
PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370 1

A BitTorrent Module for the OMNeT++ Simulator
Konstantinos Katsaros, Vasileios P. Kemerlis, Charilaos Stais and George Xylomenos

Mobile Multimedia Laboratory, Department of Informatics
Athens University of Economics and Business, Athens, Greece

{ntinos, stais, xgeorge}@aueb.gr
Network Security Laboratory, Computer Science Department

Columbia University, New York, NY
vpk@cs.columbia.edu

Abstract— In the past few years numerous peer to peer file
sharing, or more generally content distribution, systems have
been designed, implemented, and evaluated via simulations, real
world measurements, and mathematical analysis. Yet, only a
few of them have stood the test of time and gained wide user
acceptance. BitTorrent is not just one such system; it holds
the lion’s share among them. The reasons behind its success
have been studied to a great extent with interesting results.
Nevertheless, even though peer to peer content distribution
remains one of the most active research areas, little progress
has been made towards the study of the BitTorrent protocol,
and its possible variations, in a fully controllable but realistic
simulation environment. In this paper we describe and analyze
a full featured and extensible implementation of BitTorrent
for the OMNeT++ simulation environment. Moreover, since we
aim to establish a realistic simulation platform, we show our
enhancements to a conversion tool for a popular Internet topology
generator and a churn generator based on the analysis of
real BitTorrent traces. Finally we present the results from the
evaluation of our prototype implementation regarding resource
demands under different simulation scenarios.

I. I NTRODUCTION

One of the major characteristics of today’s Internet is that
a large fraction of its traffic is due to content distribution
applications. This has prompted researchers to consider re-
designing the Internet so as to best support content delivery
betweenpublishersandsubscribersof information, rather than
communication between endpoints [1]. The primary means of
content dissemination are currently represented byPeer-to-
Peer (P2P) applications [2], where multiple entities (peers)
collaborate in order to efficiently exchange content. The tech-
nique of swarming, which is the concurrent downloading of
content from multiple peers while simultaneously uploading
to multiple other peers (first presented in BitTorrent [3]), has
greatly contributed to this development.

BitTorrent is a P2P content distribution system, comprised
of a set of network protocols for realizing communication
between the participating entities. It utilizes a simple bartering
scheme for reducing parasitic behavior such asfree-riding,
where peers only download and never upload content. Each
time a host wants to distribute a set of files through BitTorrent,
it organizes all of them as a sequence of bytes, it logically
splits the sequence into equal sizepiecesand calculates a
hash value for each piece. Then, a server that is willing to
host the file exchange (not the file itself) is located; this is

the tracker. The content metadata and supporting information
such as hash values, piece size, file size, tracker address and
so forth, are recorded in a file with an arbitrary name that acts
as a description and summary of the content. Thismetafilecan
then be distributed over the Web so that search engines can
match user queries with metafile data.

When presented with a metafile, a client1 connects to the
indicated tracker and asks for a list of other hosts currently par-
ticipating in that particular exchange; all these hosts comprise
the swarm. Note that the tracker does not itself participate in
the swarm. Subsequently, each client constructs and maintains
a bitmap with the pieces that it has (a new client initially has
nothing, while the original distributor has everything). Then,
each client randomly contacts other clients and exchanges
bitmaps with them. Based on the bitmaps and other available
data, such as path delay or bandwidth, each client can freely
select the peers it will exchange pieces with. In general, pieces
are exchanged in atit-for-tat fashion, but for bootstrapping
purposes, peers occasionally give pieces for free.

The success of BitTorrent stems from two key character-
istics. First, to its ability to distribute resource consumption
among the participating entities, thus avoiding the bottle-
necks of centralized distribution. Second, to its aptitude to
avoid performance deterioration and service unavailability by
enforcing cooperation. While BitTorrent has drawn strong
interest from researchers, most studies have concentrated on
the performance evaluation of the protocol and its potential
variations via the study of real world trace data sets [5],
[2]. This approach has significant advantages with respect to
the reliability of the extracted results, but it is characterized
by inflexibility: there is no control over the participating
peer characteristics and major protocol variations cannot be
studied without first implementing and then deploying them.
Moreover, the trace collection process is cumbersome and
the data gathered may be incomplete. For instance, collecting
information for peers behind firewalls is difficult, while gather-
ing information about the swarm’s size and structure might be
hindered by the tracker protocol itself [6]. Analytical studies
are even more problematic due to the highly dynamic character
of BitTorrent: peers dynamically enter and leave the swarm,
establish and tear down connections, decide on the preferred

1In this paper we follow the BitTorrent protocol specification terminol-
ogy [4], which employs the termclient for the local instance of the BitTorrent
modules and the termremote peerfor the instances operating at remote sites.

2 PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370

pieces of a file and chose to exchange data with peers or not.
Simulation appears to be a more promising alternative, as it
allows fast prototyping, provides the ability to perform large
scale experiments, and offers a common reference platform for
experimentation. Nonetheless, current BitTorrent simulators
either consider coarse-grained representations of the under-
lying network, thus reducing the realism of the simulation, or
omit many important features of the BitTorrent protocols.

In this paper, we present a full featured and extensible im-
plementation [7] of the BitTorrent protocol for the OMNeT++
simulation environment. We chose this platform due to its
simplicity, its high degree of modularity, and the availability
of several protocol implementations ranging from a complete
TCP/IP protocol stack (provided by the INET framework) to
a large set of overlay protocols (encapsulated in OverSim [8]
module). In order to increase the degree of realism in our
simulation environment, we also present our enhancements on
a topology conversiontool that allows our platform to use
Internet like topologies generated by the popularGeorgia Tech
Internet Topology Model(GT-ITM) [9]. In the same vein, we
present achurn generatorthat activates BitTorrent nodes in
a network topology by following an arrival process derived
from the analysis of actual BitTorrent traces [5].

