
215:18 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

A RACKET-PYRET: SURVEY 1
To summarize, Survey 1 presented material in the following order:

(1) Survey explanation: Figure 6.
(2) Pyret programs: Figure 7. These were shown before the Racket programs to avoid priming

them.
(3) One sentence signaling the transition to Racket programs: “Next, we are going to show you

several Racket programs and ask you to tell us what they produce.”
(4) Racket programs: Figure 8.
(5) The prompt: “Finally, we are going to ask you to compare programs across the two languages

that you have seen.”
(6) All program pairs: Figure 9.
(7) Questionnaire on student background: Figure 10.

All the programs are in Table 2.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:19

Fig. 6. Racket-Pyret: Survey 1: Opening Page

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:20 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Fig. 7. Racket-Pyret: Survey 1: Per-Pyret Program Output (The first two questions are repeated for every
program output.)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:21

Fig. 8. Racket-Pyret: Survey 1: Per-Racket Program Output (the what-result question is repeated for every
program output)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:22 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Fig. 9. Racket-Pyret: Survey 1: Program Pairs

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:23

Fig. 10. Racket-Pyret: Survey 1: Background (elides deanonymizing question)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:24 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Table 2. Racket-Pyret: Survey 1: Programs Used (no odd linebreaks in original)

ID Racket Pyret
1
Fun (define (h s t)

(- (string -length s)
(string -length t)))

(h �minus� �plus�)
(h �hey� �hello�)

fun f(x, y):
string -length(x) - string -

length(y)
end

f(�hello�, �world�)
f(�hi�, �there�)

2
ImpShadow (define (h n)

(local ([define (k n) (+ n
n)])

(k (+ n 3))))

(h 6)

fun f(x):
fun g(x):

x + x
end
g(x + 4)

end

f(5)

3
ExpShadow (define (h n)

(local ([define (k n) (+ n
n)])

(k (+ n 3))))

(h 6)

fun f(x):
fun g(shadow x):

x + x
end
g(x + 4)

end

f(5)

4
CaseList (define (h m x)

(if (empty? m)
0
(+ (* (first m) x)

(h (rest m) (* x
10)))))

(h �(4 2 6) 1)
(h �(5 3) 1)

fun g(l, n):
cases (List) l:

| empty => 0
| link(f, r) =>

(f * n) + g(r, n * 10)
end

end

g([list: 2, 3, 5], 1)
g([list: 7, 8], 1)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:25

5
SymStr (define (f m)

(cond
[(empty? m) false]
[(cons? m) (or (equal? (

first m) �stone�)
(f (rest

m)))
]))

(f �(x stone z))
(f �(x y z))

fun g(l):
cases (List) l:

| empty => false
| link(f, r) => (f == �

hello�) or g(r)
end

end

g([list: �a�, �hello�, �c�])
g([list: �a�, �b�, �c�])

6
FirstRest (first (rest (list 9 8 7))) [list: 1, 2, 3]. first.rest

7
DotFirst (first (cons 6 (cons 5 empty

)))
link(1, link(2, empty)).

first

8
DefTwice (define z 2)

(define z 1)
z

w = 3
w = 4
w

9
EarlyUse (define a b)

(define b 5)
a

w = z
z = 3
w

10
Struct1 (define -struct q (x y))

(define (h q1 q2)
(+ (* (q-x q1) (q-y q2))

(* (q-y q1) (q-x q2))))

(h (q 9 8) (q 7 6))

data P: p(a, b) end

fun f(p1 , p2):
(p1.a * p2.b) + (p1.b * p2

.a)
end

f(p(2, 3), p(4, 5))

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:26 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

11
Struct2 (define -struct p (x y))

(define -struct t (x y))

(define p1 (make -p 9 8))
(define t1 (make -t 1 2))

(define (get -ps-x-field a-p)
(p-x a-p))

(get -ps-x-field t1)

data Q: q(a, b) end
data S: s(a, b) end

q1 = q(3, 4)
s1 = s(5, 6)

fun get -qs-a-field(a-q):
a-q.a

end

get -qs-a-field(s1)

12
CaseStruct (define -struct b (x y))

(define -struct c (z))

(define (g s)
(cond

[(b? s) (+ (* (b-x s) (b
-x s)) (b-y s))]

[(c? s) (sqrt (c-z s))])
)

(g (make -b 3 0))
(g (make -c 16))

data N:
| r(a, b)
| s(c)

end

fun h(q):
cases (N) q:

| r(e, f) => (e * e) + f
| s(g) => num -sqrt(g)

end
end

h(r(2, 3))
h(s(25))

13
LocalDef (define (f a b)

(local ([define g (* a a)]
[define h (+ b b)

])
(- (* g h)

(+ g h))))

(f 4 2)

fun g(x, y):
q = x * x
r = y + y
(q * r) - (q + r)

end

g(3, 4)

