
DynaGuard: Armoring Canary-based Protections against
Brute-force Attacks

Theofilos Petsios
Columbia University

theofilos@cs.columbia.edu

Vasileios P. Kemerlis
Brown University

vpk@cs.brown.edu

Michalis Polychronakis
Stony Brook University

mikepo@cs.stonybrook.edu
Angelos D. Keromytis

Columbia University
angelos@cs.columbia.edu

ABSTRACT
Over the past decade many exploit mitigation techniques
have been introduced to defend against memory corruption
attacks. WˆX, ASLR, and canary-based protections are
nowadays widely deployed and considered standard prac-
tice. However, despite the fact that these techniques have
evolved over time, they still suffer from limitations that en-
able skilled adversaries to bypass them.

In this work, we focus on countermeasures against the
byte-by-byte discovery of stack canaries in forking programs.
This limitation, although known for years, has yet to be ad-
dressed effectively, and was recently abused by a series of
exploits that allowed for the remote compromise of the pop-
ular Nginx web server and a full ASLR bypass in x86-64
Linux. We present DynaGuard, an extension to canary-
based protections that further armors hardened applications
against brute-force canary attacks. We have implemented
DynaGuard in two flavors: a compiler-based version, which
incurs an average runtime overhead of 1.2%, and a ver-
sion based on dynamic binary instrumentation, which can
protect binary-only applications without requiring access to
source code. We have evaluated both implementations using
a set of popular server applications and benchmark suites,
and examined how the proposed design overcomes the lim-
itations of previous proposals, ensuring application correct-
ness and seamless integration with third-party software.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Reliability, Security

Keywords
canary-based protection; canary re-randomization

This paper is authored by an employee(s) of the United States Government and is in the
public domain. Non-exclusive copying or redistribution is allowed, provided that the
article citation is given and the authors and agency are clearly identified as its source.
ACSAC ’15, December 7–11, 2015, Los Angeles, California, USA
ACM 978-1-4503-3682-6/15/12
DOI: http://dx.doi.org/10.1145/2818000.2818031.

1. INTRODUCTION
Among the many different types of memory corruption

vulnerabilities actively exploited throughout the past two
decades, stack buffer overflows remain the most frequently
encountered [45], and various protection mechanisms have
been proposed to prevent adversaries from abusing them.
Widely deployed defenses include WˆX [31, 36] and non-
executable memory [20,30], Address Space Layout Random-
ization (ASLR) [18,35], and stack canaries [10,13,28]. How-
ever, none of these protections has fully eliminated stack
smashing attacks.

In fact, although stack buffer overflows are no longer triv-
ially exploitable, they are still present in popular appli-
cations, and are often used as a stepping stone in mod-
ern, multi-stage exploits that make use of techniques like
Return-Oriented Programming (ROP) [40]. For instance,
the recently-introduced Blind ROP (BROP) [4] attack re-
quires only a stack-based memory corruption vulnerability
and a service that restarts after a crash to automatically
construct a ROP payload.

In certain cases, however, attacks can be rendered feasible
due to inherent limitations of the deployed protection mech-
anisms. In this work, we examine one such case, related to a
limitation of current canary-based protections [10,13], which
allows adversaries to guess the value of a canary in fork-
ing applications, byte-by-byte, in a brute-force manner, and
with a small number of attempts. This is possible due to the
underlying process creation mechanism adopted by modern
operating systems (OSes): new (child) processes are created
by duplicating the memory of a template (parent) process.

This duplication of memory is known to have critical secu-
rity implications. In the Android OS, it significantly weak-
ens ASLR [23]. In case of stack canaries, it results in iden-
tical stack canary values being present in the parent and
child process(es), after invoking the fork system call. Al-
though this issue has been known since 2006 [16], it remains
unaddressed. As a result, a previously-known technique for
bypassing SSP (the canary mechanism of GCC [13]) and
ASLR in Linux forking servers [38], was recently used in the
wild by a series of exploits against the (hardened) Nginx
web server [27]. The same canary bypass technique is also
pivotal to the BROP attack [4], which automates the cre-
ation of ROP payloads given only a stack vulnerability and
a service that restarts after a crash. Similarly, a full ASLR
bypass in x86-64 Linux was possible [26], facilitated by a
bypass of SSP using byte-by-byte canary guessing.

The severity and plethora of these exploits underline the
need to revise the design of canary-based protections. To
address the aforementioned issue, we present a scheme that
armors (stack) canary protectors against attacks that brute-
force the canary in forking applications. Specifically, through
a lightweight, per-thread bookkeeping mechanism, our de-
sign enables the runtime update of the canary value in all
protected (active) stack frames of the running thread, so
that newly-forked processes get a fresh canary, different from
the canary of their parent process. Contrary to previous
work [25], our approach guarantees correctness and can be
used as-is in production software.

We have prototyped our proposed solution in DynaGuard,
which can be applied on top of existing stack smashing pro-
tection mechanisms to prevent brute-force guessing of ca-
naries in forking programs. DynaGuard provides protection
across the whole spectrum of applications, as it comes in two
versions: when source code is available, a compiler-level ver-
sion of DynaGuard, implemented as a GCC plugin, incurs
just 1.2% runtime overhead over native execution, and is
fully compatible with third-party libraries that are protected
with the default canary mechanism; for binary-only executa-
bles, for which no source code is available, we have imple-
mented a version of DynaGuard on top of Intel’s Pin [24]
Dynamic Binary Instrumentation (DBI) framework, which
incurs an average slowdown of 2.92% over Pin and 1.7x over
the native binary.

More importantly, the DBI-based and compiler-based ver-
sions of DynaGuard can be combined, if needed, to achieve
full coverage of security-critical applications: parts for which
access to source code is available can be compiled using Dy-
naGuard’s GCC-based version, while all other components
can be protected at runtime using the Pin-based variant (or
the inverse, for instance, if one has access to the OS libraries
but not to the application’s source code), allowing for cost-
effective, targeted protection. In addition, the modular de-
sign of DynaGuard facilitates its integration to the back-
end of popular compilers, such as GCC and LLVM, as it is
naturally compatible with other compiler-assisted hardening
techniques (e.g., PointGuard [9], CFI [1], CPI [22]).

In summary, the main contributions of this work are the
following:

• We present DynaGuard, a robust solution for armoring
existing canary-based protections against brute-force
attacks in forking applications.

• We have evaluated the correctness of a recently pro-
posed solution [25] to the problem of canary brute force
attacks, and demonstrate how DynaGuard overcomes
its design limitations.