The rest of the paper is organized as follows. In Sec-
tion II we provide a detailed description of the BitTorrent
protocols, focusing on the features that we implemented. In
Section III we present the architecture of our simulator with
respect to module structure and code organization. Section
IV details the procedure for establishing realistic simulation
scenarios, including the GT-ITM topology conversion tool and
the churn generator module. In Section V we provide some
sample results from the simulator, including measurements of
its processing and memory requirements. In Section VI we
discuss the limitations of the other available simulators that
prompted our work. Finally, we discuss our future work plans
in Section VII and we conclude in Section VIII.

II. T HE BITTORRENTPROTOCOLS

One of the difficulties faced during the implementation of
the BitTorrent modules, was the lack of an official protocol
specification. Despite the immense embrace of BitTorrent from
both the user and research community, no formal protocol
specification has been drawn up yet. The only authoritative
document available, describes the entities involved in the
protocols, the basic concepts, and the rudimentary transactions
among them, but it lacks behavioral and implementation
details [4]. In effect, we had to resort to the unofficialBitTor-
rent Protocol Specification[10], which nevertheless does not
constitute a formal and unambiguous source of information.
In fact, several attributes of the protocols appear to be under
dispute. In the remainder of this section we provide a detailed
description of the protocols implemented, clarifying at the
same time our approach in all cases of dispute.

A. The Tracker Protocol

As we already mentioned, the distribution of a new file2 with
BitTorrent starts by publishing a.torrent metafile; this
metafile is distributed to peers using an out-of band channel,
usually by posting it on a web page. Trackers are responsible
for aiding peers to discover each other and form a swarm. In
most cases, each metafile is served by a single tracker, but re-
cent extensions to the protocol (not implemented by us) allow
multiple trackers for each file or even no trackers at all [11].
This is thetrackerlessapproach, which employsDistributed
Hash Tables(DHTs) for decentralized peer discovery.

Clients communicate with the tracker via a simple text-
based protocol, layered on top of HTTP/HTTPS, using the
tracker’s URL stored inside the metafile. During the download
phase, each client communicates with the tracker and publishes
its progress (in terms of total bytes downloaded/uploaded),
as well as itscontact details(e.g., IP address, TCP port,
identification info). These parameters are passed from the
client to the tracker using the standard HTTPGET method[12].
Note that most of the informationannouncedby the client is
for statistical purposes; only the IP address and TCP port of
a client are crucial. After each such message, called atracker
request, the tracker randomly selects a set of peers and returns
their contact details in abencodeddictionary [10]. This is the
tracker response. The tracker discovers these details via the
tracker requests made by the clients. In this manner, over time
the peers discover increasing subsets of the swarm.

B. The Peer-wire Protocol

The peer-wire protocol provides the core BitTorrent func-
tionality (i.e., interaction with remote peers). In the following
we first present an overview of the protocol and then proceed
with the details of its operation, focusing on the most impor-
tant features available in our implementation.

1) Protocol overview:After contacting the tracker, a client
attempts to establish TCP connections with the peers listed in
the tracker response. Upon connection establishment, the two
peers exchangeHANDSHAKE messages in order to verify each
other’s identity and ensure that they are interested in the same
torrent. This handshake is then followed by an exchange of
BITFIELD messages that contain thebitfield of each client (i.e.,
the bitmap denoting the availability of each piece at the client).
Based on that information a client can determine whether it is
interested in one or more pieces of the remote peer. Note that
this exchange is optional when the client has no pieces, since
it would result in the exchange of useless information, and is
therefore avoided in our implementation.

By following the above procedure over multiple peer con-
nections3, a client collects information regarding the availabil-
ity of the pieces that it is still missing in the subset of the
swarm explored thus far. Based on this, it then decides which
pieces to request from each peer. In general, if a peer does
not hold any pieces that the client does not already have, a

2Since BitTorrent organizes the set of files to be distributed as a linear
sequence of bytes, similarly to a single file, we use the terms file and files
interchangeably throughout the rest of the paper.

3The number of connections to establish is discussed in Section II-B.2.

PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370 3

NOT INTERESTEDmessage is sent to that peer to indicate the
lack of interest for its data. At the beginning of a connection,
peers are assumed not to be interested in each other’s pieces.

Although at this stage a client knows the peers it is
interested in, it cannot make any requests yet as data are not
exchanged until the remote peer actively authorizes this by
sending anUNCHOKE message. This implies that each client is
initially blocked, or, in BitTorrent lingo,chokedby the remote
peer. The decision to unchoke, or not, a client is made based
on several criteria embodied in thechoking algorithm[10]:
• Reciprocation: peers unchoke the clients that provide the

best upload rates.
• TCP performance: TCP behaves better when the number

of simultaneous uploads is capped.
• fibrillation avoidance: frequent (un-)choking causes data

transfer interrupts that deteriorate protocol performance.
• optimistic unchoking: new peers are occasionally un-

choked so as to discover potentially better connections.
This is also how new peers acquire their first pieces.

When a client is unchoked by a peer, it starts sending
REQUEST messages, each soliciting a specificblock of the
selected piece. The peer sends back the requested data us-
ing PIECE messages. Upon completing a piece download,
the client informs viaHAVE messages all the peers that it
maintains connections with. These peers update the bitfield for
that client and may then express their interest for that piece.

2) Connections:A client periodically learns about other
peers by utilizing the Tracker protocol and parsing the peer list
returned. The client joins the swarm by establishing connec-
tions with some of those peers. However, as noted in [10], each
connection incurs an increase in signaling traffic, especially
for bitfield maintenance via the exchange ofHAVE messages.
Thus, our implementation provides configurable lower and
upper bounds for the number of established connections, using
the minNumConnections and maxNumConnections
configuration parameters (see Table I).

3) Piece downloading strategy:The piece downloading
strategy refers to the policy followed in the selection of the
pieces that will be requested from a peer. It is an important
aspect of BitTorrent as it heavily affects the diversity of
the pieces available in each peer. A low degree of diversity
would result in low interest for a peer’s pieces, thus causing
degraded application performance. We have implemented the
two most prevalent piece downloading strategies:rarest first
andrandom first. Based on the information gathered during the
BITFIELD and HAVE message exchanges, the former strategy
selects those pieces that appear less frequently in a client’s
set of connected peers. This selection is randomized among
several of the less common pieces, according to therarest
list size configuration parameter (see Table I), in order to
avoid multiple peers converging on the same piece. This way,
peers download pieces that most other peers probably want,
therefore facilitating data exchange. However, rare pieces are
present only in a few peers, and it is possible that downloading
from them may be interrupted due to a choking decision.
Clients with no pieces in their possession would therefore have
to wait for an optimistic unchoking event from a peer holding
the same rare piece in order to continue downloading. The

latter strategy avoids this problem by selecting a random piece
which is more likely to be available from multiple peers, so
that a choking decision would not have such an adverse effect.