14
DotField (define -struct p (x))

(map p-x (list (make -p 6) (
make -p 5) (make -p 4)))

data S: s(c) end
map(.c, [list: s(1), s(2), s

(3)])

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:27

15
BasicCond (define (g x)

(cond
[(< x 25) �slow�]
[(= x 25) �normal�]
[(> x 25) �fast�]))

(g 23)
(g 25)
(g 34.5)

fun f(n):
ask:

| n < 10 then: �low�
| n == 10 then: �medium�
| n > 10 then: �high�

end
end

f(3)
f(10)
f(14.1)

16
BadCond (define (f x)

(cond
[(< x 5) �C1�]
[(even? x) �C2�]
[(> x 5) �C3�]))

(f 16)
(f 5)

fun g(n):
ask:

| n < 6 then: �G1�
| is-odd(n) then: �G2�
| n > 6 then: �G3�

end
end

g(9)
g(6)

17
Check (define (h x)

(+ (* x x) 5))

(check -expect (h 2) 9)
(check -expect (h 8) 46)

fun f(n):
(n * n) + 3

end

check:
f(4) is 19
f(7) is 46

end

18
Hyphen (define an 1)

(define s 5)
(define an-s 36)

(- an-s an s)

my = 3
x = 4
my-x = 17

my-x - my - x

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:28 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

19
Caret (define a 2)

(define b 6)
(define a^b (+ 2 6))
a^b

c = 3
d = 4
c^d = 3 + 4
c^d

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:29

B RACKET-PYRET: REFUTATION TEXT
Starts on the next page. “EdStem” is the class discussion forum (https://edstem.org/).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

https://edstem.org/

Hypothetical Language

As some of you might have guessed, the “hypothetical” language isn’t hypothetical at all. It’s
called Pyret, and it’s the language we will be using this semester. Every program you saw is
pretty much directly runnable in Pyret.

This year, we are trying out a new implementation of Pyret, called Repartee, whose language
differs slightly from that in previous years, whose implementation we call CPO. Below, some of
the Pyret code you see has yellow highlights. The survey code (without yellow) runs only in
CPO, while the full code (including yellow) will run in both. Just copy the whole program (yellow
bits included) into Repartee and you should be fine. (If you’re curious about the innovations in
Repartee, see this paper.)

As you may have also guessed from the survey, Pyret is heavily inspired by Racket; indeed, it is
almost just “Racket with conventional syntax”. Therefore, instead of explaining Pyret in great
detail from scratch, we break up the programs into two groups below:

● One group is programs that behave the same (and for the same reasons) between the
two languages. For these we do not offer any commentary, assuming your knowledge
from Racket can carry over to Pyret, unless we spotted remarks in your responses that
we think need explanation.

● The other is those that behave differently. For these, we provide an explanation of how
the two languages differ.

[Both links just point to later in this document. You can also use the outline at the left.]

When in doubt, you can always run both the Racket and Pyret programs! It would be a good
idea to run all the Pyret programs to get a feel for the language. Please also consult this guide
for converting from Racket to Pyret.

One last comment. Many of your comments talked about “math” when referring to Pyret as
opposed to Racket. However, math has many syntaxes! For instance, “three” is sometimes
written 3, sometimes III, sometimes ३, etc. Similarly, arithmetic operations are sometimes written
“infix”, sometimes “prefix”, sometimes “suffix”, etc. These are all the same “math”, just different
notational systems. It’s certainly the case that one is based on current mathematical convention
(which is exactly why Pyret was created), but neither is more “mathematical” than the other.

If you have questions about any of these programs, please ask on EdStem!

Programs That Are Identical

(define (h s t)
(- (string-length s)

(string-length t)))

(h "minus" "plus")
(h "hey" "hello")

;; 1
;; -2

—

fun f(x :: String, y :: String):
string-length(x) - string-length(y)

end

f("hello", "world")
f("hi", "there")

0
-3

Some thought the second expression might produce an error because the result would be
smaller than zero. However, that will not happen. Why? From both languages’ perspective, each
string-length computation produces a number; - subtracts one number from the other.
Therefore, by the time the minus (-) runs, the two string-length expressions have been
reduced to numbers, and - does not “know” that strings were even involved.

Please run this program in the Racket Stepper! (Unfortunately there isn’t one for Pyret, but it
would have run in the analogous way.) Watch how the second expression reduces to an answer.

(define (h n)
(local ([define (k n) (+ n n)])
(k (+ n 3))))

(h 6)

;; 18

—

fun f(x :: Number):
fun g(shadow x :: Number):

x + x
end
g(x + 4)

end

f(5)

18

This program is best understood in contrast to this one. That program errors; this one does not
because of the extra shadow keyword.

