
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-89-M6

"Raster Algorithms for 2D Primitives"

by
Dilip Da Silva

RASTER ALGORITHMS FOR 2D PRIMITIVES

submitted by

Dilip Da Silva

In partial fulfillmen t of the requirements for the

Master of Science Degree

in Computer Science

Brown University

May 1989

Andries van Dam, advisor

ABSTRACT

This thesis presents a coherent and uniform method for drawing single
pixel outlines. These methods can be easily extended to scan more
complex (thick and filled) primitives. Methods to clip both simple and
complex primitives, consistent with the drawing methods discussed, are
also presented. To achieve this aim, a comprehensive overview and
discussion of modern algorithms to scan-convert 2D primitives such as
lines, circles, standard ellipses, and general ellipses is included. In addition
to the presentation of commonly known algorithms, this thesis also
presents new and original algorithms to solve some problems inherent to
existing algorithms.

TABLE OF CONTENTS

SUBJECT PAGE

ABSTRACT ,... 1

I. INTRODUCTION 1

II. SCAN-CONVERSION 1

A. SINGLE-PIXEL OUTLINES 1
1. Scan-converting Lines 2
2. Scan-converting Circles 7
3. Scan-converting Standard Ellipses 1 3
4. Scan-converting General Ellipses 2 5

B. FILLED PRIMITIVES 3 5
1. Calculating Representation of Filled Primitive .. 3 5
2. Fill Patterns 3 5
3. Tiling 3 6

C. THICK PRIMITIVES 3 6
1. Replicating Pixels 3 6
2. Filling Areas Between Boundaries 3 7
3. Tracing The Outline With A Pen Tip 4 0
4. Thick Polyline Approximation 4 0
5. Patterned Thick Primitives 4 1
6. Border Styles 4 1

III. CLIPPING 4 3
A. CLIPPING LINES 4 4

1. Cohen Sutherland Algorithm 4 4
2. Nicholl, Lee and Nicholl Algorithm 4 9
3. Drawing The Clipped Line 5 2

B. CLIPPING CIRCLES 5 5

SUBJECT PAGE

11

C. CLIPPING STANDARD ELLIPSES

D. CLIPPING GENERAL ELLIPSES

E. CLIPPING THICK AND FILLED PRIMITIVES

F. CLIPPING TO WINDOWS THAT ARE NOT RECTANGLES

IV. SUMMARY

5 8

5 9

5 9

6 0

6 1

REFERENCES...................................... . i v

111

I. INTRODUCTION

This thesis presents a coherent and uniform method for drawing
single pixel outlines. These methods can be easily extended to scan
more complex (thick and filled) primitives. Methods to clip both
simple and complex primitives, consistent with the drawing methods
discussed, are also presented. To achieve this aim, a comprehensive
overview and discussion of modern algorithms to scan-convert 2D
primitives such as lines, circles, standard ellipses, and general
ellipses is included. Among the algorithms are those to scan-convert
single-pixel outlines of primitives, to draw thick and filled
representations of primitives, and to clip primitives. In addition to
the presentation of commonly known algorithms, this thesis also
presents new and original algorithms to solve some problems
inherent to existing algorithms. The discussion of scan-converting
single-pixel outlines of primitives, for example, combines commonly
known methods with the technique of partial differences. In the
case of standard ellipses, this combination produces an algorithm
that is more efficient than any published to date. This algorithm also
solves a problem presented by previously published algorithms
wherein drawing thin, long standard ellipses truncates the ends of
the ellipse. Another important contribution is an algorithm that
handles a II cases of general ellipses, including thin ellipses. Also
presented are various techniques for drawing thick and filled
primitives, including techniques that extend commonly known
algorithms for drawing single-pixel outlines of primitives. The final
discussion in this thesis focuses on methods for clipping all 2-D
primitives under study.

II. SCAN-CONVERSION

A. SINGLE-PIXEL OUTLINES

Lines, circles and ellipses are useful 2D pnmltIves that are commonly
invoked in rapid succession by interactive graphics applications.
Hence, algorithms to scan-convert these primitives have to create
visually pleasing images as well as be efficient. The basic task of scan
converting a primitive involves selecting the appropriate pixels that
approximate the continuous mathematical representation of the
primitive on a fixed integer grid. In approximating the primitive, we
need to choose a meaningful measure of error and then try to
minimize the error. We start out using the value of the function as a
means of deciding how close a pixel is to the primitive. This method·

I

works well for lines and circles, but is unreliable when used with
ellipses. A better method, called the midpoint method, indicates on
which side of the primitive the midpoint between two pixels lies and
limits the distance between the pixel chosen and the primitive to one
half the distance between two pixels. We shall use this method as a
basis for the circle, standard ellipse and general ellipse algorithms.

Fig. 1. Pixel, P. surrounded by 8 adjacent pixels

In order to make the scan-conversion algorithms efficient, we avoid
floating point arithmetic, and use incremental techniques to minimize
the calculations required for each pixel plotted. The basic strategy of
incremental scan-conversion algorithms is to choose the next pixel
from the previously chosen pixel by determining which of the
adjacent pixels lies closest to the curve being drawn. Figure 1
illustrates a pixel, P, surrounded by its 8 adjacent pixels, where the
pixels are named by their relative geographical location. However,
the choice of the next pixel can be reduced to only a pair of adjacent
pixels depending on which octant the slope of the curve is in at the
currently selected pixel. We define within which octant the slope of a
curve lies by the slope of the curve and the direction in which we are
tracking the primitive. If, for example, we are tracking a line with a
slope of 1/2 and we are tracking the line from left to right, then we
define the slope of the line to lie within the first octant. For the case
when the slope of the curve lies in the first octant, the choice of the
next pixel is reduced to the pair, E and NE. Furthermore, the
calculations used to determine the closer pixel of the pair can be
done incrementally. That is, the calculations done to choose the
current pixel can be used to simplify the calculations for the choice of
the next pixel.

1. Scan-converting Lines

The task of scan-converting a line involves selecting the pixels that
best approximate the equation of the line,

f(x,y) = y - mx - b = 0 (L 1)

2

where m is the slope and b is the y-intersect. For simplicity, assume
that the end points of the line segment fall on integer coordinates
and that the slope of the line lies in the first octant, where x ~ y > O.
Symmetry can be used to draw lines in other octants. Since the slope
of a line m is constant, the choice of the next pixel in an incremental
algorithm is always chosen from the same pair of pixels adjacent to
the currently chosen pixel. In the case of a line with a slope in the
first octant, the choice of pixels is between E and NE.

NE
NE

(Xi,Yi) E
Fig. 2a. Pixel P is currently Fig. 2b. Determining which
selected and next pixel is pixel, E or NE, is closer to the
chosen from E or NE. line.

The selection process at each pixel is illustrated in figure 2a. At the
i th step pixel P has been determined to be closest to the line and we
now want to decide whether pixel NE or pixel E should be chosen
next. Some method is necessary to select which pixel, NE or E lies
closer to the line. In figure 2b, the distances from the pixels, NE and
E, to the line are denoted by ne' and e', respectively. By similar
triangles, the ratio of ne' to e' is the same as the ratio of ne to e and
hence the distances ne and e can be used as accurate indicators of
which pixel, NE or E is closer to the line.

Bresenham's algorithm [BRES65] calculates the smaller of the
distances, ne and e, using only integer arithmetic. The algorithm
uses a decision variable d which at each step is proportional to the
difference between ne and e. If d = e - ne > 0 then ne < e and pixel
NE is closer and is set, otherwise e < ne and pixel E is set. Figure 2b

i thillustrates the step where pixel P at coordinate (xi,Yi) has been
determined to be closest to the line and we now want to decide
whether pixel ~E or pixel E should be chosen. From examination of

3

figure 2b, the distance ne is the Y coordinate, Yi + 1, of the pixel NE
minus the Y coordinate of the line when the x coordinate is Xi + 1.
The distance e is the Y coordinate of the line when the x coordinate is
Xi + 1 minus the Y coordinate, Yi, of the pixel E. The distance, e and
ne, are given by the following equations.

ne = Yi + 1 - m(xi + 1) - b (L2)

e = m(xi + 1) + b - Yi (L3)

Thus,
e - ne = 2mxi - 2Yi + 2m + 2b - 1 (L4)

Assuming we are drawing a line from starting point (xs,Ys) to ending
point (Xf,Yf), where both end points fall on integer coordinates and
Xs ~ xf, then m = dy/dx, where dy = Yf - Ys and dx = Xf - xs' Also,
using (xs,Ys) to solve for b in (Ll), b = Ys - mx s' After substituting
dy/dx for m and Ys - mx s for b, in (L4), we have

Multiplying both sides by dx, we have

dx(e-ne) = 2xidy- 2Yidx + 2dy + 2Ysdx- 2dyx s - dx. (L5)

Since dx is positive, it does not change the sign of (e - ne) so we can
use dx(e-ne) as the decision variable to determine which pixel should
be the next pixel chosen. In addition, since all the terms on the right
hand side of (L5) are integers, the decision variable can be calculated
using only integer arithmetic. Therefore

(L6)

The equation of the decision variable can be further simplified by

calculating it in terms of the previous decision variable di.

Subtracting 1 from each index gives:

d i = 2xi_l dy- 2Yi-l dx + 2dy + 2Ysdx- 2dyx s - dx.

Subtracting di from d i+ 1 gives:

4

In the case of the pair of pixels, NE and E, we know that Xi = xi-l + 1.
Hence

if di ~ 0 then pixel NE is chosen so Yi = Yi-l + 1 and

di+1 = di + 2dy - 2d x (L7)

if di < 0 then pixel E is chosen so Yi = Yi-l and

di+l = di + 2dy (L8)

Since the line starts out at (xs,Ys)' from (L6)

dl = 2dy - dx. (L9)

procedure LINE (Xs, Ys, Xf, Yf : integer)
var dx, dy, const1, const2, ct, x, y integer;

begin
dx := Xf - Xs;
dy := yf - Ys;
d := 2 * dy - dx; initial d from (L9)

const1 := 2 * dy; increment from (L8)

const2 := 2 * (dy - dx); increment from (L7)
x : = Xs;
y := Ys;
setpixe1 (x, y) ;
while x < X f do begin

x = x + 1;
if d < 0 then (choose pixel E)

d := d + const1
e1ae (choose pixel NE)

begin
y = y + 1;
d := d + const2

end
setpixel(x,y)

end {while}
end

Fig. 3. Algorithm for drawing lines in the first octant

From the derivation above we have an incremental algorithm for
drawing a line using minimal integer arithmetic per point plotted
(see figure 3). This algorithm draws the bestfit approximation to a
line. Another way of looking at the derivation of Bresenham's
algorithm would be to examine the function of the line f(x,Y) = Y - mx
- b. In the case of non-vertical lines, the function is positive for

5

coordinates above the line and negative for coordinates below the
line. The line is defined by the points at which the function
evaluates to zero. Since the function is linear, the evaluation of the
function at any point is linearly related to the distance the point is
from the line. Therefore, in figure 2b, if we compared the absolute
value of the function at pixel NE with that at pixel E, the smaller
value would be associated with the closer pixel. On examination of
(L2), (L3), and (L4), this is exactly the situation in Bresenham's
algorithm. However, this method does not extend well to non-linear
functions like ellipses, where the value of the function of an ellipse
increases more rapidly outside the ellipse than it decreases inside,
hence becoming an unreliable indicator of distance from the curve.
Therefore we shall describe a different method that does extend well
to such non-linear functions. Piueway [PITT67] was the first to use
this method and Van Aken [VANA84] later referred to it as the
midpoint method. In order to choose the next pixel from a pair of
adjacent pixels, instead of comparing the values of the function at the
two pixels, this method evaluates the function at the midpoint
between the two pixels. It then uses the value of the function at the
midpoint to tell which side of the midpoint the function passes hence
indicating which of the two pixels lies closer to the function.

Therefore, in the case of the line, instead of comparing the value of
the function at pixel NE and at pixel E, the function is evaluated at
the midpoint between pixel NE and pixel E. If the function evaluated
at the midpoint is negative, then the line passes above the midpoint
and pixel NE is closer. Conversely, if the function at the midpoint is
positive then the line passes below the midpoint and pixel E is closer.
If the midpoint falls exactly on the line, then both pixels, E and NE,
are 1/2 the distance between two pixels from the line and either
pixel can be chosen as the closer pixel. Using the same techniques as
before, the algorithm can be written incrementally. A derivation of
this algorithm was published by Van Aken and Novak [VANA85] and
the resulting algorithm is exactly the same as Bresenham's algorithm.

In the case of lines that do not start and end at integer coordinate
points, the starting pixel, (xs,Ys), is the rounded value of the starting
coordinate point and the decision variable is initialized at
(x s+l,ys+1/2). However, the algorithm has to implemented using
floating point arithmetic since the values of dx and dy in (L6) may
not be integers.

6

2. Scan-converting Circles

Scan-converting circles involves selecting the pixels that best
approximate the equation of a circle.

f(x,y) = x2 + y2 - R2 = 0 (Cl)

represents a circle with radius R centered at the ongm. To simplify
the algorithm we shall assume the circle is centered at the origin and
shall draw only the arc of the circle that lies in the first octant. Other
octants can be drawn trivially using symmetry and circles centered
elsewhere can be drawn using a simple translation. Since only the
arc in the first octant is considered and the slope of the arc stays
within the third octant, the choice of the next pixel in an incremental
algorithm is always reduced to the pair of pixels, Nand NW, relative
to the currently chosen pixel.

I

~

~

I

I

\

i
\

I
I
I

t

i
I

~
NWi\ N

1\ (Xi,Yi)

I

mid P

point
It.

I I

Fig. 4. Pixel P is currently selected and the next pixel
is chosen from N or NW.