4) Queueing:REQUEST messages refer to specific blocks
of a piece. This facilitates fine-grained data exchange by
enabling queuing of data requests. As common piece sizes vary
from 256 KB to 1 MB [10] or even larger, per piece requests
would result in a many redundant retransmissions in the event
of a choking decision during piece transfer. A window-based
queuing mechanism is employed for these requests, otherwise
propagation delays would dominate the total download time.

Since the exact nature of the queueing policy is under
dispute, we implemented a generic queueing mechanism in
which the user can specify the exact size of the queue. In
this mechanism a client may send to a peer up torequest
queue length (see Table I) request messages for blocks.
Once a PIECE message has been received, the client may
send the nextREQUEST message. In case a piece has been
requested in its entirety and the request queue is not full, the
client chooses another desired piece from that peer’s bitfield
according to the piece selection strategy (see Section II-B.3)
and starts sendingREQUEST messages for its blocks.

5) Choking algorithm:For the choking algorithm we fol-
lowed the guidelines presented in Section II-B, along with
the ability to tune the choking algorithm as desired. The user
may select appropriate values for the time between (opti-
mistic) choking decisions, using thechoking interval
and optUnchoking interval configuration parameters,
and the maximum number of (optimistically) unchoked
peers, using thedownloaders andoptUnchokedPeers
configuration parameters (see Table I). To enable content
providers to offer advanced seeding capabilities (see Sec-
tion IV-B), the above parameters can be separately config-
ured for such nodes via theseederDownloaders and
seederOptUnchokedPeers parameters. The parameter
newlyConnectedOptUnchokedProb is the probability
that the most recently connected peer will be preferred over
previously connected ones in an optimistic unchoke decision.

6) Super Seeding:The super seedfeature is especially
useful for content distribution as it helps the initial seeder to
avoid excessive bandwidth consumption while fostering data
exchange between participating peers. A super seeder does not
inform its peers that is has all pieces available, masquerading
as an ordinary client. Initially, it pretends to possess no
pieces and only later informs them about the availability of
an individual piece with aHAVE message, as if it had just
completed downloading it. The seeder either selects a piece it
has never uploaded before or, if all pieces have already been
uploaded at least once, a piece that has been uploaded only a
few times. After the piece has been downloaded by a peer, the
seeder will not inform it of other pieces until it sees this piece
marked as available in the bitfield of other peers, implying
that the first peer has in turn uploaded that piece.

Our module implements this feature in all clients, but only
enables it at the initial seeder via thesuper seed mode
configuration parameter (see Table I), since super seeding is
not recommended for ordinary peers [10]. Instead, ordinary
peers act as regular seeders after downloading all pieces. The

4 PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370

Parameter Default Value
file size (MB) 700
piece size (KB) 256
block size (KB) 16
DHT port -1
pstr BitTorrent protocol
pstrlen 19
keep alive (sec) 120
have supression true
choking interval (sec) 10
downloaders 4
optUnchokedPeers 1
optUnchoking interval (sec) 30
seederDownloaders 4
seederOptUnchokedPeers 1
rarest list size 5
minNumConnections 30
maxNumConnections 55
timeToSeed (sec) 0
request queue length 5
super seed mode false
end game mode true
maxNumEmptyTrackerResponses 5
newlyConnectedOptUnchokeProb 0.75
downloadRateSamplingDuration (sec) 20

TABLE I

PEER-WIRE PROTOCOL PARAMETERS.

duration of this regular seeding phase can be set via the
timeToSeed configuration parameter (see Table I).

7) Endgame mode:Theendgamemode addresses the prob-
lem of slow transfers for the last data blocks of an exchange,
since at that stage most pieces have been downloaded, there-
fore the degree of parallelization is low. In this mode the client
sendsREQUESTmessages for each missing block to all peers
that are not choking it, as opposed to a single peer. While this
is not clarified in the specification [10], our implementation
does not send these messages to all peers in its current peer set
since a peer choking the client will simply discard the request.
Another unclarified aspect of the endgame mode regards the
entry condition. In our implementation, the client enters this
mode when the number of missing blocks equals the number of
requested blocks, meaning that all missing blocks have been
requested. This feature can be turned on/off using theend
game mode configuration parameter (see Table I).

III. I MPLEMENTATION

The architectural design approach we followed resembles
the philosophy of the INET framework upon which we built
our modules. On the whole, we opted for the following:
simplicity for eliminating simulation complexity,modularity
for supporting abstractions and facilitating future add-ons,
and extensibility for encouraging the model’s evolution by
community contributions. Most of the implementation specific
characteristics (i.e., the features left open in the specifica-
tion), were encapsulated and abstracted in order to produce
a simulation package that is both concrete and extensible.
Thus, simulations can run without touching the source code,
simply by editing the corresponding configuration files (e.g.,
.ini and .ned files), while at the same time maintaining
the ability to change many aspects of the model behavior.

Furthermore, in order to promote the expansion of the provided
modules, we have modularized the source code of important
peer wire protocol features such as the choking algorithm
and the selection of the peer(s) for optimistic unchoking (see
Section II-B.5), the piece downloading strategy (see Section II-
B.3), the entry condition for the endgame mode (see Section II-
B.7), and so on. Hence, different algorithms and behaviors
may be easily implemented simply by redefining the respective
methods.

