
BeeBox: Hardening BPF against Transient Execution Attacks

Di Jin
Brown University

Alexander J. Gaidis
Brown University

Vasileios P. Kemerlis
Brown University

Abstract
The Berkeley Packet Filter (BPF) has emerged as the de-facto
standard for carrying out safe and performant, user-specified
computation(s) in kernel space. However, BPF also increases
the attack surface of the OS kernel disproportionately, es-
pecially under the presence of transient execution vulnera-
bilities. In this work, we present BeeBox: a new security
architecture that hardens BPF against transient execution at-
tacks, allowing the OS kernel to expose eBPF functionality
to unprivileged users and applications. At a high level, Bee-
Box sandboxes the BPF runtime against speculative code
execution in an SFI-like manner. Moreover, by using a com-
bination of static analyses and domain-specific properties,
BeeBox selectively elides enforcement checks, improving
performance without sacrificing security. We implemented a
prototype of BeeBox for the Linux kernel that supports popu-
lar features of eBPF (e.g., BPF maps and helper functions),
and evaluated it both in terms of effectiveness and perfor-
mance, demonstrating resilience against prevalent transient
execution attacks (i.e., Spectre-PHT and Spectre-STL) with
low overhead. On average, BeeBox incurs 20% overhead in
the Katran benchmark, while the current mitigations of Linux
incur 112% overhead. Lastly, BeeBox exhibits less than 1%
throughput degradation in end-to-end, real-world settings that
include seccomp-BPF and packet filtering.

1 Introduction

The Berkeley Packet Filter (BPF) [9, 74] is increasingly gain-
ing traction as an in-kernel, “universal” virtual machine
(VM): that is, a generic mechanism for extending or customiz-
ing OS kernel functionality by “pushing” (i.e., performing)
user-specified computation(s) in kernel space, in a safe and
performant manner. BPF greatly improves the efficiency of
certain tasks by moving application logic closer to where data
is generated, processed, or received, thereby reducing kernel-
to-user I/O and avoiding expensive context switches. It en-
ables a plethora of mature and emerging applications, includ-
ing security monitoring and policy enforcement [23, 69, 96],

high-performance networking [36, 95], observability and trac-
ing [46], storage [104], as well as scheduling [39]. More
importantly, many BPF applications require, or can benefit
from, allowing the use of the BPF infrastructure in an unpriv-
ileged manner [19]. Unfortunately, however, BPF increases
the OS attack surface [50], and it has been extensively used
as the underlying apparatus for mounting transient execution
attacks [11] against the kernel (from userland).

Transient execution attacks abuse the speculative-code
execution capabilities built into modern CPUs, effectively
leaking data through (forced) mis-speculation and side chan-
nels [33, 71]. BPF facilitates such attacks [55, 56] as BPF
code can be highly customizable and is executed in the
same context as the OS kernel itself, hence bypassing de-
ployed defenses [32, 41]. Modern OSes place a wide range
of security-sensitive data in kernel space, such as crypto-
graphic material [63], the memory contents of user processes
(i.e., physmap/direct map) [53], as well as (secret) meta-
data that impact the effectiveness of system-wide security
protection mechanisms, like (K)ASLR [25]. Hence, it is of
paramount importance to mitigate such BPF-based informa-
tion leakage, especially in the presence of unprivileged BPF.

The Linux kernel currently deploys a combination of miti-
gations [58] against BPF-assisted, transient execution attacks,
including: (1) selectively blocking speculative code execution;
(2) limiting pointer arithmetic operations; and (3) verifying
the safety of all branch-instruction combinations, even when
some of them are impossible. As we discuss in Section 3,
these mitigations primarily extend the BPF code verification
and interpretation/JITing process via a collection of ad-hoc
checks. This approach of progressively retrofitting security
to the BPF infrastructure has caused a range of problems, in
terms of usability and performance, without providing clear
protection guarantees [8,91,92]—and, as expected, it has also
led to various bypasses [7, 29, 57]. For these reasons, Linux
distributions restrict eBPF to privileged users only [19]. In
this work, we propose BeeBox: a new BPF security architec-
ture that protects against transient execution attacks through
a principled, security-first design approach.

The main idea behind BeeBox is to sandbox the BPF data
in an SFI-like (software fault isolation) [99] manner. More-
over, by using static analysis and various domain-specific
properties, BeeBox elides enforcement checks to improve
performance, without sacrificing security. BeeBox improves
the security posture of BPF, thereby allowing unprivileged
users to safely reap the benefits of the BPF (sub)system and
utilize it to its full potential.

In summary, we make the following contributions:

• We present the design of BeeBox, a security architec-
ture against challenging and prevalent transient execu-
tion attacks in BPF—namely, Spectre-PHT and Spectre-
STL [56]—, which isolates sensitive data from BPF’s
speculative execution reach. Our design also covers the
security of BPF helper functions and cBPF.

• We provide a prototype implementation of BeeBox,
which supports popular BPF applications, as well as a
collection of tools and methods that simplify the future
expansion of BeeBox’s supported features.

• We evaluate our prototype on synthetic and real-world
BPF programs and workloads, demonstrating that Bee-
Box provides increased security, compatibility, and
efficiency than Linux’s current mitigations. BeeBox
achieves 0–23% overhead in kernel micro-benchmarks,
and < 1% overhead in end-to-end, real-world settings.

2 Background

2.1 Kernel Security
OS kernels are usually the most privileged piece of software
on a system, making them a lucrative target for attackers.
Unfortunately, OS kernels are typically written in memory-
and/or type-unsafe languages, which are prone to memory
errors [97]. An attacker armed with a memory corruption vul-
nerability in the kernel can tamper with control data (e.g., code
pointers [59]) to hijack the kernel’s control flow and even-
tually gain arbitrary code execution [54, 81]. The current,
predominant technique for achieving arbitrary code execution
is code reuse [10], where an attacker chains together snippets
of existing (i.e., benign) code “out-of-context.”

Several defense strategies have been proposed to mitigate
code-reuse attacks, with the most popular relating to infor-
mation hiding or integrity checking. Schemes of the former
attempt to conceal sensitive information by either randomiz-
ing [25] or diversifying [26, 60] the layout of memory, or by
employing new memory protection policies, such as execute-
only memory (XOM) [83, 89]. Schemes of the latter attempt
to ensure that computed control-flow transfers are valid ac-
cording to a given policy [5, 28, 59, 61]. Another technique
for defending against code-reuse attacks in the kernel relies
on isolating kernel memory from the attack payload, since
real-world exploits may require complex payloads that do not

fit into a limited corrupted region. Defenses in this direction
prevent the kernel from using attacker-controlled payloads in
user space [20, 54, 103] or in kernel memory regions that are
effectively user-controlled [50, 53].

Privilege escalation can also be achieved by data-only
attacks [38, 47], where, instead of control-flow data, the at-
tacker overwrites targeted data and escalates privilege with-
out triggering any control-flow integrity violations. Defenses
against generic data-only attacks, including DFI (data-flow
integrity) [16] and full memory safety [76, 77], remain im-
practical for performance reasons. Selective isolation schemes
such as xMP [84] and ISLAB [75] were proposed to protect
critical data such as page tables, process credentials, and mem-
ory management metadata.

Apart from privilege escalation, another goal of kernel at-
tacker is information disclosure, which can be leveraged to
obtain sensitive information managed by the kernel, such as
cryptographic keys or secrets of other processes [53]. How-
ever, exploiting memory vulnerabilities in software is not
the only way to achieve information disclosure; hardware
vulnerabilities, like Meltdown [56] or cache-based side chan-
nels [33, 71], are an effective, alternate route.

2.2 Berkeley Packet Filter
Overview. BPF [74] was originally designed to accelerate
network monitoring by performing user-defined packet filter-
ing in-kernel rather than in user space. Since its inception,
BPF has grown into a generic facility in Linux that acts as a
universal, in-kernel VM for user-defined computation [18].

While BPF continues to support efficient networking appli-
cations, such as packet filtering [31] and load balancing [80],
a variety of other applications capitalize on it to increase
security and support new functionality. Several popular appli-
cations, such as Docker, Firefox, Chromium, and OpenSSH,
employ seccomp-BPF [69] to filter system calls (syscalls) ac-
cording to user-defined policies, with recent research explor-
ing automatic generation [23] and secure enforcement [27] of
syscall policies. Additionally, BPF underpins many tracing
tools [9], since users can attach BPF programs to Kprobes
(kernel probes) [93], granting increased visibility into the
workings of a system. Other use cases for BPF include re-
ducing context switching overhead in FUSE (Filesystem in
USErspace) [6] and improving throughput and latency of the
kernel’s storage stack [104].

Design. When a BPF program is pushed into the kernel, it is
first verified for safety and then attached to a kernel hook point.
Later, when a requisite event fires (e.g., a syscall is made or a
packet is received), the installed program is executed. Linux
currently supports two types of BPF: classic BPF (cBPF) and
its more feature-rich successor, extended BPF (eBPF). The
typical use cases for cBPF involve syscall [69] and packet
filtering [31]. The cBPF machine abstraction consists of two
32-bit registers and 64 bytes of addressable scratch memory.

cBPF code is translated internally to eBPF, allowing the
kernel to maintain a single BPF runtime. eBPF greatly ex-
pands upon cBPF’s capabilities and use-cases, offering: 10
general-purpose, 64-bit registers; a read-only frame-pointer
register; and up to 512 bytes of addressable scratch memory
(i.e., stack space). The instruction set of both cBPF and eBPF
allows for memory loads and stores, moving values between
registers, ALU operations, and branching. However, eBPF ad-
ditionally provides the ability to call kernel-native functions,
dubbed helpers [1], from within eBPF programs. Helpers pro-
vide various utilities and help maintain BPF maps—a variety
of data structures implemented atop generic, kernel-resident
key/value stores that allow eBPF programs to persist state
across invocations and expose data to userland. All BPF pro-
grams also have types, which inform the kernel where the
programs can be attached, what helpers and maps can be ac-
cessed, and what context (i.e., arguments and data) should be
provided with upon invocation [68]. For example, an eBPF
program with type xdp (BPF_PROG_TYPE_XDP) will run on a
network device and the context passed to it will consist of
pointers to the raw packet data, which can be used to perform
packet rewriting and forwarding.

Safety and Security. BPF is designed to be safe to run within
kernel context. To achieve that, when BPF programs are
loaded into the kernel they pass through a static verifier, which
is guaranteed to be sound but not complete—i.e., a safe pro-
gram may be rejected, but an unsafe program will not pass.
The BPF verifier ensures similar properties for both cBPF and
eBPF, but verifies them separately, performing a much simpler
analysis for cBPF programs. For eBPF, the verifier mainly
verifies three properties: (1) program termination; (2) memory
safety; and (3) type safety when calling helpers. For (1), the
verifier simply ensures that all branching instructions only
“jump forward.” For (2) and (3), the verifier uses static analy-
sis techniques to determine the register types, whether they
are pointers or scalars, etc. For a scalar, the analysis tries to
figure out the range of its possible values; for a pointer, the
analysis needs to determine what kind of memory it points to
and whether it points within bounds. Further, the BPF verifier
is also in charge of rewriting BPF program code to adjust
helper-call targets and inline various helpers as BPF instruc-
tions when possible. Unfortunately, while performing static
analysis to avoid runtime checks is crucial for the perfor-
mance of BPF, the verifier is known to be error prone [62]
and susceptible to speculative execution attacks (§3).

Support. Both LLVM and GCC maintain eBPF backends,
which compile programs written in C-like syntax to eBPF
ELF files. Additionally, both of these BPF compilers—which
are different from the in-kernel (BPF) JIT compiler—provide
various utilities for working with eBPF ELFs. In a similar
vein, libbpf [2] is a C library maintained by the Linux kernel
which provides a low-level API for loading eBPF ELFs and
managing eBPF programs, maps, and events from userland.

2.3 Transient Execution Attacks

Modern CPUs maximize their performance by employing
various techniques to avoid CPU idling, such as out-of-order
execution and speculative execution [35]. Instructions that
are executed out-of-order, or speculatively, but never com-
mitted to the CPU’s architectural state are considered to
be transiently executed. Although transiently executed in-
structions are never architecturally visible, they can leave
observable side effects in the CPU’s micro-architectural state
(e.g., the cache [56], load ports [90], line-fill buffers [98], store
buffers [14]). This has enabled transient execution attacks,
where an adversary coerces the CPU into transiently access-
ing unintended information before using micro-architectural
side channels [33, 71, 98, 100, 102] to leak information.

The Spectre family of attacks is one class of transient exe-
cution attacks that abuse CPU predictors, via (mis)training or
tampering, to trigger speculative execution of instructions that
access sensitive data, which can later be inferred through side
channels. There are a handful of Spectre variants, classified by
the CPU predictor they target. Spectre-PHT (Spectre-v1) [11]
targets the pattern history table (PHT)—used to predict the
outcome of conditional branches—to trigger the speculative
execution of instructions preceded by a conditional branch.
Spectre-BTB (Spectre-v2) [56] targets the indirect branch pre-
dictor, i.e., the branch target buffer (BTB), to trigger the spec-
ulative execution of forward-edge indirect branches. Spectre-
STL (Spectre-v4) [48] abuses the memory disambiguator to
load data before a prior, dependent store completes.