• We have implemented two versions of DynaGuard: a
GCC plugin and a DBI tool built on top of Pin, pro-
tecting both binary-only applications and programs
whose source code is available. Both implementations
are publicly available as open-source projects.

• We demonstrate the practicality of our our approach,
which incurs a runtime overhead of 1.2% when applied
at the compiler level, and show that it can be easily
adopted by popular compiler toolchains to further ad-
dress security issues arising from the process creation
mechanism of modern OSes [2, 5, 23,32].

2. BACKGROUND

2.1 Canary-based Stack Smashing Protection
The main idea behind canary-based stack protections is

to place a tripwire right after the return address, in every
stack frame, to detect overwrites by buffer overflows. This
tripwire, known as canary or canary cookie, is generated
dynamically at the creation of each thread and is typically
stored in the Thread Local Storage (TLS) area. During
execution, whenever a new frame is created, the canary is
pushed from the TLS into the stack. When the function
epilogue is reached, and right before the destruction of the
stack frame, the canary is compared against the one stored
in the TLS. If the two values do not match, the process is
terminated, as a stack smashing attack has occurred and has
potentially overwritten the return address.

The stack smashing protector of GCC (i.e., SSP [38])
adopts a series of layout transformations to further pre-
vent bypasses. Specifically, SSP creates local copies of the
function arguments so that the original arguments are never
referenced, and also re-orders local variables in the stack,
placing them always behind buffers, in order to prevent
pointer variables from being overwritten. Although SSP
still faces some limitations [38] (e.g., it does not protect
each buffer separately and cannot create argument copies
for functions with a variable number of arguments), it hin-
ders stack smashing significantly, as the attacker is unable
to read the TLS area and needs to have knowledge of the ca-
nary value to successfully corrupt the saved return address.

2.2 Bypassing Canary-based Defenses
Attackers wishing to bypass the stack canary protection,

while lacking any additional information, are restricted to a
random-guessing attack, the efficiency of which is bounded
by the entropy of the canary. The canary is four bytes long
on 32-bit architectures and eight bytes on 64-bit ones, and
is, in principle, random. However, there do exist cases [38]
where the canary either has a fixed value or always contains
a NULL terminating byte, reducing its entropy. If we ignore
such cases, an attacker will need to perform 232/264 attempts
for brute-forcing the canary in the x86/x86-64 architecture.
However, under certain conditions, an adversary can brute-
force the canary with much fewer attempts, by abusing the
process creation mechanism.

Whenever a process is forked, it inherits the address space
of its parent process, i.e., all the in-memory code and data,
including the canaries placed in the stack frames and the
TLS. If execve is called after fork, all memory regions
of the calling process are overwritten by the program that
gets loaded, whereas, if not, they remain unchanged. Hence,
due to this duplication of memory, in canary-protected ap-
plications, attackers are able to brute-force the canary, byte-
by-byte, as long as they are able to force child processes to
be forked from the same parent process and check if any of
these child processes has crashed or not (i.e., after success-
fully triggering a stack buffer overflow on the latter). Unfor-
tunately, the aforementioned conditions are met in several
applications, most notably in multi-process, network-facing
programs, such as web and database servers, where new pro-
cesses are forked to service incoming requests.

Specifically, the byte-by-byte canary brute-force attack
works as follows. Initially, the adversary exploits a stack
buffer overflow vulnerability and overwrites only the first

}
}

...... }
a

b

......

TLS

canary

previous
frames

(a) Parent process before fork. Frames a and b are canary-protected.

}
}

...... }

TLS

a

b

Parent Process

TLS

a

b

}
}

...... }

Child Process

(b) The forked (child) process is an exact copy of the parent.

}
}
}

...... }

TLS

a

b

c

Parent Process

TLS

a

b

c

}
}
}

...... }

Child Process

(c) Updating the canary in the TLS of the child will result in two
canary values being present its stack frames.

a

b

}
}
}

...... }

TLS

a

b

c

Parent Process

TLS

a

b

c

}
}
}

...... }

Child Process

=? =?

(d) Epilogue check for function c succeeds, but will fail once
execution reaches frames inherited from the parent.

Figure 1: Renewing the canary in the TLS alone will result in an abort as soon as execution reaches a stack frame inheritted
from the parent process.

byte of the canary. If the respective process aborts, the at-
tacker knows that the canary check in the function epilogue
failed. Subsequently, the attacker forces the forking of a
new (child) process and tries with a different byte value. As
new processes are forked from the same parent, the attacker
only needs 256 requests (128 on average) to brute-force the
first byte of the canary. Armed with the correct byte value,
the attacker can then brute-force the second byte using the
same approach, totalling 4 ∗ 256 = 1024 tries, at most, for
the full discovery of the canary in 32-bit architectures, and
8 ∗ 256 = 2048 in 64-bit architectures.

3. CHALLENGES AND REQUIREMENTS
Had the stack canary been different for the newly forked

processes, attacks that brute-force the canary value byte-by-
byte would have been infeasible. Since the canary is pushed
from the TLS to each newly created stack frame, to modify
the canary upon a fork system call we must modify both
the canary in the TLS, as well as the canaries in the stack
frames that the forked process inherited.

However, this is not feasible in current canary-based pro-
tectors, as hardened programs do not store any information
regarding where (in their address space) their canaries are
stored. Thus, once a child process is forked, there is no way
for it to access the canaries in the frames it inherited from
its parent process, as it cannot differentiate canaries from
random data that may be residing in the stack. As a result,
under the current design of the stack canary mechanism, the
only value that can be updated at runtime upon a fork is

that of the canary in the TLS. However, this partial update
will result in an abort if execution reaches the frames inher-
ited from the parent process, as the canary cookies in these
frames still hold their old values.

To demonstrate this point, let us consider the example
shown in Fig. 1, where a process has two canary-protected
frames (a and b) in its call stack the moment it invokes
fork. Initially, all frames have the same canary value,
copied from the TLS into the stack at the creation of each
frame (Fig. 1a). Once the child process is forked, it inherits
its parent’s frames in their exact state, as expected by the
process creation mechanism (Fig. 1b). In the child process’
context, before the process starts executing, we modify the
canary cookie in the TLS, thus the newly created frames in
the child now have a different canary value, as is the case
for frame c (Fig. 1c).

The canary checks for the newly created frames will suc-
ceed, since the canaries in each frame have the same value
with the (new) canary stored in the TLS. Thus, frame c
will be successfully destroyed both for the parent and the
child process. However, once execution reaches one of the
inherited frames in the child process (Fig. 1d), the canary
in the TLS will have a new value and the canaries in the
stack will still have their old value, causing the child process
to terminate. In addition, the stack smashing check in the
function epilogue may similarly fail if, at some point, dur-
ing the execution of the child process, either an exception is
triggered or setjmp/longjmp is invoked, forcing the stack
to unwind.