In figure 4, if pixel P has been determined to be the closest to the
circle, we can use the midpoint method to determine whether pixel N
or NW should be the next pixel set. The function f(x,y) given in (el)
is negative for points inside the circle and positive for points outside
the circle. The circle is defined by the points at which the function
evaluates to zero. If the function at the midpoint between NW and N
is negative, then the midpoint is situated inside the circle so pixel N
is closer to the circle and should be set. On the other hand, if the

7

function at the midpoint is positive, then the midpoint is situated
outside the circle so pixel NW is closer and should be set. In figure 4,
the midpoint is inside the circle so pixel N should be the next pixel
selected.

If P is located at (Xi, Yi) then the decision variable, which is the
function of the circle evaluated at the midpoint between pixel NW
and pixel N becomes

d = f(xi -1/2, Yi + 1) = (Xi -1/2)2 + (Yi + 1)2 - R2

In order to calculate the decision variable incrementally, instead of
using the same techniques that we used for the line algorithm we
shall use partial differences [PRAT85). If we define the partial
difference Fn as

Fn(x,y) = F(x,y+l) - F(x,y),

where the subscript, n, represents a partial increment by one unit in
the north direction, then every time we increment the evaluation
point (xp, yp) of the function, F, by one in the positive y direction, to
calculate the new value of the F at (xp' yp +1), we only have to add
the value of Fn at (xp, yp) to the value of the F at (xp ' yp)' That is
F(xp, yp+l) = F(xp' yp) + Fn(x p, yp). In the case of the equation of a
circle,

Fn(x,y) = [x2 + (y+l)2 - R2] - [x2 + y2 - R2] = 2y + 1

Since the function of a circle is a second order function, the functions
that define the first partial differences cannot be higher than first
order functions. Consequently, the calculations needed to evaluate
the partial differences are usually simpler than the calculations
needed to evaluate the function itself. So we can evaluate the
function at a partial increment from the current evaluation point by
simply calculating the partial difference and adding it to the current
value of the function. Furthermore, to simplify the calculations
needed to evaluate the partial differences, we can again use partial
differences. In the case of the first partial difference Fn, we define
F u_ asu

8

where the second n in the subscript represents a partial increment of
the evaluation point by one unit in the north direction. If the
evaluation point, (xp' yp), of Fn is incremented by one in the y
direction, we can calculate the new value of Fn at (xp' yp +1) by
simply adding F _ to the previous value of Fn. Therefore, the newn n
value of the function, F, at (xp,yp+1) can be calculated using the
values of F and Fn at (xp' yp)' and then the new value of Fn at (xp'
yp+1) can be calculated using the value of Fn and Fn_n at (xp' yp)'
That is,

F = F + Fn

Fn = Fn + Fn n

In the case of a circle, since the first partial differences, like Fn, are
no higher than first order functions, the second partial differences,
like F _ n, can be no higher than zero order functions. That is, then
functions that define the second partial differences are all constants
and hence do not have to be updated when the evaluation point
changes. In the case of a circle,

Fn_n(x,y) = [2(y+l) + 1] - [2y + 1] = 2

As described above, we can define the other partial differences for
partial increments in other directions. The partial difference Fnw ' for
example, would represent an increment by one unit in the north
direction and one unit in the west direction. In order to draw the arc
of the circle that lies in the first octant, we initially set the current
pixel, P, to the pixel at (R,O) (assume integer radii), which is the
intersection of the circle with the positive x-axis. We then calculate
the associated decision variable, d, at the midpoint between the pixel
Nand NW. That is at the coordinate point (R-l/2,1). In addition, the
values of Fn and Fnw have to be initialized at the same point, (R
1/2,1), as the initial decision variable. In order to decide which pixel,
N or NW, is the next pixel chosen, we use the sign of the decision
variable. If d < 0, then the midpoint is inside the circle and pixel N is
chosen. In this case, the current pixel moves to the pixel N and so the
corresponding evaluation point of the decision variable changes by
one unit in the north direction. Using partial differences, we can
updatf:; the decision variable by adding to it the current value of Fn ,

and then update the value of Fn by adding to it Fn_n. In addition,
F n w has to be updated, so its value corresponds to the new

9

evaluation point of the decision variable. The following equations
perform the necessary updates.

d =d+ Fn
Fn =Fn + Fn_ n
Fnw = Fnw + Fnw n

If d ~ 0, then the midpoint is outside the circle and pixel NW is
chosen. In this case, the current pixel moves to the pixel NW and so
the corresponding evaluation point of the decision variable changes
by one unit in the north direction and one unit in the west direction.
Using partial differences, the decision variable, d, and the partial
differences, Fn and Fn w, can be updated with the following
combination of equations.

d =d + Fnw
Fn =Fn + Fn _nw

=Fnw Fnw + Fnw nw

For the equation of a circle, the partial differences used 10 the above
equations are defined by the following functions.

Fn = 2y +1,

Fnw = 2y - 2x + 2,

Fn_n = 2,

F n_nw = 2,

F nw_n = 2,

= 4.F nw_nw

10

procedure CIRCLE (R : real)
var x, y : integer;

d, Fn, Fn_n, Fn_nw, Fnw, Fnw_n,
begin

x := ROUND(R); y := 0:
Fn := 3; Fn_n := 2;
Fnw := 5 - 2 * x; Fnw n ;= 2;
d := x * x - x + 5/4 - R * -R;
while x > y do begin

setpixel (x, y) :
y = y + 1;
if d < 0 then

begin
d := d + Fn;
Fn := Fn + Fn_n;
Fnw := Fnw + Fnw_n;

end
el••

begi.n
x - x-I;
d := d + Fnw;
Fn := Fn + Fn_nw;
Fnw := Fnw + Fnw_nw;

end
end (while)

end

Fnw_nw: real;

Fn_nw := 2;
Fnw nw := 4:
(initial d from (C3))

(choose pixel N)

{ choose pixel NW)

Fig. Sa. Algorithm to draw the arc of a circle
(real radii) that lies in the first octant.

If R is an integer, then setting the current pixel to the pixel at (R,O),
the values of d, Fn , and Fnw , are initialized at the coordinate point
(R- 1/2,1). The initial value of d is

d1 = 5/4 - R (C2)

If R is not an integer, then setting the current pixel to the pixel at
(Xo,O), where Xo is the rounded value of R, the values of d, Fn , and
F nw , are initialized at the coordinate point (Xo- 1/2,1). The initial
value of d is

(C3)

The algorithm for real values is presented in figure 5a. If we restrict
R to only integer values, then the algorithm can be implemented
using only integer arithmetic. Using the initial decision variable d1

from (C2), we can substitute the new decision variable, h = d - 1/4
in the algorithm to eliminate the 5/4 fractional term in the
initialization of d. The initial value of h will now be h = 1 - R.
However, the comparison d < 0 will become h < -1/4. Since h can
only take on integer values, the comparison h < 0 will have the same
effect. The integer version of the algorithm is listed in figure 5b.

1 1

Fn_n := 2;
Fnw_n := 2;

y ;= 0;

end
end

procedure CIRCLE (R ; inteqer)
var x, y, h, Fn, Fn_n, Fn_nw,

beqin
x ;= R:
Fn ;= 3;
Fnw ;= 5 - 2 * R;
h := 1 - R:
while x > y do beqin

setpixel (x, y) :

y = y + 1:
if h < 0 then

beqin
d ;= d + Fn;
Fn ;= Fn + Fn_n:
Fnw ;= Fnw + Fnw_n:

end
e18e

beqin
x = x - 1;
d := d + Fnw;
Fn ;= Fn + Fn_nw;
Fnw := Fnw + Fnw_nw:

end
{while}

{ choose pixel NW }

{ choose pixel N }

Fn_nw ;= 2;
Fnw_nw := 4;
{ initial d from (C2) }

Fig. 5b. Algorithm to draw the arc of a circle
(integer radii only) that lies in the first octant.

It is interesting to note that if we used Bresenham's method to
derive' the algorithm for a circle, we would arrive at the same
algorithm with only the initialization of d being different. In the case
of integer radii the initial value of d would be 3/2 - R instead of 5/4
- R. However, using the same kind of transformations as above, we
can derive exactly the same algorithm. Therefore, in the case of
integer radii, both algorithms draw exactly the same circle. In
addition, Bresenham [BRES77] showed that in the ca~e of integer radii
his algorithm draws the bestfit approximation to the circle.

McIlroy [McIL83] extensively examined the bestfit nature of
Bresenham's circle algorithm and showed that In the case where the
square of the circle's radius is an integer, Bresenham's algorithm
draws the bestfit approximation to the circle. Although this may not
be true for a circle algorithm that uses the midpoint method, the
attraction of the midpoint method is that by definition the linear
error of the curve drawn is bounded by 1/2. That is, the minimum
distance between any pixel selected and the curve is never greater
than half the distance between two pixels. Therefore, although the
midpoint algorithm might not draw the bestfit approximation to a

1 2

b

circle In the case of real radii, the error will always be bounded by
1/2.

An optimization of the algorithm can be performed by noticing that
for the arc of a circle in the first octant, pixel N is selected more often
than pixel NW. This can be shown using simple geometry. If instead
of using the partial differences, Fn and Fn w, we use Fn and Fw '
where Fw = -2x + 1. Then when pixel N is selected, the decision
variable can be updated with the following sequence of equations.

d = d+ Fn

Fn = Fn + Fn n

We do not have to update Fw because Fw_n = O. When pixel NW is
selected, the decision variable is updated with the following set of
equations.

d = d+ Fn + Fw

F n = Fn + Fn_nw
Fw = Fw + Fw_nw

Therefore, only 2 additions are performed when pixel N is chosen,
while 4 additions are performed when pixel NW is chosen. By
shifting the computation ftom pixel N, which is chosen more
frequently, to pixel NW, the average number of additions performed
per pixel is reduced, producing a slightly faster algorithm.

3. Scan-Converting Standard Ellipses

Standard ellipses are the class of ellipses that are symmetric about
the x and y axes.

y

a
-_-:-ia r------+------+-- x

~-b

Fig. 6. A standard ellipse

1 3

They are described by the equation

(El)

where 2a is the diameter along the x axis and 2b is the diameter
along the y axis. Again, to simplify the algorithm, we shall only draw
the arc of the ellipse that lies in the first quadrant since other
quadrants can be drawn trivially by symmetry. Also standard
ellipses centered elsewhere can be drawn using a simple translation.
The algorithm presented here is original in that it combines the
approaches used by Van Aken[VANA84] and Kappel [KAPP85] along
with using the technique of partial differences

Since the slope of the arc of the ellipse in the first quadrant changes
continuously from one end of octant 3 to the other end of octant 4,
we can divide the arc into two regions such that the slope in region 1
stays within octant 3 and the slope in region 2 stays within octant 4
(see figure 7). Thus for each region, the choice of the next pixel in an
incremental algorithm is reduced to the same pair of pixels. In the
case of region 1 the choice of pixels is between Nand NW, and in the
case of region 2 the choice of pixels is between NW and W. The curve
in each region can then be dr.awn using the same techniques that
were used for the circle algorithm. However. we still need to
determine when region 1 ends and region 2 begins.

y
tangent

slope =-1

b t---__ ~

I component

-j--------------.L.-_x
a

Fig. 7. Dividing the arc of the ellipse into two regions

14

Since the gradient of a curve at a point P on the curve is orthogonal
to the tangent to the curve at p. we can use the gradient to
determine when region 1 ends and region 2 begins. The boundary
between the two regions is the point at which the slope of the curve
is -lor equivalently. when the i and j components of the gradient
are of equal magnitude.

grad f(x,y) = af/ax i + af/ay j = 2b2x i + 2a2y j

Therefore. by comparing the magnitudes of the two components, we
can determine when we have left region 1 and entered region 2.

The function f(x.y) given in (E 1) is negative for points inside the
ellipse and positive for points outside the ellipse. The ellipse is
defined by the points at which the function evaluates to zero. In
region 1, (figure 8a) if the current pixel P is located at (xit Yi), then
the decision variable for region 1, d1, which is the function of the
ellipse evaluated at the midpoint between pixel NW and pixel N,
becomes

Region 1 Region 2

NNW

(Xi,Yi)

p
w

I

NW

iexi,Yi)

i

Fig. 8a. Pixel P is currently Fig. 8b. Pixel P is currently
selected and the next pixel selected and the next pixel
is chosen from N or NW is chosen from NW or W

Again. we can use partial differences to calculate the rlecision
variable incrementally. For region 1. the choice of pixels is between
t-.'W and N. If d 1 < O. then the midpoint between NW and N is inside
the ellipse and pixel N is chosen. Using the techniques for partial
differences as developed for the circle algorithm, the difference

1 5

variable, dl, and the partial differences, Fn and Fnw , are updated as
follows.

dl = dl + Fn
Fn = Fn + Fn_n
Fnw = Fnw + Fnw n

Otherwise, if dl ~ 0, pixel NW IS chosen and the difference variable is
updated as follows:

dl = dl + Fnw
Fn = Fn + Fn_nw
Fnw = Fnw + Fnw nw

In region 2, the choice of pixels is between NW and W (figure 8b)
and the decision variable for region 2, d2, is evaluated at the
midpoint between NW and W. If d2 < 0, then the midpoint between
NW and W is inside the ellipse and pixel NW is chosen. The
difference variable, d2, and the partial differences, Fnw and Fw , are
updated as follows.

d2 = d2 + Fnw
Fw = Fw + Fw_nw
Fnw = Fnw + Fnw nw

Otherwise, if d2 ~ 0, pixel W is chosen and the difference variable is
updated as follows:

d2 = d2 + Fw
Fw=Fw+Fw_w
Fnw = Fnw + Fnw w

As for the case of circles, the function of a standard ellipse is a
second order function. So the first partial differences are no higher
than first order functions and the second partial differences are
constants. For the equation of an ellipse, the partial differences used
in the above equations are defined by the following functions.