A variety of defenses have been proposed to address tran-
sient execution attacks, spanning both software [17] and hard-
ware [37]. In the Linux kernel, the Spectre-PHT mitigation
relies on developer annotations to identify when an array
index is not trusted and add bit-wise operations to bound
array indices during mis-speculation [65]. Spectre-BTB is
mitigated via retpolines [43] and IBRS [41].

There are other root causes of transient execution, but
predictor-based speculation and unexpected exceptions are
the most prevalent and well-researched [85]. For exception-
based transient execution attacks such as Meltdown [56] and
Fallout [14], the problems are typically fixed through hard-
ware changes [45], since it is generally clear what should
happen in such situations: transient execution should respect
potential exceptions. For predictor-based transient execution,
isolation can be enforced such that the predictors cannot be
influenced across contexts [41, 44] (e.g., influencing the ker-
nel from userland), which can mitigate attacks that rely on
abusing shared micro-architectural states [11, 72]. But for
intra-context attacks, the safety of speculation is inherently
software-defined, and solutions that prevent speculation, in
general, are expensive [56]. Hence, selective application of
various mitigations (such as lfence [40] or SSBD [13]) in tar-
geted places is recommended by vendors [42] and has begun
to receive attention by researchers [24].

3 Motivation

The combination of BPF and Spectre attacks allows an adver-
sary to mount transient execution attacks to leak sensitive data
from the kernel with little noise and without reliance on soft-
ware vulnerabilities [55,56]. As a result, eBPF functionality is
disabled by default for unprivileged users [19,87,94]. Features
that use cBPF, such as seccomp-BPF, have seen proposals to
support eBPF, but were rejected due to the complexity and dif-
ficulties that stem from maintaining certain mitigations [51].
Yet, the full set of BPF functionality is desirable for a lot of
applications. Apart from seccomp-BPF, there are a plethora
of proposed applications that try to use BPF in an unprivi-
leged manner, including high-speed storage systems [104]
and scheduling [39, 52]. XDP-based applications [36], such
as Cillium [95] and Katran [80], would also benefit from a
reduction in privilege required by the BPF runtime.

Currently, if unprivileged BPF is enabled, the BPF veri-
fier and JIT engine are responsible for applying BPF-specific
Spectre mitigations at load time [58], which we collectively
refer to as Linux provisional mitigations (LPM). For Spectre-
PHT, the verifier rewrites pointer arithmetic to bound results
within a given object, similar to the array_index_nospec
macro [65]. To protect type safety under Spectre-PHT, the
verifier’s static analysis enforces type consistency across all
combinations of branch choices, even impossible ones (e.g., a
path where two branches with contradicting conditions are
both taken). For Spectre-BTB, the JIT engine adds instrumen-
tation for indirect branches in accordance with the kernel-
wide defenses (such as retpolines [43]). For Spectre-STL, the
verifier emits speculation barriers (e.g., lfence [40]) after
stores to the stack, whenever pointers are involved.

A summary of defenses the Linux kernel deploys against
transient execution attacks is provided in Table 1. Spectre-
BTB and Meltdown are mitigated by generic, kernel-wide
defenses, such as retpolines [43], IBRS [41], and KPTI [66],
while generic Spectre-PHT and Spectre-STL defenses, such
as SLH [15, 82] and SSBD [13], are expensive to apply to the
whole kernel. Consequently, the LPM defend against these
attacks specifically in the context of BPF; however, the LPM
have various issues regarding compatibility, complexity, scope,
and performance, which we summarize below.

Compatibility. The LPM introduce additional analysis com-
plexity and safety requirements to the verifier, causing it to
reject (previously) safe code patterns in BPF programs. For
example, Cillium [95] breaks because it performs variable-
offset stack accesses, and Katran [80] breaks because it re-
quires conditional pointer arithmetic. In addition, valid BPF
programs experience verifier state explosion due to the veri-
fication regarding impossible branch combinations (§7.1.3).
This places a burden on application developers to either ad-
dress the verifier’s requirements by rewriting code patterns
targeted by the mitigations, or decide to forgo protection and
load the program with elevated privilege.

Complexity and Scope. The LPM were formed over time,
in an ad-hoc manner, as a response to repeated bypasses
of Spectre-PHT and Spectre-STL mitigations caused by in-
completeness and/or corner cases [7, 29, 57]. Progressively
retrofitting security in this manner adds complexity to the
BPF (sub)system that makes it difficult for kernel developers
to reason about the safety of interactions between proposed
verifier changes and the LPM [8, 91, 92]. Further, despite all
this added complexity, the mitigations still provide incomplete
protection, not covering cBPF or native BPF helper functions.

Performance. The mitigation against Spectre-STL inserts
speculation barriers (e.g., lfence) after any pointer spill, and
subsequent load, targeting the same stack slot. As a result,
the LPM incur significant runtime overhead, especially in
non-trivial BPF programs (§7.2.2). In general, it is difficult
to stop mis-speculation in a way that does not hinder perfor-
mance [12], which is the root cause of complexity in LPM.

4 Threat Model

Adversarial Capabilities. We assume an attacker that has
access to BPF functionality and seeks to disclose sensitive
information from the kernel. The attacker also has the ap-
propriate rights to use the desired types of BPF programs
(e.g., cap_net_admin for XDP), but is otherwise unprivileged.
We do not assume the attacker can install BPF programs with
cap_perfmon, since this capability can disclose a wide range
of sensitive values already (such as register values at any
point) [67]. As a result, performance-related BPF types are
not available to the attacker, like the BPF programs that attach
to Kprobes [93] and tracepoints [9].

As an unprivileged user of the system, the attacker can cre-
ate any BPF program in the kernel that passes verification,
as well as control the contents of BPF maps within allowed
semantics. The attacker is also assumed to have the ability
to arbitrarily trigger speculation at any point between the en-
try and exit of their BPF program, including when it invokes
helper functions—these are only limited by potential specula-
tion barriers. Under such speculative execution scenarios, the
attacker can also arbitrarily flip conditional jumps and skip or
forward any store to any load targeting the same address.

Hardening Assumptions. Regarding the kernel, we assume
that the concrete execution of any kernel or BPF-runtime code
is safe, and that there are no errors in the BPF verifier or JIT
engine. Any execution of kernel code, concrete or speculative,
before and after execution of a BPF program, is also assumed
to be safe—i.e., the kernel does not leak any sensitive informa-
tion into BPF programs’ speculation, nor does it incorrectly
use unsafe values after BPF programs’ speculation. The only
defense against Spectre-PHT and Spectre-STL for BPF is
BeeBox. Further, we assume that the kernel has appropriate
defenses, in either software or hardware, against other cross-
privilege transient execution attacks, such as Meltdown [56].

Category Feature LPM [58] retpoline [43] IBRS [41] KPTI [66] BeeBox

Security

Block Spectre-PHT in BPF code ✓ ✓
Block Spectre-PHT in BPF helpers ✓
Block Spectre-STL in BPF code ✓ ✓
Block Spectre-STL in BPF helpers ✓
Block Spectre-BTB ✓ ✓
Block Meltdown ✓

Compatibility Allow conditional ptr. arithmetic in unpriv. BPF ✓
Avoid verifier state explosion in unpriv. BPF ✓

Table 1: Existing Linux kernel defenses and BeeBox’s coverage over transient execution attacks and compatibility features.

poison region

poison region

beebox_2

beebox_1

...

VMALLOC_END

beebox_2

BPF Map

BPF Map

BPF Stack Region 1

BPF Stack

Context

Interrupted BPF Stack

Interrupted Context
...

JITed BPF
regs

r1

r2

...

fp

ctx

boxbase

3

2

4

1

Figure 1: The memory layout of BeeBox. The left part repre-
sents the CPU register states when a JITed BPF program is
running; the middle part is a magnified view of the memory
layout of a beebox; and the right part represents the virtual
address space, where beeboxes are placed after the VMALLOC
region, with a 4GB poison region in-between adjacent pairs.

Defenses against memory errors, such as control-flow in-
tegrity [5], page-table protection [22], pointer integrity [59],
and data isolation schemes [75,84] are orthogonal to BeeBox.

5 Design

The goal of BeeBox is to prevent BPF programs from access-
ing sensitive data, even under speculative execution. Fortu-
nately, the majority of data that BPF programs access (e.g., the
BPF stack and BPF maps) are designed to be visible to users.
This key observation allows BeeBox to identify what data
should be isolated, which does so by leveraging SFI tech-
niques [99], tailored to the speculative execution domain.
Specifically, BeeBox places all data a given BPF program
will access inside a dedicated memory region, called beebox,
and applies SFI-style isolation to the program, confining all
of its memory accesses to this region. BeeBox thus ensures
memory safety, as the BPF program can only access data in-
side the beebox—concretely or speculatively—, which does
not contain any sensitive data.

5.1 BeeBox Sub-address Space

BeeBox isolates data directly accessed by BPF programs in
beeboxes, as shown in Figure 1. A beebox is created for
each user, such that no information can be leaked to, or from,
other users (including user root). For example, as shown
on the right of Figure 1, beebox_1 and beebox_2 are two
separate beeboxes that were created for two different users. In
addition, 4GB poison zones are placed between each beebox
to support optimizations (§5.4). The kinds of memory objects
placed inside each beebox sub-address space are magnified
in the middle portion of Figure 1 and described below.

BPF Stack. The BPF stack is a region where BPF programs
can temporarily store intermediate computation results that
are not semantically shared with other components (e.g., the
kernel itself or user applications). Since BPF programs are
executed with {CPU, core}-migrations disabled—i.e., the
BPF program invocation will stay on the same CPU—, we
allocate a BPF stack region for each CPU in a beebox.

BPF Maps. BPF maps hold user-owned data, which can be
accessed by both BPF programs and their corresponding user
process (via the bpf system call). To support maps securely,
their defining data structures are split: map data and some
metadata essential to map operations (e.g., lookup and up-
date) are safely placed in the beebox, since their contents are
either controlled or can be inferred by the user; the remaining
metadata used by the kernel itself (e.g., associated function
pointers) remain outside of the beebox. Some metadata, such
as the map size, are duplicated for the kernel code to access,
because their copy in beebox is untrusted under speculation.

BPF Context. Handling contexts poses unique challenges
since context data structures can interleave private kernel
data and BPF-accessible data. For example, a BPF pro-
gram of type BPF_PROG_TYPE_SOCKET_FILTER will receive
a struct sk_buff in its context that has a large number of
fields, out of which only a handful are made accessible to
the BPF program itself (via struct __sk_buff). For these
BPF program types, BeeBox copies the relevant parts of the
context data structure that are visible to the BPF program into
the BPF stack region. In cases where private kernel data is not
interleaved with BPF-accessible data, the context data struc-
ture is usually generated and filled on the kernel’s stack, just
before the BPF program’s invocation (as in seccomp-BPF).

Here, the non-interleaved context can be generated on the
BPF stack region and no other changes are required. Network-
related BPF programs usually have access to a packet buffer,
and a pointer to a packet, which, in this case, is part of the
context object. This is a common pattern in BPF, and the
packet can be seen as an extension to the context. Through
accurate static analysis done by the BPF verifier, accesses to
these packets are identified and protected against overflowing.
We handle packets the same way we handle context: we copy
them into beebox. Note that copying context data structures
(and packets) can be costly; we designed certain optimizations
that can be applied to different types of BPF programs (§5.4).

Space Considerations. The size of the beebox region is 4GB.
We chose this size mainly to allow for efficient SFI instru-
mentation (§5.2). Additionally, the stack region of each CPU
reserved for BPF programs should be (c+ p) · l + s, where: c
is the size of the largest context, p is the size of the largest
packet we allow BPF to handle, l is the level of nested inter-
rupts which can have BPF running, and s is the size of the
kernel stack. This equation stems from the fact that all BPF
stack frames are allocated on the kernel stack in the vanilla
Linux kernel, and each nested interrupt can have at most c+ p
bytes added on top of that. We have chosen the total reserved
area per-CPU to be 280KB to cover p = 64KB, c = 4KB,
l = 4, and s = 8KB. (These sub-regions are allocated and
mapped during bootstrap, so they cannot be arbitrarily sized.)

5.2 Securing BPF Programs

Instrumentation. BeeBox uses SFI-style isolation to ensure
pointers used by a BPF program are confined to a 4GB
beebox region that contains only user-accessible data. Point-
ers embedded in a BPF program during JITing, and point-
ers passed to the program by the calling context, are trans-
formed into boxptrs: 32-bit offsets within the beebox region.
When a memory access needs to be performed, a usable 64-bit
pointer is created from a given boxptr by clearing the upper
32 bits of the boxptr and adding the result to a register—the
boxbase register—, which contains the starting address of
the beebox region (1 in Figure 1). To initialize the boxbase
register, the JIT engine emits a native instruction at the be-
ginning of a BPF program which loads the base pointer, en-
coded as an immediate value, into the boxbase register. The
boxbase register is never spilled or used in any other way,
ensuring it cannot be controlled speculatively (or leaked); Bee-
Box guarantees the target of memory accesses from within
BPF programs are always confined inside the beebox region.
(Figure 3 shows an example of this transformation in x86-64.)