Successfully updating the canary in child process after a
fork would require modifying the current implementations
to incorporate a bookkeeping mechanism that allows for a
runtime update of the inherited stack canaries. However, in-
corporating such a mechanism to production systems proves
to be a challenging task. First, new protections should be
made modular so as to be compatible with third-party soft-
ware. Therefore, a solution that requires a custom version
of system or third-party libraries (e.g., glibc) would not be
easy to deploy at a large scale. Similarly, the incremental
performance overhead of any new canary protection design
should be within acceptable limits for production systems
and respect existing micro-architectural hardware optimiza-
tions (e.g., hardware prediction schemes), without requiring
major changes to current implementations.

To the best of our knowledge, a robust and readily deploy-
able mechanism for armoring canary-based defenses against
brute-force attacks has not yet been proposed. As a result,
attacks like those described in Section 2 are still present,
exploiting a limitation in a widely deployed defense. The
variety of applications and OSes that are protected with
some form of stack canaries is a major obstacle towards the
adoption of new countermeasures, as backward compatibil-
ity and testing of new designs is not trivial. In the following
sections, we discuss how DynaGuard solves the problems
discussed above while preserving application correctness.

4. DESIGN
At a high level, DynaGuard operates as follows: after a

fork system call, and right before any instruction has ex-
ecuted in the child process, DynaGuard must update the
canaries in both the TLS and all inherited stack frames in
the child process. Once the canaries have been updated, it
can resume the execution of the child. This runtime update
renders byte-by-byte brute-force attacks infeasible, since ev-
ery forked process has a fresh canary.

As we discussed in Section 3, current stack canary pro-
tectors do not keep any information regarding where the
canaries are located within the stack of each thread. There-
fore, DynaGuard’s design should allow each running process
to access and modify all of its stack canaries at runtime. To
achieve this goal, DynaGuard performs a per-thread runtime
bookkeeping of all the canaries that are pushed in the stack
during execution, using a lightweight buffer allocated dy-
namically upon each thread’s creation (this buffer is stored
in the heap). Figure 2 illustrates this scheme in more detail.

DynaGuard’s canary address buffer (CAB; Fig. 2a) holds
references to all the canaries stored in the stack of the run-
ning process. When a child process is forked, the CAB of the
parent process is copied to the child process (Fig. 2b). Before
execution starts in the child context, DynaGuard modifies
the canary value in the TLS, as well as in all the stack ad-
dresses referenced by the entries in the thread’s CAB. Like-
wise, whenever a canary-protected frame is pushed onto the
stack, the address of the canary is stored in CAB (Fig. 2c)
and, once a canary-protected function returns, the respec-
tive address is removed (Fig. 2d).

The aforementioned design allows DynaGuard to success-
fully modify the canary values for newly-created processes,
without facing any of the limitations described in Section 3.
Specifically, it allows for a seamless integration with third-
party software and with libraries that only support the ex-
isting stack protection mechanisms. In addition, the pro-

posed architecture allows for the effective handling of stack
unwinding, irrespectively of whether the latter occurs in
the context of an exception, due to a signal, or because
of setjmp/longjmp: as the stack always grows towards
lower addresses, the addresses that were last saved in CAB
must always be lower than the current value of the stack
pointer. Thus, DynaGuard can hook any stack unwinding
operation and modify the canary address buffer accordingly,
so that the latter is always consistent with the program
stack. In this manner, and contrary to recently proposed so-
lutions [25], application correctness is preserved even when
all frames are canary-protected.

Apart from ensuring correctness, the proposed design has
the added benefit of not breaking compatibility with legacy
software or current canary protections. Compilers only need
to add this bookkeeping mechanism on top of their current
stack canary implementations, without altering the well-
established conventions on the format of the canary check
or a function’s prologue and epilogue. Finally, due to the
small number of canary-protected frames that (on average)
are active at runtime, and since DynaGuard only needs to
store one address per protected frame, this design is very
efficient with respect to memory and CPU pressure.

5. IMPLEMENTATION

5.1 Compiler-based DynaGuard
The compiler-based version of DynaGuard consists of a

plugin for the GNU Compiler Collection (GCC) and a position-
independent (PIC) dynamic shared library that gets linked
with the running application via LD_PRELOAD. Combined,
they consist of ∼1250 lines of C++ code.

Several requirements must be accomplished to implement-
ing DynaGuard at the compiler level, while at the same
time maintaining compatibility with third-party software:
(a.) DynaGuard must instrument all the canary push/pop
events and perform its bookkeeping on a per-thread basis;
(b.) DynaGuard must hook each fork system call and up-
date the canaries in the child process as described in Sec-
tion 4; (c.) DynaGuard must intercept all calls related to
stack unwinding and ensure that the CAB gets updated ac-
cordingly. The first requirement is handled by DynaGuard’s
GCC plugin. All other requirements are handled by Dy-
naGuard’s dynamic shared library (runtime), which ensures
the proper management of the CAB for every thread.

5.1.1 GCC Plugin Implementation
Beginning with v4.5.1, GCC added support for extending

the compilation pipeline via plugins that operate on top of
the various intermediate languages (ILs) used throughout
the translation process. The GCC pipeline consists of three
distinct components, namely the front-end, middle-end, and
back-end, which transform the input into the GENERIC,
GIMPLE, and RTL ILs [43]. DynaGuard is registered as
an RTL optimization pass and loaded by GCC right after
the vartrack pass. The first reason for placing Dyna-
Guard late in the RTL optimization pipeline is to ensure
that most of the important optimizations have already been
performed, and, as a result, DynaGuard’s instrumentation is
never added to irrelevant code. In addition, in this manner,
we ensure that all injected instructions, which perform the
necessary bookkeeping, will remain at their proper locations
and will not be optimized by later passes.

}
}

...... }
a

b

......

TLS

canary

previous
frames

canary
address
bu�er

canary
push

canary
reference

canary
check

&(canary a)
&(canary b)

......

=?

(a) Parent before fork: the canary address buffer (CAB) contains
the addresses of all canaries in the process’ stack frames.

&(can. a)
&(can. b)

......

}
}

...... }

TLS

a

b

Parent Process

}
}

...... }

TLS

a

b

Child Process

canary
address
bu�er

&(can. a)
&(can. b)

......

canary
address
bu�er

(b) After forking, the canary address buffer of the parent is copied
to the child. All canary addresses are now accessible by the child.