= 2a2y + a2 , (E2)

= 2a2y + a2 - 2b2 x + b2 ,

= -2b2 x + b2 ,

1 6

Fn _ = 2a2,n

Fn_ = 2a2,nw
F nw _n = 2a2 ,
Fnw _nw = 2a2 + 2b2,
Fnw _w = 2b2,
Fw_ = 2b2,nw

Fw_ = 2b2,
w

In region 1, we also have to compare the i and j components of the
gradient to determine when we have entered region 2. The algorithm
remains in region 1 while the magnitude of the j component is less
than the magnitude of the i component. That is, while 2a2y < 2b2x.
Fortunately, instead of computing the i and j components of the
gradient, we can use the already calculated value of Fnw to
determine when we have entered region 2. From the function of Fn w

in (E2), we notice that the inequality Pnw < a2+ b2 , is the same as the

inequality 2a2y < 2b2x.

When we leave region 1 and enter region 2 the decision variable
changes from being evaluated at the midpoint between NW and N to
being evaluated at the midpoint between NW and W. In order to
simplify the computation involved in calculating from scratch the
initial value of the decision variable, d2, for region 2, we can use
value of the decision variable, d1, from the last step in region 1. The
difference between the function evaluated at the midpoint, (xp,yp),
between NW and N, and the midpoint, (xp-1/2,yp-l/2), between NW
and W is given by:

Therefore, we can calculate the initial value of d2, which corresponds
to f(x p-1/2,yp-1/2), from the value of d1, which corresponds to
f(xp'yp)' as follows:

d2 = d1 - b2xp + b2/4 - a2 xp + a2 /4

Also, Fw and Fnw have to be initialized at (xp-l/2,Yp-1/2), the initial
evaluation point of d2. Using (E2), the initial values of F and Fn ww
are

17

Fw = -2b2xp + 2b2 ,

and Fnw = 2a2 yp - 2b2xp + 2b2,

In terms of the algorithm's variables, d2, Fw and Fn w , can be
calculated with the following sequence of equations.

Fw = Fnw - Fn + b2

d2 =dl + (Fw + Fw - Fn - Fn + b2 + 3a2)/4

Fnw = Fnw - a2 + b2

It is important to note that the location that the algorithm compares
the i and j components of the gradient is at the location of the
decision variable. If we used only the comparison of the two
components to decide when region 2 was entered, we would
sometimes enter region 2 early. Hence causing a pixel to be selected
whose minimum distance from the curve may be greater than 1/2
the distance between two pixels.

Region 2

separating
regions

Region 1

Fig. 9. Pixel P is currently selected with dl being evaluated in
region 2. If a region change is made, so d2 is evaluated between NW
and W. then erroneously NW will be the next pixel selected.

In figure 9, pixel P is currently selected, and the evaluation point of
dl is in region 2, indicating a change in regions. The decision
variable, d2, would then be initialized at the midpoint between NW
and W, and the choice of the next pixel would be between NW and

18

W. However, if dl, which is the midpoint between Nand NW, is
inside the eliipse, then the ellipse will pass above both Nand NW
and, as in figure 9, it may pass more than 1/2 a unit distance above
NW. Then using the criteria for region 2, we would erroneously
select NW, a pixel that may be more than 1/2 a unit distance from
the ellipse. This situation can be rectified by including a check to
determine whether dl is inside the ellipse. Using the or operator,
this check is done only after the test, (Fnw < a2+ b2), to compare the
two components of the gradient fails. In figure 9, if dl were outside
the ellipse, it may still pass above both NW and W. However, in this
case, it can be shown that the ellipse cannot pass more than 1/2 a
unit distance above NW and so will be less than 1/2 a unit distance
from the ellipse.

The algorithm is started at (XO,O), where Xo is the rounded value of a,
the intersection of the ellipse with the positive x-axis. The initial
values of the decision variable, dl, Fnw ' and Fn , are calculated at the
point (Xo-1/2, 1).

19

Fn nw .= a2Sq;

Fnw w "= b2Sq;

bSq;
region 1 }

ELLIPSE (a, b : real)
x, y : integer;
dl, d2, aSq, bSq, a2Sq, b2Sq, aS~bSq, Fn, Fnw, Fw,
Fn_n, Fn_nw, Fnw_n, Fnw_nw, Fnw_w, Fw_w, Fw nw : reaJ.;

begin
x := ROUND (a) ;
y := 0;
aSq := a * a;
bSq := b * b;
a2Sq := aSq + aSq;
b2Sq := bSq + bSq;
aS~bSq := aSq + bSq;
Fn :- a2Sq + aSq; Fn_n :~ a2Sq;
Fnw := a2Sq + aSq - b2Sq * x + b2Sq;
Fnw_n :- a2Sq; Fnw_nw :- a2Sq + b2Sq;
Fw nw :", b2Sq; Fw w := b2Sq;
dl-:- bSq * (x - 1/2) * (x - ::.12) + aSq - aSq *
while (Fnw < aS~bSq) or (dl < 0) do begin

setpixel (x, y) ;

y - y + 1;
if dl < 0 then (choose pixel N)

begin
dl := dl + Fn;
Fn := Fn + Fn n;
Fnw :- Fnw + Fnw n

end
else (choose pixel NW

begin
x :- x - 1;
dl := dl + Fnw;
Fn := Fn + Fn nw;
Fnw := Fnw + Fnw nw

end
end (while)

procedure
var

Fw : = Fnw - Fn + bSq; { change regions
d2 := dl + (Fw + Fw - Fn - Fn + a~bSq + a2Sq)/4;
Fnw :- Fnw + bSq - aSq;

while x ~ 0 do begin
setpixel (x, y) ;
x := x - 1;
if d2 < 0 then

begin
y := y + 1;
d2 := d2 + Fnw;
Fw := Fw + Fw_nw;
Fnw .- Fnw + Fnw nw

end
else

begin
d2 := d2 + Fw;
Fw := Fw + Fw w;
Fnw := Fnw + Fnw w

end
end (while)

end

(region 2)

(choose pixel NW

(choose pixel W)

)

)

Fig. 10. Algorithm to draw the arc of an ellipse
(real a and b) that 1ies in the fi rst quadrant

20

The complete algorithm is presented in figure 10. This algorithm is
based on Van Aken's [VANA84] midpoint method algorithm but uses
Kappel's [KAPP85] technique of using the gradient to determine a
change in regions. It algorithm is an improvement over Van Aken's
algorithm because unlike his algorithm, in order to determine a
change in regions, it does not have to incrementally keep track of the
decision variable for region 2 while traversing region 1. Kappel used
the gradient to determine a change in regions, hence avoiding the
additional arithmetic Van Aken's algorithm used to keep track of the
decision variable for region 2 while traversing region 1. However,
because his algorithm calculates the gradient at the nearest pixel, it
sometimes enters region 2 one pixel too late. Hence causing a pixel to
be selected whose distance from the curve may not be bounded by
1/2 the distance between two pixels. In addition, since his algorithm
is incremental, the error caused by one pixel being displaced is
propagated, causing other pixels to be selected whose distance from
the curve may not be bounded by 1/2. Although, the algorithm in
this paper, has more initialization overhead than Van Aken's
algorithm, it uses fewer additions per pixel than both Kappel's and
Van Aken's algorithms. Therefore, the efficiency of this algorithm
becomes more evident for large ellipses.

Kappel Van Aken This paper

-
I:

.S:
01)
e.>

0::

N

NW

3

5

4

8

3

3

("l

I:
.S:
eo
e.>

0::

NW

W

5

3

5

3

3

3

Fig. 11. Comparison of additions performed to keep
track of decision variable for each pixel plotted.

In the case of integer a and b, the algorithm can be implemented
using only integer arithmetic. The initial value of dl becomes

d11 = b2(-a + 1/4) + a2

2 1

procedure ELLIPSE (a, b : inteqer)
var x, y, dl, d2, aSq, bSq, a2Sq, b2Sq, a4Sq, b4Sq,

a8Sq, b8Sq, a4S~b4Sq, Fn, Fnw, Fw,
Fn_n, Fn_nw, Fnw_n, Fnw_nw, Fnw_w, Fw_w, Fw nw i.nteger;

beqin
x :=- a: y := 0;
aSq := a * a; a2Sq := aSq + aSq; a4Sq := a2Sq + a2Sq;
bSq := b * b; b2Sq := bSq + bSq; b4Sq := b4Sq + b4Sq;
a8Sq := a4Sq + a4Sq; b8Sq := b4Sq + b4Sq;
a4~b4Sq := a4Sq + b4Sq;
Fn := a8Sq + a4Sq; Fn_n:= a8Sq; Fn nw := a8Sq;
Fnw := a8Sq + a4Sq - b8Sq * a + b8Sq;
Fnw n : = a8Sq; Fnw nw := a8Sq + b8Sq; Fnw w := b8Sq;
Fw_~w : = b8Sq; Fw_w := b8Sq;
dl := bSq - b4Sq * a + a4Sq;
while (Fnw < a4S~b4Sq) or (dl < 0) do begin region 1 }

setpixel (x, y);
y ~ y + 1;
if dl < 0 then { choose pixel N }

beqin
dl := dl + Fn;
Fn := Fn + Fn_n;
Fnw := Fnw + Fnw n

end
else { choose pixel NW }

beqin
x := x-I;
d1 := d1 + Fnw;

Fn := Fn + Fn_nw;
Fnw := Fnw + Fnw_nw

end
end {while}

Fw := Fnw - Fn + b4Sq; { change regions

d2 := dl + (Fw + Fw - Fn - Fn + a4S~b4Sq + a8Sq)/4;

Fnw := Fnw + b4Sq - a4Sq;

while x ~ 0 do beqin region 2 }
setpixel (x, y) ;

x := x-I;
if d2 < 0 then choose pixel NW

beqi.n
y := y + 1;
d2 := d2 + Fnw;
Fw := Fw + Fw_nw;
Fnw := Fnw + Fnw nw

end
else { choose pixel W }
beqin

d2 := d.2 + Fw;
Fw := Fw + Fw_w;
Fnw := Fnw + Fnw 'II

end
end {while}

end

Fig. 12. Algorithm to draw the arc of an ellipse
(integer a and b) that lies in the first quadrant

Using program transformations [SPR082], we can eliminate the 1/4
fraction by multiplying the above equation by 4. The new decision
variable will then be 4 times the old decision variable. Therefore all

22

the equations used to calculate the old decision variable need to be
transformed by multiplying them by 4. The integer version of the
algorithm is presented in figure 12. While initializing d2, we perform
an integer division by 4. We do not loose any precision by this
division since the numerator consists of integer variables that are all
multiples of 4. In fact, we could perform the division by doing a right
shift by 2 bits.

1. Decision variable crosses ellipse 2. Region 1 exits when y value of current

causing region 2 to be entered prematurely pixel equals b (top of ellipse)

\
y.

I /'" I~ I
I

i
~V""i/

i :

I l.D cisior variable C:o~ses el ipse.

Ho\\ ~ver, ! Iince I camp<:pent 0 gradi~nt

is ne alive . I 1 . : r jot exi ~.regIo", IS

Also wher lcomponen isnel alive
pixe Nis (~osenJ

I It

I
I

!
I
I

I !I
I

1\ /1\
ecision variable 1\ i

2. 1\Ulial

for lregior 2 I
\I

I I I :

V I
!

3.Ne t pixel chose~has
/' T

It-(;oo dinatd less tl an ze 10 i

-endipg region 21 bop

.;t;.

I

I
I

.1
I
!

I I

Fig. l3a. Thin ellipse where decision Fig. 13b. Same ellipse, but i
variable crosses ellipse causing ellipse to component of gradient is used so that
be truncated tracking of ellipse is not truncated.

It is interesting to note that in the case of thin vertical ellipses,
where the sides of the ellipse taper to less than a one pixel width, the
algorithm truncates the ellipse. This is caused by the decision
variable in region 1 jumping across the whole width of the ellipse
and being evaluated on the opposite side. When this happens, the
component of the gradient becomes negative and region 2 is entered
prematurely. However, no pixels are selected while the algorithm is
in the region 2 loop. Since the decision variable is on the opposite
side of the ellipse, the x coordinate of the current pixel is equal to
zero and after one iteration, the region 2 loop is exited (see figure
13a). This problem also occurs in both, Van Aken's and Kappel's

23

i

ellipse algorithms. We can rectify the situation in our algorithm by
making the following changes to the algorithm in figure 10. Replace
the test in the first while loop with

while ((Fnw < aS~bSq) or (dl < 0) or ((Fnw - Fn > bSq) and (y < b)))

and in the same while loop, replace the test condition for the if clause
with

if ((dl < 0) or (Fnw - Fn > bSq))

If the decision variable has jumped across the ellipse, the i
component of the gradient will be negative and hence will be less
than the j component, which is positive, causing the test, (Fnw < a2+
b2), to fail. However, the test, (Fnw - Fn > b2), which has the same
effect as comparing the i component of the gradient against zero, will
be true, indicating that the i component is negative and that we are
still in region 1 (see figure 13b). In the case of thin vertical ellipses,
where the width of the ellipse is less than one pixel wide, the change
in regions occurs at the top of the ellipse, close to where the ellipse
intersects the positive y-axis. Therefore we will continue to track
region 1 while the y coordinate of the current pixel is less than b, the
intersection of the ellipse with the positive y-axis. The change in the
condition clause of the if statement, forces the choice of pixel N if the
i component is negative. Otherwise, the algorithm would pick pixels
that would form a diagonal line crossing the y-axis into the second
quadrant. Since the or operator is used to include the additional test
for the while condition clause, it is only made when the region 1
loop is complete, or in the case of thin ellipses when the decision
variable jumps across the ellipse. The additional test in the if clause
is made only when dl is greater than zero, which on the average
occurs less than half the time.

