to know which provider is particu-
larly good in just a single aspect (e.g., a key-value store).

As imposing one architecture variant is not reasonable, a cloud
benchmark should be general enough to cover the different archi-
tectural variants. Furthermore, the complete application stack should
be measured instead of micro-benchmarking single services.

Nevertheless, different service architectures are not always di-
rectly comparable. For example, one of the most critical differen-
tiators between the cloud providers is caused by the CAP theorem
[5]. The CAP theorem states that it is not possible to achieve con-
sistency, availability and tolerance against network partitioning at
the same time. In addition, it can be seen that achieving strong
consistency in a highly distributed system is more expensive (in
terms of latency and throughput) than weak consistency and hence
often restricts the scalability. As it is not possible to have it all,
cloud solutions position themselves somewhere in the design space
of relaxed consistency, high scalability, and high availability. A
benchmark should on the one hand consider these different design

spaces to avoid comparing apples and oranges, while on the other
hand it should not to force all solutions into a single setup.

3. TPC-W AND ITS PROBLEMS
The TPC-W benchmark specifies an online bookstore that con-

sists of 14 web interactions allowing to browse, search, display,
update and order the products of the store. The system under test
consists of an application server implementing the business logic
responsible for answering every HTTP request and a persistent stor-
age usually realized using a transactional database system.

In order to generate the workload, the TPC-W specifies a re-
mote browser emulation (RBE) system which automatically simu-
lates an arbitrary number of users sending requests for single web
interactions to the system under test. The goal of the RBE is a re-
alistic simulation of the browsing behavior of different users. To
issue different workloads against the system under test, the TPC-W
benchmark defines three different mixes: browsing, shopping and
order mix. A particular mix determines for every user session a se-
quence of web interactions based on a varying ratio of browse and
order operations. Browse operations only read data whereas order
operations execute data updates. Benchmarking with the different
mixes shows which impact a varying number of update operations
has on the performance of the system.

The TPC-W benchmark is designed to test the complete applica-
tion stack and does not make any assumptions on the technologies
and software systems used. Thus, two essential requirements are
already fulfilled by the TPC-W. However, trying to use the TPC-W
as it is for benchmarking the cloud reveals some problems.

First, by requiring the ACID properties for data operations it be-
comes obvious that the TPC-W has been designed for transactional
database systems. As already discussed earlier, cloud systems usu-
ally do not offer such strong consistency constraints because most
web-based applications only require lower levels of consistency
[16]. As a consequence existing TPC-W implementations for the
cloud (e.g., [4]) are not conform to the specification and results of
different implementations hard to compare.

Second, the primary metric used by the TPC-W is the number of
web interactions per second (WIPS) that the system under test can
handle. By scaling the number of emulated browsers, the number
of requests and the load on the system can be increased. This is
done as long as 90% of the web interaction response times does
not exceed a specified amount of seconds. In such a situation the
benchmark run is considered valid. The performance of a system
is then reported as the highest number of WIPS reached in a valid
benchmark run. Although WIPS is useful in the context of a static
system it is not for adaptable and scalable systems. In an ideal
cloud computing setting an increasing load would always be com-
pensated by adding new processing units to the system and thus
the number of WIPS would continuously increase. Consequently
it is not possible to report the maximum WIPS value and the main
metric is useless for the cloud.

Third, the second metric of the TPC-W is the ratio of costs and
performance: $/WIPS. The pricing is based on the total cost of
ownership of the system under test including software, hardware,
maintenance and administration expenses (for 3 years). These over-
all costs are then divided by the maximum number of WIPS to
calculate the $/WIPS. For a cloud benchmark two problems arise:
First, as discussed earlier in the context of cloud computing no
maximum number of WIPS exists. Thus, there exists no fixed load
for which the overall cost can be calculated. Secondly, different
price-plans and the lot-size problem prevent to calculate a single
$/WIPS number. Instead, the $/WIPS may vary extremely depend-
ing on the particular load.

Fourth, the latest release of the TPC-W specification dates back
to 2002. Considering the technical evolution of web applications
in the last years, the TPC-W became outdated and does not reflect
modern access-paths such as those generated by Web 2.0 like inter-
actions (e.g., user generated content or AJAX).

Finally, the TPC-W benchmark lacks of adequate metrics for
measuring the features of cloud systems like scalability, pay-per-
use and fault-tolerance.

In the next section we present some ideas, including new met-
rics, for testing the performance of applications running in a cloud
environment.

4. IDEAS FOR A NEW BENCHMARK
As discussed in the Section before, there are several reasons why

the existing TPC-W benchmark is not sufficient for analyzing cloud
services. In this Section, we present initial ideas towards a new
cloud benchmark that better fits to the characteristics of these ser-
vices: We first discuss the big picture of a new cloud benchmark
and then present details on the different possible configurations.
Finally, we introduce new metrics for analyzing the scalability, the
costs, and the fault tolerance of cloud services.