&(can. a)
&(can. b)

......

canary
address
bu�er

&(can. c)

&(can. a)
&(can. b)

......

canary
address
bu�er

&(can. c)

}
}
}

...... }

TLS

a

b

c

Parent Process

TLS

a

b

c

}
}
}

...... }

Child Process

(c) The per-thread CAB is updated upon frame creation/destruc-
tion, to be kept consistent with the stack.

&(can. a)
&(can. b)

......

canary
address
bu�er

&(can. c)

&(can. a)
&(can. b)

......

canary
address
bu�er

&(can. c)

a

b

c

}
}
}

...... }

TLS

a

b

c

Parent Process

TLS

a

b

c

}
}
}

...... }

Child Process

=? =?

(d) Epilogue checks work as expected since all stack canaries are
consistent with the canary in the TLS.

Figure 2: The design of DynaGuard allows for a complete update of all canaries in the child process.

Apart from inserting all stack canary addresses to CAB,
the DynaGuard GCC plugin must also modify the canary
setup and check inside each canary-protected frame, to pre-
vent the DynaGuard-protected application from using the
standard (g)libc canaries. This is necessary to allow the
modification of the canary at runtime without affecting any
checks in libraries that are not compiled with DynaGuard.
The canary initialization that occurs during the creation of
threads and processes is exactly the same in DynaGuard
and in glibc, with the only difference being that the Dy-
naGuard canary is stored at a different location in the TLS
area. Therefore, the entropy of canaries is not affected, but
now the TLS holds two different types of canaries: the stan-
dard glibc canary and the DynaGuard canary. Upon a
fork, all DynaGuard canaries get updated without affect-
ing any checks in modules or libraries that use the legacy
glibc canaries.

DynaGuard stores the starting address of CAB, its total
size, and its current size, in the TLS, together with the Dy-
naGuard canary. To ensure compatibility with current ver-
sions of glibc, we reserve 4 out of the 8 free __padding
elements of the tcbhead_t data structure for that purpose.
In x86-64, the reserved TLS offsets range from 0x2a0 to
0x2b8. In particular, %fs:0x2a0 holds the base address of
CAB, %fs:0x2a8 keeps the current index in the CAB (i.e.,
how many canary addresses are stored), %fs:0x2b0 holds
the total size of the buffer, and finally, %fs:0x2b8 stores
the DynaGuard canary.

;function prologue
push %rbp
mov %rsp,%rbp
sub $0x40,%rsp
;canary stack placement
mov %fs:0x28,%rax
mov %rax,-0x8(%rbp)
xor %eax,%eax

 ...

;canary check
mov -0x8(%rbp),%rcx
xor %fs:0x28,%rcx
je <exit>
callq <__stack_chk_fail@plt>

Original

push %rbp
mov %rsp,%rbp
sub $0x40,%rsp
push %r14 (1)
push %r15
lea -0x8(%rbp),%rax (2)
mov %fs:0x2a0,%r14 (3)
mov %fs:0x2a8,%r15 (4)
mov %rax,(%r14,%r15,8) (5)
incq %fs:0x2a8 (6)
pop %r15 (7)
pop %r14
mov %fs:0x2b8,%rax (8)
mov %rax,-0x8(%rbp)
xor %eax,%eax
 ...

decq %fs:0x2a8 (9)
mov -0x8(%rbp),%rcx
xor %fs:0x2b8,%rcx (10)
je <exit>
callq <__stack_chk_fail@plt>

DynaGuard

Figure 3: Assembly excerpt for a binary compiled with
-fstack-protector, with and without DynaGuard. The
canary bookkeeping code added by the DynaGuard plugin
is shown on the right (highlighted).

Figure 3 shows the bookkeeping instructions inserted by
the DynaGuard GCC plugin. Right after the function pro-
logue, before the canary gets pushed to the stack, the ad-
dress in which the canary will be stored must be saved in the
CAB. Initially, the address is loaded in the clobbered register
used for the canary stack placement (2). Subsequently, Dy-
naGuard retrieves the address of the CAB from the TLS (3)

and the index of the next element to be written (4). Next,
it stores the canary address in the CAB (5) and increments
the buffer index (6). Finally, the canary is fetched from the
TLS (8) and saved onto the stack. For this purpose, if no
registers are free, DynaGuard needs to spill two registers for
its bookkeeping ((1), (7)).1 Likewise, the canary check in
the function epilogue is modified to decrease the index in
CAB (9), and check against the DynaGuard canary instead
of the glibc canary (10).

5.1.2 Runtime Implementation
The code added by the DynaGuard GCC plugin assumes

that the respective entries in the TLS are properly initial-
ized, and that a canary address buffer with available space
exists. The logic for the CAB setup and update, as well as
the hooking of fork system calls and stack unwinding rou-
tines, is handled by DynaGuard’s runtime environment. The
library (PIC module) implementing that runtime is loaded
via the LD_PRELOAD mechanism into the address space of
the running application.

The CAB is allocated in the heap for each thread of the
running program. In order to allocate the CAB before the
main thread starts executing, we register—in the Dyna-
Guard runtime—a constructor routine to be called before
the main function of the application. This routine performs
the CAB allocation and sets the appropriate values in the
main thread’s TLS. For all other threads that get created,
DynaGuard hooks the pthread_create call and sets the
respective TLS entries prior to calling the start_routine
of each thread. Finally, a routine to free the allocated CAB
for each thread that finishes execution is registered via the
pthread_cleanup_push(/pop) mechanism.

To ensure that the CAB of each thread is never full, Dy-
naGuard marks the final page in the CAB as read-only and
registers a signal handler for the SIGSEGV signal. Inside
the signal handler, DynaGuard detects whether the fault is
due to DynaGuard’s instrumentation (i.e., when DynaGuard
tries to push an address for a canary in the read-only page
of the CAB) and allocates additional memory for the CAB
if necessary.

As there may be multiple running threads, and the ex-
ception handler may execute in the context of a different
thread than the one that generated the SIGSEGV, Dyna-
Guard maintains a hashmap of all the running threads and
their TLS entries. Inside the signal handler, DynaGuard
iterates through all the threads in the hashmap and exam-
ines whether the memory location that caused the fault falls
within an allocated CAB.2

Since registering a signal handler may overwrite exist-
ing handlers of the application, DynaGuard also hooks all
signal and sigaction calls. If the signal is different than
SIGSEGV, DynaGuard does not alter the application han-
dler. Otherwise, DynaGuard saves the application’s handler
and then overwrites it with its own handler. If the fault
did not occur due to a write into one of the protected pages

1Def-use analysis, as well as checks for leaf functions that
will never call another protected function can be used to
further improve the performance of DynaGuard. However,
in our measurements, we considered the worst-case scenario
and always spilled registers.
2The memory address that caused the fault is accessible
through the si_addr field of the siginfo_t data structure
that is passed to DynaGuard’s signal handler.

of the allocated CABs, DynaGuard passes the signal to the
saved application handler.