Our model consists of three modules, namelyTRACKER,
TRACKER CLIENT, andPEER-WIRE as shown in Figure 1. As
their names suggest, the first module provides the functionality
of the tracker as described in Section II-A, the second module
is responsible for communicating with the tracker on behalf
of a client and the third module provides the functionality
of the peer-wire protocol as described in Section II-B. In
order to facilitate the deployment of BitTorrent simulation
scenarios, we created separate end host compound modules for
each BitTorrent entity, namelyBTHOST, BTHOSTSEEDER

and TRACKER. All these compound modules were derived
from the INETSTANDARDHOST module; individual protocol
modules can also operate as simpleSTANDARDHOST sub-
modules. A detailed description of the simulation scenario
deployment procedure is provided in Section IV.

Since all modules depend on the INET framework, they rely
on TCP application models. The first design decision we faced
was about the TCP server models we would employ for the
tracker and the peer-wire protocol, given the two alternatives
provided by the INET framework: theTCPSRVHOSTAPP and
the TCPGENERICSRVAPP models. The former dynamically
creates and launches a newthread4 object to handle each
incoming connection. The latter also accepts multiple con-
nections but handles them in a centralized fashion. The first
approach was regarded as closer to the symmetric character
of a P2P protocol such as BitTorrent, while it also saved us
from the burden of maintaining centralized multi-peer state.

A. The Tracker Protocol

The implementation of the tracker protocol consists of
two principal modules:BTTRACKERBASE and BTTRACK-
ERCLIENTBASE. The former is the server module, which
is part of the tracker, while the latter is the client module,
which is part of the BitTorrent application. Communication
between these modules is carried out through theBTTRACK-
ERMSGANNOUNCE and BTTRACKERMSGRESPONSEmes-
sages, both derived from theCMESSAGEclass. The first class
implements the client announce messages and includes all
necessary fields, with their corresponding semantics, while the
second class encodes the tracker’s responses.

The tracker functionality is implemented in theBT-
TRACKERBASE module as a multi-threaded network appli-
cation. Upon each successful connection to the tracker, a new
thread is generated to drive the session between the tracker and
the peer. TheBTTRACKERCLIENTHANDLERBASE module,
stemmed from the INETTCPSERVERTHREADBASE, is used

4The term thread is used to denote an individual connection handler rather
than an actual Operating System entity.

PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370 5

BTHost

...Tracker

thread

Tracker

thread

Tracker

thread

..
.

Tracker base

Peer-

wire

thread

Peer-

wire

thread

... Peer-

wire

thread

TCP
..
.

Peer-wire base
Tracker

client

module

TCP

Physical Layer

Peer-wire module

Tracker

Tracker module

Physical Layer

Swarm

Fig. 1. BitTorrent module architecture.

to encapsulate and modularize the details of tracker-to-peer
communication such as message exchanges, input valida-
tion, reply construction and so on, whileBTTRACKERBASE

handles the underlying low-level operations such as timer
handling and message dispatching. Similarly, the client part
is implemented inBTTRACKERCLIENTBASE including the
functionality required to retrieve tracker responses and feed
the BitTorrent application with received information (i.e.,
the contact information of other peers). We implemented all
the tracker protocol parameters described in [10]. The key
configuration parameters of both modules and their default
values are shown in Table II (server) and Table III (client).

Parameter Default Value
alwaysSendTrackerId false
compactSupport true
maxPeersInReply 50
announceInterval (sec) 30
cleanupInterval (sec) 60

TABLE II

TRACKER SERVER PARAMETERS.

Parameter Default Value
connectGiveUp 3
reconnectInterval (sec) 2.0
sessionTimeout (sec) 30.0
infoHash nil
compact false
noPeerId false
numWant 20
key nil

TABLE III

TRACKER CLIENT PARAMETERS.

B. The Peer-wire Protocol

The implementation of the peer-wire protocol consists of
two principal modules:BTPEERWIREBASE and BTPEER-
WIRECLIENTHANDLERBASE. The main coordination point
for the BitTorrent client is theBTPEERWIREBASE module
that encompasses the following functionalities:

1) Tracker protocol information retrieval, that is, commu-
nicating with the tracker client module to retrieve the
peer set information provided by the tracker.

2) Handling the connection establishment policy.
3) Implementing the piece selection strategy. This function-

ality involves maintaining state on:
• Data availability in the client and throughout the

part of the swarm that we are connected to.
• A client’s current data exchanges

4) Informing peers about the availability of new pieces, in
both the normal and super seeding modes.

5) Applying the choking algorithm.
6) Coordinating the endgame mode.
The BTPEERWIRECLIENTHANDLERBASE class, derived

from the INETTCPSERVERTHREADBASE, handles the com-
munication with a single peer. This means that all peer-wire
protocol message exchanges between peers (see Section II-
B.1) are driven by instances of this class. The coordination
of individual threads (e.g., assuring that a certain block is
not requested from more than one peer, except while in the
endgame mode), is performed byBTPEERWIREBASE.

TheTCPSRVHOSTAPPmodel creates a new socket for each
passiveconnection which is handled by a newTCPSERVER-
THREADBASE instance. In order for our implementation to re-
flect the completely symmetric character of peer connections,
we decided to extend this model by incorporating also the
functionality of the client side. Because of that, ourBTPEER-
WIREBASE class allows each newactive connection to be
handled by a separateBTPEERWIRECLIENTHANDLERBASE

thread object. Hence, when a client decides to establish a
TCP connection with a peer it creates a new socket, es-
tablishes the connection and creates a newBTPEERWIRE-
CLIENTHANDLERBASE instance to be set as the callback
object of the socket. In effect, symmetry is achieved, since
the connection is handled by two identical thread objects; code
structure is therefore simplified, since the peer-wire protocol
functionality is incorporated in a single event-based class.

Apart from the classes presented above, our implementation
employs two additional utility classes:BITFIELD and BTU-

6 PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370

TILS. The former represents a peer’s bitmap, including block
information, and provides all necessary handling functions,
such as initialization, updates and queries. The latter is used
for handling all the protocol state information described above.