BPF Stack. There is a per-CPU pointer keeping track of
the current top of the BPF stack allocated by BeeBox. The
pointer is updated by locally atomic instructions to be safe
against interrupts, since BPF programs can run with interrupts
enabled and can also be invoked within interrupt context.

beebox

ST-Hardened Helper

Kernel Data

Original Context

Context

BPF Map

BPF Stack

SU-Hardened Helper

regs

r1

r2

r3

...

...

boxbase

regs

r1

r2

r3

...

boxbase

ctx...

7

8

5

9

6

Figure 2: Memory layout and CPU states when helper func-
tions are executed. Blue indicates the value is speculatively
trusted; yellow indicates otherwise. The left part represents
the CPU state when running an SU-hardened helper; the right
part corresponds to running an ST-hardened helper.

BeeBox modifies the JIT compiler to emit inlined prologues
and epilogues to move the BPF stack pointer and set the frame
pointer register accordingly (2 in Figure 1).

BPF Maps. When BPF maps are accessed by the kernel on
behalf of the user’s query via system calls, the kernel uses nor-
mal pointers to dereference the map data inside a beebox (in-
stead of boxptrs). However, values loaded from the beebox
speculatively should not be trusted and should be handled
safely (e.g., masking the value before using it), which is con-
sistent with the kernel’s current security model regarding user
input [70]. When BPF maps are accessed directly from BPF
programs (e.g., 3 in Figure 1), BeeBox uses 32-bit boxptrs,
and the metadata is either embedded in the JITed program
or looked up from the copy inside beebox. When BPF maps
are accessed by helpers, the BPF program passes boxptrs to
(modified) helper functions which use them safely.

BPF Context. Regardless of whether private kernel data is
interleaved with BPF accessible data, BeeBox transforms the
context pointer (4 in Figure 1) into a boxptr at the callsite
of the kernel that invokes a given BPF program. If the context
includes a packet, the packet is also copied into the beebox.
All pointers in the context data structure that point into the
packet are also converted to boxptrs.

5.3 Securing Helper Functions
There are two hardening strategies for securing BPF helper
functions. SU-hardening (Speculatively Untrusted, §5.3.2)
protects helper functions such that they can be safely run
during (untrusted) speculation. ST-hardening (Speculatively
Trusted, §5.3.3) ensures that helper functions are run under
the precondition that there is no influence from untrusted
speculation. Figure 2 illustrates the memory layout and CPU
states when helper functions are executed under both schemes.

1 bpf_get_current_uid_gid:
2 mov rax, QWORD PTR gs:0x1ad00 # struct task_struct
3 test rax, rax
4 je 1f
5 mov rax, QWORD PTR [rax+0x638] # struct cred
6 mov rax, QWORD PTR [rax+0x4] # uid, gid
7 ret
8 1:
9 mov rax, 0xffffffffffffffea # -EINVAL

10 ret

Listing 1: A compiled helper function, bpf_get_current-
_uid_gid, where all memory loads are via clean pointers.

5.3.1 Clean Pointers

We first introduce the definition of clean pointers, an im-
portant concept for our discussion later. All memory accesses
using boxptrs can be confined with BeeBox’s SFI scheme
(§5.2); however, certain BPF helpers use native pointers
that point outside of a beebox, and hence cannot be trans-
formed into boxptrs. These native pointers can potentially
be speculatively-hijacked by the BPF program, escaping Bee-
Box’s defense. Since we assume the correctness of the helper
functions’ concrete execution, we can avoid speculatively
targeting unsafe locations by placing speculation barriers
(e.g., lfence instructions) before native pointer dereferences.
This naïve solution can be greatly improved upon with a
key insight: native pointers in helper functions that are un-
influenced by any untrusted input (e.g., arguments passed
from BPF programs) do not require a preceding speculation
barrier—they can be safely dereferenced without leaking sen-
sitive kernel data. We consider such pointers as clean.

Clean pointers are identified by static taint analysis, where
the sources of taint are untrusted input (e.g., helper function
arguments, values loaded from the beebox region, values
loaded from the stack). If a native pointer is not tainted when
dereferenced, then the dereference is considered to be done
via a clean pointer. (boxbase is handled like a clean pointer.)
Importantly, clean pointers are native pointers, so their values
must be prevented from leaking into attacker visible realms
(e.g., beebox memory and the branch predictor). Also, clean
pointers are read-only, because any write to a kernel address
can contaminate future reads to that address (as specified by
our threat model), which may compromise the “cleanliness”
of other (clean) pointers derived from the address.

Listing 1 shows a BPF helper function, bpf_get_current-
_uid_gid, which is used for getting the current task’s user ID
(UID) and group ID (GID). This function uses three native
pointers to: get the current struct task_struct (line 2);
extract its security context, struct cred (line 5); and read
the task’s UID and GID together, as a single quadword (line 6).
Since all memory accesses in the function refer to private
kernel data, and since all pointers are uninfluenced by BPF
program data, all three native pointers are considered clean
pointers and do not require any hardening from BeeBox.

5.3.2 Speculatively Untrusted Hardening

Speculatively untrusted hardening (SU-hardening) assumes
that the execution of BPF helper functions can be run un-
der untrusted speculation. Given this, BeeBox ensures that:
(1) all memory accesses into the beebox by the helper are
SFI-hardened (6 in Figure 2); (2) no native pointers are
leaked into the beebox; and (3) all memory accesses to ex-
ternal (i.e., kernel) data are either prefixed with a speculative
barrier or accessed via a clean pointer (5 in Figure 2). As
far as (2) goes, BeeBox modifies the helpers to store the local
variables using the BPF stack, instead of the kernel stack,
while keeping the return addresses outside of beebox. This is
to prevent the attacker from mounting a Spectre-STL against
stale kernel stack values through the helper.

Since SU-hardening requires speculation barriers prior to
external memory accesses that are not through clean pointers,
this technique is better suited to BPF helper functions that do
not access lots of external data. For example, certain utility
helpers (e.g., bpf_strtol) and the majority of BPF map
helpers only operate on information already in the beebox.
However, some helpers that do access external data mainly
through clean pointers (e.g., bpf_get_smp_processor_id)
do benefit from this approach as well.

SU-hardening is achieved through three main steps. First,
the interface between BPF programs and helper functions
is modified to replace native pointers with boxptrs, which
maintain their 32-bit representation throughout the helper’s
execution. Since boxptrs cannot be accessed directly, they
go through a special C macro, unbox, which applies SFI in-
strumentation and makes the boxptrs usable. (The unbox
macro uses the volatile keyword to nail down the exact
point of dereference in the compiled code and avoid spilling
any native pointers before they are used.) Second, BeeBox
ensures that helper functions maintain the “cleanliness” guar-
antee of the boxbase register by ensuring it is only used in
the unbox macro and never spilled to the stack or overwritten.
Finally, BeeBox ensures that external memory accesses are
exclusively done via clean pointers, else they are prefixed
with a speculation barrier. (This is currently done manually; a
binary analysis tool based on our clean pointer identification
algorithm is needed if one wishes to automatically ensure
function is safe. We leave this for future work.)

5.3.3 Speculatively Trusted Hardening

Speculatively trusted hardening (ST-hardening) secures a
helper by providing the guarantee that all speculation in a
given BPF helper function will be safe, and thus no additional
considerations are needed for accessing kernel data (7 in
Figure 2). This hardening technique is fitted for helper func-
tions that access kernel data much more than data produced
by BPF programs. For example, bpf_skb_clone_redirect
will clone the sk_buff passed in, which involves accessing a
lot of kernel data, including the heap allocator’s metadata.

To achieve this guarantee, BeeBox sanitizes any data flow
originating from the calling context or the beebox. Thus, at
a given helper’s entry point, all boxptrs are converted into
native pointers and a speculation barrier is inserted to avoid
speculative execution on unsafe arguments. Additionally, ac-
cessing beebox memory requires a speculation barrier (8
in Figure 2), which is provided by another utility macro Bee-
Box defines. By default the speculation barriers are inserted;
however, if a developer desires, they can (carefully) optimize-
away the barriers. Finally, in the JITed BPF program, another
speculation barrier is used to avoid unintended values from
leaking back into the BPF’s CPU state.

5.4 Performance Optimizations

We refer to the scheme combining all the techniques up un-
til this point as BeeBox-Basic. It comprehensively stops any
Spectre-PHT or Spectre-STL attack originating from unpriv-
ileged BPF programs; however, it can be costly, due to the
copying of context and dense SFI-instrumentation. We ad-
dress these problems in the following subsections.

5.4.1 Generic Optimizations

Reduced Copy. The first optimization variant, called BeeBox-
RC (Reduced Copy), improves performance by reducing the
amount of data that is copied into a beebox. Notably, this op-
timization strategy is applicable to every type of BPF program
that does not have a stack-based context. At a high-level, by
using the static analysis done by the verifier, a BPF program’s
accesses to contexts and packets are tracked and only the used
portion of them is copied into the beebox.

BPF does not support variable-offset context accesses.
Leveraging this fact, BeeBox-RC records up to 16 distinct
context access offsets during the verifier’s static analysis, and
stores them along with the BPF program. If the number of ac-
cessed fields is within the limit, BeeBox-RC only copies each
accessed field of the context data structure into the beebox.

For packets, because BPF supports variable-sized accesses,
BeeBox-RC reuses the range analysis results of the max
(packet) access offset, only copying-in the packet up to the
size of the max offset that the BPF program will access. Be-
cause networking-related BPF programs typically operate
on only the header of packets, the maximum size of packet
copying is usually bounded to a reasonable number.

5.4.2 Case-specific Optimizations

Clean Context and Packet Pointers. The second optimiza-
tion variant, called BeeBox-CP (Clean Pointer), makes the
context pointer a clean pointer (i.e., a native pointer instead
of a boxptr; 9 in Figure 2) to avoid copying contexts. Con-
sequently, the context pointer is handled with the guarantees
that clean pointers require: it is never spilled into memory and

does not leak into other data flows—aside from being used
as a base for dereferencing. As a result, the context pointer
is treated similar to boxbase, where calls to helper functions
avoid clobbering or spilling it. Other guarantees of the clean
context pointer are checked in the verifier, and the optimiza-
tion only applies when the context pointer is indeed clean.
However, to ensure that BPF programs produced by a BPF
compiler adhere to such requirements, and can hence utilize
the optimization, BPF compiler changes are necessary. (For
the purposes of this work, we manually produced compliant
BPF programs in order to make use of the optimization.)

Importantly, since the context is a clean pointer pointing
to the original context data structure outside of the beebox,
the packet pointer enclosed inside the context is also a clean
pointer. To safely allow variable-size accesses into the packet
using clean pointers, BeeBox-CP (re)uses the static analysis
done by the verifier to accurately identify and rewrite packet
accesses into calls to custom helper functions that utilize the
array_index_nospec macro in the kernel.

Ring-buffer No-copy. The third optimization variant applies
when the type of the BPF program already requires the user to
have network-device access privileges, e.g., xdp. In this case,
we avoid copying packets by directly placing the device’s
ring buffer (or the packet it creates when the driver copies
packets from the ring buffer into non-DMA memory, if the
driver does not have support for XDP natively) in the beebox.
Note that this optimization cannot work with higher-level,
network-related BPF programs (such as socket-level BPF),
because when such a packet is allocated, either at the driver or
NAPI level, the destination socket is unknown to the kernel.
We name this optimization variant BeeBox-RB.

Optimizing memcpy and Friends. In certain BPF helpers,
functions such as memcpy and memcmp are used. These func-
tions are simple but have extensive pointer dereferences,
which seriously impact performance if SFI instrumentation
is applied to all of them. We optimize this type of function
by “unboxing” the arguments to native pointers when calling
them, and manually ensuring that these native pointers are not
changed or spilled in the function. Because the size of copy-
ing, or comparing, is a 32-bit integer value, we place a 4GB
poison zone after the beebox region to confine all potential
memory accesses by these functions.

6 Implementation

We implemented a prototype of BeeBox on x86-64 Linux
v6.1. Due to the sheer number of features available to BPF,
our prototype of BeeBox does not cover everything: we only
BeeBox-hardened a subset of all the available features (of
vanilla BPF) to support popular BPF applications. Our im-
plementation consists of three inter-connected components,
which we describe below.

1 ...
2 r2 = $map_ptr

3 r3 = r2 + r3

4 r4 = *(u64 *) r3
5 ...

(a) Vulnerable BPF program.

1 mov r12, 0xffffc90000000000
2 ...
3 mov rsi, 0x1000

4 add rcx, rsi

5 mov ecx, ecx

6 mov rdx, qword ptr [r12 + rcx]
7 ...

(b) BeeBox JIT result.

Figure 3: Example of BeeBox instrumentation.