Lastly, in order to ensure that the CAB contains canary
addresses only for active frames, DynaGuard checks for any
stack unwinding and removes the entries corresponding to
destroyed frames from the CAB. This is based on the simple
observation that, at any point during execution, since the
stack always grows towards lower addresses, all addresses
stored in a CAB should be higher than the current stack
pointer. DynaGuard hooks the following calls that result in
stack unwinding: __cxxabiv1::__cxa_end_catch and
(sig)longjmp. In the case of __cxa_end_catch, the
stack pointer has already been updated to its new value and
DynaGuard can check if the CAB is consistent with the un-
wound stack. In the cases of siglongjmp and longjmp,
the new value of the stack pointer is retrieved from the
contents of the __jmpbuf entry of the jump buffer that is
passed to the calls, and the check is performed accordingly.

Once all the components for ensuring the correctness of
the canary bookkeeping are in place, DynaGuard registers a
hook for the fork system call. Once fork is executed, in
the context of the child process, and before fork returns,
DynaGuard sets a new canary in the process’ TLS and up-
dates all the canaries inherited by the parent process.

5.2 DBI-based DynaGuard
If source code is not available, or when re-compiling a pro-

gram is not an option, we can still protect security-critical
binaries using the DBI-based flavor of DynaGuard, imple-
mented over Intel’s Pin [24] dynamic binary instrumenta-
tion framework. Whenever a binary is instrumented with
Pin, execution occurs within three distinct contexts: the
context of the instrumented application, the context of the
pintool which guides the instrumentation process, and fi-
nally, within the context of Pin itself, which controls the
context-switching between the pintool and the application.
From the perspective of the underlying OS, only one process
is running. In reality though, glibc and other libraries are
loaded multiple times, and the executing code is either code
of the native application, instrumentation code inserted by
the pintool, or code belonging to Pin itself.

Before executing any application code, during the instru-
mentation phase, Pin instruments the native binary with
new code, or analysis code as it is colloquially known, spec-
ified by the pintool in use. DynaGuard’s instrumentation
routines define where in the binary the analysis code will be
inserted (e.g., before or after a particular instruction, system
call, or library load), which routines will be called when the
new code is triggered, and what arguments will be passed
to them. Note that instrumentation happens only once.

To minimize DynaGuard’s runtime performance overhead,
our goal is to minimize the instrumentation code, and more
importantly, to optimize the analyses routines, as it is the
analysis code that dominates the performance overhead. Due
to the DynaGuard pintool’s model of execution, updating
the canary in the TLS of the instrumented process with a
system call like prctl, would result in a TLS update within
the context of Pin, instead of that of the instrumented ap-
plication, since libraries like glibc are duplicated and the
execution of prctl occurs under Pin. For this reason, Pin
exposes an API call for getting the base address of the TLS
area of the instrumented program. DynaGuard registers a
callback routine to be executed in the child process when-

 Instrumentation Pseudocode

if((instruction has segment prefix) &&
 (prefix is one of fs/gs) &&
 (offset from fs/gs is 0x28/0x14) &&
 (instr. is a ‘mov’ from mem to reg) &&
 (next instr. is a `mov’ from reg to mem)&&
 (dest. operand(register) of current instr.
 is the source operand of next instr.)) {
 insert_analysis_call(
 before_next_instr,
 push_canary(thread_context,
 canary_address))}

push rbp
mov rsp,%rbp
sub $0x40,rsp
mov fs:0x28,%rax (1)
mov rax,-0x8(%rbp)(2)

Sample Function Prologue

Figure 4: Pinpointing the canary push operation inside the
function prologue. The instrumentation code selects instruc-
tion (1) and inserts the analysis routine push_canary be-
tween instructions (1) and (2).

ever a fork system call executes; this callback calculates
the base address of the TLS segment and is responsible for
the canary update (both in the TLS and in all active stack
frames).

To compute the new canary value, DynaGuard utilizes the
kernel’s random number generator (/dev/urandom) and, if
such a device is not available, falls back to arc4random.

5.2.1 Canary Bookkeeping
DynaGuard utilizes a lightweight CAB implementation in-

spired by libdft [21]. In particular, DynaGuard allocates
a per-thread CAB in the process’ heap, and then uses one
of Pin’s scratch registers as a pointer to this buffer. This
optimization has the benefit of minimizing the instrumen-
tation code and eliminating the unnecessary locking logic
of the built-in trace buffer [19]. In order to correctly up-
date the canary on each newly-forked process, CAB holds
the address of every stack canary in the active frames, as
described in Section 4. CAB is updated upon the follow-
ing events: (a) canary push (function prologue), (b) canary
pop (function epilogue), and (c) stack unwinding (because
of exception handling or setjmp/longjmp).

In the following, we examine how DynaGuard handles
each of the previous scenarios. As mentioned in Section 2,
the canary is originally stored in the TLS. Upon a canary
push from the TLS to a stack frame, the address at which
the canary is stored is saved in the CAB, as illustrated in
Fig. 4: DynaGuard inserts a call to push_canary before
mov rax,−0x8(%rbp) executes. The arguments to this
analysis function are the thread context (holding a refer-
ence to the process’ CAB through Pin’s scratch register), as
well as the address in which the canary will be stored in the
stack (which is known at runtime as instruction (2) is about
to execute).

All the analysis routine needs to perform at this point
is to store the canary address into the CAB and increment
the buffer index. In addition, since the number of canary ad-
dresses that are present in the CAB at any given time equals
the number of canary-protected frames that are present in
the process’ stack, DynaGuard will be able to successfully
update all canaries upon a fork.

Likewise, whenever a protected frame is destroyed, the re-
spective canary address is removed from the CAB. In order
to provision for stack unwinding, the DynaGuard pintool ex-
amines whether there is any modification of the stack pointer
during runtime. As dynamic binary instrumentation enables
the monitoring of all executed instructions, we do not need
to perform any hooking of longjmp or exception handling

calls, as we did in the GCC implementation; instead, Dy-
naGuard checks for changes in the stack pointer value and
then updates the CAB accordingly.

6. DISCUSSION
In this section we discuss alternative DynaGuard designs

and elaborate on their drawbacks and benefits. Subsequently,
we describe how the proposed architecture can serve as the
basis for resolving other security problems arising from the
(current) OS process creation mechanism.