(define (h m x)
(if (empty? m)

0
(+ (* (first m) x)

(h (rest m) (* x 10)))))

(h '(4 2 6) 1)
(h '(5 3) 1)

;; 624
;; 35

—

fun g(l :: List<Number>, n :: Number):
cases (List) l:
| empty => 0
| link(f, r) =>
(f * n) + g(r, n * 10)

end
end

g([list: 2, 3, 5], 1)
g([list: 7, 8], 1)

532
87

In Pyret, we could have written a program similar to the Racket version. However, it is instead
idiomatic to use cases to take apart (“deconstruct”) a list. The List in cases says “I want to
break up a List” (as opposed to some other datatype). The f and r are automatically bound to
the corresponding parts of the list: f to the first element, r to the rest of the list. (We are free to
choose any names we like; we use f and r by convention, but as we will see during the
semester, not always.) This type of programming construct is called pattern-matching.

(first (cons 6 (cons 5 empty)))

;; 6

—

link(1, link(2, empty)).first

1

These programs behave the same way. link is the same as cons. The cons stands for
“construct [a list]”; conventionally, these lists have been called “linked lists”, hence in Pyret we
call the constructor link.

(define z 2)
(define z 1)
z

;; z: this name was defined previously and cannot be re-defined in: z

—

w = 3
w = 4
w

also error before we even get to the third line

In both Racket and Pyret, these produce an error. In both languages, a variable can be
associated with only one value. When you try to give a variable two different values at the same
time, you’re basically confusing the language and it’s asking you to make up your mind!

If you have prior programming experience, you will have other ideas about what such a program
should produce. We will get to this in November.

(define a b)
(define b 5)
a

;; error (use before define), we never get to the third line

—

w = z
z = 3
w

error

In both languages, these are errors for the same reason: when the first line is evaluated, the
variable on the right-hand-side does not yet have a value.

(define-struct b (x y))
(define-struct c (z))

(define (g s)
(cond
[(b? s) (+ (* (b-x s) (b-x s)) (b-y s))]
[(c? s) (sqrt (c-z s))]))

(g (make-b 3 0))
(g (make-c 16))

;; 9
;; 4

—

data N:
| r(a :: Number, b :: Number)
| s(c :: Number)

end

fun h(q :: N):
cases (N) q:
| r(e, f) => (e * e) + f
| s(g) => num-sqrt(g)

end
end

h(r(2, 3))
h(s(25))

7
5

While almost identical, one difference is that Racket creates two top-level structure definitions (b
and c), whereas Pyret creates one new type of thing (N) which has two variants (r and s). This
difference has interesting consequences in programming languages (e.g., there are some
parallels to the difference between Java and JavaScript), but they won’t matter here.

(define (f a b)
(local ([define g (* a a)]

[define h (+ b b)])
(- (* g h)
(+ g h))))

(f 4 2)

;; 44

—

fun g(x :: Number, y :: Number):
q = x * x
r = y + y
(q * r) - (q + r)

end

g(3, 4)

;; 55

Racket and Pyret are very similar in this regard: both allow local definitions. Variables and
functions defined inside a function body are visible only inside that body; they are invisible
outside it (Try accessing one of the locally defined variables after the function call!)

(define (g x)
(cond
[(< x 25) "slow"]
[(= x 25) "normal"]
[(> x 25) "fast"]))

(g 23)
(g 25)
(g 34.5)

;; "slow"
;; "normal"
;; "fast"

—

fun f(n :: Number):
ask:
| n < 10 then: "low"
| n == 10 then: "medium"
| n > 10 then: "high"

end
end

f(3)
f(10)
f(14.1)

low
medium
high

ask is how you write cond in Pyret. Each condition is preceded by a “stick” (|) and followed by
then:.

(define (f x)
(cond

[(< x 5) "C1"]
[(even? x) "C2"]
[(> x 5) "C3"]))

(f 16)
(f 5)

;; "C2"
;; error

—

fun is-odd(n :: Number) -> Boolean:
num-modulo(n, 2) == 1

end

fun g(n :: Number):
ask:
| n < 6 then: "G1"
| is-odd(n) then: "G2"
| n > 6 then: "G3"

end
end

g(9)
g(6)

"G2"
error

In both languages, conditions are tried in order: the second is tried only if the first fails, etc. (Use
the Racket stepper to see how the Racket version evaluates!) Because is-odd is not built into
Pyret, we have provided its definition.

(define an 1)
(define s 5)
(define an-s 36)

(- an-s an s)

;; 30

—

my = 3
x = 4
my-x = 17

my-x - my - x

10

In both Racket and Pyret, my-x is a single variable name: it is not x subtracted from my. In
Racket that subtraction would be written as (- my x); in Pyret as my - x (note the required
spaces around the subtraction operator). Again, the Racket Stepper can help resolve confusion.

Programs That Differ in Behavior

(define (h n)
(local ([define (k n) (+ n n)])
(k (+ n 3))))

(h 6)

;; 18

—

fun f(x):
fun g(x):
x + x

end
g(x + 4)

end

f(5)

errors due to shadow binding

In principle, these programs are the same. However, in Pyret we chose to add a rule that says if
an inner variable has the same name as an outer variable, that is an error. This catches a
pattern where programmers write such names by accident, but when using it fail to realize which
of the two variables they’re getting, think it’s the outer one when it’s actually the inner one, and
not only end up with buggy programs but also get very confused when trying to find the error.