As in the case of the circle algorithm, we can again obtain a
performance optimization of the algorithm by taking advantage of
the fact that in region 2, pixel W is chosen more often than pixel NW.
By using the partial differences , Fn and Fw instead of Fn and Fnw ' we
can shift one addition for the computation done for pixel W, to the
computation done for pixel NW, her.ce reducing the average
computation per pixel plotted. We cannot take advantage of the
corresponding change in region 1 because we would not have the
value of Fnw to determine the change in regions. Hence, we would

24

have to use some other means to determine a change III reglOns,
thereby increasing the computation.

4. Scan-converting General Ellipses

General ellipses are ellipses that do not have to be symmetric about
the x and y axis. That is, they include all classes of ellipses, standard
ellipses and standard ellipses that are rotated an arbitrary angle
about their center. Although it is intuitively easier to define a
general ellipse as a standard ellipse that is rotated an arbitrary
angle, in order to derive the equation of a general ellipse, we shall
present the mathematical definition of an ellipse. Given two points,
Fl and F2, called the focal points of the ellipse, the ellipse is the set
of points (x,y) such that the sum of the distances from (x,y) to the
two focal points is equal to the constant 2a (figure 14a).

yy

-+-----------x

--+----f----I----X

L1 +L2=2a

Fig. 14a. General ellipse Fig. 14b. General ellipse
centered at the origin centered at an arbitrary point

In the case of standard ellipses, the two focal points lie centered on
the x-axis, and the a in the constant 2a is the same as that in (E1).
Using simple geometry, we can derive the equation of a general
ellipse that is centered at an arbitrary point. The equation is

f(x,y) = Ax2 + Bxy + Cy2 + Ex + Fy + D = 0, (Gl)

where the coefficients, A through F, are calculated using the focal
points and the constant 2a. Equation (G 1) actually defines all conic
sections, including parabolas and hyperbolas, where the values of the
coefficients determine the conic section. To simplify the algorithm,
we shall only draw general ellipses that are centered at the origin,
since general ellipses centered elsewhere can be drawn using a

25

simple translation. In the case of general ellipses centered at the
origin, the coefficients E and F equal zero, so the function becomes

f(x,y) = Ax2 + Bxy + Cy2 + D =O. (G2)

Also, in this case, the focal points are symmetrically located about
the x- and y-axis. That is, if the focal point Fl is located at the
coordinate point (Xr,Y r) then the other focal point, F2, will be located
at (-Xr,-Yr) (figure 14b). Using the mathematical definition of the
ellipse, the coefficients in (02) are defined in terms of the coordinate
point of one of the focal points and the constant a.

A = a2 - X~ (G3)
B = -2XrYr

2C = a - Y~

D = a2(X~ + Y~ - a2)

I component

Fig. 15. Ellipse divided into 8 regions.

26

To further simplify the algorithm, we shall only draw the arc of the
ellipse where the slope of the ellipse lies in the third through sixth
octants. The other half of the ellipse can be trivially drawn by
symmetry. Analogous to standard ellipses, we can divide the ellipse
into eight regions, where we shall only draw the half-arc that
includes the first four regions. The first four regions are defined such
that the slope of the arc in region 1 stays within octant 3, the slope in
region 2 stays within octant 4, the slope in region 3 stays within
octant 5 and the slope in region 4 stays within octant 6 (see figure
15). Thus for each region, the choice of the next pixel in an
incremental algorithm is reduced to the same pair of pixels. In region
1, for example, the choice of the next pixel is between Nand NW.

As for the case of standard ellipses, we can use the gradient to
determine the boundaries between regions. The gradient of (G2) is
given by

grad f(x,y) = af/ax i + af/ay j = (2Ax + By)i + (2Cy + Bx)j

The magnitudes of the i and j components can then be used to
determine the boundary between two regions. The boundary
between region 1 and region 2, for example, is the point at which the
slope of the curve is -lor equivalently, when the i and j components
of the gradient are equal and positive. Likewise, the boundary
between region 2 and region 3 is the point at which the slope of the
curve is horizontal or when the i component is zero and the j
component is positive. Similarly, we can determine the boundaries
between the other regions. Instead of comparing the magnitudes of
the two components to determine a change in regions, as we did in
the case of standard ellipses, we shall calculate the coordinate points
of the boundaries between regions and compare the coordinate point
of the current pixel against the boundary point to determine a
change of regions. In region 1, for example, the choice of the next
pixel is between Nand NW, and in either case the y-value of the
current pixel increases by one. Therefore, we can determine when
region 2 has been entered by comparing the y-value of the current
pixel against the y-value of the boundary coordinate point. In order
to determine the coordinate point of the boundary between region 1
and region 2, we calculate the inter~.ection between the line, 2Ax + By
= 2Cy + Bx, determined by setting the i and j components of the
gradient to each other, and the equation (G2) of the ellipse. However,
the line, 2Ax + By = 2Cy + Bx, which passes through the origin,
intersects the ellipse at two symmetrically located points. The point

27

that is the boundary between reglOn 1 and region 2 is the one at
which both the i and j components are positive. The other point is
the boundary between region 5 and region 6, where both the i and j
components are negative. Therefore, by checking the sign of one of
the components, we can determine which intersection point is the
coordinate point of the boundary between region I and region 2. In a
similar manner, we can calculate the coordinate points at the
boundaries between the other regions. We also have to calculate the
coordinate point of the boundary between region 8 and region 1,
since this is the first pixel of region 1 and the starting point of the
algorithm. In the algorithm, the coordinate points of the boundaries
are named as in figure 15.

In order to describe a general ellipse in the most intuitive manner,
we shall describe it as a rotated standard ellipse. Therefore, the
parameters to our algorithm shall be the a and b parameters that
describe a standard ellipse and an angle of rotation, theta. In a
standard ellipse the focal points are located at (c,O) and (-c,O), where
c 2 = a2 - b2. The focal points of the new ellipse are calculated by
rotating the focal points, (c,O) and (-c,O), theta degrees. This is done
by using a rotation matrix or equivalently sines and cosines. Once a
focal point of the rotated ellipse is calculated, we can calculate the
values of the coefficients to (0.2) and then the coordinate points of
the boundaries between regions. When checking for a change in
regions, instead of comparing the current pixel against the real value
of the coordinate point at the boundary between regions, we shall
use the rounded integer value of the coordinate point. This speeds up
the algorithm, since an integer comparison is faster than a real
comparison. As in the algorithm for standard ellipses, we shall use
the method of partial differences to incrementally keep track of the
decision variable. Also, when changing regions, we shall use the
decision variable from the previous region to simplify the
calculations needed to initialize the new decision variable.

In the case of thin ellipses, where the sides of the ellipse taper to less
than one unit length, the decision variable may jump across the
ellipse causing a streak of pixels to be selected that cross the ellipse
and keep going until the boundary condition for the region is met
(figure 16a). In order to rectify this problem, we can use the
gradient of F, the function of the ellipse, to determine whether the
decision variable has jumped across the ellipse. While selecting
pixels in region 1, for example, in order for the decision variable to
cross the ellipse and be located in either regions 3, 4, 5 or 6, it has to

28

i

have also crossed the line that passes from the boundary between
region 2 and region 3 through the origin to the boundary between
region 6 and region 7 (figure 16b). This line is determined by setting
the i component of the gradient to zero. That is, 2Ax + By = O. When
the decision variable is in regions 1, 2, 7, or 8, the value of the
component is positive. When it crosses over into regions 3, 4, 5 or 6,
the value of the i component becomes negative. The line is defined
by the points at which the i component is zero. Therefore, by
determining the sign of the i component at the evaluation point of
the decision variable, we can determine if it has jumped across the
ellipse. While
the same test
the ellipse.

selecting pixels in
to determine if the

region 4,
decision

by
vari

symmetry,
able has ju

we
mped

can
ac

use
ross

line passing from boundary between re

2 and 3 to bOlmdary between r egions 6
gions
and ~

1\
I ,\

\

\ \

I \ \
I,
I

I
i \ \

I I
,I i\ \

I

I II

i
 i

\ I I \
I

II 1\,iI

I
I

\\
\

,

\\~

\\ \ !
I

\' 'I
I \~\ 1 I

I ~\' I 1I

iII

I \\
! \\,

Fig. 16a. Thin ellipse with major axis in Fig. 16b. Same ellipse, but if decision
octant 3. While tracking region I, the variable crosses ellipse while tracking
decision variable crosses ellipse causing region 1, pixel N is chosen to bring
streak of pixels to be selected that are on decision variable closer or back to side
opposite side of ellipse. being tracked.

Similarly, in regions 2 and 3, in order for the decision variable to
cross the ellipse, it has to cross the line defined by setting the j
component of the gradient to zero. When the algorithm determines
that the decision variable has crossed the ellipse, it has to choose the
pixel that is closer to the side of the ellipse it is tracking. While

29

selecting pixels in region 1, in order for the decision variable to jump
across the ellipse, the ellipse has to be a thin ellipse and its major
axis has to have a slope in the third octant. The major axis is the axis
along which the width of the ellipse is the widest. In region 1 the
choice of the next pixel is between Nand NW. When the deci~ion

variable is on the opposite side of the ellipse, pixel N will always be
closer to the side of the ellipse the algorithm is tracking. In fact,
choosing pixel N will tend to correct the problem of the decision
variable being located on the opposite side of the ellipse by bringing
the decision variable closer to or back to the side of the ellipse that is
being tracked (figure 16b). In the case of the other regions, we can
similarly determine which pixel to choose when the decision variable
crosses the ellipse.

The first partial differences that are used in the algorithm are given
by:

= 2Cy + Bx + C, (04)
= 2Cy + Bx + C - 2Ax - By + A - B,
= -2Ax - By + A,
= -2Ax - By + A - 2Cy - Bx + C + B
= -2Cy - Bx + C,

Again, as in the case of standard ellipses, the first partial differences
are all first order functions, and so the second partial differences are
all constants. The necessary second partial differences can be
calculated from the equations above. Instead of keeping track of the
appropriate component of the gradient to determine if the decision
variable has crossed the ellipse, we can fortunately use the first
partial differences. In region 1, for example, the choice of the next
pixel is between Nand NW and so we have to keep track of the
values of the first partial differences, Fn and Fn w' In order to
determine if the i component of the gradient is less than zero, that is
2Ax + By < 0, we can use the comparison Fn - < -A + B. In the Fnw
same manner, in the other regions we can avoid the computations
needed to keep track of the appropriate component of the gradient
by using the available partial differences.

The complete algorithm is presented in figure 17. The algorithm is
original in that it combines existing methods. It uses the midpoint
method to choose pixels while using the gradient technique to
determine a change of regions. The technique of using the gradient to

30

solve the problem of thin ellipses, where pixels cross the ellipse, was
originally suggested by Pratt[PRAT85]. The algorithm uses floating
point arithmetic because the coefficients of the ellipse function are
floating point numbers. One way to make the coefficients of the
ellipse function integers, would be to restrict the focal points and the
constant a to integer values. However, when a particular ellipse is
rotated, in order to draw the new ellipse, the focal points have to be
rounded to the nearest integer value, causing a slightly different
ellipse to be drawn. Another method to speed up the algorithm
would be to approximate the floating point values with integer
values so that each of the inner loops for the regions consist of only
integer arithmetic.

As in the case of standard ellipses, we could have used the
comparison of the two components of the gradient to determine a
change in regions. This would have eliminated the computations
needed to calculate the three coordinate points of the boundaries
between regions and we could avoid calculating the components of
the gradient by using the available partial differences. However, in
order to handle thin ellipses, the test condition to exit each region
would be more complex. While tracking region 1, for example, the
test condition for the while loop becomes

while «Fnw < (A-B+C» or (dl < 0) or «Fn - Fnw < cross!) and (y < Ytop»)

The first test, (Fnw < (A-B+C), in the while loop tests whether the
decision variable has crossed the line that passes from the origin
through the boundary point between region 1 and region 2. That is, it
tests whether the j component of the gradient is not greater than the
i component of the gradient. The second test, (dl < 0), is used only
when the first test indicates a change in regions that is too early. This
is similar to the test used for standard ellipses. The final test is used
in the case of thin ellipses to determine if the decision variable has
crossed the ellipse. If the decision variable has jumped across the
ellipse, then the width of the ellipse at the point of the current pixel
has to be less than one unit length. Therefore, the rest of region 1 is
represented by a line and the end of region 1 coincides with the end
of the line or the top of the ellipse. The top of the ellipse, Ytop, is
calculated by first using the larger of the parameters, a and b, and
the angle of rotation to represent the ellipse as a line segment and
then calculate the top end point of the line segment.

3 1

The reason for not presenting this method as the algorithm of choice,
instead of the method used in the algorithm in figure 17, is that in a
small class of thin rotated ellipses, the comparison of the two
components of the gradient is not an accurate indicator of a change in
regions. This is caused by the fact that a change in regions using the
comparison method is determined only when the decision variable
jumps across the line that passes from the origin through the
boundary between the regions. In a class of thin rotated ellipses, this
dividing line between regions can be slopped such that the decision
variable crosses the line a number of pixels too late. However, even
this problem can be solved with additional tests in the test condition
for the while loop. But then by increasing the arithmetic in the inner
loops of the algorithm, we increase the arithmetic per pixel plotted,
erasing the benefits obtained from not having to calculate the
boundary points between regions.