As an alternative design for DynaGuard, one could con-
sider implementing a stack frame chain, using a mechanism
similar to the one used by exception handlers. In such a de-
sign, all canary-protected frames would be chained together,
with each protected frame holding a pointer to the previous
frame that is canary-protected. This eliminates the need for
a CAB, as the linked list would allow for “unwinding” the
stack and updating all canaries directly at runtime.

Unfortunately, this approach has several drawbacks, which
arise mainly from the fact that the pointer to the previous
frame that is canary-protected should itself be protected (by
a canary), to prevent it from being modifiable—otherwise,
an attacker could tamper with the stack unwinding process.
This would require the modification of current implementa-
tions in a non-transparent manner, and would break com-
patibility with legacy software and third-party libraries. On
the contrary, our proposed design can be transparently ap-
plied to production systems.

More importantly, DynaGuard’s architecture offers the
foundation for a compiler-level solution to several other prob-
lems arising from the current OS process creation model. For
instance, the current process creation mechanism may affect
the trustworthiness of cryptographic Pseudo-Random Num-
ber Generators (PRNGs), as was the case with OpenSSL [5,
32] and LibreSSL [2]. The PRNGs of these libraries pro-
duced the same random number chain in parent and child
processes. Modern compilers could adopt DynaGuard’s de-
sign to support per-process data bookkeeping that would
enable entropy gathering and transparent updating of the
state of PRNGs, similarly to previously-proposed compiler
schemes that extract entropy from the OS at boot time [37].

7. EVALUATION
In this section we evaluate the performance overhead of

DynaGuard and its effectiveness in protecting against byte-
by-byte canary brute-force attacks. For our measurements
we use the SPEC CPU2006 benchmark suite [17], as well as
a series of popular (open-source) server applications. Over-
all, our GCC-based implementation of DynaGuard incurs
an overhead ranging from 0.03% to 5.4%, with an average
of 1.2%. The Pin-based version of DynaGuard incurs an av-
erage overhead of 170.66%. However, this overhead is domi-
nated by the native DBI framework (Pin), with DynaGuard
adding only 2.92% on top of that, on average.

7.1 Effectiveness
We confirmed that DynaGuard defends against a set of

publicly-available exploits [4, 27] targeting the Nginx web
server, which rely on brute-forcing stack canaries using the
technique outlined in Section 2. To verify that DynaGuard
does not affect software correctness, we evaluated it over the
SPEC CPU2006 benchmark suite, and also applied it to a

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 1.045

 1.05

 1.055

 1.06

400.perlbench

401.bzip
2

403.gcc
429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xa
lancbmk

Apache
Nginx

Postg
reSQL

SQLite
MySQL

Sl
ow

do
w

n
(n

or
m

al
iz

ed
 o

ve
r n

at
iv

e)
 SPEC CPU2006 Benchmarks I/O-bound Benchmarks

(a) GCC-based version.

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3
 2.4
 2.5
 2.6
 2.7
 2.8
 2.9

 3
 3.1
 3.2
 3.3

400.perlbench

401.bzip
2

403.gcc
429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xa
lancbmk

Apache
Nginx

Postg
reSQL

SQLite
MySQL

Sl
ow

do
w

n
(n

or
m

al
iz

ed
 o

ve
r n

at
iv

e)

 SPEC CPU2006 Benchmarks I/O-bound Benchmarks

Pin
DynaGuard

(b) Pin-based version.

Figure 5: The runtime overhead of DynaGuard (normalized over native execution).

variety of popular forking applications, such as the Apache
and Nginx web servers, and the PostreSQL, MySQL, and
SQLite database servers. We observed no incompatibilities
or any altered program functionality.

As a final step of our correctness evaluation, we manually
stress-tested DynaGuard over a series of scenarios that in-
cluded combinations of multi-threaded and forking programs
that executed setjmp/longjmp and triggered exceptions.
In all cases we verified that DynaGuard successfully ran-
domized the stack canaries for all newly-created processes
without causing any unwanted behavior.

7.2 Performance
To obtain an estimate of DynaGuard’s overhead on CPU-

intensive applications, we utilized the SPEC CPU2006 bench-
mark suite, whereas in order to examine how it performs on
I/O-bound programs, we used a series of popular web and
database servers: Apache, Nginx, PostgreSQL, MySQL, and
SQLite. For all the server applications, except MySQL, we
used the Phoronix [39] benchmark suite and maintained its
default configuration, modifying only the compilation stage.
For benchmarking MySQL we used the SysBench bench-
mark tool [33]. Note that in all cases, applications were
compiled with the -fstack-protector option enabled.
All experiments were performed on a system running De-
bian GNU/Linux v8, equipped with two 2.40GHz six-core
Intel Xeon E5645 CPUs and 48GB of RAM.

Figure 5a summarizes the performance overhead of our
GCC-based implementation of DynaGuard. All binaries
were compiled with the DynaGuard plugin and had the
-fno-omitframe-pointer compiler option asserted. Dy-
naGuard incurs an average slowdown of 1.5% on the SPEC
CPU2006 benchmarks, and 0.46% on the server applications.
In all cases, the overhead of the GCC implementation of Dy-
naGuard is below 5.4% for the SPEC CPU2006 benchmarks
and below 1.5% for the I/O-bound applications, with the
overhead being negligible (< 0.5%) for the Apache and Ng-
inx web servers.

Figure 5b shows the performance overhead of the Pin-
based version of DynaGuard. Specifically, the incremental
overhead over the native DBI framework is less than 2.92%
for all the tested applications. The overall slowdown over
the native binary ranges from 0.4% to 3.2x. In particular,

the slowdown for the SPEC CPU2006 applications ranges
from 3.2% to 2.19x, with an average slowdown of 1.56x. For
the database servers, the overhead is 0.4%, 8.19%, 214% for
the PostreSQL, SQLite, and MySQL servers respectively,
while for the Apache and Nginx web servers the overhead is
3.2x and 2.8x, respectively. As mentioned earlier, this high
overhead is mostly due to the underlying dynamic binary
instrumentation framework.

8. RELATED WORK
Canary-based stack protections were popularized by Stack-

Guard [10]. Subsequently, ProPolice [13] introduced a series
of GCC patches for StackGuard, which, among others, re-
ordered the local variables in the stack, placing buffers after
(local) pointers and function arguments in the stack frame.
ProPolice was subsequently integrated in GCC, by RedHat,
as the Stack Smashing Protector (SSP) [38]. Parallel to
the evolution of SSP, Microsoft introduced the GuardStack
(/GS) [28] compiler flag, which also places a canary in the
stack using heuristics similar to those of SSP. As modern
stack protectors follow a design similar to that of SSP, Dy-
naGuard’s architecture can be (easily) adopted by popular
compilers, as it incurs a negligible overhead. Moreover, other
canary-based defenses, like ValueGuard [44], which aim to
protect against data-only attacks can also benefit from Dy-
naGuard’s dynamic update of canaries.