Often, the simple fix is to just use a different name. Sometimes, you will find that you want to
hide the outer name so as to not access it accidentally. Pyret will let you do that, so long as you
make clear you want that feature. This feature is called “shadowing”, so Pyret asks you to use
the shadow keyword, as in that program.

(define (f m)
(cond

[(empty? m) false]
[(cons? m) (or (equal? (first m) "stone")

(f (rest m)))]))

(f '(x stone z))
(f '(x y z))

;; false (because symbol vs string)
;; false

—

fun g(l :: List<String>):
cases (List) l:

| empty => false
| link(f, r) => (f == "hello") or g(r)

end
end

g([list: "a", "hello", "c"])
g([list: "a", "b", "c"])

true
false

These programs look very similar, but are subtly different. In Racket, the content of the lists are
symbols; in Pyret, they’re strings. Because in Racket strings are different from symbols,
comparing 'stone with "stone" will give false. In Pyret, "hello" compared to "hello"
gives true. By design, Pyret does not have symbols.

(first (rest (list 9 8 7)))

;; 8

—

[list: 1, 2, 3].first.rest

error

In both languages, functions apply from the “inside out”: we could, for instance, have rewritten
the Pyret program as

([list: 1, 2, 3].first).rest

to make this more explicit. The first element of this list is 1. That is a number, not a list, so it
does not have a rest. Therefore, this program results in an error. The version that is equivalent
to the Racket program would be

[list: 1, 2, 3].rest.first

or

([list: 1, 2, 3].rest).first

Don’t get thrown off by the fact that the names seem to be in the “opposite order”.

(The difference between Racket and Pyret is similar to the difference between “the first element
of the list” and “the list’s first element”. Thus, the two correct versions correspond to “the first
element of the rest of the list” [Racket] and “the list’s rest’s first element” [Pyret].)

(define-struct q (x y))

(define (h q1 q2)
(+ (* (q-x q1) (q-y q2))

(* (q-y q1) (q-x q2))))

(h (q 9 8) (q 7 6))

;; ERROR! constructor in *SL requires make-p

—

data P: p(a :: Number, b :: Number) end

fun f(p1 :: P, p2 :: P):
(p1.a * p2.b) + (p1.b * p2.a)

end

f(p(2, 3), p(4, 5))

;; also 22

When making new data, the student languages of Racket require you to write the make- prefix.
Pyret does not require this. (Neither does the full Racket language!) If you’ve gotten used to
writing make-, you may run into errors in Pyret.

(define-struct p (x y))
(define-struct t (x y))

(define p1 (make-p 9 8))
(define t1 (make-t 1 2))

(define (get-ps-x-field a-p)
(p-x a-p))

(get-ps-x-field t1)

;; ERROR: p-x: expects a p, given (make-t 1 2)

—

data Q: q(a :: Number, b :: Number) end
data S: s(a :: Number, b :: Number) end

q1 = q(3, 4)
s1 = s(5, 6)

fun get-qs-a-field(a-q :: {a :: Number}):
a-q.a

end

get-qs-a-field(s1)

5

This pair of programs point to an important difference in programming language design.
Observe that each pair of data definitions has the same number of fields with the same names
and contracts. Are they therefore interchangeable?

The contract {a :: Number} means any value that has a field name a with type Number can
be passed to get-qs-a-field. Because the contract expects only that, not a Q (despite what
the function and variable names imply), we can pass an instance of S. Had the contract instead
read Q, then the program would error. This error is analogous to that in Racket, but it happens
before the program starts to run, and hence the error report is in a different place and style.

(define-struct p (x))

(map p-x (list (make-p 6) (make-p 5) (make-p 4)))

;; (list 6 5 4)

—

data S: s(c :: Number) end

map(.c, [list: s(1), s(2), s(3)])

syntax error

Conceptually, these programs are very similar. However, writing just .c is a syntax error in
Pyret: a .-accessor must always be preceded by some expression. One can instead write (the
new parts are in green):

map(lam(x): x.c end, [list: s(1), s(2), s(3)])

(which is just like the lambda in Racket) or equivalently but more concisely:

map({(x): x.c}, [list: s(1), s(2), s(3)])

or even more concisely:

map(_.c, [list: s(1), s(2), s(3)])

The _ automatically turns this program into the equivalent ones above: creating a one-argument
anonymous function and using its parameter in place of _. While _ is very elegant in situations
like this, it can get confusing in more complex contexts, so use it with caution, and feel free to
use explicit functions in its place.