32

procedure GENERAL_ELLIPSE (a, b, theta : real)
var	 x, y, X:V, 'tV, YR, XH, XL : integer;

aSq,Xf,Yf,XfSq,YfSq,A,B,C,D,A2,B2,C2,B_2,kl,k2,k3,k4,

Fn,Fnw,Fw,Fsw,Fs,Fn n,Fn nw,Fnw n,Fnw nW,Fw w,Fw nw,Fnw w,

Fw sw, Fsw w, Fsw sw,Fs ;;Fs ;;',Fsw ;; dl, d2-; d3, d4-; Xinit., Yinit-;
XV~Yv,Xr,Yr,Xh,Yh,Xl.Yl,cr~ssl,c;;ss2,cross3,cross4real;

begin
aSq := a * a;
c :- sqrt(aSq - b * b) focal point to standard ellipse }
Xf = c * cos (theta); focal point rotated theta degrees
Yf = c * sin(theta);
XfSq = Xi * Xf;
YfSq = Yf * Yf;

A := aSq - XfSq;	 { Coefficients to (G2) }
B := -2 * Xf * Yf;

C aSq - YfSq;

D := aSq * (YfSq - A);

A2 :- A + A; B2 := B + B; C2 := C + c;

kl := -B/C2; { boundary point bet reg 8 and 1 }

Xv :- sqrt(-D/(A + B*kl + C*kl*kl)) ;

if (Xv < 0) then Xv := -Xv;

Yv "= kl * Xv;

k2 .- -B/A2; { boundary point bet reg 2 and 3 }
Yh :- sqrt(-D/(A*k2*k2 + B*k2 + C));
if (Yh < O) then Yh := -Yh;

Xh .= k2 * Yh;

k3 .= (A2 - B)/(C2 - B); { boundary point bet reg 1 and 2 }
Xr := sqrt(-D/(A + B*k3 + C*k3*k3));
Yr := k3 * Xr;

if (Xr < Yr*kl) then Yr := -Yr;

k4 := (-A2 - B)/(C2 + B); { boundary point bet reg 3 and 4 }
Xl :- sqrt(-D/(A + B*k4 + C*k4*k4));
Yl :- k4 * Xl;

if (Xl> Yl*kl) than Xl := -Xl;

x:v .- ROUND (Xv) ; YV : = ROUND (Yv) ; { rounded boundary points }

YR ROUND (Yr) ; XH "= ROUND (Xh); XL .= ROUND (Xl};

x := XIJ; { starting pixel }

y := W;

Xinit :- x - 0.5; { initial evaluation point of decision variable }
Yinit := y + 1;

Fn := C2*Yinit + B*Xinit + C; { initial Fn, Fnw and dl }
Fnw = Fn - A2*Xinit - B*Yinit + A - B;
dl := (A*Xinit*Xinit) + (B*Xinit*Yinit) + (C*Yinit*Yinit) + D;

{initialization of second order part.ial differences }
Fn n "= C2; Fn nw := Fnw n "= C2 - B; Fnw nw .- A2 - B2 + C2;

Fw w := A2; Fw nw := Fnw w := A2 - B; Fsw_sw := A2 + B2 + C2;
Fs s := C2; Fw sw := Fsw w := A2 + B; Fs sw := Fsw s .- C2 + B;-

(constants used in determining ~f decision variable has crossed ellipse }
crossl ;= B - A; cross2:= A - B + C; cross3:= A + B + C; cross4:= A + B;

Fig. 17. Algorithm to draw half arc of general ellipse

33

while (y < YR) do begin { ----------------- REGION 1 ------------------ }
setpixel (x, y) ;
y := y + 1;
if (d1 < 0) or (Fn - Fnw < cross1) than

beqin
d1 := d1 + Fn; Fn:= Fn + Fn_n; Fnw := Fnw + Fnw_n;

end

elae beqin

x := x - 1;

d1 := d1 + Fnw; Fn := Fn + Fn_nw; Fnw := Fnw + Fnw_nw;

end
and { ---

{ Change Regions

Fw :~ Fnw - Fn + A + B + B_2; Fnw := Fnw + A - C;

d2 := d1 + (Fw - Fn + C)/2 + (A + C)/4 - A;

while (x > XH) do beqin (----------------- REGION 2 -----------------

setpixel{x,y);

x := x - 1:

if (d2 < 0) or (Fnw - Fw < cross2) than

beqin

y := y + 1;

d2 := d2 + Fnw; Fw:= Fw + Fw_nw: Fnw := Fnw + Fnw_nw;

end

elae beqin

d2 := d2 + Fw; Fw:= Fw + Fw_w; Fnw := Fnw + Fnw_w;
end

and { ---
{ Change Regions

d3 := d2 + Fw - Fnw + C2 - B; Fw := Fw + B;

Fsw = Fw - Fnw + Fw + C2 + C2 - B;

while (x < XL) do beqin {---------------- REGION 3 -----------------

setpixel (x, y) ;

x := x - 1;

if (d3 < 0) or (Faw - Fw > cross3) then

beqin

d3 :~ d3 + Fw; Fw:2 Fw + Fw_W; Fsw :~ Fsw + Fsw_w;

end

elae beqin

y := y - 1;

d3 :~ d3 + Faw; Fw:= Fw + Fw_aw; Fsw := Faw + Faw_aw;

end
and (---

{ Change Regions }
Fs := Fsw - Fw - B; d4 := d3 - Faw/2 + Fa + A - (A + C - 8)/4;

Fsw := Fsw + C - A; Fs := Fs + C - B_2:

'N := -'N;

while (y > YV) do beqin (---------------- REGION 4 ------------------ }

setpixel (x, y) ;
y := y - 1;
if (d4 < 0) or (Fsw - Fs < cross4) then

beqin
x := x - 1;

d4 := d4 + Fsw;
 Fsw := Fsw + Fsw_sw;

end

elae beqin

d1 := d1 + Fs; Fsw := Fsw + Faw_a;
end

end (---
setpixel (x, y) ;

end { end GENERAL ELLIPSE f

Fig. 17. cont.

34

B. FILLED PRIMITIVES

The algorithms presented m the prevIOUS sections only draw single
pixel outlines of primitives. However, algorithms to draw filled
primitives have many uses in 2D graphics applications. These
algorithms can be divided into two tasks: calculating the pixels that
form the filled primitive, and deciding with what value to fill each
pixel.

1. Calculating Representation of Filled Primitive

The algorithms to scan-convert single-pixel outlines can be easily
extended to draw filled primitives. Determining which pixels to fill
involves intersecting successive row of pixels with the single-pixel
outline to calculate the spans of adjacent pixels in each row that lie
inside the filled primitive. Therefore, for the intersection of the
primitive with a particular row, a span is characterized by a start
pixel, which is the leftmost pixel of the single-pixel outline within the
row, and an end pixel, which is the rightmost pixel of the single-pixel
outline within the row. To draw the filled primitive, we fill each
span that represents the primitive.

2. Fill Patterns

Once we have determined the spans that represent the filled
pnmltlve, we can fill the spans with either a solid color or a pattern.
Filling the primitive with a solid color involves simply setting each
pixel within a span to the same color. However, filling the primitive
with a pattern raises a number of issues. In the simplest case, the
pattern is a bitmap, where this bitmap is repeated over the
primitive. Calculating the value of a pixel within a span, involves first
calculating the corresponding scanline within the bitmap that repeats
over the span, and then calculating the corresponding bit within that
scanline of the bitmap that represents the pixel to the colored. If we
are using the bitmap as an opaque pattern, a 1 in the bitmap
represent shading the pixel with the foreground color, and a 0
represents shading the pixel with the background color. On the other
hand, if we use the bitmap as a transparent pattern, then only when
the bit is aI, do we shade the pixel with the foreground color. An
important issue in using patterns is how the pattern repeats over the
primitive. That is, we need to know where the pattern is anchored to
determine how the pattern repeats over the primitive or
equivalently, which bit in the pattern corresponds to the pixel to be
colored. One technique is to anchor the pattern to the primitive.

35

That is, the top-left pixel of the pattern is anchored to a particular
pixel of the primitive. The advantage of this technique is that when
we move the primitive, the pattern moves with the primitive.
However, every time a primitive is drawn, we have to specify an
anchor point. A second technique anchors the primitive to the
window in which the primitive is being drawn. The disadvantage of
this technique is that if the primitive is moved, the pattern does not
move with the primitive. An interesting feature of this method is
that primitives that are painted with the same pattern overlap and
abut without any discontinuities in each primitives pattern.

3. Tiling

Instead of using a bitmap as a pattern, we can use a tile pixmap to
tile the primitive. Here, we use the same technique as in patterns to
index into the pixmap. However, instead of setting the pixel to be
colored to either the foreground or background color, we set its color
to the color of the corresponding pixel in the tile pixmap. In the case
of a monochrome display, tiling is the same as using an opaque
pattern, where the tile is a bitmap.

C. THICK PRIMITIVES

Thick primitives can be drawn using either of four methods. The first
method is a crude approximation that replicates pixels in each
column (or row) during scan conversion. The second method draws
two copies of the primitive a thickness t apart and fills in the spans
between the inner and outer boundaries. The third method traces
the cross-section of the pen tip along the single-pixel outline of the
primitive. The fourth method approximates primitives by polylines
and then uses a thick line for each polyline segment.

1. Replicating Pixels

Here, instead of drawing one pixel per iteration of the inner loop of
the scan-conversion algorithm, we draw multiple pixels. In the scan
conversion algorithm, if the choice of the next pixel is between two
pixels that lie in the same column, for example E and NE, then we
draw a stroke of pixels that lie in the column of the next pixel chosen
and is centered on that pixel. Similarly, if the choice of the next pixel
is between two pixels that line in the same row, the pixels are
duplicated in rows. The thickness of the line is specified by the
number of pixels replicated at each iteration of the inner loop. The
advantage of this method is that it is very efficient. However, it does
not produce the most visually pleasing thick primitives. In the case

36

of lines, the end points of the lines are restricted to vertical or
horizontal edges. Furthermore, lines that are horizontal and vertical
have a different true thickness from lines at an angle, where the true
thickness of the primitive is defined as the distance between its
boundaries perpendicular to the tangent of the primitive. This visual
discrepancy becomes more apparent when we draw a circle or ellipse
where the slope of the curve varies continuously. When drawing an
ellipse, for example, the ellipse will appear thin where the slope of
the ellipse is horizontal or vertical and will appe'ar thick where the
slope of the ellipse is a diagonal.

2. Filling Areas Between Boundaries

This method draws a thick primitive as the approximation of the
area that lies between the boundaries formed by stepping a distance
t/2 on either side of the zero-width curve that is defined by the
mathematical equation of the primitive. The strength of this method
is that it is based on the intuitively correct definition of a thick
primitive. However, when using this method, the extended
boundaries of the thick primitives are not easily described by using
only integer arithmetic. In the case of a line, a thick line is really the
area enclosed by a rectangle or a rotated rectangle. Even if the end
points of the line fall on integer coordinate points and the thickness,
t, of the line is an integer, the end points of the bounding lines that
define the thick line may not fall on integer coordinates. And since
floating point arithmetic is needed to draw lines with end points that
do not fall on integer coordinates, we need to use floating point
arithmetic to select the pixels that define the bounding lines of a
thick line. Therefore, in order to draw a thick line, we have to
calculate the pixels that form the bounding lines of the thick line, and
then, as in the case of filled primitives, use these pixels to calculate
the spans form the thick line.

37

Arra

repr

]

Scanline from
StanLeft to StopRight

Scanline from
StartLeft to StopLeft
and from
StartRight to StopRight

]

Scanline from
StartLeft to StopRight

I I I
~~ m

~«:

y entry ":~ ,
~r~

:
esenting Scanline - ,,<l ~ -::; , f!l:~

StanLeft _P""'
~

.. .. - .,
l- I-StopLeft ... ,....

--e l- I ~
f-' ...

StanRight -l,....-p :::: I-

StopRight - ID ~ W.
~'lS ~ W I f~
~ ,:<:I ~

: r,il
.....

~

.~ F~ ~:

Fig. 18. Thick circle with radius 8 and thickness 4,
displaying scanline representation

In the case of a circle, a thick circle is the area enclosed by two
concentric bounding circles. If the thick circle is defined by a radius
R and a thickness t, then the inner bounding circle has a radius R-t/2
and the outer bounding circle has a radius R+t/2. Therefore, in order
to draw the thick border of a circle, we scan-convert the single-pixel
outlines of the inner and outer bounding circles. The pixels that
represent these outlines are then used to calculate the spans that
form the thick boundary. In fact, we only need calculate the spans
that form on octant of the thick circle and then by symmetry
calculate the spans that form the other octants.

A simple technique for calculating the spans of thick circles to use
the pixels that form the inner and outer concentric circles to fill an
array of entries that represent the scanlines that form the border of
the thick circle. Figure 18 illustrates a circle with a radius of 8 and a
thickness of 4, where the inner concentric circle has a radius of 6 and
the outer concentric circle has a radius of 10. As illustrated, each
array entry, representing a scanline, contains x-values of the start
and stop pixels of the left border of the circle and the x-values of the
start and stop pixels of the right border. The single-pixel outline of
the outer concentric circle is used to fill in the values of StartLeft and
StopRight. and the single-pixel outline of the inner concentric circle is
used to fill in the values of StopLeft and StartRight. The array of

38

entries representing the scanlines are then used to draw the thick
border of the circle, as illustrated in figure 18.

Fig. 19. Filled border of thick circle

Figure 19 illustrates the same thick circle as in figure 18, but with
the area between the inner and outer concentric circles shaded. The
pixels that form outer and inner concentric circles are shaded
differently only for illustrative purposes. The thick border of the
circle, therefore includes the pixels that form the inner and outer
concentric circles, in addition to the pixels that lie in between the two
concentric circles. If both, t/2 and R, are integers then the integer
version of the circle algorithm can be used to select the pixels that
form the bounding curves of a thick circle.