6.1 BeeBox-aware JIT Compiler

We reserve beebox regions in the unused part of the ker-
nel’s address space, after the vmalloc region, and we im-
plemented a new allocation function, beebox_alloc, which
wraps __vmalloc_node_range to provide custom ranges for
allocating inside each beebox. In the JIT compiler, we added
an instruction to load the base of the appropriate beebox into
r12, which is not used by the current JIT compiler and acts
as the boxbase pointer (e.g., line 1 in Figure 3b). We also
modified the verifier to insert a new BPF (pseudo) instruc-
tion, BPF_BOXMEM, directly before load or store instructions
in the BPF bytecode. BPF_BOXMEM marks the following in-
struction, signalling to the JIT process that the access should
be SFI-hardened. During JITing, BPF_BOXMEM-ed memory ac-
cesses are transformed into two instructions that make up the
core SFI instrumentation. First, a mov with a 32-bit register
operand (e.g., eax for rax) is inserted to clear the upper 32
bits of the register (line 5 in Figure 3b). Then, a second mov
instruction is inserted with a base+ index addressing mode,
where r12 (i.e., the boxbase pointer) is used as the base
and another 64-bit register, which stores the offset into the
beebox, is used as the index (line 6 in Figure 3b). These two
movs bound memory accesses inside the 4GB beebox region.

In each beebox region, we allocate a 280KB stack for ev-
ery CPU. Each BPF stack has a corresponding variable rep-
resenting the top of the stack as a boxptr. We modified the
JIT compiler’s handling of function prologues and epilogues
in order to “open” and “close” stack frames in the beebox
stack region, instead of the normal stack, and to move the
frame pointer into ebp, which is a 32-bit boxptr. All BPF
stack accesses are frame-pointer-based so we avoid having to
move rsp and handle additional stack swapping. Lastly, all
stack accesses identified by the verifier are prepended with
the BPF_BOXMEM BPF instruction, which are later correctly
JIT-compiled to SFI-hardened native code.

6.2 Maps, Helpers, and Language Tricks

To simplify development, and debugging, when writ-
ing C code that interacts with pointers to a beebox,
we added a special attribute, i.e., ‘__beebox’, to annotate
boxptrs in the kernel—the __beebox attribute is defined as

1 struct bb_pcpu_freelist_head {
2 struct bb_pcpu_freelist_node __beebox *first;
3 raw_spinlock_t lock;
4 };
5

6 struct bb_pcpu_freelist {
7 ...
8 struct bb_pcpu_freelist_head extralist;
9 };

10

11 struct bpf_htab_inner {
12 ...
13 struct bucket __beebox *buckets;
14 struct bb_pcpu_freelist freelist;
15 u32 n_buckets;
16 ...
17 };

Listing 2: Example of data structures placed inside beebox,
which only contains information that can be exposed to the
user. All pointer fields are annotated with ‘__beebox’.

__attribute__((noderef)) when the source code is in-
spected by the static analysis tool sparse [64]. We chose to
implement boxptrs as an attribute instead of defining a new
type since the attribute can transparently keep the pointer’s
original type information. This makes incorrect propagation
and accidental dereference noticeable at compile time, which
streamlined the development of our prototype (otherwise, it
would be difficult to apply the unbox macro correctly in ex-
pressions like: &array_map->map->elem[i].lock).

We currently support five types of maps commonly used by
BPF programs: array map, per-CPU array map, array map
of maps, hash map, and LRU hash map. When data structures
such as linked lists—which are needed for hash map—are
moved into a beebox, their internal pointers are also con-
verted into boxptrs. In Listing 2, we show how certain data
structures placed in beebox are defined. All the embedded
pointers are annotated with the __beebox attribute, and their
value represents the offset within the beebox. We also dupli-
cated and adapted the accessor macros, and inline functions,
for these data structures to work with boxptrs.

We reserved r12 when compiling helper functions to en-
sure it is never spilled or contaminated. In addition, we
changed the function signature of the helpers we ported to
BeeBox to use boxptrs; thus, together with the changes in
the data structures, the compiled helper functions will not con-
tain any accidental un-instrumented pointer dereferences. The
counter-part to these helper functions is the call sites in the
JITed BPF programs; they are transformed by the verifier to
use boxptrs to point at the in-beebox part of the BPF maps.

Array map, per-CPU array map, and array map of maps
each have three helper functions that need to be adjusted
for the BPF runtime: we support two in array map, three
in per-CPU array map, and one in array map of maps. For
other helpers, we support everything used by the BPF pro-
grams in our evaluation, including 2/42 common helpers,
6/14 socket-specific helpers, and 1/29 xdp-specific helpers.

6.3 Supported BPF Program Types
cBPF. We support cBPF in seccomp-BPF and packet filtering.
Our analyses and BPF-level transformations are implemented
in the cBPF verifier. The stack accesses in cBPF use dedi-
cated cBPF instructions, hence we insert BPF_BOXMEM before
the translated eBPF instruction(s). seccomp-BPF’s context is
stack-based so it is just moved to the BPF stack. For packet
filtering cBPF, we applied BeeBox-CP (§5.4.2), while packet
accesses go through instrumented helpers.

Socket Filter eBPF. For eBPF-based socket filters, we imple-
mented both BeeBox-RC (§5.4.1) and BeeBox-CP (§5.4.2).
To implement BeeBox-RC, all stack accesses and map
accesses remain the same; for context access, we insert
BPF_BOXMEM before each context-memory access. We also
changed the invocation of BPF programs to copy selected
parts of the context and packets into the beebox, which we
transformed accordingly. In the case of BeeBox-CP, we per-
formed additional static analysis on the BPF programs to
verify that the context pointer is not leaked into other registers
or spilled to memory. Due to calling convention consider-
ations, we chose the callee-saved register rbx to hold the
context pointer. We also duplicated the helper functions to
avoid using or clobbering rbx, similar to r12.

XDP. Our support of XDP BPF programs includes two op-
timizations: BeeBox-RC (§5.4.1) and BeeBox-RB (§5.4.2).
For XDP, the context is generated dynamically on the (kernel)
stack; thus, we simply generate it on the BPF stack instead.
In BeeBox-RC, part of the packet is copied into the beebox
region. Although the copying only requires part of the packet,
we allocate enough memory to fit potential XDP-supported
modifications to the packet (e.g., extending the header). The
range of the packet copied out is also adjusted in the event that
packet pointers are modified in the XDP context. When en-
hanced with BeeBox-RB, depending on whether the network
driver supports XDP natively, the allocation of the packet
buffer at the driver level or the NAPI level is adjusted to ap-
propriately handle allocating directly in the beebox region.

6.4 Engineering Effort
The core implementation of BeeBox required ≈900 addi-
tional lines of code (LOC) added to Linux v6.1. Specifically,
we added ≈700 LOC to the BPF JIT engine and verifier to
implement the main functionality and optimization schemes
of BeeBox, and ≈200 LOC to adapt the hook points that in-
voke BPF programs. Atop this, we also migrated ≈1000 lines
of helper code into separate compilation units and manually
added the instrumentation at the source code as necessary.
Regarding the helpers that we instrumented (§6.2): support
for the three array map variants took a graduate student (with
knowledge of Linux kernel internals) one day to develop; sup-
port for the two hash map variants took three days to develop;
and the program-type-specific helpers took four hours.

7 Evaluation

We evaluated BeeBox in terms of effectiveness and perfor-
mance. For the former, we analyzed the impact of BeeBox
on BPF’s functionality compared against no-mitigations and
existing mitigations in Linux v6.1. For the latter, we evaluated
BeeBox’s performance on synthetic eBPF benchmarks and
real-world BPF applications, including Katran, seccomp-BPF,
and cBPF packet filtering. Our experiments were run on a
machine equipped with a 16-core, 3.7GHz Intel Xeon W-2145
CPU and 64GB RAM, running 64-bit Ubuntu 20.04 LTS.

7.1 Effectiveness of BeeBox

7.1.1 Security Analysis

When hardened with BeeBox, four different kinds of pointers
are considered for the security of the system. The first kind
is pointers into untrusted regions, like the beebox and the
kernel stack, when used by SU-hardened helpers. They are
speculatively-safe because they cannot target outside the un-
trusted region(s) and there is no sensitive data in those regions.
The second kind is clean pointers; they are speculatively-safe
because they can only target the same locations as concrete
execution, which is assumed to be trusted. The third kind is
pointers used in ST-hardened functions. These pointers are
secured since ST-hardened functions use speculation barri-
ers to ensure no attacker-controlled speculation occurs during
their execution. The forth kind is developer exempted pointers,
including ones handled with array_index_nospec, whose
value can be influenced by speculation, but are explicitly per-
mitted by developers. In summary, BeeBox comprehensively
protects all memory accesses during BPF execution.

7.1.2 Security Evaluation

We created three synthetic exploits that simulate speculative
execution attacks launched from BPF programs, which at-
tempt to (speculatively) access a target location to leak sensi-
tive data. We consider BeeBox able to stop a given attack if we
can no longer detect a signal in the cache corresponding to ac-
cessing the sensitive data. To probe the cache for a signal, we
created a kernel module that performs Flush+Reload [102].

Exploit #1: Spectre-PHT. For the first exploit, we crafted
a BPF program that performs a dynamically indexed access
into a BPF map element. Here, the mis-speculation starts
from a conditional branch, similar to the original Spectre
attack [56]. The exploit works without mitigations and fails
against BeeBox (and LPM).

Exploit #2: Spectre-STL. For the second exploit, we targeted
Spectre-STL. We crafted a BPF program that triggers erro-
neous store-to-load forwarding by saturating store ports [58].
Similar to the first exploit, this exploit works without mitiga-
tions and fails against BeeBox (and LPM).

1 u64 bpf_skb_load_helper_32(const struct sk_buff *skb,
2 const void *data,
3 int headlen,
4 int offset) {
5 __be32 tmp, *ptr;
6 const int len = sizeof(tmp);
7 if (likely(offset >= 0)) {
8 if (headlen - offset >= len)
9 return get_unaligned_be32(data + offset);

10 ...
11 }
12 return -EFAULT;
13 }

Listing 3: The packet-loading helper.

Exploit #3: Spectre-PHT via Helper. The third exploit is
similar to Exploit #1, but the vulnerability occurs in a BPF
helper function. Listing 3 presents one such vulnerable helper
that loads bytes from a packet. If offset is out-of-bounds, but
headlen was not cached, then the conditional in Line 8 will
be speculated and the out-of-bounds address will be loaded in
Line 9. For simplicity, we edited the kernel to flush the mem-
ory of headlen before calling the BPF program to force spec-
ulation. The BPF program we ran is a socket BPF program
that triggers this mis-speculation and loads the out-of-bounds
value. In the vanilla kernel, the attack triggers a memory
load of the target location with or without LPM. In contrast,
BeeBox prevents this exploit as it hardens this helper (SFI
in BeeBox-RC and array_index_nospec in BeeBox-CP).
This attack demonstrates that LPM offers partial coverage.
Similar attacks can take place through packet filtering cBPF.

7.1.3 Compatibility Evaluation

The LPM prevent certain BPF program patterns from being
accepted by the verifier. In contrast, BeeBox is designed with
compatibility in mind, allowing more programs to pass verifi-
cation, while also receiving superior protection. We describe
two such examples, which we also summarize in Table 1.
Verifier State Explosion. The BPF verifier keeps an internal
count of analyzed instructions to decide whether a program
takes too long to verify and should be rejected—interestingly,
an instruction may be analyzed multiple times if it is reachable
from different paths. LPM can dramatically increase verifica-
tion time since it requires all combinations of branch choices
to be analyzed, even if they are not possible. To demonstrate
this problem, we crafted a BPF program that contains 23 con-
ditional jumps out of 47 instructions in total. Loading this BPF
program as an unprivileged user (i.e., the current Spectre-PHT
mitigations are enabled) fails as it breaks the verifier’s limit
of one million analyzed instructions. Without the analysis for
speculative branches, the verifier decides the BPF program
is safe after processing 611 instructions. Since BeeBox com-
prehensively stops access of sensitive information from BPF
programs, it avoids this analysis and achieves verification
scalability as program size and complexity increase.

tin
y alu

con
tex

t

bra
nch sta

ck
pa

cke
t

arr
ay

pe
rcp

u_a
rra

y
ha

sh

lru
_ha

sh

lru
_ha

sh_
up

da
te

BPF Programs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
Ru

nn
in

g
Ti

m
e

No Mitigation
LPM
BeeBox-RC
BeeBox-CP

Figure 4: Synthetic micro-benchmark that involves various
socket filter eBPF programs and different hardening schemes
(no protection vs. LPM vs. BeeBox).

Conditional Pointer Arithmetics. Under the current Spectre-
PHT mitigation(s), the BPF verifier rejects BPF programs
where a pointer can have different value sets due to different
branches (with the exception of map value pointers that point
to different elements). This is a common code pattern in BPF
programs; for example, one of Katran’s BPF programs cannot
be loaded by an unprivileged user since it has pointers that
target different packet fields based on the IP version (e.g., IPv4
vs. IPv6). BeeBox can avoid this restriction; even though
boxptrs can speculatively perform arbitrary arithmetic, they
cannot point to sensitive data (outside beebox).