(define a 2)
(define b 6)
(define a^b (+ 2 6))
a^b

;; 8

—

c = 3
d = 4
c^d = 3 + 4
c^d

Though Pyret is quite permissive with its variable names, it isn’t as permissive as Racket. You
can’t, for instance, put ^ in the middle of a name. (In fact, ^ in Pyret is a special operator called
the “cannonball”. But we won’t have much need for it!)

If you’re really curious: the cannonball operator takes the value from the left of the cannonball
and feeds it as the first (and only) argument to the function on the right. For instance,

fun sq(n :: Number): n * n end
check:
3 ^ sq is 9

end

What if you have a multi-arity function? As long as you can turn it into a single-arity function, you
can still cannonball. The _ construct can be especially useful for this:

check:
3 ^ num-expt(_, 2) is 9

end

In practice, we rarely write a constant to the left of ^, but rather an expression that computes a
result. Thus, cannonballing lets you chain sequences of functions: e.g.,

check:
sq(4) ^ num-expt(_, 2) ^ num-sqrt is 16

end

;; f :: Number -> List-of-Number
(define (f x)
(list x x))

(f "okay")

;; (list "okay" "okay")

—

fun g(y :: Number) -> List<Number>:
y + 3

end

g("hello")

ERROR: number annotation not satisfied

In the student languages of Racket (as opposed to full Racket), contracts are written as
comments, so they are not checked. In Pyret, they are part of the program’s syntax, and are
explicitly checked by the language. Therefore, the Pyret program produces an error because
"hello" is not a Number.

;; f :: List-of-Number -> List-of-List-of-Number
(define (f x)
(list x x))

(f (list "okay"))

;; (list (list "okay") (list "okay"))

—

fun g(l :: List<Number>) -> List<List<Number>>:
[list: l, l]

end

g([list: "hello"])

[list: [list: "hello"], [list: "hello"]]

This program is a bit unusual because the two versions of Pyret will behave differently. Either
way, Racket will not produce an error because contracts are comments, and hence not checked.
In the CPO version of Pyret, the checks go only “one level down”, so this program does not
signal an error (the list of strings matches the criterion of being a list). In the Repartee version of
Pyret, checks go “all the way down”, so this program does signal an error.

(define (h x)
(+ (* x x) 5))

(check-expect (h 2) 9)
(check-expect (h 8) 46)

—

fun f(n :: Number):
(n * n) + 3

end

check:
f(4) is 19
f(7) is 46

end

These programs are essentially the same. However, syntactically, Pyret allows multiple tests to
be written in a single check block (examples can equivalently be written in place of check). In
addition, Pyret lets you “name” a block with a descriptive string, as below:

check "addition":
1 + 1 is 2

end

check "subtraction":
3 - 3 is 0
4 - 3 is 1

end

In CPO, each block’s results are reported separately and using the name. (Try it out!) Repartee
does not yet support this (this may change over the course of the semester).

Splitting tests into blocks does not change the program’s behavior. However, as the number of
tests grows larger, having names for test blocks can be very helpful at localizing faults. This also
greatly helps a person reading your program. Therefore, we ask you to break your tests into
meaningful blocks and give each block a name that reflects its intent.

215:54 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

C RACKET-PYRET: SURVEY 2
To summarize, Survey 2 presented material in the following order:

(1) Survey explanation: Figure 11.
(2) Questions: Figure 12.

All the programs are in Table 3.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:55

Fig. 11. Racket-Pyret: Survey 2: Opening Page

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:56 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Fig. 12. Racket-Pyret: Survey 2: Per-Program

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:57

Table 3. Racket-Pyret: Survey 2: Programs Used

ID Pyret
1

fun p(n):
fun h(shadow n):

n + n
end
h(n + 2)

end

p(300)

2
u = 8
w = 3 + u
u = 4
x = 5
u

3
data M: m(b) end
map(.b, [list: m(3), m(2), m(1)])

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:58 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

D RACKET-PYRET: DATA ANALYSIS
We identi�ed the most “challenging” Pyret programs by looking at their distributions over various
measurements. Roughly speaking, we considered a program challenging if many students failed to
predict the correct output or many students found it confusing.

D.1 Identifying Challenging Programs
Some of the programs have multiple top-level expressions, leading to multiple outputs. We refer to
each output separately as a task. In total, there are 25 tasks in Racket and 26 in Pyret (because one
one-output Racket program is paired with two Pyret programs).

We computed the following data:
CorrectCount how many students correctly2 predicted a task’s output
IDKCount how many students responded “I don’t know” (���) for a task
AverageCon�dence for a task, how con�dent students were in their predictions on average
UnclearCount how many students responded to the anything-unclear question
Figure 13 labels the programs we considered the most challenging. Numbers in the �rst three

sub-plots can be found in Table 4. In the �rst three sub-�gures the choice is probably clear. For
UnclearCount, we noticed that students seemed more likely to write descriptive text about their
confusion for earlier programs than later ones. We conjectured that this may be because students
got tired near the end of a long list of programs. Applying Kendall’s test [Kendall 1938] con�rmed
(p-value < 0.05) that the presence of text statistically correlates with the position for all the textual
answers (earlier questions were more likely to have text) with one exception, where the question
“In what ways do these programs seem similar/di�erent” was required to be answered by every
student for every program. Notably, the other measurements do not correlate with position. Thus,
we picked the high UnclearCount’s relative to position.