Unfortunately, in the case of standard ellipses, the bounding curves
that are formed by moving a distance t/2 on either side of the curve
of the ellipse are not concentric ellipses. However, concentric ellipses
may be used to approximate a thick ellipse since the functions that
define the actual bounding curves are 8th order functions [SALM96]
and the task of selecting the pixels that outline these curves is
computationally expensive. Therefore, to draw a standard ellipse
with thickness t and with dimensions a and b, as defined in the
section on standard ellipses, we need to calculate the pixels that form
the area between the two bounding concentric ellipses where the
inner bounding ellipse has dimensions a-t/2 and b-t/2, and the outer
bounding ellipse has dimensions a+t/2 and b+t/2. Again, as in the
case of thick circles, the task of drawing a thick ellipse can be
accomplished by using an array of entries that encode the scanlines

39

that form the thick ellipse. The limit as the width of the ellipse goes
to zero is the case where the outer and inner concentric ellipses
coincide with the zero-width curve of the ellipse. Therefore, as the
width goes to zero, the pixels selected for the thick ellipse are the
same pixels as those selected for the single-pixel outline of the
ellipse. Using this method precludes the situation where if we define
a zero-width ellipse as not being visible (no pixels selected), then
drawing an ellipse with a thin width may appear as an outline of the
ellipse with gaps of pixels missing.

Since general ellipses are defined as standard ellipses that are
rotated an arbitrary angle, in order to draw a thick general ellipse,
the bounding concentric ellipses that define the thick standard
ellipse are rotated and the pixels that lie between the two rotated
bounding ellipses represent the thick general ellipse. Again, as in the
case of thick standard ellipses, the task of drawing a thick ellipse can
be accomplished by using an array of entries that encode the
scanlines that form the thick general ellipse.

3. Tracing The Outline With The Pen Tip

This method uses a pen tip to trace the outline of the pnmlt1Ve.
That is, a particular point of the pen tip follows the path of the
single-pixel outline of the primitive. We can use pen tips of any
shape, however circular pen tips produce the most visually pleasing
thick primitives. The brute-force algorithm for drawing thick
primitives using this method, is to draw the pen tip at each pixel of
the single-pixel outline. However, since the pen tip overlaps at
adjacent pixels, we will be setting pixels more than once. A better
technique is to use the spans of the pen tip at each pixel of the
single-pixel outline to compute the spans that form the thick
primitive. This technique can be made more efficient by not using
certain spans of the pen tip depending on the slope of the primitive
and the shape of the pen tip. When a circular pen tip is used, this
method produces the most accurate thick primitives. Also, this
method is easily extensible to any primitive, including primitives
with sharp corners.

4. Thick Polyline Approximation

All primitives can be "piecewise linearly" approximated by
computing points on the boundary and then connecting these points
with line segments to from a polyline. In order to closely
approximate the primitive where the slope of the primitive varies

40

rapidly, the points must be calculated such that the points are closer
together, and hence the line segments are smaller. Ellipses and
circles, which are a class of ellipses, can be represented as two
equations (one for the x and the other for the y value of the points
that form the ellipse) that are each ratios of parametric polynomials
[LIEN87]. This representation lends itself readily to such a piecewise
linear approximation of the ellipse. In order to draw the thick
primitive, the individual line segments are then drawn as rectangles
with specified thickness. Here however, the end points of the lines
have to be joined smoothly.

Again, as in the case of all raster drawing algorithms, the choice of
which definition of thick primitives to use and the choice of which
algorithmic approximations to use
between the speed of the resulting
appearance of the primitive.

are dictated
algorithm

by
and

the trade-offs
the visual

5. Patterned Thick Primitives

Once we have calculated the spans that represent the thick border of
the primitive, as in the case of filled primitives, we can pattern or
tile the spans that represent the border. In fact, we can draw filled
primitives with thick borders, where the border is painted with one
pattern and the region inside the border is painted with another
pattern.

6. Border Styles

Another useful feature of 2D graphics applications, is the ability to
draw primitives with various line styles. That is, using dashes to
draw the border of the primitive. In the case of the single-pixel
outline of a line, we can incorporate a mask of bits that describes the
dashed style into Bresenham's line algorithm. Figure 20 illustrates
using Bresenham's line algorithm for drawing dashed lines in the
first octant.

41

procedure LINE(Xs,Ys,Xf,Yf, mask: integer)
var dx, dy, const1, const2, d, x, y : integer;

begin
dx := Xf - Xs;
dy := Yf - Ys;
d := 2 * dy - dx:
const1 := 2 * dy;
const2 := 2 * (dy - dx):
x := Xs;
y := Ys:
if (low order bit of mask is a 1) than

setpixel (x, y) ;
while x < Xf do begin

x - x + 1:
if d < 0 then choose pixel E

d := d + const1
el.e choose pixel NE

begin
y = y + 1:
d := d + const2

end
Rotate Right(rnask); (rotate mask one bit to right)

-{ shifting low order bit into high order bit position
if (low order bit of mask is a 1) then

setpixel(x,y);
end {whilel

end

Fig. 20. Algorithm for drawing lines in the first octant

In the case of circles and ellipses, we can incorporate a similar mask
into the scan-conversion routines to draw these primitives.
However, since as in the case of a circle, only the pixels that form an
octant of the circle are calculated and then the pixels for the other
octants are drawn by symmetry, we have to draw the pixels in an
order that is continuous around the circle. Otherwise, at the
boundaries between octants, the dashed style may break down.

In the case of thick primitives, we can extend this method only if we
use the pen tip method to draw a primitive. However, doing this does
not produce visually pleasing dashed primitives. In the case of thick
lines, a thick dashed line is really a number of filled rectangles or
rotated rectangles that are spaced in a regular manner. Therefore, in
order to draw a thick dashed line, we have to scan-convert one
repeatable unit of filled rectangles depending on the dashed style,
and then draw the line by simply translating this repeatable unit for
the length of the line. If we are using the polyline approximation to
draw· primitives, then we can use the dashed lines to draw the
dashed polyline approximation. However, the dashes must be
continuous from one segment to the next.

42

III. CLIPPING

Window ,----------:;.,.L-----,

,.,
'" ,,,,

, ,, ,

",'"
",'"

Application ",'"
'"

, "
~'"

Fig. 21. Clipping primitives to the application window

Another concern of raster drawing algorithms is that when a
windowing system is employed, the primitives that are drawn by an
application have to be clipped to the window that belongs to that
application. In addition, the application's window may be obscured
by several other windows requiring the primitive to be clipped to
several rectangular areas. Therefore, in order for a primitive to be
drawn in only the visible portions of the application's window, it may
have to be clipped to several rectangular areas. There are several
approaches to clipping. One approach to clipping is to perform the
clipping in the drawing algorithm right before a pixel is set. In the
case of an unobscured window, clipping is done only to the bounding
rectangle of the window. Therefore, before a pixel is set, its
coordinates are compared against the bounding rectangle of the
window. If the pixel lies inside the window then it is set and if it lies
outside the window it is not set. The comparison of a pixel located at
(x,y) and a clip rectangle can be done by the following simple
s tatemen1.

if ((x ~ clip.left) and (x ~ clip. right)

(y ~ clip.bottom) and (y ~ clip.top)

then setpixel(x,y);

In using this approach, the drawing algorithm still calculates all the
pixels that represent tne primitive, but only sets those pixels that lie
in the visible portion of the window.

43

In the case of multiple clip rectangles, we could perform the above
comparison for every clip rectangle. However, the speed of the
drawing algorithm would decrease as the number of clip rectangles
increased. A better solution would be to keep a list of visible and
invisible rectangles. When the current pixel goes outside the current
clip rectangle, then the list would be traversed to find the new clip
rectangle in which the current pixel lies. In addition, a flag would
indicate if the current clip rectangle is visible or invisible and if it is
visible then the current pixel should be set.

Although this approach is simple, it is inefficient when most or all of
the primitive is located outside the window. This inefficiency arises
because we calculate all the pixels that represent the primitive and
then clip each pixel to the clip rectangle. A better approach would be
to determine the visible and invisible sections of the primitive and
then only draw the visible sections. Therefore, in order to clip a
primitive, we need to calculate the end points of the sections that are
visible and then be able to draw those sections.

A. CLIPPING LINES

In the case of line segments, the intersection of a line segment with
the clip window can produce at most one line se"gment. Figure 22
illustrates a number of line segments that are clipped to a window.

.' ,..__.._.._.\t--:-=---..:.;..'-''-''-''-"-"----,

.'

Application '. '

Window ".

··,··

··· ···

I

,·,,·
I
I

Fig. 22. Clipping lines to the application window

1. Cohen-Sutherland Algorithm

In order to clip a line to a window, we then only have to calculate the
end points of the visible segment and then draw the visible line
segment. Cohen and Sutherland [NEWM79] developed an algorithm

44

that efficiently calculates these end points. The algorithm first
determines if the line is completely inside the window, in which case
we already have the end points of the visible segment, or if the line
can be trivially rejected by checking if both end points lie on the
outside halfplane of any edge of the window, in which case the line is
completely outside the window. If neither of the above cases is true,
then it divides the line into two segments such that one segment can
be trivially rejected. It then proceeds to clip the remaining segment
by applying the above two tests, and so on. This is repeated until the
remaining segment is completely inside the window or can be
trivially rejected.

outside halfpl~-:-1 ~outside halfplane

of left edge of Right edge

\

outside halfplane 1000 1010
l-ofTOP edge

1001

Tovedge

Window :xl
~ QQ'
13 ~ 0001 0000 0010.:= II

.3 ~ II

Bonomedge
Toutside halfplane

0110 of Bottom edge 0101 0100

Fig. 23. Extending edges of window to divide plane
of window into 9 regions

In order to test whether the line is completely inside the window or
lies in the outside halfplane of an edge, the edges of the window are
extended to divide the plane of the window into nine regions (see
figure 23). Each region is assigned a 4-bit code, where the code is
determined by within which outside halfplane of the edges the
region lies. The 4 bits in the code are assigned the following meaning:

First bit: outside halfplane of left edge. (left of left edge)
Second bit: outside halfplane of right edge. (right of right edge)
Third bit: outside halfplane of bottom edge. (below bottom edge)
Fourth bit: outside halfplane of top edge. (above top edge).

45

Since the regIOn that lies above and to the left of the window, for
example, lies in the outside halfplane of the left edge and in the
outside halfplane of the top edge, it is assigned a code of 1001. Each
end point of the line is then assigned the code of the region in which
it lies. We can now use the codes of the end points to determine if
the line lies completely inside the window or in the outside halfplane
of an edge. From figure 23, it is clear that if both 4-bit codes of the
end points are zero then the line lies completely inside the window.
However, if both end points lie in the outside halfplane of a
particular edge, then the codes for both end points will contain a set
bit in the location that represents the outside halfplane of the edge.
Therefore, if the logical and of the codes of the end points is not zero,
then both end points must lie in the outside halfplane of one of the
edges and hence the line can be trivially rejected.

D

Top edge

Window

,-------~~--------~---------------

Fig. 24. Subdividing line to determine
visible segment

If the line is not completely inside the window or cannot be trivially
rejected, we have to subdivide the line into two segments such that
one segment can be thrown away. This is accomplished by using an
edge the line crosses to cut the line into two segments. Then, the
section that lies in the outside halfplane of the edge is thrown away.
The line segment AD in figure 24, for example, crosses two edges, the
top edge and the left edge. If we use the left edge to cut the line, we
can then throwaway the segment CD that lies in the outside
halfplane of thB left edge. We now have to apply the inside window
and trivial rejection tests to the new line AC. The line still fails both
tests. Since the line only crosses the top edge, we use the top edge to
cut the line into two segments AB and BC. The segment BC is in the

46

outside halfplane of the top edge and hence is thrown away. Finally,
the remaining segment AB is found to lie completely inside the
window and is the segment that is drawn. We can determine which
edges the line crosses by examining the 4-bit codes of the end points.
If one end point is in the outside halfplane of the left edge, and the
line failed the trivial rejection tests, then the other point has to lie on
the inside halfplane of the left edge. So the line must cross the left
edge. Therefore, if a line has failed the trivial rejection tests, then the
bits that are set in the codes of its end points represent the edges the
line crosses. However, if an end point is inside the window, we
cannot use it to determine which edges the line crosses. Hence, we
must use the code of an end point that is outside the window or
equivalently, the code of an end point that is not zero. The full
algorithm is presented in figure 25. The codes are defined as sets, for
illustrative purposes.

Although this algorithm appears efficient, it is not the most efficient
algorithm to clip lines. One problem with the algorithm is that every
time it clips the line to the edge of the window, it recalculates the
slope, m, of the line. However, this can be rectified by adding a test
to check if the slope has already been calculated and only calculating
it if it has not already been calculated. Another problem that is
inherent in the algorithm is that the order of the edges it clips the
line against makes a difference to the number of edges it clips
against. That is, sometimes it clips the line to edges that it does not
really have to clip against. In the line segment AD in figure 24, for
example, if we first clipped the line against the left edge, then we
would again have to clip it against the top edge. However, if we first
clipped the line against the top edge, the remaining segment AB
would be completely inside the window and we would not have to
clip the line against any other edge. Therefore, in this case, clipping
the line against the left edge is not really necessary.