7.2 Performance of BeeBox

7.2.1 Basic Operations

We crafted a synthetic micro-benchmark that consists of small
BPF programs (which we make available along with our pro-
totype of BeeBox) that stress different kinds of operations, in
order to better understand BeeBox’s behavior in comparison
with LPM. For each case, the running time of the given BPF
program was measured using the bpf system call with the op-
tion BPF_PROG_TEST_RUN, which is modified to use rdtscp
for accurate timing. We ran each BPF program in a tight loop
for one million iterations with interrupts disabled. The BPF
program type we use is socket, and the synthetic packets are
64 bytes, except in the packet benchmark, where the packet
size is 150 bytes. Finally, all benchmark programs explicitly
avoid using the stack unnecessarily.

Results are shown in Figure 4. We compared four different
settings: (1) no mitigation, (2) LPM, (3) BeeBox-RC (§5.4.1),
and (4) BeeBox-CP (§5.4.2). Setting (1) executes BPF pro-
grams as root, while (2) – (4) execute BPF programs in
an unprivileged manner. LPM incur a 270% runtime over-

head compared to no protection (No Mitigation) on the stack
benchmark, but do not exhibit any significant slowdown in
any other case. Both BeeBox schemes incur a 7%–23% over-
head on hash map operations due to the instrumentation of the
helpers. BeeBox-RC has additional overhead due to copying,
which peaks at 110% for the shortest BPF programs (tiny and
context). This experiment also demonstrates that since LPM
only add instrumentation around stack accesses, BeeBox’s
runtime performance gain over the LPM comes from better
handling of stack load/store operations and Spectre-STL.

7.2.2 Real-world BPF Programs

Katran Benchmarks. Real-world eBPF programs can be
more complex than the aforementioned, synthetic micro-
benchmark programs, unavoidably using the stack for reg-
ister spills. The performance of the LPM severely degrades
in such situations, whereas BeeBox scales better with the
complexity of the BPF program. To test this, we evaluated
BeeBox on Katran’s load balancer XDP program. In this set-
ting, we benchmarked two BeeBox optimizations, applied
separately to XDP: BeeBox-RC (§5.4.1) and BeeBox-RB
(§5.4.2). The benchmarked BPF program is the standalone
Katran XDP program, and the driving workload comes from
Katran’s -perf_testing option in its tester program. To run
Katran’s XDP program as a non-root user we provided the
corresponding process with CAP_NET_ADMIN and CAP_BPF.

The results of the benchmark are shown in Figure 5. The
overhead of LPM is consistently above 70%, with an average
overhead of 112%, which confirms our hypothesis that most
of the overhead is caused by register spilling. The overhead of
BeeBox-RC ranges between 28%–50% in most benchmarks,
but spikes up to 200% for packets that are passed-through or
dropped early; therefore, on average, it has an overhead of
71%. For BeeBox-RB, the average overhead is 20%, with a
maximum overhead of 39% when the workload consists of
IPv6 ICMP packets (workload 9). When we compare BeeBox-
RB to BeeBox-RC, we observe that the copying of context
contributes 42% overhead on average. We also constructed a
modified version of BeeBox-RB that applies instrumentation
only to helper functions to determine their contribution to
the overall overhead. This modified scheme has an average
overhead of ≈17%, indicating that most of the overhead in
BeeBox-RB is due to the instrumentation of the helpers.

Packet Filter Benchmark. We tested the performance of
raw socket filtering using cBPF. To efficiently support cBPF
packet filtering, we applied the BeeBox-CP scheme (§5.4.2).
On the benchmark machine, we setup a UDP server listen-
ing on localhost and a UDP client that continuously sends
packets with 32-byte payloads. We then attached a cBPF filter
to a raw socket of the loopback (lo) device; the filter on the
raw socket gets executed in the softIRQ raised by the client
sending the packets, and is thus on the same CPU as the client.
We pinned the client process to a CPU, and made sure that

Filter No Mitigation BeeBox-CP %-Chg

bpf1 325927 (± 3611) 327778 (± 3006) +0.57%
bpf2 324615 (± 3960) 323374 (± 5375) −0.38%
bpf3 324114 (± 3977) 323834 (± 5088) −0.09%
bpf4 328610 (± 4827) 325568 (± 7818) −0.93%
bpf5 328072 (± 3883) 325395 (± 7352) −0.82%
bpf6 314801 (± 2025) 313618 (± 2650) −0.38%

(a) Packet filtering performance in pkts/s with 95% CIs.

Benchmark No Mitigation BeeBox

Nginx 0.81% (± 1.09%) 0.32% (± 1.47%)
Redis 0.98% (± 0.44%) 0.84% (± 0.74%)

(b) Tput degradation of seccomp-BPF with 95% CIs.

Table 2: cBPF performance results.

the CPU’s utilization was close to 100%. Finally, to collect
the results, we measured this scenario’s throughput (pkts/s)
as packets are filtered using rules that are similar to prior
works [50,101]. Results are shown in Figure 2a; the overhead
introduced by BeeBox is < 1%.

seccomp-BPF Benchmark. Because seccomp-BPF’s con-
text is generated on the stack, BeeBox supports it by replacing
the (kernel) stack allocation with a BPF stack allocation. To
measure BeeBox’s impact on seccomp-BPF performance, we
applied sysfilter [23], a framework that generates and enforces
seccomp-BPF policies, to Nginx [3] and Redis [4], and mea-
sured the performance of the hardened binaries. Nginx was
configured to have two working processes. The test traffic
was generated by wrk [30] with two running threads, each
opening 128 connections, requesting 1KB payloads in every
request. Redis was benchmarked using memtier [86] with
two worker threads, each having 128 clients. The GET:SET
request ratio was 10:1, and the data object size was 32 bytes.
Each experiment ran for one minute. We ensured the CPU
running the Nginx server and the Redis server was saturated
with the testing configuration. Given that we tuned the packet
sizes to be small, both tasks are syscall-intensive. The Nginx
experiment handles over 43.5K req/s, and the Redis experi-
ment handles more than 155K req/s. The results are shown
in Figure 2b. The JITed cBPF programs already have limited
impact on the services, and hence our defenses do not incur
any observable overhead.

Memory Usage. We ran the real-world benchmarks and mon-
itored the system’s total memory usage. We measured this
in a KVM VM with 4 vCPUs and 8GB of RAM, hosted on
the benchmarking machine. The results of this experiment
are shown in Table 3. The memory usage of the Linux kernel
with no mitigations is reported in the second column (Vanilla
Usage). The memory usage for BeeBox is given in the third

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Workload

0

250

500

750

1000

1250

Pr
oc

es
sin

g
Ti

m
e

Pe
r P

ac
ke

t (
Cy

cle
s)

No Mitigation
LPM
BeeBox-RC
BeeBox-RB

Figure 5: Katran’s load balancer XDP program/benchmark. The most efficient scheme, BeeBox-RB, also includes a breakdown
into baseline, helper instrumentation, and BPF instrumentation (colored dark to light).

Experiment Vanilla Usage BeeBox Usage Overhead

At rest 176MB (178MB) 180MB (180MB) 2.4%
Packet filter 182MB (183MB) 186MB (188MB) 2.3%
Katran 580MB (582MB) 592MB (592MB) 2.0%
Nginx (seccomp) 189MB (190MB) 196MB (197MB) 3.5%
Redis (seccomp) 212MB (213MB) 218MB (221MB) 3.0%

Table 3: Memory usage of BeeBox compared to vanilla Linux.
At rest means no workload is running. The reported numbers
are formatted as ‘avg (max)’.

column. Overall BeeBox uses 4MB–6MB of additional mem-
ory when the application does not use BPF maps, and 12MB
when it does, as is the case for Katran. Overall, the relative
memory overhead ranges from 2%–3.5%.

8 Discussion

Compatibility. Regarding ISA-compatibility, although Bee-
Box is implemented for x86-64, the instrumentation tech-
niques are generic and can be applied to other architectures.
The main assumption required to enable our SFI scheme
is that register-only masking and addition operations will
enforce the pointer range during speculation. For existing
BPF application compatibility, BeeBox does not require any
changes from legacy BPF applications to benefit from its
protection, unlike the current mitigations in the Linux kernel.

Future Extensions. To extend BeeBox to cover more BPF
functionality, developer effort should be concentrated on mi-
grating and instrumenting more helper functions and BPF
map data structures. The division between kernel data and
BPF data in BPF maps is ultimately developer-defined, there-
fore, there is no easy way to automate the entire process.
However, sparse [64] has made the manual instrumentation
process much easier and less error-prone for us. An extension
to sparse’s capabilities to allow multiple pointer annotations
working together (e.g., __percpu and __beebox) can stream-
line the process even more.

9 Related Work

Sandboxing BPF. SandBPF [62] also uses SFI [99] to sand-
box BPF. However, it is designed to defend against errors in
the verifier and the JIT compiler, and does not defend against
transient execution attacks. It also assumes the input to the
helpers is completely trusted. Lastly, its overhead is much
higher than BeeBox: ≈7% in end-to-end experiments.

BPF Hardening. The BPF infrastructure has been used to
assist kernel exploitation. BPF JIT-spraying [73, 88] and
EPF [50] use BPF to bypass ret2usr defenses [20,54]. These
attacks and proposed defenses revolve around memory safety,
and assume the presence of memory-safety vulnerabilities.
In contrast, BeeBox deals with transient execution attacks,
which do not strictly require the presence of memory errors.

Correctness of BPF. Given the complexity of the BPF in-
frastructure, techniques have been proposed to enhance its
security. Nelson et al. [79] proposed to use formal verification
to secure the JIT compiler, and Jia et al. [49] proposed to use
Rust to improve the runtime security of helpers. Similar to the
work regarding BPF hardening above, these works also focus
on memory safety problems, and hence differ from BeeBox’s
focus on transient execution attacks.

Wasm Hardening. WebAssembly (Wasm) [34] is a portable,
low-level bytecode designed, in part, to safely and efficiently
run untrusted code in web browsers. Unfortunately, Wasm
is susceptible to Spectre attacks, which allow the attacker to
escape the sandbox and access sensitive data outside of it. To
combat Spectre attacks in Wasm, Swivel [78] presents two
hardening schemes: (1) a software-only SFI approach, similar
to BeeBox; and (2) a hardware-assisted approach that makes
use of Intel’s CET and MPK hardware extensions [21]. While
the SFI scheme of Swivel is similar in concept to BeeBox,
the two schemes have separate, domain-specific requirements
and features that mold their respective designs.

10 Conclusion

We presented the design, implementation, and evaluation of
BeeBox: a new security architecture that hardens BPF against
transient execution attacks, allowing the OS kernel to expose
its functionality to unprivileged users and applications. Bee-
Box sandboxes the BPF runtime against speculative code
execution in an SFI-like manner, and uses a combination of
static analyses and domain-specific properties to selectively
remove enforcement checks to improve performance. Our
BeeBox prototype for the Linux kernel supports popular fea-
tures (e.g., BPF maps and BPF helper functions) and incurs
low runtime overhead against prevalent transient execution
attacks, such as Spectre-PHT and Spectre-STL. On average,
BeeBox incurs 20% overhead in Katran’s macro-benchmarks
and < 1% throughput degradation in end-to-end, real-world
settings that involve seccomp-BPF and packet filtering.

Availability

Our prototype implementation of BeeBox is available at:
https://gitlab.com/brown-ssl/beebox

Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back. This work was supported by the National Science
Foundation (NSF), through award CNS-2238467. Any opin-
ions, findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of the US government or NSF.

References

[1] bpf-helpers(7) – Linux manual page.
https://man7.org/linux/man-pages/man7/
bpf-helpers.7.html.

[2] libbpf. https://github.com/libbpf/libbpf.

[3] Nginx. https://nginx.org.

[4] Redis. https://redis.io.

[5] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-Flow Integrity: Principles, Implemen-
tations, and Applications. ACM Transactions on In-
formation and System Security (TISSEC), 13(1):1–40,
2009.

[6] Ashish Bijlani and Umakishore Ramachandran. Ex-
tension Framework for File Systems in User Space. In
USENIX Annual Technical Conference (ATC), pages
121–134, 2019.

[7] Daniel Borkmann. bpf: Fix pointer arith-
metic mask tightening under state pruning.
https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
e042aa532c84d18ff13291d00620502ce7a38dda.

[8] Daniel Borkmann. Re: direct packet ac-
cess from SOCKET_FILTER program. https:
//lore.kernel.org/bpf/06628370-b776-74a6-
cbc0-5421989c64eb@iogearbox.net/.

[9] Brendan Gregg. Linux Extended BPF (eBPF)
Tracing Tools. https://www.brendangregg.com/
ebpf.html.

[10] Bugtraq. Getting around non-executable stack (and fix).
https://seclists.org/bugtraq/1997/Aug/63.

[11] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A
Systematic Evaluation of Transient Execution Attacks
and Defenses. In USENIX Security Symposium (SEC),
pages 249–266, 2019.

[12] Claudio Canella, Sai Manoj Pudukotai Dinakarrao,
Daniel Gruss, and Khaled N Khasawneh. Evolution
of Defenses against Transient-Execution Attacks. In
ACM Great Lakes Symposium on VLSI (GLSVLSI),
pages 169–174, 2020.