4.1 Big Picture
We propose that a new cloud benchmark should be based on a e-

commerce scenario (i.e., a web-shop) and define web interactions
as benchmark drivers similar to the TPC-W benchmark. Thus, the
benchmark should allow the evaluation of the complete application
stack rather than having multiple micro-benchmarks for single ser-
vices of different providers.

As discussed before, a fundamental difference of a cloud bench-
mark compared the TPC-W benchmark are the reported primary
metrics. While the TPC-W benchmark analyzes the average num-
ber of web interactions per second of a static system under maxi-
mal load, a new cloud benchmark should analyze the ability of a
dynamic system to adapt to a changing load (including peaks) in
terms of scalability and costs. Moreover, another goal is to test to
the assumption of infinite scalability of an application in the cloud.
Consequently, different from the TPC-W benchmark which uses
a ramp-up phase to find the maximal web interactions per second
(WIPS) that can be issued against the system under test, a cloud
benchmark explicitly needs to vary the WIPS during the bench-
mark execution. In addition to these metrics, the benchmark should
also report metrics which represent the tolerance of the cloud ser-
vices against failures. More details about these new metrics and the
benchmark execution will be given in the following sections.

Another important issue when benchmarking cloud services is
the locality of the emulated browsers (i.e., the test drivers) that trig-
ger web interactions during benchmark execution. Cloud providers
often replicate data over different data centers for availability but
also performance reasons (due to locality). In order to get a fair
comparison of the benchmark results, the emulated browsers should
run in different locations (world wide). By doing this, we can
achieve that the benchmark results are not biased due to the lo-
cation where the test driver is running (i.e., we expect to get better
results as closer the test driver gets to the data center due to Inter-
net latency). A solution to this problem is to run the test drivers on
a cloud infrastructure of a provider which supports location based
installations (such as Amazon).

Moreover, compared to the TPC-W benchmark a new cloud bench-
mark should not require the data storage services need to provide
the strong transactional ACID guarantees for all web interactions.
Instead, we think that the consistency level is a configuration prop-
erty of the benchmark which can be set to evaluate different ap-

plication scenarios. Again, more details about the different consis-
tency settings will be given in the next section.

Finally, independent of benchmarking cloud services, we sug-
gest that in addition to the traditional web interactions defined by
the TPC-W benchmark for browsing and ordering products of a
web shop, a new benchmark should comprise web interactions that
resemble the access patterns of Web 2.0 like applications. One
example is to add web interactions that allow users to write and
read reviews of individual products. Another idea, would be to add
web interactions that allow user communities to exchange the latest
news about certain products.

Moreover, on the same line of arguments, web 2.0 applications
often include multi media content (audio files, video files, pictures)
which can be accessed by users. This content produces heavy load
on the servers which host that content. Thus, we suggest that in-
dividual web interactions of a new benchmark should refer to such
content(e.g., by adding audio and video samples for the products of
a web-shop).

4.2 Benchmark Configurations
Similar to the TPC-W benchmark, we suggest that individual

runs of the benchmark can use different settings for the scale of
the database as well as choose between different web interaction
mixes (such as the Browsing mix, the Shopping mix, or the Or-
dering mix). However, as discussed before, in addition to these
configurations, we believe that the consistency level is another or-
thogonal parameter that can be varied by the cloud service provider
for the benchmark execution.

This consistency configuration parameter tackles the problem
that cloud providers usually offer different consistency guarantees
for their storage services ranging from the weak BASE guaran-
tees (Basically Available, Soft-State, Eventually Consistent) to the
strong transactional ACID (Atomicity, Consistency, Isolation, Dura-
bility) in order to support different kinds of web applications (e.g.,
ranging from non transactional applications to share personal data
to more transactional enterprise resource planning applications).
Consequently, in order to analyze the spectrum of different con-
sistency guarantees using a cloud benchmark on the one hand and
the need to produce comparable benchmarking results on the other
hand, we propose that such a new benchmark can choose between
three different levels of consistency:

• Low: All web interactions use only the BASE guarantees.
• Medium: The web interactions use a mix of consistency

guarantees ranging from BASE to ACID. For example, user
reviews can use the weak BASE guarantees while orders for
products need the strong transactional ACID guarantees (or
at least a higher SLA for the consistency).

• High: All web interactions use only the ACID guarantees.
Consequently, if a storage service of a particular cloud provider

does not provide the desired consistency level, either the bench-
mark can not be executed using this consistency level or the bench-
mark implementation must add additional functionality to the ap-
plication layer to provide the necessary consistency guarantees. We
suggest also that a new benchmark provides a test suite to analyze
if the system under test satisfies the consistency guarantees that are
needed by the given benchmark configuration.