47

var xLeft,xRight,yBottom,yTop : real: {clip rectangle of window}

procedur8 CLIP LINE(Xl,Yl,X2,Y2 : real}
type edge-- (LEFT,RIGHT,BOTTOM,TOP);

code - set of edge:
var Cl,C2,Cout code; x,y: real: accept,done boolean

procedur8 ENCODE(x,y real; var C : code}:
begin

C := [];

if x < xLeft then C := [LEFT]

el.e if x > xRight then C := [RIGHT];

if x < yBottom then C := C + [BOTTOM]

al.e if x > yTop then C := C + [TOP]

end

beqin
ENOODE(Xl,Yl,Cl}; ENCODE(X2,Y2,C2);
repeat

if (Cl = []) and (C2 = []) then {Line is inside window}
beqin

accept := true: {trivially accept line}
done := trua

end
al.e if (Cl * C2) <> 1:] then (logical intersection of codes)

done := true (trivially reject line}

el.e (failed both tests}
beqin

if Cl <> [] then (pick code of an end point}
Gout := Cl: {than is outside clip recti

el.e Cout := C2;

if LEFT in Cout then begin (crosses left edge)
x := xLeft;
y := Yl + (Y2 - Yl) * (xLeft - Xl)!(X2 -Xl):

end el.e
if RIGHT in Cout then begin (crosses right edge}

x :- xRight;
y :- Yl + (Y2 - Yl) * (xRight - Xl)!(X2 -Xl);

end el.e
if BOTTOM in Cout then begin {crosses bottom edge}

y :... yBottom;
x :- Xl + (X2 -Xl) * (yBottom - Xl)!(Y2 - Yl);

end el.e beqin {crosses top edge}
y := yTop:
x := Xl + (X2 -Xl) * (yTop - Xl)!(Y2 - Yl):

end:

if Cout = Cl then
Xl .= x: Yl "- y; ENCODE(Xl,Yl,Cl):

el.e
X2 .= x; Y2 := y; ENCODE(X2,Y2,C2);

end
until done;

if accept then DrawLine(Xl,Yl,X2,Y2):
end

Fig. 25. Cohen-Sutherland Line-Clipping algorithm

48

2. Nicholl-Lee-Nicholl Algorithm

Nicholl, Lee and Nicholl [NICH87] developed a line clipping algorithm
that avoids computing intersection points which are not end points of
the final visible line segment and hence uses fewer arithmetic
operations than the algorithm in figure 25. The algorithm works as
follows. As before, the edges of the window are extended to divide
the plane of the window into nine regions. There are three types of
regions, corner regions, side regions and the region that is the
window. We pick one end point, pI, of the line, and depending on
within which type of region the end point lies, it subdivides the
plane of the window as illustrated in figure 26.

Pl

LB

L

T

R

B

Pl
L

LT i

LB:

LR

PI 10Cllled in corner region PI 10CIIled in window region PIIOCllled in side region

Fig. 26. Subdivision of the plane of the window
depending on the type of region in which pI is located

The subdivisions are determined by dividing all positions of the end
point, p2, such that each subdivision corresponds to intersections of
the line with the same boundaries of the clip rectangle. In figure 26,
the letters L,R,T and B stand for the left, right, top and bottom
borders of the clip rectangle. In addition, any region that is bounded
by solid lines and is labeled with a letter or a letters represents the
subdivision where if p2 were located in that region, the line would
cross the border(s) of the clip rectangle that the label indicates. If p2
is located in a subdivision that is not labeled, then we do not need to
calculate any intersection points. That is, the line is either completely
outside or completely inside the clip rectangle. Therefore, the
algorithm first determines within which of the 9 regions the end
point pI lies, and then depending on that region it determines the
location of p2 among the appropriate subdivisions. The algorithm
incrementally determines the subdivision within which p2 is located,
by eliminating subdivisions that are easier to check to home in on

49

the correct subdivision. Once we have determined within which
subdivision p2 is located, we can determine which borders of the
window to clip against. In this way, only the necessary intersection
points are calculated.

The algorithm in figure 27 illustrates the calculations of the
intersection points when pI is in the top-left corner region. Note that
the calculations (topproduct, leftproduct, etc.) performed for
eliminating the easier subdivisions are reused to simplify the
calculations for subdivisions that are not as easy to check. In
addition, these calculations are also used again if we need to calculate
any intersection points. By symmetry, we can derive the calculations
of the intersection points when pI is in any of the other corner
regions. We can also similarly derive the calculations if pI is located
in a side region or the window region. Nicholl, Lee and Nicholl
describe the computations for each type of region. Instead of
deriving the calculations for each region that is of the same type,
they use geometrical transformations and use the calculations for one
of the regions in that type. If pI lies in the bottom-left corner region,
for example, then we can use the calculations for the top-left corner
region in figure 27 by reflecting both the line and the clip rectangle

\	 about the x-axis and then using the fact that the reflected location of
pI lies in the top-left corner region. When the final end points of the
line are calculated, these end points are reflected back across the x
axis to give the end points (if any) of the line to be drawn.

var xLeft,xRight,yBottom,yTop : real; {clip rectangle of window}

procedur. CLIP_LINE (Xl,Yl,X2,Y2 : real)
beqin

i~ Xl < xLeft than LeftColumn(Xl,Yl,X2,Y2,display) {-------->}
el.e if Xl > xRight then RightColumn(...) {right column}
el.e CenterColumn(...) {center column}

end

procedure LeftColumn(Xl,Yl,X2,Y2 : real; var display:boolean);
beqin

if X2 < xLeft than display := fal.e; {Trivial reject}
el.e if Yl > yTop than

TopLeftCorner(Xl,Yl,X2,Y2,display) {-------->}
el.e if Yl < yBottom then BotLeftCorner(...); {bot-Left corner}
el.e LeftSide(...) {Left Side}

end

Fig. 27. Nicholl-Lee-Nicholl Algorithm to
clip line if pI lies in top left comer

50

procedure TopLeftCorner(Xl,Yl,X2,Y2 : rea~: var display:boo~e&n):

var deltaX,deltaY,topproduct,leftproduct : rea~:

beqin
if Y2 > yTop then display := fa~ae: (Trivial regect}
e~ae beqin

deltaX :- X2 - Xl: deltaY :- Y2 - Yl:

topproduct :- (yTop - Yl) * deltaX:

leftproduct :- (xLeft - Xl) * deltaY:

if topproduct > leftproduct then

BelowTopLeftCornerPoint(Xl,Yl,X2,Y2,display,
deltaX,deltay, leftproduct): {-------->}

(line passes below top left corner of clip rectangle}
e~ae

AboveTopLeftCornerPoint(...) {symmetric to below case}
end

end

procedure BelowTopLeftCornerPoint(Xl,Yl,X2,Y2 : rea~; var
display:boo~ean: deltaX,deltaY,leftproduct real):

var deltaX,deltaY,topproduct,leftproduct : rea~:

beqin
if Y2 >- yBottom then beqin

if X2 > xRight then beqin {intersects right edge}
X2 := xRight
Y2 := Yl + (xRight - xl) * deltaY/deltaX;

end

Xl := xLeft; {intersects left edge}

Yl : = yl + leftproduct/deltaX;

display :- true

end
e~.e beqin

bottomproduct :- (yBottom - Yl) * deltaX;
if bottomproduct > leftproduct then {line passes below }

display :- fal.e: {bot-left corner of clip rect - reject}
e~ae beqin

if X2 > xRight then beqin
rightproduct :- (xRight - Xl) * deltaY;
if bottomproduct > rightproduct then beqin
{line passes below bot-right corner of clip rectangle}

Y2 := yBottom; {intersect bottom edge}
X2 := xl + bottomproduct/deltaY;

end
e~ae beqin

X2 := xRight; (intersects right edge}
Y2 := yl + rightproduct/deltaX;

end

end

e~.e beqin

Y2 := yBottom; (intersect bottom edge}
X2 := xl + bottomproduct/deltaY;

end
Xl := xLeft; (intersects left edge}
Yl := yl + leftproduct/deltaX;
display := true

and

end

end

Fig. 27. cont.

5 1

3. Drawing The Clipped Line

Once we _have determined the end points of the visible line segment,
we then have to draw the visible segment. The pixels selected to
draw the line have to be exactly the same as the pixels that
represent the original unclipped line. That is, if the window grows,
and the whole line becomes visible, the section that becomes visible
has to be drawn so it abuts the previous visible segment correctly.
In addition, if the line is erased later, we cannot undraw pixels that
are different from those originally set. The algorithms of the
previous sections describe clipping a line to a clip rectangle and
produce the end points of the segment that lies within the clip
rectangle. If these end points have been clipped by one of the edges
of the clip rectangle, then the end points can have real coordinates.
We are faced with two problems: starting the line algorithm at a
clipped (real) end point, and making sure we draw all the pixels from
the original line that lie within the clip rectangle.

For a line with a slope in the first octant, for example, the line
algorithm has to choose the next pixel from the pixels E and NE. It
does this by choosing the pixel that lies closer to the line. We can
accomplish the same result by taking the y-value of the line at the x
value of the two pixels, E and NE, and rounding it to determine the
next pixel. Therefore, all the pixels that form a line can be calculated.
by using the rounded y-value of the line for each integer x-value
that spans the line. If a line with a slope in the first octant is clipped
by the left edge, then the intersection of the line with the edge has
an integer x coordinate, xleft, and a real y coordinate, (mxleft + b).
And the pixel at the left edge (xleft, ROUND(mxleft + b)) is one of the
pixels of the original unclipped line. If we start our incremental line
algorithm at a pixel that lies on the original line and initialize the
decision variable correctly, then all the other pixels selected for the
rest of the line will be the same pixels that form the original
unclipped line. In order to initialize the decision variable for a line
with a slope in the first octant, if the first pixel is (xp,yp), then we
simply calculate the decision variable at the midpoint between the
pixels E and NE or equivalently at (xp+l,yp+l/2).

The second problem of making sure we draw all the pixels of the
unclipped line that lie inside the clip rectangle is not evident when a
line with a slope in the first octant is clipped by only vertical edges.

52

However, when the same line is clipped by a horizontal edge, there
may be multiple pixels that form the line along the horizontal edge.
(see figure 28). When we clip the line, the clipped end point has a
real x coordinate, (ybot - b)/m, and an integer y coordinate, ybot.
Although we can show that the pixel at (ROUND«ybot - b)/m), ybot)
is a pixel that lies on the original unclipped line, this pixel may not
be the leftmost pixel of the span of pixels shown. From the figure
and the midpoint method, it is clear that the leftmost pixel is the one
that lies just above the place on the grid where the line first crosses
above the midpoint y = ybot - 1/2. Therefore, we simply find the
intersection of the line with the line ybot - 1/2 and take the ceiling
of the x-value. That is, we start the algorithm at (CEILING(ybot - 1/2
-b)/m), ybot). We run into the same problem if the line is clipped by
the top edge, however, in this case we are calculating the ending
pixel of the line. Here we clip the line to ytop + 1/2 and the ending
pixel is the FLOOR of the intersection points x-value.

ClipLeft

ClipBottom

(Xs.Ys)

Fig 28. line with a slope in the first octant that is clipped
by a horizontal edge

To summarize, if we are clipping a line with a slope in the first octant
against the clip rectangle (ClipTop, ClipLeft, ClipBottom, ClipRight),
then we use one of the clipping algorithms presented in the previous
section and clip the line against the clip rectangle (ClipTop + 1/2,
ClipLeft, Clipbottom - 1/2, ClipRight). The clipping algorithm returns
the real-valued start point (Xs,Ys) and the real-valued end point
(Xe,Ye) of the clipped line. The starting pixel (XS,YS) and the x
coordinate of the ending pixel XE are calculated as follows:

XS := CSILING(Xs);
YS := ~OUND(Ys);

XE := "LOOR(Xe};

53

We only need the x coordinate of the ending pixel to calculate how
many pixels to draw. By symmetry, we can solve the same problem
that occurs when lines with a slope in the second octant are clipped
by the left and right clip edges. In this case, we clip the line against
the clip rectangle (ClipTop, ClipLeft - 1/2, ClipBottom, ClipRight +
1/2). The starting pixel (XS,YS) and the y coordinate of the ending
pixel YE are calculated as follows:

XS := ROUND(Xs);

YS := CEILING1Ys);

YE := FLOOR(Ye);

If all the end points of lines are restricted to integer values, then we
can use the inner loop of the algorithm in figure 3 to select the pixels
for the rest of the line. However, in order to calculate the initial
decision variable with the constants, dx and dy, we have to use the
end points of the original unclipped line. Again, the pixels selected
will be exactly the same pixels that would represent the original
unclipped line. The algorithm to draw the visible portion of a line
with integer end points and with a slope in the first octant is given in
figure 29.

var
begin

dx := Xf - Xs;
dy := Yf - Ys;
const1 := 2 * dy;
const2 := 2 * (dy - dx);
x :- CEILING(xs);
y : = ROUND (ys) ;
Xend : = FLOOR (xf) ;
d := 2*dy*(x - Xs) - 2*dx(y - ~s);

setpixel (x, y) ;
while x < Xend do begin

x = x + 1;
if d < 0 then

d := d + const1
el.e

begin
y = y + 1;
d := d + const2

end
setpixel(x,y)

end {while}
end

procedure LlNE(Xs,Ys,Xf,Yf: integer;
xs,ys,xf,yf : real;)

dx, dy, const1. const2. d,

choose pixel NE

choose pixel E

{end points of original line}
{end points of clipped line}

x, y, Xend: integer;

Fig. 29. Algorithm for drawing the visible portion of lines with a slope In the
first octant and with integer end points.

54

B. CLIPPING CIRCLES

In the case of circles the task of clipping a circle is more complex
because the primitive could intersect the window at more than two
points causing multiple segments to be visible. In order to clip a
circle, we first should check if the bounding square of the circle
intersects the clip rectangle. If the bounding square is completely
inside the clip rectangle, then the whole circle is visible. On the other
hand, if the bounding square is completely outside the clip rectangle,
then the circle is outside the window and is not visible. If the
bounding square partially intersects the clip rectangle, then the circle
mayor may not be partially visible. Once we have determined that
the bounding square partially intersects the clip rectangle, we can
continue clipping the circle by dividing the circle into quadrants,
where each quadrant is bounded by a square. We then check if the
bounding squares of the quadrants intersect the clip rectangle. If the
bounding square of a quadrant lies completely inside the clip
rectangle, then the curve of the circle that lies in that quadrant is
completely visible and hence is drawn. If you recall, the algorithm to
draw a circle only calculates the pixels for one octant and we have to
use symmetry to plot the pixels in the other octants. If the bounding
square of a quadrant lies completely outside the clip' rectangle, then
the curve of the circle that lies in that quadrant is outside the
window and hence does not have to be drawn.