C. Statistics

The collection of application and protocol statistics is
facilitated by BTSTATISTICS, a simple module responsible
for collecting and aggregating statistics. The set of currently
available statistics includes thedownload durationfor those
peers that have managed to download the desired file in
its entirety and thenumber of downloaded blocksfor those
peers that have failed (i.e., peers who cannot find a peer to
provide their missing blocks/pieces). A peer is considered
to have failed if it receives empty tracker responses for
maxNumEmptyTrackerResponses times before down-
loading completes (see Table I). Thenumber of distinct data
providersand thenumber of blocks downloaded from seeder,
are also included in the statistics collected for each peer. The
former quantifies the degree in which the downloading process
is spread across the swarm, while the latter reveals whether
users tend to download directly from the initial seeder.

For all the above metrics, both individual measurements
(i.e., vector statistics) and aggregated values (i.e., scalar statis-
tics) are recorded, accommodating both coarse and fine grained
analysis of the collected data. We plan to enrich this set with
statistics on the download rate achieved by the peers during
the download process, the amount of signaling traffic,etc.

IV. CREATING SIMULATION SCENARIOS

Our implementation was developed as a stand-alone INET
framework application, therefore, in order to run a BitTorrent
simulation, a network topology must be provided and the
appropriate modules (e.g.,TRACKER, TRACKER CLIENT and
PEER-WIRE) must be loaded as submodules of the compound
modules representing the peers and the tracker. While this pro-
cedure is sufficient for testing the modules, it is cumbersome
to use when constructing realistic scenarios such as:
• Large-scale network topologies that require careful han-

dling of node module placement and interconnection.
• Random introduction of clients into the simulation, both

topologically and chronologically, as the network descrip-
tion files cannot capture such dynamics.

These considerations indicate that there is a need for glob-
ally controlled, network-widedynamic module loadingin the
construction of the simulation scenario. Hence, we turned
to the OverSim overlay simulation framework [8], which
provides several of the features required to establish realistic
and dynamic simulation scenarios. It must be stressed however
that our BitTorrent implementation is not OverSim dependent:
it can optionally employ several of the features provided by
OverSim. In the following sections we present the OverSim
features that we exploited along with our enhancements.

A. Topologies

One of the big concerns in creating realistic simulation
platforms for BitTorrent is the underlying network topolo-
gies. OverSim provides various underlying network structures,

both simple (e.g., SIMPLEUNDERLAY) and composite (e.g.,
IPV4UNDERLAY). However, both models present significant
limitations in representing a realistic network substrate.

The SIMPLEUNDERLAY model was designed to provide
a simple and scalable network substrate specially tailored
for simulations focusing on the functionality of higher layer
protocols, such as the set of overlay routing schemes provided
by OverSim. In this model, packets are directly exchanged
between end hosts completely neglecting the functionality of
the underlying protocol stack. Packet delivery is performed by
simply considering the characteristics of the communicating
end hosts’ access links and samples of end to end propagation
delays derived from CAIDA’s Skitter project [13].

This lack of protocol functionality and step-by-step rout-
ing in SIMPLEUNDERLAY turned our attention to the more
realistic IPV4UNDERLAY model. In [14] we addressed two
important limitations of this model. First, the model only
provides a distinction between backbone and access routers
neglecting the complex structures imposed by the existence
of multiple autonomous administrative domains. Second, the
model provides no support for routing policy weights. Both
problems were addressed by extending the BRITE topology
generator [15] export tool [16] that enables full support of
the very popularGeorgia Tech Internet Topology Model(GT-
ITM) [9] topologies within theIPV4UNDERLAY model, in-
cluding the employment of a weighted shortest path algorithm.

Despite these important enhancements, the resulting GT-
ITM based IPV4UNDERLAY model retains two more sig-
nificant limitations. The first is revealed when considering
the locality properties (with respect to the consumption of
ISP-specific resources) of data exchanges in P2P content
distribution applications, such as BitTorrent. It has been shown
that BitTorrent’s network-agnostic peer-wire protocol has an
adverse impact on capacity related ISP costs by allowing
downloads from peers residing in external domains, even when
the desired data are already present locally [2].

This has triggered several research efforts [17], [18] that
would benefit from a simulator providing the flexibility to
study ISP level aspects of the protocol performance. Hence,
while OverSim’sIPV4UNDERLAY model provides no access
to such information, we have further enhanced our topology
conversion tool to also preserve the unique Autonomous
System numbers [19] produced by BRITE and to export them
to a separate configuration file so that each router, as well
as each attached end host, can be assigned the corresponding
AS number. Direct access to this information is provided to
the simulation programmer, facilitating the investigation of the
aforementioned locality properties and protocol inefficiencies,
as well as the implementation of location-aware schemes [18].

Second, OverSim does not make any distinction between the
uplink and downlink characteristics of access links (i.e., band-
width). However, this distinction is important for providing
realistic networking environments, since typical current access
technologies, such as ADSL, do present this asymmetry. This
issue becomes more important due to the fact that bandwidth
heterogeneity results in a systematic unfairness of the peer-
wire protocol, as the download rates achieved are based on the
tit-for-tat mechanism. Hence, we further enhanced OverSim’s

PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370 7

Uplink Downlink Fraction
(Mbps) (Mbps)

1 4 0.20
1 8 0.40
2 16 0.25
2 24 0.15

TABLE IV

BANDWIDTH DISTRIBUTION OF ACCESS LINKS.

IPV4UNDERLAY model to support a range ofchannel 5

characteristics for the two directions of each access link.
Specifically, the simulation programmer is able to specify
different channel options for the uplink and downlink of each
access link type, along with the fraction of the total access
links across the entire network that each channel type is
assigned to. In the measurements presented below, we have
set these values as depicted in Table IV. For example, 40% of
the participating peers can download data at a maximum rate
of 8 Mbps and upload data with a maximum rate of 1 Mbps.

B. Host Deployment

Having established a realistic network topology, the next
step is to deploy the corresponding entities on it. As far as the
tracker is concerned, to avoid coupling the network topology
description file with the application, we extended the OverSim
IPV4UNDERLAYCONFIGURATOR module to dynamically in-
troduce the BitTorrent tracker in the network.