The metrics that are reported by the cloud benchmark (see next
section) thus always refer to a certain setting including database
scale, web interaction mix, and consistency level.

4.3 Metrics
As discussed earlier, reporting the maximum number of WIPS

and the $ per WIPS is not useful in the context of cloud deploy-

ments. Instead, metrics are needed that explicitly focus on the char-
acteristics of cloud computing: scalability, pay-per-use and fault-
tolerance. In the following, we sketch out different metrics which
particularly try to measure the dynamic aspects of the cloud.

Scalability. Ideally, cloud services should scale linearly and in-
finitely with a constant cost per WI. Service restrictions, consis-
tency requirements, price plans and physical limitations can pre-
vent the perfect scaling. Hence, one of the main figures of a cloud
benchmark should report the scalability of the system.

We suggest to measure the scalability by increasing the issued
web-interactions per seconds over time and continuously counting
the web-interaction which are answered in a given response time
interval (e.g., 1 second). That is, the number of web interactions
issued against the system increases with a pre-set rate. Ideally, the
system scales linearly and answers all issued WIPS in the allowed
time-frame. In Figure 2, the blue-line shows the issued WIPS. This
line also corresponds to the perfect scaling. If the system does
not scale perfectly, more and more WI will not be answered in the
giving response time (RT) and hence less WIPS in RT are processed
(indicated as the red line in Figure 2). We suggest to measure this
deviation by using the correlation coefficient R2 or by determining
the parameters of a power function.

The correlation coefficient R2 is a value between 0 and 1, indi-
cating how well a predicting function fits the data. A value of 1
stands for perfect prediction whereas a value of 0 indicates a con-
stant behaviour. By setting the predicting function to the perfect
case (the linear scaling) the value indicates how strong the mea-
sured scalability deviates from perfect scalability.

Alternatively, we suggest to use non-linear regression to deter-
mine the parameter b of a power function of the form f(x) = xb.
Again, b is a value between 0 and 1, where 1 indicates perfect lin-
ear scaling. This method has the advantage that the function can
be used to make predictions about the scalability for a given work-
load. But at the same time, the method assumes a certain underly-
ing function which might not properly reflect the real behaviour.

Which of these (or other) methods is the most appropriate one to
measure the scalability is open for discussion.

Another difference to TPC-W is the running time of the bench-
mark. Assuming that perfect scaling does not exist, we suggest to
define the end of the benchmark as the time when the difference
between the Issued WIPS and the WIPS in RT exceeds a prede-
fined limit. Still, getting to this value might take arbitrarily long.
To overcome this issue, the benchmark should additionally define
a minimum execution time for which the results are assumed to be
sufficiently significant.

Cost. In the lines of the TPC-W benchmark, we propose to mea-
sure the cost in dollars per WIPS ($/WIPS). Thus, the cost of run-
ning the system (including all self-owned infrastructure and admin-
istration cost) is divided by the current WIPS rate. Ideally, the cost
is constant independently of the current scaling factor of the system
(perfect utility pricing). However, lot-sizes or price plans might
cause variations of the $/WIPS in respect to the current scaling fac-
tor. Figure 3 demonstrates the effect of lot-sizes on the cost per
WIPS. For example, the jump in the cost could be caused by addi-
tional EC2 instances which were required to handle the increased
load. An EC2 instance comes at a fixed cost which might consid-
erably increase the cost from one moment to another.

To cover this dynamic behaviour we suggest measuring not only
the average cost per WIPS but also the standard deviation of the
cost during the scaling. The deviation is an important indicator on
how the cost might vary and can help to better plan a system. A low

Time t

W
IP

S

Issued WIPS
WIPS in RT

Time t

$/
W

IP
S

Issued WIPS
$ / WIPS
Avg $ / WIPS

Time t

W
IP

S

Issued WIPS
WIPS in RT

Time t

W
IP

S

Issued WIPS
WIPS in RT

Figure 2: Scalability Figure 3: Cost Figure 4: Peaks Figure 5: Fault tolerance

value indicates perfect fine-grained utility pricing whereas a bigger
value corresponds more to a traditional non-cloud scenario.

Peaks. Next to the possibility to scale, another important property
of the cloud is to adapt to peak loads. That is, the focus is not only
on the scale-up but also on the scale-down after a peak. To measure
the behaviour, we suggest again to vary the issued WIPS over the
time as shown in Figure 4. In contrast to the scalability test before,
we now assume a certain base load which is only increased for a
short period of time.