With respect to preventing canary brute-force attacks,
RAF SSP [25], similarly to DynaGuard, aims to refresh
stack-based canaries in networking servers. However, upon
a fork system call, RAF SSP only updates the canary in
the TLS area, ignoring the frames inherited by the parent
process. This design fails to guarantee program correct-
ness, in the general case, as it assumes that a child process
never reuses inherited frames legitimately, and checks for
the noreturn attribute to avoid scenarios similar to those
shown in Fig. 1. In addition, RAF SSP does not handle
exceptions, a vital application component for avoiding the
ungraceful termination of server applications.

A series of mechanisms have been proposed to protect the
integrity of return addresses. RAD [7] is implemented as
a compiler patch and creates a safe area where a copy of
the return address is stored. Similar defenses have been im-

plemented at the micro-architectural level [34], using binary
rewriting [8], or by utilizing a shadow stack [41]. Apart from
the fact that the previous mechanisms do not tackle the
same problem as DynaGuard, they have not gained trac-
tion, mainly due to compatibility and performance issues
(e.g., such mechanisms nullify several micro-architectural
optimizations, like return address prediction) [11]. On the
contrary, DynaGuard enhances a mechanism that has al-
ready seen wide adoption, without breaking accepted con-
ventions around the format of the function prologue and
epilogue, or the stack layout.

Lastly, several protections have been proposed against
memory corruption attacks, and, as such, are beyond the
scope of the current work. ASLR-based defenses random-
ize, among others, the base address of the stack [35] or
introduce variable spacing between stack frames [3, 15] to
protect against (stack) object corruption. Protection mech-
anisms like WˆX [12] and DEP [30] prevent the execution
of injected code, by ensuring that memory is never both
writable and executable, whereas defenses like SafeSEH [29]
and SEHOP [42] attempt to prevent exploits that abuse the
exception handling mechanism to execute arbitrary code.
Finally, several protection mechanisms abandon the current
stack organization completely. StackArmor [6] operates at
the binary level and relies on a combination of randomiza-
tion and isolation to make the stack objects appear as if
drawn from a fully randomized space. SafeStack [22] splits
the stack into safe and unsafe regions, and enforces code
pointer integrity to prevent control-flow hijacking attacks.
However, such mechanisms also have limitations, in terms
of both performance and effectiveness [11,14].

9. CONCLUSION
In this paper, we address a limitation of the current canary-

based protection mechanisms, which allows for brute-forcing
the canary, byte-by-byte, in forking applications. We resolve
this issue by proposing the dynamic update of the canaries
in forked processes upon their creation. We present a de-
sign that utilizes a per-process, in-memory data structure
to update the stack canaries at runtime, and we prototype
the proposed architecture in DynaGuard, which comes in
two flavors: a compiler-based one operating at the source
code level and a DBI-based one that operates at the binary
level. The compiler-based version of DynaGuard incurs an
average overhead of 1.2% and can be easily integrated to
modern compiler toolchains.

Availability
Our prototype implementation of DynaGuard is available
at: https://github.com/nettrino/dynaguard

Acknowledgments
We are grateful to George Kontaxis and George Argyros for
their valuable feedback on earlier versions of this paper. This
work was supported by the Office of Naval Research (ONR)
through contracts N00014-12-1-0166 and N00014-15-1-2378.
Any opinions, findings, conclusions, or recommendations ex-
pressed herein are those of the authors, and do not neces-
sarily reflect those of the US Government or ONR.

10. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-Flow Integrity. In Proc. of CCS, pages
340–353, 2005.

[2] A. Ayer. LibreSSL’s PRNG is Unsafe on Linux.
https://www.agwa.name/blog/post/
libressls_prng_is_unsafe_on_linux, 2014.

[3] S. Bhatkar, D. C. DuVarney, and S. R. Efficient
Techniques for Comprehensive Protection from
Memory Error Exploits. In Proc. of USENIX Sec,
pages 271–286, 2005.

[4] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh. Hacking Blind. In Proc. of IEEE S&P,
pages 227–242, 2014.

[5] M. Boßlet. OpenSSL PRNG Is Not (Really) Fork-safe.
https://goo.gl/sZuopi, 2013.

[6] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and
C. Giuffrida. StackArmor: Comprehensive Protection
from Stack-based Memory Error Vulnerabilities for
Binaries. In Proc. of NDSS, 2015.

[7] T.-c. Chiueh and F.-H. Hsu. RAD: A Compile-Time
Solution to Buffer Overflow Attacks. In Proc. of
ICDCS, pages 409–417, 2001.

[8] M. L. Corliss, E. C. Lewis, and A. Roth. Using DISE
to Protect Return Addresses from Attack. ACM
SIGARCH Computer Architecture News, 33(1):65–72,
2005.

[9] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuard: Protecting Pointers From Buffer
Overflow Vulnerabilities. In Proc. of USENIX Sec,
pages 91–104, 2003.

[10] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks.
In Proc. of USENIX Sec, pages 63–78, 1997.

[11] T. H. Dang, P. Maniatis, and D. Wagner. The
Performance Cost of Shadow Stacks and Stack
Canaries. In Proc. of ASIACCS, pages 555–566, 2015.

[12] T. de Raadt. Advances in OpenBSD. http://www.
openbsd.org/papers/csw03/index.html, 2003.

[13] H. Etoh. GCC extension for protecting applications
from stack-smashing attacks.
http://goo.gl/Tioc4C, 2005.

[14] I. Evans, S. Fingeret, J. González, U. Otgonbaatar,
T. Tang, H. Shrobe, S. Sidiroglou-Douskos,
M. Rinard, and H. Okhravi. Missing the Point(er): On
the Effectiveness of Code Pointer Integrity. In Proc. of
IEEE S&P, 2015.

[15] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum.
Enhanced Operating System Security Through
Efficient and Fine-grained Address Space
Randomization. In Proc. of USENIX Sec, pages
475–490, 2012.

[16] B. Hawkes. Exploiting OpenBSD.
http://inertiawar.com/openbsd/, 2006.

[17] J. L. Henning. SPEC CPU2006 Benchmark
Descriptions. ACM SIGARCH Computer Architecture
News, 34(4):1–17, 2006.