Regarding the initial seeder, we implemented a separate
deployment scheme, since in many realistic scenarios the
initial seeder has different characteristics from ordinary peers.
For example, the content might be a new Linux distribution
(i.e.,, an ISO image file), hosted by a dedicated server with
a high capacity access link, while ordinary peers participate
in the swarm through ADSL links. Protocol parameters may
also be altered to achieve a differentiated behavior between
the initial seeder and the peers. For example, the initial seeder
may optimistically unchoke multiple peers to speedup the
distribution of the offered file. This was again achieved by
extendingIPV4UNDERLAYCONFIGURATORandACCESSNET

modules’ functionality and employing a separate host descrip-
tion file for the initial seeder:BTHOSTSEEDER. Note that our
extensions check whether the scenario is BitTorrent related
before proceeding to deploy an initial seeder or a tracker, thus
preserving the base functionality of the affected modules.

Unlike the tracker and the initial seeder, peers need to be
randomly introduced into the network both in a topological
and chronological sense (i.e., they need to be placed at
random nodes in random points of time). The churn models
provided by the OverSim platform, together with the under-
lying IPV4UNDERLAY configuration mechanism, constitute a
flexible mechanism for dynamically deploying peers in the
network. However, the churn models available in OverSim
were not designed to reflect the arrival processes of real
applications. Instead, they provide a generic mechanism for

5We adopt the OMNeT++ definition of a channel, which includes the data
rate, error rate, and propagation delay characteristics of a link.

Parameter Value
Transit domains 7
Avg. routers per transit domain 4
Stub domains per transit router 7
Avg. routers per stub domain 7
Stub routers 1372
Transit routers 28
Total routers 1400

TABLE V

NETWORK TOPOLOGY PARAMETERS.

the arrival process and several distributions, which describe
the duration of a peer’s presence in the network. Since in
BitTorrent this duration depends on protocol operation rather
than on a predetermined distribution, we focused on modeling
the arrival process. Using the OverSim churn generator mech-
anism, we implemented theBITTORRENTCHURN model that
reproduces the arrival process of BitTorrent clients presented
in [5]. In this study, based on the analysis of BitTorrent user
traces, it was observed that the peer arrival rate for a torrent
follows an exponential decreasing rule with timet:

λ(t) = λ0e
− t

τ ,

whereλ0 is the initial arrival rate when the torrent starts and
τ denotes the file popularity. Based on this distribution it can
be shown thatNall = λ0τ , whereNall is the total population
size. Hence, by retrieving values forNall and λ0 from the
configuration files, our model can generate random arrival
times for each BitTorrent peer. Peers leave the swarm after
their download completes or fails; in the former case, they
may optionally also act as seeds for a period of time.

V. RESULTS

In the following we present some preliminary measurements
produced by our simulation modules. First, we investigate the
resource demands of the presented implementation, including
the underlying network models, and then we demonstrate the
flexibility provided by the created simulation environment in
investigating BitTorrent protocol parameters. The performance
results reported in this paper were obtained with OMNeT++
v.3.3, INET v.20061020, and OverSim v.20080416 (patched
with our modifications), on a Intel Dual Core E5200 2.5 GHz
processor with 4 GB of RAM running Ubuntu Linux 8.04.

Based on our findings on the memory footprint of GT-
ITM based topologies of several sizes [14], we created an
IPV4UNDERLAY topology that strikes a balance between the
memory consumption and complexity of the routing substrate,
consisting of 1372 stub and 28 transit routers. The detailed
characteristics of the employed topology are presented in Table
V. We used the default link establishment probabilities, that
is, a link between two transit routers was established with a
probability equal to 0.6 and a link between two stub routers
was established with a probability equal to 0.42. Each peer
is attached via an access link to a randomly selected stub
router upon arrival. In addition, we used aSIMPLEUNDERLAY

topology consisting only of peers attached to access links, with
the propagation delays between the peers being drawn from
CAIDA’s Skitter project [13].

8 PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370

Parameter Value
file size (MB) 200
swarm size 30, 60, 90, 120
piece size (KB) 256, 512, 1024, 2048, 4096
end game mode false
seederDownloaders 25
timeToSeed (sec) 360
downloadRateSamplingDuration (sec) 9

TABLE VI

PEER-WIRE PROTOCOL PARAMETER VALUES.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 30 60 90 120

M
em

or
y

F
oo

tp
rin

t (
M

B
)

Total Peers

IPv4 Underlay (GT-ITM)
Simple Underlay (Skitter)

Fig. 2. Simulation memory requirements.

In both cases, peers enter the swarm according to the
distribution described in Section IV-B with an initial arrival
rate of 0.0166 peers/sec. We varied the access link bandwidths
across the network in order to achieve the heterogeneity
present in real environments. The uplink / downlink bandwidth
values of the various access link types as well as their
distribution are presented in Table IV. The tracker and the
initial seeder (content provider) have 10 Gbps symmetric
access links however. We chose to set such high values for
the access link of the tracker in order to avoid creating a
bottleneck, so as to focus on the performance of the peer-
wire base protocol. The same access link attributes were used
for the initial content provider in order to simulate a dedicated
high bandwidth seeding node, as discussed in Section IV-B.

Table VI shows the parameters set to non-default values
or varied in these sample experiments. Specifically, the size
of the file to be distributed via BitTorrent is 200 MB,
the swarm size is 30, 60, 90 or 120 peers, and the piece
size varies (256, 512, 1024, 2048 or 4096 KB). The ini-
tial seeder is allowed to unchoke a large number of peers
(i.e., seederDownloaders was set to 25) and continues
seeding until all peers in the swarm have downloaded the
content. The rest of the peers only keep seeding the file for
a small period after they have completed downloading the
file (i.e., timeToSeed was set to 360 seconds). In order to
further stress the downloading procedure we have deactivated
the endgame mode of the peer-wire protocol. Finally, the
downloadRateSamplingDuration parameter was set to
9 seconds, reflecting the time interval during which a peer
averages the collected samples of download rate.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 30 60 90 120

C
P

U
 T

im
e

(s
ec

)

Total Peers

IPv4 Underlay (GT-ITM)
Simple Underlay (Skitter)

Fig. 3. Simulation processing time.