Bounding square of circle Bounding square of quadrant

2:

,------------~ o :__\ .t R

..J2R:
r----,fiC--i

R '--""'---'- - - - I
Bounding

,----------- , rectangles
: : ~ of octants[2

Fig. 30. Bounding box of circle, quadrant and octant

If the bounding square of the quadrant partially intersects the clip
rectangle, we can further divide the curve of the circle that lies in
the quadrant into octants (see figure 30) and then intersect the

55

bounding rectangles of the octants with the clip rectangle to
determine if the curve in the bounding rectangle is completely
visible or not. Finally, if the bounding rectangle of an octant partially
intersects the clip rectangle, we can then draw the curve in the
bounding rectangle by clipping each pixel to the clip rectangle. If the
circle is very large, clipping each pixel of the curve that lies in the
bounding rectangle of an octant may be expensive. A better method
is to find the pixels that are the end points of the visible section of
the circle in the octant and draw the pixels from one end point to the
other. When we clip the bounding rectangle of an octant against the
clip rectangle, we can also determine which edges of the clip
rectangle intersect the bounding rectangle of the octant. We then
intersect these edges with the curve of the circle to determine the
intersection points of the edge with the circle. The intersection, for
example, of the left edge of the clip rectangle, which is defined by
the equation x = xLeft, with a circle centered at the point (Xc,Yc),
which is defined by the equation (x-Xc)2 + (y-Yc)2 - R2 = 0 is
calculated by substituting xLeft for x in the equation of the circle and
solving for y. That is,

x = xLeft

and y =-Yc ± -VR2 - (xLeft + Xc)2.

If the term in the square root is negative, then the edge does not
intersect the circle. However, since we are only checking edges that
intersect the bounding rectangle of the curve in the octant, the edge
has to intersect the circle and it can intersect the circle at at most
two points. We then check each intersection point, to see if it lies on
the boundary of the clip rect and within the bounding rectangle of
the octant. In addition, since an edge can intersect the curve of a
circle in an octant at only one point, if we find that the first
intersection point satisfies these conditions, then we do not have to
check the other point.

Furthermore, since only at most two borders of the clip rectangle can
intersect the curve in the octant, once we have found two
intersection points, we do not have to check the remaining edges.
Figure 31 illustrates how to calculate the end points of the visible
section of the curve in an octant. If we have a representation of the
pixels that form an octant of the circle in memory I we can then use
the end points to determine which pixels to set. That is, if only one
border of the clip rectangle intersects the curve in the octant, we

56

determine the nearest pixel to the intersection point and then plot all
the pixels of the curve in the octant that are in the inside halfplane
of the edge. On the other hand, if two borders intersect the curve,
then we determine the nearest pixel to one intersection point and
plot all the pixels of the the octant that are in the inside halfplane of
both edges. If no borders intersect the curve then we do not plot
any pixels. In using. this method, we only calculate the pixels that
form an octant of the curve when some or all of the circle is visible in
the window, and we only have to perform these calculations once. If
we do not have a representation of the pixels that form an octant in
memory, we can calculate the pixels that only form the visible
section of the octant.

,
left boundary clip rect	 :

3. use intersection of clip rect "-....
points that are
endpoints of

(Xl.Yl)
visible section ofintersection

~~~--.--------------------~--------~ curve to draw thepoints of left m, ~ 
edge and circle visible section. <Xb.Yb)edge "	 bounding reet :
 

of octant : :'
 

""" ---~'!
~' 

"'-., ... _~-_ .... ", ~I E 
(D:" 

2. if intersection point is on boundary of clip 
1. Left and bottom edges of clip 

reet and within bounding reet of octant then 
reet intersect bounding reet of 

it is an endpoint of visible section of curve. 
octant 

Fig. 31. Calculating the end points of the visible section of an octant of the 
circle that panially intersects the clip rect. 

For the specific example of figure 31, the algorithm to draw the 
visible section is given in figure 32. Note that when a vertical edge 
clips the first octant of the circle, there may be multiple pixels that 
form the circle and lie along the vertical edge. We have to make sure 
that all the pixels of the original unclipped circle that are within the 
clip rectangle are drawn. This situation is the same as that when a 
line with a slope in the second octant is clipped by a vertical edge. 
Using the same reasoning as in the case of clipped lines, for the 
example in figure 31, we can solve this problem by intersecting the 
circle the the clip edge xLeft - 1/2 instead of xLeft. The y-value of 
the last pixel within the clip rectangle is then FLOOR of the y-value of 
the intersection point. We therefore, modify the clip rectangle by 
changing the left edge to xLeft - 1/2 and changing the right edge to 
xRight + 1/2. (Xb,Yb) and (XI,YI) are the intersection points of the 

57 



curve in the octant with the bottom and left edges of the modified 
clip rectangle, respectively. The algorithm is started at the pixel 
(XB,YB), which is the rounded value of (Xb,Yb) and the decision 
variable and partial differences are initialized at (XB-l/2,YB+l). The 
algorithm stops when the y-value of the current pixel equals the 
FLOOR ofYl. 

procedure CIRCLE (R, Xb,Yb,Xl,Yl: rea~) 

var x, y, Yend: integer; 
d, Fn, Fn_n, Fn_nw, Fnw, Fnw_n, Fnw_nw, xinit, 

begin 
x :- ROUND (Xb) ; y : = ROUND (Yb) ; 
Yend :- FLOOR (Yl); 
xinit :- x - 1/2; yinit :- y + 1; 
Fn := 2* (yinit) + 1; Fn_n :- 2; 
Fnw := 2*yinit - 2*xinit + 2; Fnw_n:= 2; 
d :- xinit*xinit - yinit*yinit - R * R; 
whi~e y <- Yend do begin 

setpixel(x,y}; 
y - y + 1; 
if d < 0 then 

begin 
d :- d + Fn; 
Fn := Fn + Fn_n; 
Fnw :- Fnw + Fnw_n; 

end 
el.. 

b.gin 
x = x - 1; 
d := d + Fnw; 
Fn := Fn + Fn_nw; 
Fnw := Fnw + Fnw_nw; 

end 
end {while} 

end 

yinit: real; 

Fn_nw := 2; 
Fnw nw := 4 

{ choose pixel N } 

{ choose pixel NW } 

Fig. 32. Algorithm to draw the visible section of 
curve in figure 31 

C. CLIPPING STANDARD ELLIPSES 

In the case of standard ellipses, we can use the same method as for 
circles. The bounding rectangle of the ellipse is defined by the 
constants, a and b, from the equation of the ellipse. However, since a 
standard ellipse is symmetric by quadrants, we can only divide the 
bounding rectangle of the ellipse to the level of quadrants. As in the 
case of octants for a circle, when a quadrant partially intersects the 
clip rectangle, we can use the edges of the clip rectangle to calculate 
the intersection points of the border of the clip rectangle with the 
curve in the quadrant. These points can then be used to determine 
which pixels of the curve in the quadrant should be set. 

58 



D. CLIPPING GENERAL ELLIPSES 

In the case of general ellipses, the bounding rectangle is defined by 
the terms Yh and Xv from figure 15. Since all general ellipses are not 
symmetric by quadrants, we cannot further divide the bounding 
rectangle into quadrants. However, since we can calculate the end 
points of regions, as in the algorithm to scan-convert general ellipses, 
we can divide the bounding rectangle of a general ellipse into 
rectangles, where each rectangle bounds the curve of the ellipse in 
one region. In the case of thin general ellipses, it is possible for a 
bounding rectangle of one region to overlap the bounding rectangle 
of another region. Therefore, when the bounding rectangle of the 
general ellipse partially intersects the clip rectangle, we then 
intersect each of the bounding rectangles of the regions against the 
clip rectangle. When a bounding rectangle of a region only partially 
intersects the clip rectangle, then we have to determine the 
intersection points of the curve in the region with the borders of the 
clip rectangle. If any or all of the curve in that region is visible, then 
we have to plot the pixels that form the visible section. One approach 
is to calculate all the pixels that form the region, and then use the 
intersection points to determine which pixels to plot. Another 
approach would be to calculate only the pixels that form the segment 
of the curve that is visible. This can be accomplished by calculating 
the nearest pixel to an end point and then correctly initializing 
decision variable. However care must be taken to fine tune 
algorithm so exactly the same pixels are selected as would 
selected if the whole unclipped ellipse were drawn. 

the 
the 
be 

E. CLIPPING THICK AND FILLED PRIMITIVES 

In order to clip a thick or filled primitive, we can first use the 
bounding rectangle of the primitive to determine if the primitive is 
completely visible or if it is completely outside the clip rectangle and 
can be trivially rejected. If the bounding rectangle partially 
intersects the clip rectangle, then we need some means of clipping 
the primitive. The approaches used for clipping the single-pixel 
outlines of primitives do not extend well to thick and filled 
primitives because we do not have simple equations that define the 
thick primitives. Since both thick and filled primitives are first 
reduced to spans and then the spans are drawn, we can clip the 
primitive by simply clipping each span against the clip rectangle. 
Figure 33 illustrates a thick circle clipped to a window. 

59
 



* ;i: :i: ::: ::: ::: ::: 
::: 

::: 
::: 

::: ::: 
::: ::: 
:;. ::: 

::: ::: 
::: ::: 
::: ::: 
::: ::: 

::: ::: 
::: :;: 
::: ::: 

::: 
::: 

::: 
:;: :;: :5: 

Fig. 33. Thick circle clipped to window by clipping 
each scanline of the thick circle to the window 

An interesting observation is that thick primitives are really regions 
that are represented by spans. Therefore, if we have a span 
representation of any arbitrary region, we can clip the region to a 

)	 clip rectangle by simply clipping each of the spans to the clip 
rectangle. 

F. CLIPPING To WINDOWS THAT ARE NOT RECTANGLES 

The ability to define windows as circles, ellipses, or arbitrary regions 
is sometimes a useful feature in 2D graphics. Moreover, using these 
windows requires the ability to clip primitives to them. By using a 
representation of spans to define a window, we can define windows 
of any arbitrary shape, including windows with holes in them and 
windows consisting of distinct separate regions. In order to clip a 
primitive to the window, we have to first represent the primitive 
using spans. This is not a problem for thick primitives and filled 
primitives, since in order to draw them we already use a span 
representation. In the case of a single-pixel outline of a primitive, we 
can either use representation of a thick primitive with a width of 
zero, or calculate the span representation from the single-pixel 
outline of the primitive. The primitive is then clipped to the window 
by clipping each scanline of the primitive to the corresponding spans 
of the window. In fact, if we have a span representation of any 
arbitrary region, we can use that representation to clip the region 
against a window that is also defined by some other arbitrary region. 

60
 



In addition, when using regions to define windows or pnmltiveS, we 
can use the bounding rectangle of the region to initially trivially 
accept or reject a primitive by intersecting the bounding rectangle of 
the primitive with the bounding rectangle of the window. The 
bounding rectangle of a region can be calculated by finding the 
smallest rectangle that encloses the region. The left edge of the 
bounding rectangle, for example, can be found by searching for the 
left-most pixel of the region. 

IV. SUMMARY 

In choosing 2D algorithms, we must determine the trade-offs 
between efficiency of the algorithm and the visual appearance of the 
primitive. We have presented algorithms to scan-covert lines, circles, 
standard ellipses, and general ellipses. In addition, we have 
presented techniques to draw thick and filled primitives, as well as 
methods to clip all primitives under study. Several original 
algorithms were presented in addition to the discussion of previously 
published algorithms, thus forming a comprehensive body of 
algorithms to draw simple 2D primitives. Although we cover basic 
techniques, we do not address in detail many areas of scan
conversion, such as line styles and join styles. Also, we discuss only 
discrete approximations to primitives. A logical extension of this 
thesis would address the issue of anti-aliasing primitives. 

61
 



REFERENCES 

Bresenham, J. E. Algorithm for computer control of a 
digital plotter. IBM Syst. J. 4, 1 (1965), 25-30. 

Bresenham, J. E. A linear algorithm for incremental digital 
displat of digital arcs. Commun. ACM 20, 2 (Feb. 1977), 
100-106. 

Greco, R. J., Writing Device Drivers for Simple Frame 
Buffers. SIGGRAPH '88 course #11 notes. 

Kappel, M. R. An ellipse-drawing algorithm for raster 
displays. Fundamental Algorithms for Computer Graphics, 
NATO ASI Series, Springer-Verlag, Berlin, 1985, 257-280. 

McIlroy, M. D. Best Approximate Circles on Integer Grids. 
ACM Transactions on Graphics, 2, 4, (Oct 1983), 237-263 

Newman, W. M. and Sproull R. F. Principles of Interactive 
,lmputer Graphics, 2nd ed., McGraw-Hill, New York, 

1979. 

Nicholl, T. M., Lee, D. T., and Nicholl, R. A., An efficient 
algorithm for 2-D line clipping : Its development and 
anaylsis. ACM SIGGRAPH, 21, 4, 1987, 253- 262. 

Pitteway, M. Algorithm for drawing ellipses or 
hyperbolae with a digital plotter. Comput. J. 10, 3 (Nov. 
1967), 282-289. 

Pitteway,· M.L.V., and Watkinson, DJ., Bresenham's 
algorithm with Grey Scale. Commun. ACM 23, II, (Nov. 
1980), 625 -626. 

Pratt, V. Techniques for Conic Splines. ACM SIGGRAPH 19, 
3, 1985, 151-159. 

Salmon, G., A Treatise on Conic Sections, Longmans, Green, 
& Co., 10th edition, London 1896. 

iv 



SPR082 Sproull R. F. Using program transformations to derive 
line-drawing algorithms. ACM Transactions on Graphics,!, 
4, (Oct. 1982), 259-273. 

VANA84 Van Aken 1. R. An efficient ellipse-drawing algorithm. 
IEEE CG&A, (Sep 1984), 24-35. 

VANA85 Van Aken J. R. and Novak M. Curve-drawing algorithms 
for raster displays. ACM Transactions on Graphics, 4, 2, 
(Apr 1985), 147-169. 

v 