As a result, the ratio between WIPS in RT and Issued WIPS can
be used to reflect the adaptability to peak loads. A value of 1 indi-
cates perfect absorbing of peaks, whereas a smaller value indicates
higher adaptation times. Additionally, as also shown in the Fig-
ure, the cost and cost standard deviation have to be measured. The
smaller and the more stable the cost the better suited is the system
for adapting to peak-loads.

This metric might be influenced by the base load and the ele-
vation of the peak. A too high base load might already push the
system to the scalability limit. The different load factors might also
result in different average costs. Furthermore, a slow increase in
the load is in general better absorbable than fast and sudden in-
creases. Thus, we suggest using several variations of the base load
and peaks which are pre-defined by the benchmark. This would
also allow for an interesting variation for the peak-metric. Hence
it would be possible to report the maximum elevation until the ra-
tio, as defined before, becomes smaller than 1. Thus, the elevation
factor indicates the maximum load increase which can be absorbed
without user notice.

Fault tolerance. The final metric concerns the failure behaviour
of the system. All cloud service implementations that we are aware
of base their main infrastructure on commodity hardware. In such
deployments, hardware failures are common and not the exception.
Hence, a cloud benchmark should not only treat the best case, but
also cover how the system behaves in the presence of failures.

The first issue when creating a failure metric is defining what has
to fail. We suggest that a certain percentage of the resources used
for the application is shut down - regardless if it is a storage service
or an EC2 instance. If shutting down the resource is not possible in
a fine-granular way, the next resource lot size has to be used (e.g.
a complete EC2 instance). Figure 5 indicates this induced failures
by the stars. As most cloud computing resources are self-healing,
the resources are automatically replaced. Hence, the shutdown of
resources can be repeated several times.

Similar to the experiments before, the ratio between WIPS in
RT and Issued WIPS is calculated. A ratio of 1 indicates that the
system is completely reliable and can deal with the induced failures
in a perfect manner.

Obviously, the failure metric is influenced by the percentage of
failures. Choosing a representative percentage or varying the sce-

nario are both valid solutions and open for discussion. Again, al-
ternatively to the ratio it might also be possible to report the maxi-
mum percentage of failures without a drop in the ratio. In contrast
to the previous metrics, the failure behaviour is most likely only
reportable by cloud providers and not cloud users.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we wanted to start an outstanding discussion about

the question why existing benchmarks are not adequate for the
cloud. Thus, we first showed some arguments, why the existing
TPC-benchmarks fall short when analyzing the elastic cloud ser-
vices. Moreover, we presented a list of requirements for a new
cloud benchmark and discussed some initial ideas towards such a
benchmark (including some new metrics).

As a part of our future work we want to detail our initial ideas
and come up with a more detailed the benchmark specification.
Moreover, we plan to implement a first version of such a new cloud
benchmark that is based on our ideas and apply it to different cloud
architectures.

6. REFERENCES
[1] 28msec, Inc. Sausalito, Apr. 2009. http://www.28msec.com/.
[2] Apache. HBase, Apr. 2009. http://hadoop.apache.org/hbase/.
[3] M. Armbrust et al. Above the clouds: A berkeley view of cloud

computing. Technical Report UCB/EECS-2009-28, 2009.
[4] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann, and T. Kraska.

Building a database on S3. In Proc. of SIGMOD, 2008.
[5] E. A. Brewer. Towards robust distributed systems. In Proc. of PODC,

page 7, 2000.
[6] M. Cafarella et al. Data management projects at Google. ACM

SIGMOD Record, 37(1):34–38, 2008.
[7] J.-D. Cryans, A. April, and A. Abran. Criteria to Compare Cloud

Computing with Current Database Technology. In
IWSM/Metrikon/Mensura ’08: Proceedings of the International
Conferences on Software Process and Product Measurement, pages
114–126, 2008.

[8] Facebook. Cassandra - A distributed structured storage system, Apr.
2009. http://cwiki.apache.org/confluence/display/CSDR/Index.

[9] S. Garfinkel. An evaluation of Amazon’s grid computing services:
EC2, S3 and SQS, 2007.

[10] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, 2002.

[11] B. Hayes. Cloud computing. Commun. ACM, 51(7):9–11, 2008.
[12] Heroku. Heroku - Instant Ruby Platform, Apr. 2009.

http://heroku.com/.
[13] TPC. TPC-W Benchmark 1.8. http://www.tpc.org/tpcw/, 2002.
[14] TPC. TPC-H Benchmark 2.8. http://www.tpc.org/tpch/, 2008.
[15] TPC. TPC-C Benchmark 5.10.1. http://www.tpc.org/tpch/, 2009.
[16] W. Vogels. Data access patterns in the Amazon.com technology

platform. In Proc. of VLDB, page 1, Sep 2007.