The simulator memory requirements are shown in Fig-
ure 2. The x-axis presents the total number of peers com-
prising the swarm, while the curve indicates the maximum
size of the memory footprint recorded during the execu-
tion of the corresponding scenario. The difference between
the IPV4UNDERLAY and SIMPLEUNDERLAY models clearly
shows that a significant part of the former’s memory foot-
print is due to the underlying routing substrate. This is an
indication of the well known tradeoff between simulation
scalability and realism. However, considering the fact that
the IPV4UNDERLAY results refer to a full fledged simulation
environment, the total memory footprint of 720 MB for the
simulation of a swarm of 120 peers can be considered as an
acceptable cost when realism is important.

The tradeoffs between the two models are more evident
in Figure 3 which shows the processing (CPU) time for the
same scenarios. In theIPV4UNDERLAY case the processing
time reaches 98 minutes, due to the operation of the full
protocol stack for 120 end-hosts and 1400 routers. On the other
hand, in theSIMPLEUNDERLAY case, the processing time for
the same number of end-hosts is only 4 minutes, indicating
that our simulator can easily be used for studies that focus
on theapplication logicof BitTorrent. However, in this case
the impact of the underlying network operation on protocol
performance is completely neglected (see Section IV-A).

Figure 4 illustrates the effect of the piece size on the
average download time experienced by a swarm of 60 peers
for both network models. The deviation of the individual
values from the mean was quite high in both cases due to
the heterogeneity of the access links, although this is not
visible in the SIMPLEUNDERLAY due to the scale of the
figure. While one could argue that similar results could be
produced by increasing the propagation delays used in the
SIMPLEUNDERLAY model so as to account for the queueing
delays of theIPV4UNDERLAY model, a closer inspection of
the results reveals that the two curves behave differently.

In the SIMPLEUNDERLAY case, as the piece size increases
so does the average download time. This is attributed to the
fact that as the piece size increases, the length of the bitfield
decreases, thus providing fewer choices to the piece selection
strategy (see Section II-B.3). Recall that in order to facilitate

PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370 9

 0

 500

 1000

 1500

 2000

 2500

 3000

 256 512 1024 2048 4096

D
ow

nl
oa

d
T

im
e

(s
ec

)

Piece Size (KB)

IPv4 Underlay (GT-ITM)
Simple Underlay (Skitter)

Fig. 4. Effect of piece size on download time.

the efficient implementation of the queueing policy (SectionII-
B.4), a peer refrains from requesting a block belonging to
a piece that it has already started downloading from another
peer. Effectively, parallel downloads are limited by the number
of missing pieces, not missing blocks. When the number of
pieces comprising the file decreases due to the larger piece
size, it becomes harder for a client to find enough pieces to
request from different peers.

In the IPV4UNDERLAY case however, the download times
also increase at smaller piece sizes. This is attributed to the
fact that after each piece is downloaded, the client informs
its connected peers viaHAVE messages. By halving the
size of pieces, their number doubles, and so do theHAVE

messages, thus increasing the queueing delay at each client. In
the simplisticSIMPLEUNDERLAY model queueing is ignored,
effectively acting as if all these messages are transmitted in
parallel with data blocks. As a result, while theSIMPLEUN-
DERLAY indicates that download time is minimized at the
smallest piece size, the more realisticIPV4UNDERLAY reveals
that download time is minimized at an intermediate piece size.

VI. RELATED WORK

Simulating the operation of BitTorrent is a difficult task due
to the inherent protocol complexity and the lack of concrete
specifications. The multitude of possible policies, such as those
for piece selection and choking decisions, as well as parameter
values, such as the choking interval and the number of un-
choked peers, creates a highly dynamic environment. Hence, in
order to isolate important protocol aspects, works such as [20],
[21], [22], ignore the influence of the underlying protocols and
focus on theapplication logic. However, this design decision
obviously incurs a non-negligible degree of inaccuracy. TCP
dynamics, propagation delays and the potential queuing of
packets in routers are important factors that can affect, for
example, the perceived download rate in a client and therefore
alter its choking decisions. Our implementation avoids this
situation by providing almost all features specified in [10] and
by operating on top of full-fledged simulation platform.

To the best of our knowledge, there is only one packet-level
BitTorrent simulation module available [23], implemented for

ns-2 [24]. While this implementation shares our goal of pro-
viding a realistic simulation environment, our implementation
provides several additional features, such as the entire Tracker
protocol as well as the endgame mode. Furthermore, our
implementation allows fine grained tuning of the protocols
by providing several configuration parameters not available
in [23], such asoptUnchoking Interval .

Finally, we note that our implementation is not the first
attempt to incorporate BitTorrent in the OMNeT++ simulation
platform. A swarming-based module is presented in [22],
but it only provides a bare-bones subset of the BitTorrent
protocol features, since it lacks the tit-for-tat mechanism. This
module was also developed using trivial network topologies
with dedicated non-TCP connections among all pairs of peers.
Likewise, a BitTorrent implementation for OMNeT++ that
does not utilize the INET framework is presented at [25].
The authors implemented most of the BitTorrent features
(e.g., rarest first piece selection strategy, chocking), but their
model suffers from the same deficiencies as [20], [21], [22]
do (i.e., the underlying protocol stack is missing and the
corresponding peer modules are linked to each other using
abstract connections). More importantly, critical parameters
such as link delay/bandwidth and swarm interarrival times
are modeled using the probabilistic distributions provided
by OMNeT++. In contrast, in our implementation we can
use realistic and detailed network substrates, deploying the
corresponding entities using a churn model derived from real-
life traces. According to the authors [26], the next major
version of their implementation will incorporate a realistic
underlay. However, this version is not yet available and it is
not clear whether it will be assembled on top of the INET
framework, or on a custom-made equivalent.

VII. F UTURE WORK

Our plans for future extensions to the simulator primarily
focus on enriching the set of extracted statistics. To this end,
we aim to track the achieved download rate of each peer
during its participation in the swarm. Our intention is to make
this information, as well as the currently provided statistics,
further categorizable with respect to the access link capabilities
of the peers so as to allow the fine grained analysis of the
derived measurements. We also plan to take advantage of
the enhanced topology model employed (see section IV-A)
by providing support for the extraction of topology-aware
metrics (i.e., metrics for specific areas of the network such
as selected access networks). This will involve both per peer
statistics (e.g., download time) and per area statistics (e.g.,
volume of data exchanged with neighboring access networks).
Furthermore, we plan to enable the separate extraction of
statistics for the operation of the initial seeders.