D.2 Racket-Pyret: The E�ect of Prior Knowledge
We analyzed students’ Pyret correctness against their Racket correctness and their self-declared
prior programming background. Speci�cally, for each student and each Racket-Pyret program pair,
we considered the following variables:

IsPyretCorrect whether the student predicted the Pyret program correctly
ProgramID which program the question is about
IsRacketCorrect whether the student predicted the Racket program correctly
HasXBackground several boolean variables that encode whether the student had background

in Web/Block-based languages/Python/etc.
Each of the other variables might or might not contribute to the prediction of the outcome, IsPyret-
Correct. So in principle, there is an exponential number of models/theories to compare. We only
compare the following models/theories, which seem to be most relevant in this context:
(1) Students have a uniform probability of giving correct answers regardless of all other variables.
(2) Students have di�erent correctness rates for di�erent ProgramIDs, but none of the other

variables has an in�uence.
(3) Students have di�erent correctness rates depending only on their Racket correctness. That

is, students who predicted a Racket program correctly are more likely to predict the corre-
sponding Pyret program correctly.

2A prediction doesn’t have to be an exact match to be considered correct. We cleanse the data for typos, case, varieties of
writing Booleans and lists, etc.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:59

Fig. 13. Racket-Pyret: Survey 1: The Most Challenging Pyret Programs

(4) Students have di�erent correctness rates depending only on one background variable. That
is, students with that kind of background generally do better (or worse). There are several
models under this category, one for each kind of background.

(5) The correctness rate depends on both the program and the student’s Racket correctness. The
two variables might or might not interact: the impact of Racket correctness might or might
not be uniform on all programs. Thus, there are two models are under this category.

(6) The correctness rate depends on both the program and whether the student has one kind of
background. Again, the variables might or might not interact.

We compare these models by their Akaike Information Criterion (AIC), which is a non-negative real
number that measures how well a model �ts a data. AIC penalizes models with more parameters.
Therefore, it strives for a balance between goodness of �t and the model’s complexity. Models with
smaller AIC are better.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:60 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Table 4. Racket-Pyret: Survey 1: Pyret Results

Task CorrectCount IDKCount AverageCon�dence
Fun:1 66 (94%) 0 4.24
Fun:2 63 (90%) 0 4.09
ImpShadow 5 (7%) 1 4.04
ExpShadow 13 (19%) 17 2.81
CaseList:1 47 (67%) 10 3.58
CaseList:2 46 (66%) 10 3.57
SymStr:1 61 (87%) 4 3.91
SymStr:2 61 (87%) 4 3.89
FirstRest 52 (74%) 5 3.05
DotFirst 67 (96%) 3 3.52
DefTwice 7 (10%) 1 3.93
EarlyUse 53 (76%) 2 3.62
Struct1 66 (94%) 0 4.29
Struct2 59 (84%) 3 3.52
CaseStruct:1 65 (93%) 1 3.83
CaseStruct:2 65 (93%) 1 3.88
LocalDef 64 (91%) 0 4.34
DotField 9 (13%) 6 3.34
BasicCond:1 70 (100%) 0 4.49
BasicCond:2 70 (100%) 0 4.50
BasicCond:3 69 (99%) 0 4.34
BadCond:1 56 (80%) 1 3.68
BadCond:2 47 (67%) 2 3.50
Check 16 (23%) 3 3.37
Hyphen 64 (91%) 0 4.07
Caret 19 (27%) 4 3.11

Table 5. Racket-Pyret: Survey 1: Model Comparison

Variables AIC
(Nothing) 2215.3
ProgramID 1362.8

IsRacketCorrect 2109.9
HasXBackground [2216.9, 2217.3]

ProgramID + IsRacketCorrect 1314.2
ProgramID ⇤ IsRacketCorrect 1296.4
ProgramID + HasXBackground [1364.1, 1364.8]
ProgramID ⇤ HasXBackground [1376.3, 1389.7]

It is subtle to compare twomodels that have close AIC. Burnham and Anderson [2004] suggest the
following rule of thumb: “models having �8 2 have substantial support (evidence), those in which
4 �8 7 have considerably less support, and models having �8 > 10 have essentially no support.”
Here �8 refers to the AIC di�erence between a model and the best model under consideration.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:61

The AICs (Table 5) suggest that both Racket and the programs themselves impact students’
correctness in Pyret, that the programs have bigger impact over Racket, and that the impacts are
non-orthogonal. Overall, taking programming background into account unnecessarily complicates
the model.
Interestingly, the ProgramID ⇤ IsRacketCorrect model achieves a better (smaller) AIC than the

similar model without interaction. This suggests that the transfer from Racket to Pyret is uneven
in the studied programs. A closer look at the estimated parameters of the with-interaction model
suggests that, although the transfer is positive in general (p-value = 0.01), the transfer is clearly
harmful in DotField (p-value = 0.02) and in Caret (p-value < 0.001).
We further investigated the impact of programming background on the DefTwice program,

which can be deeply in�uenced by its syntactic similarity to Python. Curiously, Python (AIC =
49.43643) does not beat the empty model (AIC = 47.51162), but one other programming background
stands out: block languages (AIC = 44.13359). However, the impact of this background is still not
statistically signi�cant (p-value = 0.05336).