[18] M. Howard, M. Miller, J. Lambert, and
M. Thomlinson. Windows ISV Software Security

https://github.com/nettrino/dynaguard
https://www.agwa.name/blog/post/libressls_prng_is_unsafe_on_linux
https://www.agwa.name/blog/post/libressls_prng_is_unsafe_on_linux
https://goo.gl/sZuopi
http://www.openbsd.org/papers/csw03/index.html
http://www.openbsd.org/papers/csw03/index.html
http://goo.gl/Tioc4C
http://inertiawar.com/openbsd/

Defenses. https://msdn.microsoft.com/en-us/
library/bb430720.aspx, 2010.

[19] Intel. Pin: Instrumentation API.
http://www.cs.virginia.edu/kim/
publicity/pin/docs/31933/Pin/html/group_
_INS__INST__API.html, 2009.

[20] Jonathan Corbet. x86 NX support.
https://lwn.net/Articles/87814/, 2003.

[21] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D.
Keromytis. libdft: Practical Dynamic Data Flow
Tracking for Commodity Systems. In Proc. of VEE,
pages 121–132, 2012.

[22] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song. Code-Pointer Integrity. In
Proc. of OSDI, pages 147–163, 2014.

[23] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee. From
Zygote to Morula: Fortifying Weakened ASLR on
Android. In Proc. of IEEE S&P, pages 424–439, 2014.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In
Proc. of PLDI, pages 190–200, 2005.

[25] H. Marco-Gisbert and I. Ripoll. Preventing Brute
Force Attacks Against Stack Canary Protection on
Networking Servers. In Proc. of NCA, pages 243–250,
2013.

[26] H. Marco-Gisbert and I. Ripoll. On the Effectiveness
of Full-ASLR on 64-bit Linux. In DeepSeC, 2014.

[27] Metasploit. Nginx HTTP Server 1.3.9-1.4.0 -
Chuncked Encoding Stack Buffer Overflow. http:
//www.exploit-db.com/exploits/25775/,
2013.

[28] Microsoft. /GS (Buffer Security Check).
https://msdn.microsoft.com/en-us/
library/8dbf701c.aspx, 2002.

[29] Microsoft. /SAFESEH (Image has Safe Exception
Handlers). https://msdn.microsoft.com/
en-us/library/9a89h429.aspx, 2003.

[30] Microsoft. A detailed description of the Data
Execution Prevention (DEP) feature.
http://support.microsoft.com/kb/875352,
2013.

[31] OpenBSD. i386 WˆX. https://marc.info/?l=
openbsd-misc&m=105056000801065, 2003.

[32] OpenSSL. Random fork-safety. https://wiki.
openssl.org/index.php/Random_fork-safety,
2014.

[33] Oracle. MySQL Benchmark Tool. https://dev.
mysql.com/downloads/benchmarks.html, 2015.

[34] Y.-J. Park and G. Lee. Repairing Return Address
Stack for Buffer Overflow Protection. In Proc. of CF,
pages 335–342, 2004.

[35] PaX Team. Address Space Layout Randomization.
https://pax.grsecurity.net/docs/aslr.txt,
2003.

[36] PaX Team. Non-executable pages design &
implementation. https:
//pax.grsecurity.net/docs/noexec.txt, 2003.

[37] PaX Team. new gcc plugin: latent entropy extraction.
https://grsecurity.net/pipermail/
grsecurity/2012-July/001093.html, 2012.

[38] A. ’pi3’ Zabrocki. Scraps of notes on remote stack
overflow exploitation.
http://phrack.org/issues/67/13.html, 2010.

[39] PTS. Phoronix Test Suite, June 2015.
http://www.phoronix-test-suite.com.

[40] H. Shacham. The Geometry of Innocent Flesh on the
Bone: Return-into-libc without Function Calls (on the
x86). In Proc. of CCS, pages 552–561, 2007.

[41] S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent
Runtime Shadow Stack: Protection against malicious
return address modifications, 2008.
http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.120.5702.

[42] skape. Preventing the Exploitation of SEH Overwrites.
http://www.uninformed.org/?v=5&a=2&t=txt,
2006.

[43] R. M. Stallman and the GCC Developer Community.
GNU Compiler Collection Internals.
https://gcc.gnu.org/onlinedocs/gccint/,
2015.

[44] S. Van Acker, N. Nikiforakis, P. Philippaerts,
Y. Younan, and F. Piessens. ValueGuard: Protection
of native applications against data-only buffer
overflows. In Proc. of ICISS, pages 156–170. 2010.

[45] V. van der Veen, N. Dutt-Sharma, L. Cavallaro, and
H. Bos. Memory Errors: The Past, the Present, and
the Future. In Proc. of RAID, pages 86–106, 2012.

https://msdn.microsoft.com/en-us/library/bb430720.aspx
https://msdn.microsoft.com/en-us/library/bb430720.aspx
http://www.cs.virginia.edu/kim/publicity/pin/docs/31933/Pin/html/group__INS__INST__API.html
http://www.cs.virginia.edu/kim/publicity/pin/docs/31933/Pin/html/group__INS__INST__API.html
http://www.cs.virginia.edu/kim/publicity/pin/docs/31933/Pin/html/group__INS__INST__API.html
https://lwn.net/Articles/87814/
http://www.exploit-db.com/exploits/25775/
http://www.exploit-db.com/exploits/25775/
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
https://msdn.microsoft.com/en-us/library/9a89h429.aspx
https://msdn.microsoft.com/en-us/library/9a89h429.aspx
http://support.microsoft.com/kb/875352
https://marc.info/?l=openbsd-misc&m=105056000801065
https://marc.info/?l=openbsd-misc&m=105056000801065
https://wiki.openssl.org/index.php/Random_fork-safety
https://wiki.openssl.org/index.php/Random_fork-safety
https://dev.mysql.com/downloads/benchmarks.html
https://dev.mysql.com/downloads/benchmarks.html
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/noexec.txt
https://pax.grsecurity.net/docs/noexec.txt
https://grsecurity.net/pipermail/grsecurity/2012-July/001093.html
https://grsecurity.net/pipermail/grsecurity/2012-July/001093.html
http://phrack.org/issues/67/13.html
http://www.phoronix-test-suite.com
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.5702
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.5702
http://www.uninformed.org/?v=5&a=2&t=txt
https://gcc.gnu.org/onlinedocs/gccint/

	Introduction
	Background
	Canary-based Stack Smashing Protection
	Bypassing Canary-based Defenses

	Challenges and Requirements
	Design
	Implementation
	Compiler-based DynaGuard
	GCC Plugin Implementation
	Runtime Implementation

	DBI-based DynaGuard
	Canary Bookkeeping

	Discussion
	Evaluation
	Effectiveness
	Performance

	Related Work
	Conclusion
	References