Regarding the creation of simulation scenarios (see Sec-
tion IV), we intend to provide support for multiple initial
seeders and to further enhance the tuning of the peer-wire
protocol on these nodes by providing control over several
parameters such as the choking interval and the number of
optimistically unchoked peers. Such features, in combination
with the seeder-specific statistics, are expected to enable the

10 PUBLISHED IN: PROCEEDINGS OF THE IEEE MASCOTS 2009, PP. 361–370

fine-grained investigation of the protocol performance from
the perspective of content providers. Moreover, by taking
advantage of the rich suite of overlay protocols provided by
OverSim [8], we currently investigate the design space for the
implementation of the DHT-based trackerless extension.

VIII. C ONCLUSIONS

In this paper we have presented an implementation of
the BitTorrent set of protocols for the OMNeT++ simulation
environment [7]. Our main target was to produce a realistic
simulation environment that will enable the detailed evaluation
of the protocol in fully controllable conditions. Towards this
direction we have faithfully implemented the only available
protocol specification, trying to make our module resemble
an actual BitTorrent implementation. Furthermore, we created
a set of tools, which enable the construction of realistic
simulation scenarios that can capture the properties of the
Internet-like network topologies and the real world deployment
dynamics of BitTorrent participants. Our goal is to enable
simulation scenarios to be created where clients access the net-
work over both symmetric and asymmetric links with various
characteristics. The results presented in this paper indicate that
we can perform detailed medium-scale simulations of realistic
Internet-like swarming scenarios in commodity hardware and,
equally important, that is makes sense to do so.

REFERENCES

[1] PSIRP, “Publish-Subscribe Internet Routing Paradigm,” Jun 2009.
[2] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should Internet

service providers fear peer-assisted content distribution?,” inProc. of the
Internet Measurement Conference (IMC), (Berkeley, CA, USA), pp. 63–
76, Oct 2005.

[3] B. Cohen, “Incentives build robustness in BitTorrent,” inProc. of the
Workshop on the Economics of Peer-to-Peer Systems, (Berkeley, CA,
USA), pp. 116–121, Jun 2003.

[4] BitTorrent.org, “BitTorrent Protocol Specification,” Jun 2009.
[5] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “A perfor-

mance study of BitTorrent-like peer-to-peer systems,”IEEE Journal on
Selected Areas in Communications, vol. 25, no. 1, pp. 155–169, 2007.

[6] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent
P2P file-sharing system: Measurements and analysis,” inProc. of the
International Workshop on Peer-to-Peer Systems (IPTPS), (Ithaca, NY,
USA), pp. 205–216, Feb 2005.

[7] K. Katsaros, V. Kemerlis, C. Stais, and G. Xylomenos, “BitTorrent
module for OmNEt++,” Jun 2009.

[8] I. Baumgart, B. Heep, and S. Krause, “OverSim: A flexible overlay
network simulation framework,” inProc. of the IEEE Global Internet
Symposium, (Anchorage, AK, USA), pp. 79–84, Jan 2007.

[9] E. Zegura, K. Calvert, , and S. Bhattacharjee, “How to model an
internetwork,” inProc. of the IEEE INFOCOM, vol. 2, (San Francisco,
CA, USA), pp. 594–602, Mar 1996.

[10] TheoryOrg, “BitTorrent Protocol Specification v1.0,” Jun 2009.
[11] BitTorrent.org, “DHT protocol,” Jun 2009.
[12] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource

Locators (URL).” RFC 1738, Dec 1994.
[13] CAIDA, “CAIDA skitter Topology Traces,” Jun 2009.
[14] K. Katsaros, N. Bartsotas, and G. Xylomenos, “Router assisted overlay

multicast,” in Proc. of the Euro-NF Conference on Next Generation
Internet Networks (NGI), (Aveiro, Portugal), Jul 2009.

[15] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: an approach to
universal topology generation,” inProc. of the International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), (Cincinnati, OH, USA), pp. 346–353, Aug
2001.

[16] A. Varga, “OMNeT++ export for BRITE 2.1,” Jun 2009.

[17] H. Xie, R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz,
“P4P: provider portal for applications,”ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4, pp. 351–362, 2008.

[18] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and
A. Zhang, “Improving traffic locality in BitTorrent via biased neighbor
selection,” in Proc. of the International Conference on Distributed
Computing Systems (ICDCS), (Lisbon, Portugal), pp. 66–66, Jul 2006.

[19] IANA, “Autonomous system (AS) numbers,” Jun 2009.
[20] A. Bharambe, C. Herley, and V. Padmanabhan, “Analyzing and improv-

ing BitTorrent performance,” Tech. Rep. MSR-TR-2005-03, Microsoft
Research, Redmond, WA, USA, Feb 2005.

[21] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and
improving a BitTorrent network’s performance mechanisms,” inProc.
of the IEEE INFOCOM, (Barcelona, Spain), pp. 1–12, Apr 2006.

[22] P. Korathota, “Investigation of swarming content delivery systems,”
Master’s thesis, Sydney University of Technology, November 2003.

[23] K. Eger, T. Hoßfeld, A. Binzenḧofer, and G. Kunzmann, “Efficient
simulation of large-scale P2P networks: Packet-level vs. flow-level
simulations,” in Proc. of the Workshop on the Use of P2P, GRID
and Agents for the Development of Content Networks (UPGRADE),
(Monterey, CA, USA), pp. 9–16, Jun 2007.

[24] UCB/LBNL/VINT, “The Network Simulator - ns - 2,” Jun 2009.
[25] K. De Vogeleer, D. Erman, and A. Popescu, “Simulating bittorrent,” in

Proc. of the International Workshop on the Evaluation of Quality of
Service through Simulation in the Future Internet (QoSim), (Marseille,
France), Mar 2008.

[26] “BT-SIM a BitTorrent Simulator,” Jun 2009.