The statistical analysis was done with the glm function from R [R Core Team 2022]. The family
parameter is set to binomial (i.e., the link function is logistic) because the outcome is binary.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:62 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

E PYRET-PYTHON: PHASES 1 & 2
Phases 1 & 2 have similar structure. Phase 1 starts with an instruction (Figure 14), followed by
questions about program outputs (illustrated with Figure 16), and �nally a question about Python
background (Figure 17). Phase 2 has essentially the same instruction (Figure 15), the exact same
format for the major questions, and does not repeat the question about Python background. All
programs are listed in Table 6.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:63

Fig. 14. Pyret-Python: Phase 1: Instruction

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:64 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Fig. 15. Pyret-Python: Phase 2: Instruction

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:65

Fig. 16. Pyret-Python: Phases 1 & 2: Major�estions

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:66 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Fig. 17. Pyret-Python: Phase 1: Python Background (There is a typo in the question title, which says “Pyret
Background”. But the question prompt and the choices make clear that we are asking for Python background.)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:67

Table 6. Pyret-Python: Phases 1 & 2: Programs Used

Phase ID Python
Phase 1 1

>>> def f(x):
... x + 1
...
>>> f(2)
??????
>>>

Phase 1 2
>>> def f(x):
... print(x + 1)
...
>>> f(2)
3
>>> f(2) * 3
??????
>>>

Phase 1 3
>>> def f(x):
... return x + 1
...
>>> f(2)
3
>>> f(2) * 3
??????
>>>

Phase 1 4
>>> def f(x):
... return
... x + 1
...
>>> f(2)
??????
>>>

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:68 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Phase 1 5
>>> def f(x, y):
... s = x + y
... return s / 2
...
>>> f(4, 6)
5
>>> def g(a, b):
... n = a + b
... return n / 2
??????
>>>

Phase 1 6
>>> def f(x: int , y: int):
... return x + y
...
>>> f(2, 3)
5
>>> f(�hel�, �lo�)
??????
>>>

Phase 1 7
>>> def f(x: int , y: int):
... return x * y
...
>>> f(2, 3)
6
>>> f(�hello�, 3)
??????
>>>

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:69

Phase 1 8
>>> def f(x):
... if x < 60:
... return �too -low�
... else:
... return �okay�
...
>>> f(59)
�too -low�
>>> f(60)
�okay�
>>> def g(n):
... if n < 60:
... �too -low�
... else:
... �okay�
... return
...
>>> g(59)
??????

Phase 1 9
>>> def f(x):
... if x <= 2:
... y = 10
... else:
... y = 100
... return x * y
...
>>> f(2)
??????
>>>

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:70 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Phase 1 10
>>> x = 2
>>> def get_x ():
... return x
...
>>> get_x ()
2
>>> x = 3
??????
>>> get_x ()
??????
>>>

Phase 2 1
>>> def g(n):
... 2 * n
...
>>> g(3)
??????
>>>

Phase 2 2
>>> def g(n):
... print (2 * n)
...
>>> g(2)
4
>>> g(3)
6
>>> g(3) + 1
??????
>>>

Phase 2 3
>>> def g(n):
... return
... 2 * n
...
>>> g(3)
??????
>>>

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:71

Phase 2 4
>>> def g(n, m):
... d = n - m
... return d * d
...
>>> g(3, 5)
4
>>> def f(x, y):
... t = x - y
... return t * t
??????
>>>

Phase 2 5
>>> def g(s: str , t: str):
... return s + t
...
>>> g(�py�, �thon�)
�python �
>>> g(1, 2)
??????
>>>

Phase 2 6
>>> def g(s: str , n: int):
... return s * n
...
>>> g(�ha�, 3)
�hahaha �
>>> g(2, 3)
??????
>>>

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:72 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Phase 2 7
>>> def g(n):
... if n < 18:
... return �too�young�
... else:
... return �good�
...
>>> g(17)
�too�young�
>>> g(18)
�good�
>>> def h(x):
... if x < 18:
... �too�young�
... else:
... �good�
... return
...
>>> h(17)
??????
>>>

Phase 2 8
>>> n = 3
>>> def get_n ():
... return n
...
>>> get_n ()
3
>>> n = 2
??????
>>> get_n ()
??????
>>>