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A
Systematic Evaluation of Transient Execution Attacks
and Defenses. In USENIX Security Symposium (SEC),
pages 249–266, 2019.

[14] Canella, Claudio and Genkin, Daniel and Giner, Lukas
and Gruss, Daniel and Lipp, Moritz and Minkin, Ma-
rina and Moghimi, Daniel and Piessens, Frank and
Schwarz, Michael and Sunar, Berk and Van Bulck, Jo,
and Yarom, Yuval. Fallout: Leaking Data on Meltdown-
resistant CPUs. In ACM Conference on Computer
and Communications Security (CCS), pages 769–784,
2019.

[15] Chandler Carruth. Speculative Load
Hardening. https://llvm.org/docs/
SpeculativeLoadHardening.html.

[16] Miguel Castro, Manuel Costa, and Tim Harris. Secur-
ing Software by Enforcing Data-Flow Integrity. In
USENIX Operating Systems Design and Implementa-
tion (OSDI), pages 147–160, 2006.

https://gitlab.com/brown-ssl/beebox
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://github.com/libbpf/libbpf
https://nginx.org
https://redis.io
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e042aa532c84d18ff13291d00620502ce7a38dda
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e042aa532c84d18ff13291d00620502ce7a38dda
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e042aa532c84d18ff13291d00620502ce7a38dda
https://lore.kernel.org/bpf/06628370-b776-74a6-cbc0-5421989c64eb@iogearbox.net/
https://lore.kernel.org/bpf/06628370-b776-74a6-cbc0-5421989c64eb@iogearbox.net/
https://lore.kernel.org/bpf/06628370-b776-74a6-cbc0-5421989c64eb@iogearbox.net/
https://www.brendangregg.com/ebpf.html
https://www.brendangregg.com/ebpf.html
https://seclists.org/bugtraq/1997/Aug/63
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html

[17] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi,
Gilles Barthe, and Deian Stefan. SoK: Practical Foun-
dations for Software Spectre Defenses. In IEEE Sym-
posium on Security and Privacy (S&P), pages 666–680,
2022.

[18] Jonathan Corbet. BPF: the universal in-kernel virtual
machine. https://lwn.net/Articles/599755/.

[19] Jonathan Corbet. Reconsidering unprivileged BPF.
https://lwn.net/Articles/796328/.

[20] Jonathan Corbet. Supervisor mode access prevention.
https://lwn.net/Articles/517475/.

[21] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, 2023.

[22] Lucas Davi, David Gens, Christopher Liebchen, and
Ahmad-Reza Sadeghi. PT-Rand: Practical Mitigation
of Data-only Attacks against Page Tables. In Network
and Distributed System Security Symposium (NDSS),
2017.

[23] Nicholas DeMarinis, Kent Williams-King, Di Jin, Ro-
drigo Fonseca, and Vasileios P. Kemerlis. sysfilter:
Automated System Call Filtering for Commodity Soft-
ware. In International Symposium on Research in At-
tacks, Intrusions and Defenses (RAID), pages 459–474,
2020.

[24] Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik
Van Der Kouwe. PIBE: Practical Kernel Control-Flow
Hardening with Profile-Guided Indirect Branch Elimi-
nation. In ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS), pages 743–757, 2021.

[25] Jake Edge. Kernel address space layout randomization.
https://lwn.net/Articles/569635/.

[26] Michael Franz. E unibus pluram: Massive-Scale Soft-
ware Diversity as a Defense Mechanism. In New Secu-
rity Paradigms Workshop (NSPW), pages 7–16, 2010.

[27] Alexander J. Gaidis, Vaggelis Atlidakis, and
Vasileios P. Kemerlis. SysXCHG: Refining Privilege
with Adaptive System Call Filters. In ACM Conference
on Computer and Communications Security (CCS),
2023.

[28] Alexander J. Gaidis, Joao Moreira, Ke Sun, Alyssa
Milburn, Vaggelis Atlidakis, and Vasileios P. Kemerlis.
FineIBT: Fine-grain Control-flow Enforcement with
Indirect Branch Tracking. In International Sympo-
sium on Research in Attacks, Intrusions and Defenses
(RAID), 2023.

[29] Luis Gerhorst. bpf: Fix pointer-leak due to
insufficient speculative store bypass mitiga-
tion. https://git.kernel.org/pub/scm/
linux/kernel/git/bpf/bpf.git/commit/?id=
e4f4db47794c9f474b184ee1418f42e6a07412b6.

[30] Will Glozer. wrk – a HTTP benchmarking tool. https:
//github.com/wg/wrk.

[31] Tcpdump Group. tcpdump. https:
//www.tcpdump.org, 2023.

[32] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
KASLR is Dead: Long Live KASLR. In Engineering
Secure Software and Systems (ESSoS), pages 161–176,
2017.

[33] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache Template Attacks: Automating Attacks on In-
clusive Last-Level Caches. In USENIX Security Sym-
posium (SEC), pages 897–912, 2015.

[34] Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the Web
up to Speed with WebAssembly. In ACM Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 185–200, 2017.

[35] J.L. Hennessy and D.A. Patterson. Computer Archi-
tecture: A Quantitative Approach. Elsevier Science,
2017.

[36] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert,
David Ahern, and David Miller. The eXpress Data
Path: Fast Programmable Packet Processing in the Op-
erating System Kernel. In Conference on emerging
Networking EXperiments and Technologies (CoNEXT),
pages 54–66, 2018.

[37] Guangyuan Hu, Zecheng He, and Ruby B. Lee. SoK:
Hardware Defenses Against Speculative Execution At-
tacks. In International Symposium on Secure and Pri-
vate Execution Environment Design (SEED), pages
108–120, 2021.

[38] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai
Liang. Data-Oriented Programming: On the Ex-
pressiveness of Non-control Data Attacks. In IEEE
Symposium on Security and Privacy (S&P), pages
969–986, 2016.

[39] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo,
Oleg Rombakh, Paul Turner, and Christos Kozyrakis.

https://lwn.net/Articles/599755/
https://lwn.net/Articles/796328/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/569635/
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=e4f4db47794c9f474b184ee1418f42e6a07412b6
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=e4f4db47794c9f474b184ee1418f42e6a07412b6
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=e4f4db47794c9f474b184ee1418f42e6a07412b6
https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.tcpdump.org
https://www.tcpdump.org

ghOSt: Fast & Flexible User-Space Delegation of
Linux Scheduling. In ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 588–604, 2021.

[40] Intel. Analysis of Speculative Execution Side Chan-
nels. https://www.intel.com/content/www/us/
en/developer/articles/technical/software-
security-guidance/technical-documentation/
analysis-speculative-execution-side-
channels.html.

[41] Intel. Indirect Branch Restricted Specula-
tion. https://www.intel.com/content/www/
us/en/developer/articles/technical/
software-security-guidance/technical-
documentation/indirect-branch-restricted-
speculation.html.

[42] Intel. Managed Runtime Speculative Exe-
cution Side Channel Mitigations. https://
www.intel.com/content/www/us/en/developer/
articles/technical/software-security-
guidance/technical-documentation/runtime-
speculative-side-channel-mitigations.html.

[43] Intel. Retpoline: A Branch Target Injection
Mitigation. https://www.intel.com/content/
www/us/en/developer/articles/technical/
software-security-guidance/technical-
documentation/retpoline-branch-target-
injection-mitigation.html.

[44] Intel. Single Thread Indirect Branch Predic-
tors. https://www.intel.com/content/www/
us/en/developer/articles/technical/
software-security-guidance/technical-
documentation/single-thread-indirect-
branch-predictors.html.

[45] Intel. Software Security Guidance: Advisory Guid-
ance. https://www.intel.com/content/www/us/
en/developer/topic-technology/software-
security-guidance/advisory-guidance.html.

[46] IO Visor Project. BPF Compiler Collection (BCC).
https://github.com/iovisor/bcc.

[47] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block Oriented Programming: Au-
tomating Data-Only Attacks. In ACM Conference on
Computer and Communications Security (CCS), pages
1868–1882, 2018.

[48] Jann Horn. speculative execution, variant 4: specula-
tive store bypass. https://bugs.chromium.org/p/
project-zero/issues/detail?id=1528.

[49] Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams,
Michael V Le, and Tianyin Xu. Kernel extension ver-
ification is untenable. In Workshop on Hot Topics in
Operating Systems (HotOS), pages 150–157, 2023.

[50] Di Jin, Vaggelis Atlidakis, and Vasileios P. Kemerlis.
EPF: Evil Packet Filter. In USENIX Annual Technical
Conference (ATC), pages 735–751, 2023.

[51] Jonathan Corbet. eBPF seccomp() filters. https:
//lwn.net/Articles/857228/.

[52] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-Defined Schedul-
ing Across the Stack. In ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 605–620, 2021.

[53] Vasileios P. Kemerlis, Michalis Polychronakis, and An-
gelos D. Keromytis. ret2dir: Rethinking Kernel Iso-
lation. In USENIX Security Symposium (SEC), pages
957–972, 2014.

[54] Vasileios P. Kemerlis, Georgios Portokalidis, and An-
gelos D. Keromytis. kGuard: Lightweight Kernel Pro-
tection against Return-to-user Attacks. In USENIX
Security Symposium (SEC), pages 459–474, 2012.

[55] Ofek Kirzner and Adam Morrison. An Analysis of
Speculative Type Confusion Vulnerabilities in the Wild.
In USENIX Security Symposium (SEC), pages 2399–
2416, 2021.

[56] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. In IEEE Symposium on
Security and Privacy (S&P), 2019.

[57] Piotr Krysiuk and Benedict Schlueter. bpf: Fix leakage
due to insufficient speculative store bypass mitiga-
tion. https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
2039f26f3aca5b0e419b98f65dd36481337b86ee.

[58] Piotr Krysiuk, Benedict Schlüter, and Daniel Bork-
mann. BPF and Spectre: Mitigating transient execution
attacks. https://popl22.sigplan.org/details/
prisc-2022-papers/11/BPF-and-Spectre-
Mitigating-transient-execution-attacks.

[59] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer,
George Candea nd R. Sekar, and Dawn Song. Code-
Pointer Integrity. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages
147–163, 2014.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/runtime-speculative-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/runtime-speculative-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/runtime-speculative-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/runtime-speculative-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/runtime-speculative-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/advisory-guidance.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/advisory-guidance.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/advisory-guidance.html
https://github.com/iovisor/bcc
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://lwn.net/Articles/857228/
https://lwn.net/Articles/857228/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2039f26f3aca5b0e419b98f65dd36481337b86ee
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2039f26f3aca5b0e419b98f65dd36481337b86ee
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2039f26f3aca5b0e419b98f65dd36481337b86ee
https://popl22.sigplan.org/details/prisc-2022-papers/11/BPF-and-Spectre-Mitigating-transient-execution-attacks
https://popl22.sigplan.org/details/prisc-2022-papers/11/BPF-and-Spectre-Mitigating-transient-execution-attacks
https://popl22.sigplan.org/details/prisc-2022-papers/11/BPF-and-Spectre-Mitigating-transient-execution-attacks

[60] Per Larsen, Stefan Brunthaler, and Michael Franz. Se-
curity through Diversity: Are We There Yet? IEEE
Security & Privacy, 12:28–35, 2014.

[61] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N. Asokan.
PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication. In USENIX Security Sympo-
sium (SEC), pages 177–194, 2019.

[62] Soo Yee Lim, Xueyuan Han, and Thomas Pasquier. Un-
leashing Unprivileged eBPF Potential with Dynamic
Sandboxing. In Workshop on eBPF and Kernel Exten-
sions (eBPF), pages 42–48, 2023.

[63] Linux Kernel. Kernel Key Retention Service. https:
//docs.kernel.org/security/keys/core.html.

[64] Linux Kernel. Linux Documentation on Sparse.
https://sparse.docs.kernel.org/en/latest/.

[65] Linux Kernel. Linux Documentation on Speculation.
https://www.kernel.org/doc/Documentation/
speculation.txt.

[66] Linux Kernel. Page Table Isolation (PTI).
https://www.kernel.org/doc/html/latest/
arch/x86/pti.html.

[67] Linux Kernel. Perf events and tool security.
https://docs.kernel.org/admin-guide/perf-
security.html.

[68] Linux Kernel. Program Types and ELF Sec-
tions. https://docs.kernel.org/bpf/libbpf/
program_types.html.

[69] Linux Kernel. Seccomp BPF (SECure COMPuting
with filters). https://www.kernel.org/doc/html/
latest/userspace-api/seccomp_filter.html.

[70] Linux Kernel. Spectre Side Channels.
https://docs.kernel.org/admin-guide/hw-
vuln/spectre.html.

[71] Liu, Fangfei and Yarom, Yuval and Ge, Qian and
Heiser, Gernot and Lee, Ruby B. Last-Level Cache
Side-Channel Attacks are Practical. In IEEE Sympo-
sium on Security and Privacy (S&P), pages 605–622,
2015.