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:73

Phase 2 9
>>> def f(ns):
... total = 0
... for n in ns:
... total = total + n
... return total
...
>>> f([2, 3])
??????
>>>

Phase 2 10
>>> def f(ns):
... total = 0
... for n in ns:
... total = total + n
... return total
...
>>> f([2, 3])
??????
>>>

Phase 2 11
>>> def f(ns):
... total = 0
... for n in ns:
... total = total + n
... print(total)
...
>>> f([2, 3])
??????
>>>

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:74 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Phase 2 12
>>> def append_twice(ls, x):
... ls.append(x)
... ls.append(x)
... return ls
...
>>> list_1 = [1, 2]
>>> append_twice(list_1 , 3)
[1, 2, 3, 3]
>>> append_twice(list_1 , 30)
??????
>>>

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:75

F PYRET-PYTHON: PHASE 3: CODEBOOK
This appendix presents the codebook that we used to analyze data collected in Phase 3.

CorrectExplanation The response provides a correct explanation. Only an explanation that
is compatible with the Python semantics counts as correct.

WrongExplanationCorrectRepair The response provides an incorrect explanation, but nev-
ertheless suggests a correct repair.

WrongExplanation The response provides an incorrect explanation and doesn’t suggest a
correct repair.

MissingExplanationCorrectRepair The response provides no explanation for a correct re-
pair.

MissingExplanation The response provides no explanation and doesn’t suggest a correct
repair.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

215:76 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

G PYRET-PYTHON: STATISTICAL ANALYSIS
The analysis procedure is the same as in Appendix D.2.

For each student at each predict-the-output question, we consider three variables:
IsCorrect whether the student gave a correct answer
ProgramID which program the question is about
HasBackground whether the student had any Python background

The outcome, IsCorrect, might or might not depend on one of the other two factors. This suggests
the following models/theories to consider:
(1) Students have a uniform probability of giving correct answers regardless of their backgrounds

and regardless of the program.
(2) Students have di�erent correctness rates for di�erent Programs, but Python background has

no in�uence.
(3) Students have di�erent correctness rates depending only on their Python background. That

is, students with Python background generally do better (or worse).
(4) The correctness rate depends on both variables, additively. That is, students with Python

background are not particularly good/bad at some programs.
(5) The correctness rate depends on both variables, with interaction. That is, students with

Python background are particularly good/bad at some programs.
The results of Phase 1, Phase 2, and the �nal exam are presented in Tables 7 to 9 respectively.

They suggest that prior Python background does have an in�uence on students’ correctness rate.
The in�uence might or might not vary in di�erent programs. Furthermore, HasBackground has a
clear (i.e., statistical signi�cant) positive impact (p-value < 0.001 in Phases 1 & 2; p-value < 0.01 in
the �nal exam) in both additive models. (In the with-interaction models the impact is shared by the
interaction parameters and hence becomes unclear.)

Some data from the �nal exam are excluded for the computation of AIC because those students
didn’t participate in Phase 1, when we collected their Python background information. We ended
up with 160 students.

We don’t analyze the results in Phase 3 with similar method because we think the existing results
already show a consistent and clear pattern and because the analysis would require us to grade
hundreds of text responses.

Table 7. Pyret-Python: Phase 1: Model Comparison

Variables AIC
(Nothing) 2463.4
ProgramID 1770.9

HasBackground 2453.5
ProgramID + HasBackground 1754.2
ProgramID ⇤ HasBackground 1753.9

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

What Happens When Students Switch (Functional) Languages (Experience Report) 215:77

Table 8. Pyret-Python: Phase 2: Model Comparison

Variables AIC
(Nothing) 2663.2
ProgramID 2214.1

HasBackground 2313.2
ProgramID + HasBackground 1897.8
ProgramID ⇤ HasBackground 1910.6

Table 9. Pyret-Python: Final Exam: Model Comparison

Variables AIC
(Nothing) 627.2
ProgramID 479.8

HasBackground 622.5
ProgramID + HasBackground 472.1
ProgramID ⇤ HasBackground 475.5

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Common Study Context
	4 Study 1: Racket to Pyret
	4.1 Context for This Study
	4.2 Study Design
	4.3 Results & Discussion

	5 Study 2: Pyret to Python
	5.1 Context for This Study
	5.2 Broad Study Parameters
	5.3 Phase 1
	5.4 Phase 2
	5.5 Phase 3
	5.6 Phase 4

	6 Discussion & Conclusion
	Acknowledgments
	References
	A Racket-Pyret: Survey 1
	B Racket-Pyret: Refutation Text
	C Racket-Pyret: Survey 2
	D Racket-Pyret: Data Analysis
	D.1 Identifying Challenging Programs
	D.2 Racket-Pyret: The Effect of Prior Knowledge

	E Pyret-Python: Phases 1 & 2
	F Pyret-Python: Phase 3: Codebook
	G Pyret-Python: Statistical Analysis