[72] Giorgi Maisuradze and Christian Rossow. ret2spec:
Speculative Execution Using Return Stack Buffers. In
ACM Conference on Computer and Communications
Security (CCS), pages 2109–2122, 2018.

[73] Keegan McAllister. Attacking hardened Linux
systems with kernel JIT spraying. https:
//mainisusuallyafunction.blogspot.com/

2012/11/attacking-hardened-linux-systems-
with.html.

[74] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet Cap-
ture. In USENIX Winter Conference, 1993.

[75] Marius Momeu, Fabian Kilger, Christopher Roemheld,
Simon Schnückel, Sergej Proskurin, Michalis Poly-
chronakis, and Vasileios P. Kemerlis. ISLAB: Im-
mutable Memory Management Metadata for Commod-
ity Operating System Kernels. In ACM ASIA Con-
ference on Computer and Communications Security
(ASIA CCS), 2024.

[76] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. SoftBound: Highly Compatible
and Complete Spatial Memory Safety for C. In ACM
Conference on Programming Language Design and
Implementation (PLDI), pages 245–258, 2009.

[77] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Mar-
tin, and Steve Zdancewic. CETS: Compiler Enforced
Temporal Safety for C. In International Symposium on
Memory Management (ISMM), pages 31–40, 2010.

[78] Shravan Narayan, Craig Disselkoen, Daniel Moghimi,
Sunjay Cauligi, Evan Johnson, Zhao Gang, Anjo
Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham,
Dean Tullsen, and Deian Stefan. Swivel: Hardening
WebAssembly against Spectre. In USENIX Security
Symposium (SEC), pages 1433–1450, 2021.

[79] Luke Nelson, Jacob Van Geffen, Emina Torlak, and
Xi Wang. Specification and Verification in the Field:
Applying Formal Methods to BPF Just-In-Time Com-
pilers in the Linux Kernel. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 41–61, 2020.

[80] Nikita Shirokov and Ranjeeth Dasineni. Open-
sourcing Katran, a scalable network load balancer.
https://engineering.fb.com/2018/05/22/open-
source/open-sourcing-katran-a-scalable-
network-load-balancer/.

[81] Aleph One. Smashing The Stack For Fun And Profit.
Phrack Magazine, 7(49), 1996.

[82] Marco Patrignani and Marco Guarnieri. Exorcising
Spectres with Secure Compilers. In ACM Conference
on Computer and Communications Security (CCS),
pages 445–461, 2021.

[83] Marios Pomonis, Theofilos Petsios, Angelos D.
Keromytis, Michalis Polychronakis, and Vasileios P.
Kemerlis. kRˆ X: Comprehensive Kernel Protection

https://docs.kernel.org/security/keys/core.html
https://docs.kernel.org/security/keys/core.html
https://sparse.docs.kernel.org/en/latest/
https://www.kernel.org/doc/Documentation/speculation.txt
https://www.kernel.org/doc/Documentation/speculation.txt
https://www.kernel.org/doc/html/latest/arch/x86/pti.html
https://www.kernel.org/doc/html/latest/arch/x86/pti.html
https://docs.kernel.org/admin-guide/perf-security.html
https://docs.kernel.org/admin-guide/perf-security.html
https://docs.kernel.org/bpf/libbpf/program_types.html
https://docs.kernel.org/bpf/libbpf/program_types.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://docs.kernel.org/admin-guide/hw-vuln/spectre.html
https://docs.kernel.org/admin-guide/hw-vuln/spectre.html
https://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
https://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
https://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
https://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/

against Just-In-Time Code Reuse. In European Confer-
ence on Computer Systems (EuroSys), pages 420–436,
2017.

[84] Sergej Proskurin, Marius Momeu, Seyedhamed
Ghavamnia, Vasileios P. Kemerlis, and Michalis
Polychronakis. xMP: Selective Memory Protection
for Kernel and User Space. In IEEE Symposium on
Security and Privacy (S&P), pages 563–577, 2020.

[85] Hany Ragab, Enrico Barberis, Herbert Bos, and Cris-
tiano Giuffrida. Rage against the machine clear: A
systematic analysis of machine clears and their impli-
cations for transient execution attacks. In USENIX
Security Symposium (SEC), pages 1451–1468, 2021.

[86] Redis Labs. memtier_benchmark. https://
github.com/RedisLabs/memtier_benchmark.

[87] Release Notes for Debian 11 (bullseye), 64-
bit PC. Linux disables unprivileged calls to
bpf() by default. https://www.debian.org/
releases/bullseye/amd64/release-notes/ch-
information.en.html#linux-unprivileged-bpf.

[88] Elena Reshetova, Filippo Bonazzi, and N Asokan. Ran-
domization Can’t Stop BPF JIT Spray. In International
Conference on Network and System Security (NSS),
pages 233–247, 2017.

[89] Marc Schink and Johannes Obermaier. Taking a Look
into Execute-Only Memory. In USENIX Workshop on
Offensive Technologies (WOOT), August 2019.

[90] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. In ACM Conference on Computer and
Communications Security (CCS), page 753–768, 2019.

[91] Yafang Shao. bpf: Fix issue in ver-
ifying allow_ptr_leaks. https://
git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=
d75e30dddf73449bc2d10bb8e2f1a2c446bc67a2.

[92] Yafang Shao. bpf: Fix issue in ver-
ifying allow_ptr_leaks. https://
lore.kernel.org/bpf/20230913122514.89078-1-
gerhorst@amazon.de/.

[93] Alexei Starovoitov. tracing, perf: Imple-
ment BPF programs attached to kprobes.
https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
2541517c32be2531e0da59dfd7efc1ce844644f5.

[94] SUSE Support. Security Hardening: Use of
eBPF by unprivileged users has been disabled
by default. https://www.suse.com/support/kb/
doc/?id=000020545.

[95] The Cilium Authors. Cillium: eBPF-based Network-
ing, Observability, Security. https://cilium.io/.

[96] Dave Jing Tian, Grant Hernandez, Joseph I Choi,
Vanessa Frost, Peter C Johnson, and Kevin RB Butler.
LBM: A Security Framework for Peripherals within
the Linux Kernel. In IEEE Symposium on Security and
Privacy (S&P), pages 967–984, 2019.

[97] Victor Van der Veen, Nitish Dutt-Sharma, Lorenzo Cav-
allaro, and Herbert Bos. Memory Errors: The Past, the
Present, and the Future. In International Symposium on
Research in Attacks, Intrusions and Defenses (RAID),
pages 86–106, 2012.

[98] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
In-Flight Data Load. In IEEE Symposium on Security
and Privacy (S&P), pages 88–105, 2019.

[99] Robert Wahbe, Steven Lucco, Thomas E Anderson,
and Susan L Graham. Efficient Software-based Fault
Isolation. In ACM Symposium on Operating Systems
Principles (SOSP), pages 203–216, 1993.

[100] Daniel Weber, Ahmad Ibrahim, Hamed Nemati,
Michael Schwarz, and Christian Rossow. Osiris: Auto-
mated Discovery of Microarchitectural Side Channels.
In USENIX Security Symposium (SEC), pages 1–18,
2021.

[101] Zhenyu Wu, Mengjun Xie, and Haining Wang. Swift:
A Fast Dynamic Packet Filter. In USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), pages 279–292, 2008.

[102] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-
Channel Attack. In USENIX Security Symposium
(SEC), pages 719–732, 2014.

[103] Fenghua Yu. Enable SMEP CPU Feature. https:
//lore.kernel.org/lkml/1305581685-5144-1-
git-send-email-fenghua.yu@intel.com/.

[104] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis
Zarkadas, Jeffrey Tao, Evan Mesterhazy, Michael
Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, et al.
XRP: In-Kernel Storage Functions with eBPF. In
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 375–393, 2022.

https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://www.debian.org/releases/bullseye/amd64/release-notes/ch-information.en.html#linux-unprivileged-bpf
https://www.debian.org/releases/bullseye/amd64/release-notes/ch-information.en.html#linux-unprivileged-bpf
https://www.debian.org/releases/bullseye/amd64/release-notes/ch-information.en.html#linux-unprivileged-bpf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d75e30dddf73449bc2d10bb8e2f1a2c446bc67a2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d75e30dddf73449bc2d10bb8e2f1a2c446bc67a2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d75e30dddf73449bc2d10bb8e2f1a2c446bc67a2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d75e30dddf73449bc2d10bb8e2f1a2c446bc67a2
https://lore.kernel.org/bpf/20230913122514.89078-1-gerhorst@amazon.de/
https://lore.kernel.org/bpf/20230913122514.89078-1-gerhorst@amazon.de/
https://lore.kernel.org/bpf/20230913122514.89078-1-gerhorst@amazon.de/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2541517c32be2531e0da59dfd7efc1ce844644f5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2541517c32be2531e0da59dfd7efc1ce844644f5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2541517c32be2531e0da59dfd7efc1ce844644f5
https://www.suse.com/support/kb/doc/?id=000020545
https://www.suse.com/support/kb/doc/?id=000020545
https://cilium.io/
https://lore.kernel.org/lkml/1305581685-5144-1-git-send-email-fenghua.yu@intel.com/
https://lore.kernel.org/lkml/1305581685-5144-1-git-send-email-fenghua.yu@intel.com/
https://lore.kernel.org/lkml/1305581685-5144-1-git-send-email-fenghua.yu@intel.com/

A Artifact Appendix

A.1 Abstract
This is the artifact appendix for BeeBox: a new security archi-
tecture that hardens BPF against transient execution attacks.
This appendix contains instructions about how to setup, run,
and reproduce the results of BeeBox, along with information
regarding system and resource requirements.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

This artifact consists of scripts for setting up QEMU/KVM
virtual machines (VMs) for reproducing the main experiments
of BeeBox. The majority of operations on the host are un-
privileged, except for a handful required to create a Debian
Linux root file system that is shared across the VMs. These
privileged operations are all contained in syzkaller’s script,
create-image.sh. We recommend enabling password-less
sudo while running the script to streamline its execution.

A.2.2 How to access

Our artifact is publicly available on GitLab.
• Repository: https://gitlab.com/brown-ssl/beebox-ae
• Stable commit: be43784928ba43f0

The BeeBox Linux kernel is also publicly available on GitLab.
• Repository: https://gitlab.com/brown-ssl/beebox-linux
• Stable commit: 29e4d7de943cb43c

A.2.3 Hardware dependencies

The current prototype of BeeBox requires a machine equipped
with a 64-bit x86 processor and at least 32GB of storage space.
Additionally, while not a hard requirement, we recommend
the machine has at least 4 CPU cores and 8GB of RAM.

A.2.4 Software dependencies

The artifact infrastructure depends on a three main packages:
• QEMU (KVM accelerated): for virtualizing the testing

and benchmarking environment.
• SSH: for controlling the running VMs.
• Python3: for various scripting tasks.

On Debian GNU/Linux, these packages can be installed with:

$ sudo apt-get install qemu-system-x86 \
openssh-client python3

Python packages numpy and pyparsing are required for sum-
marizing benchmark results; these can be installed by running
the following in the root of the artifact repository:

$ pip install -r requirements.txt

To check that KVM acceleration is available, the
cpu-checker package can be installed and the kvm-ok pro-
gram should be executed, as follows:

$ sudo apt-get install cpu-checker
$ sudo kvm-ok
INFO: /dev/kvm exists
KVM acceleration can be used

When building the kernel variants from source the follow-
ing build dependencies need to be satisfied as well (on Debian
GNU/Linux):

$ sudo apt-get install build-essential bc kmod \
cpio flex libncurses5-dev libelf-dev \
libssl-dev dwarves bison

All other software dependencies—e.g., the BeeBox Linux
kernel, Katran, memtier, sysfilter, Nginx, and Redis—are
either included in the artifact repository as (stable) Git sub-
modules or installed during the setup phase of the root file
system. In both cases, everything is handled automatically
and no additional work is required.

A.2.5 Benchmarks

This artifact provides three synthetic exploits and five bench-
marks, corresponding to those found in Section 7 of the paper.
In particular:

• exploit: a set synthetic programs demonstrating the
effectiveness of BeeBox (§7.1.2); source code at
bpf_test/defense_effectiveness.

• micro: a set of microbenchmarks (§7.2.1); source code
at bpf_test/micro_benchmark.

• katran: a real-world eBPF benchmark (§7.2.2); source
code at katran.

• filter: a packet filtering benchmark (§7.2.2); source
code at bpf_test/cbpf_socket_benchmark.

• nginx: a syscall filtering benchmark (§7.2.2); source
code at bpf_test/seccomp_benchmark/nginx_test.

• redis: a syscall filtering benchmark (§7.2.2); source
code at bpf_test/seccomp_benchmark/redis_test.

A.3 Set-up
To reproduce the paper’s major claims, we recreated the bare-
metal benchmarking environment used in the paper with vir-
tualization (i.e., QEMU/KVM). At a high-level, we first build
four custom Linux kernels, namely:

• vanilla: a stock Linux kernel with some Spectre-PHT
defenses disabled to allow Katran to run. Note that ex-
periments with the LPM also use this kernel, but with
defenses turned on.

• hardened: an implementation of BeeBox-RC.
• optimized: an implementation of BeeBox-CP and

BeeBox-RB for socket filtering and XDP, respectively.

https://gitlab.com/brown-ssl/beebox-ae
https://gitlab.com/brown-ssl/beebox-ae/-/tree/be43784928ba43f09eeb31f98cff70b9fc1e4a3d
https://gitlab.com/brown-ssl/beebox-linux
https://gitlab.com/brown-ssl/beebox-linux/-/tree/29e4d7de943cb43cbbe7189c50ad3825ca787846

• synthetic: an exploit showcase; modifies the kernel to
simulate an attacker’s side-channel capabilities.

Then, we create a single root file system (shared across all
VMs) that contains all of the benchmarks and scripts required
to evaluate BeeBox. Finally, we virtualize these components
to get an environment to reproduce BeeBox’s results.

A.3.1 Installation

Prebuilt. To simplify evaluating BeeBox, we provide
a prebuilt benchmarking environment that can be
used as is (i.e., no building and installing). To use it,
simply download the respective archive from Zenodo
(https://zenodo.org/records/12212612/files/prebuilt.tar.gz)
and decompress it. For example:

$ wget https://zenodo.org/records/12212612/\
files/prebuilt.tar.gz
$ tar -xzf prebuilt.tar.gz

Note that the prebuilt environment contains the entirety of the
artifact repository, so if this option is chosen, there is no need
to clone the beebox-ae repository from GitLab.

From scratch. To build the three kernels from scratch, enter
the root of the artifact repository and run:

$./scripts/build_kernels.sh

Then, to build the root file system from scratch, run:

$./scripts/builds_rootfs.sh

After running these two commands, a root file system image
and four built kernels will be found in the build directory.
The installation process requires roughly 20GB of disk space;
while compilation times vary by machine, an estimate based
on our machine (8-core, 3.7GHz Intel Xeon W-2145 CPU
with 64GB of DDR4 RAM) is roughly 1–2 hours.

A.3.2 Basic test

After the installation is complete, a shell to a VM running a
stock kernel (i.e., the vanilla kernel with no hardening) can
be obtained via:

$./scripts/run.sh vanilla

Successfully entering the VM with this command will en-
sure that the environment is setup correctly. The vanilla
kernel configuration can also be swapped out for alternate
configurations—namely, lpm, hardened, and optimized—
to perform a more thorough “basic” test. Changes to the VMs
do not persist across invocations (QEMU is invoked with
-snapshot), so feel free to poke around!

A.4 Evaluation workflow
We have automated the evaluation workflow via the script
scripts/run.sh (see its “help” menu for a complete sum-
mary of options). While the experiment descriptions below
(§A.4.2) detail how to use this script to run each experiment
individually, all experiments can also be batched together and
run automatically via:

$./scripts/run.sh everything

This should take roughly 15–20 minutes to complete, produc-
ing results in both standard output and the results directory.
At the end, it will also run script/summary.py to pretty-
print tables summarizing the results.

Please note that while we use QEMU/KVM to recreate
the environment used in the paper, the benchmark numbers
presented in Section 7 of the paper were collected on bare-
metal. As a result, there might be slight discrepancies between
the reproduced results and those in the paper; however, overall
trends should remain consistent.

A.4.1 Major Claims

(C1): BeeBox mitigates speculative execution attacks
launched from BPF programs. This is demonstrated by
the experiment (E1) described in Section 7.1.2, whose
results are illustrated in Table 1. In particular, BeeBox
mitigates Spectre-PHT in BPF code and helpers, as well
as Spectre-STL in BPF code.

(C2): BeeBox is more performant than the LPM for stack
load and store operations and Spectre-STL. This is
shown by the microbenchmarks in the experiment (E2)
described in Section 7.2.1 with results shown in Figure 4.

(C3): BeeBox is more performant than the LPM in real-world
eBPF programs. This is shown by benchmarking Ka-
tran’s load balancer in the experiment (E3) described in
Section 7.2.2, whose results are shown in Figure 5.

(C4): BeeBox exhibits < 1% throughput degradation in end-
to-end, real-world settings that involve packet filtering
and seccomp-BPF. This is shown by the experiments
(E4 and E5) described in Section 7.2.2, whose results
are illustrated in Table 2.

A.4.2 Experiments

(E1): [Exploit Mitigation] [5 human-minutes + ≈ 0 compute-
hours + < 1GB disk]: demonstrates the defense effec-
tiveness of BeeBox by showing it stops three synthetic
exploits making speculative, out-of-bound accesses.
How to: This experiment demonstrates the effective-
ness of BeeBox via three synthetic exploits that run on
the synthetic and optimized kernel configurations
against no defenses, the LPM, and BeeBox. The exploits
rely on a custom kernel module that simulates an at-
tacker making speculative out-of-bounds accesses. This

https://zenodo.org/records/12212612/files/prebuilt.tar.gz

experiment corresponds to the description presented in
Section 7.1.2. The source code for the test can be found
in bpf_test/defense_effectiveness, which should
already be copied in the root file system image.
Preparation: None.
Execution: First, run all exploits on an undefended ker-
nel. To do this, enter the synthetic kernel with exploits
initialized by running the following:

$./scripts/run.sh synthetic exploit

This will drop you into a shell. Verify that the exploit-
helper kernel module, named ctest, is loaded:

(vm)$ lsmod
Module Size Used by
ctest 16384 0

Then, enter the bpf_test/defense_effectiveness
directory and run the three exploits without any defenses:

(vm)$ sudo ./pht_exp
(vm)$ sudo ./stl_exp
(vm)$ sudo ./pht_helper_exp

Save the output of these three commands, and then run
them again without sudo to enable the LPM defenses:

(vm)$./pht_exp
(vm)$./stl_exp
(vm)$./pht_helper_exp

Save the output of these three commands, and poweroff
the VM. Next, run the exploits against a BeeBox-
hardened kernel by booting into a BeeBox VM:

$./scripts/run.sh optimized exploit

As before, check that the kernel mod-
ule is installed, and then navigate to the
bpf_test/defense_effectiveness directory
and run the exploits:

(vm)$./pht_exp
(vm)$./stl_exp
(vm)$./pht_helper_exp

Save the output of these three commands.
Result: When a synthetic exploit succeeds (i.e., de-
fenses fail), it means that out-of-bounds memory is ac-
cessed speculatively, which is determined by timing the
reload of the memory. The corresponding output should
look like:

(vm)$ sudo ./pht_exp
[+] reload takes 64 cycles,

in-cache reload takes 66 cycles
[+] Speculative out-of-bound access succees!

If a defense successfully blocks an exploit, the corre-
sponding output should look like:

(vm)$./pht_exp
[+] reload takes 318 cycles,

in-cache reload takes 56 cycles
[-] Speculative out-of-bound access fail!

An undefended kernel fails to block all three exploits;
against LPM only pht_helper_exp succeeds; and
against BeeBox all exploits are defeated. Note that the
Spectre-PHT attacks have a high probability of success,
while Spectre-STL attacks may need to run multiple
times to succeed. To get more consistent results, try to
run the experiments multiple times. For example:

(vm)$ for i in {1..100}; do sudo ./stl_exp; \
done | grep -q "succeed" && \
echo "succeed" || echo "fail"

(E2): [Microbenchmarks] [1 human-minute + 0.1 compute-
hour + < 1GB disk]: run a suite of microbenchmarks
across four kernel configurations. Expect the LPM over-
head for the stack benchmark to be more than 250%.
How to: This experiment runs a microbenchmark
across the vanilla, LPM, BeeBox-RC, and BeeBox-CP
kernel configurations, corresponding to the description
in Section 7.2.1 and results presented in Figure 4.
The source code for the benchmarks can be found in
bpf_test/micro_benchmark, which should already be
copied into the root file system image.
Preparation: Enter the repository root and ensure that
the host machine is sufficiently quieted.
Execution: Select the micro test option of the run.sh
script for each kernel configuration to run the benchmark
and store the results:

$./scripts/run.sh vanilla micro
$./scripts/run.sh lpm micro
$./scripts/run.sh hardened micro
$./scripts/run.sh optimized micro

Each command will print raw results to standard output.
Results: To summarize and pretty-print the results, run:

$./scripts/summary.py micro

The results should show that LPM for the stack bench-
mark has significant overhead (> 250% in our testing),
much higher than the other schemes, while BeeBox’s
overhead is higher in other benchmarks, but of smaller
magnitude. Further, optimized kernel configuration
(BeeBox-CP) should have less (average) overhead when
compared to the hardened configuration (BeeBox-RC).

(E3): [Katran Benchmark] [1 human-minute + 0.1 compute-
hour + < 1GB disk]: benchmark Katran’s load balancer
across four kernel configurations. Expect the LPM con-
figuration to exhibit higher than 100% overhead, the
hardened configuration around 50–80% overhead, and
the optimized configuration exhibits 15–30% overhead.
How to: This experiment benchmarks Katran’s load
balancer XDP eBPF program across the vanilla, LPM,
BeeBox-RC, and BeeBox-RB kernel configurations, cor-
responding to the description in Section 7.2.2 and results
presented in Figure 5. The source code for the bench-
marks can be found in katran, which should already be
copied into the root file system image and built.

Preparation: Enter the repository root and ensure that
the host machine is sufficiently quieted.
Execution: Select the katran test option of the run.sh
script for each kernel configuration to run the benchmark
and store the results:

$./scripts/run.sh vanilla katran
$./scripts/run.sh lpm katran
$./scripts/run.sh hardened katran
$./scripts/run.sh optimized katran

Each command will print raw results to standard output.
Results: To summarize and pretty-print the results, run:

$./scripts/summary.py katran

The results should show that the LPM configuration
incurs around 100% overhead, the hardened configu-
ration incurs (BeeBox-RC) around 50% overhead, and
the optimized configuration (BeeBox-RB) exhibits less
than 20% overhead.

(E4): [Filter Benchmark] [1 human-minute + 0.2 compute-
hour + < 1GB disk]: benchmark the performance of raw
socket filtering using cBPF with the BeeBox-CP scheme.
Expect to see overhead < 1%.
How to: This experiment benchmarks the performance
of raw socket filtering using cBPF for the BeeBox-
CP scheme. It corresponds to the description in
Section 7.2.2 and the results in Table 2a. The
source code for this experiment can be found in
bpf_test/cbpf_socket_benchmark, which should al-
ready be copied into the root file system.
Preparation: Enter the repository root and ensure that
the host machine is sufficiently quieted.
Execution: Select the filter test option of the run.sh
script for the vanilla and optimized kernel configura-
tions to run the benchmark and store the results:

$./scripts/run.sh vanilla filter
$./scripts/run.sh optimized filter

Each command will print raw results to standard output.
Results: To summarize and pretty-print the results, run:

$./scripts/summary.py filter

The results should show that the optimized version of
BeeBox (BeeBox-CP) incurs < 1% overhead across the
benchmark programs.

(E5): [Seccomp-BPF Benchmark] [1 human-minutes +
0.3 compute-hours + < 1GB disk]: benchmark BeeBox’s
performance impact on seccomp-BPF for Nginx and
Redis. Expect the throughput degradation of both appli-
cations to be < 1%.
How to: This experiment benchmarks the performance
of syscall filtering with seccomp-BPF across Nginx
and Redis for the optimized BeeBox scheme. It cor-
responds to the description in Section 7.2.2 and the
results in Table 2b. The source code for this experi-
ment can be found in bpf_test/seccomp_benchmark,
which should already be copied into the root file system.

Preparation: Enter the repository root and ensure that
the host machine is sufficiently quieted.
Execution: Select the nginx and redis test options
of the run.sh script for the vanilla and optimized
kernel configurations to run the benchmark and store the
results:

$./scripts/run.sh vanilla nginx
$./scripts/run.sh optimized nginx
$./scripts/run.sh vanilla redis
$./scripts/run.sh optimized redis

Each command will print raw results to standard output.
Results: To summarize and pretty-print the results, run:

$./scripts/summary.py seccomp

The results should show that the optimized version of
BeeBox incurs < 1% throughput degradation across the
benchmark programs.

A.5 Notes on Reusability
To drop into a shell in one of the running kernels, the following
command can be used:

$./scripts/run.sh [config] shell

where config is one of ‘vanilla’, ‘lpm’, ‘hardened’,
‘optimized’, or ‘synthetic’.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Introduction
	Background
	Kernel Security
	Berkeley Packet Filter
	Transient Execution Attacks

	Motivation
	Threat Model
	Design
	BeeBox Sub-address Space
	Securing BPF Programs
	Securing Helper Functions
	Clean Pointers
	Speculatively Untrusted Hardening
	Speculatively Trusted Hardening

	Performance Optimizations
	Generic Optimizations
	Case-specific Optimizations

	Implementation
	BeeBox-aware JIT Compiler
	Maps, Helpers, and Language Tricks
	Supported BPF Program Types
	Engineering Effort

	Evaluation
	Effectiveness of BeeBox
	Security Analysis
	Security Evaluation
	Compatibility Evaluation

	Performance of BeeBox
	Basic Operations
	Real-world BPF Programs

	Discussion
	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

