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ABSTRACT
 

This thesis presents a coherent and uniform method for drawing single 
pixel outlines. These methods can be easily extended to scan more 
complex (thick and filled) primitives. Methods to clip both simple and 
complex primitives, consistent with the drawing methods discussed, are 
also presented. To achieve this aim, a comprehensive overview and 
discussion of modern algorithms to scan-convert 2D primitives such as 
lines, circles, standard ellipses, and general ellipses is included. In addition 
to the presentation of commonly known algorithms, this thesis also 
presents new and original algorithms to solve some problems inherent to 
existing algorithms. 
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I. INTRODUCTION 

This thesis presents a coherent and uniform method for drawing 
single pixel outlines. These methods can be easily extended to scan 
more complex (thick and filled) primitives. Methods to clip both 
simple and complex primitives, consistent with the drawing methods 
discussed, are also presented. To achieve this aim, a comprehensive 
overview and discussion of modern algorithms to scan-convert 2D 
primitives such as lines, circles, standard ellipses, and general 
ellipses is included. Among the algorithms are those to scan-convert 
single-pixel outlines of primitives, to draw thick and filled 
representations of primitives, and to clip primitives. In addition to 
the presentation of commonly known algorithms, this thesis also 
presents new and original algorithms to solve some problems 
inherent to existing algorithms. The discussion of scan-converting 
single-pixel outlines of primitives, for example, combines commonly 
known methods with the technique of partial differences. In the 
case of standard ellipses, this combination produces an algorithm 
that is more efficient than any published to date. This algorithm also 
solves a problem presented by previously published algorithms 
wherein drawing thin, long standard ellipses truncates the ends of 
the ellipse. Another important contribution is an algorithm that 
handles a II cases of general ellipses, including thin ellipses. Also 
presented are various techniques for drawing thick and filled 
primitives, including techniques that extend commonly known 
algorithms for drawing single-pixel outlines of primitives. The final 
discussion in this thesis focuses on methods for clipping all 2-D 
primitives under study. 

II. SCAN-CONVERSION 

A. SINGLE-PIXEL OUTLINES 

Lines, circles and ellipses are useful 2D pnmltIves that are commonly 
invoked in rapid succession by interactive graphics applications. 
Hence, algorithms to scan-convert these primitives have to create 
visually pleasing images as well as be efficient. The basic task of scan 
converting a primitive involves selecting the appropriate pixels that 
approximate the continuous mathematical representation of the 
primitive on a fixed integer grid. In approximating the primitive, we 
need to choose a meaningful measure of error and then try to 
minimize the error. We start out using the value of the function as a 
means of deciding how close a pixel is to the primitive. This method· 
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works well for lines and circles, but is unreliable when used with 
ellipses. A better method, called the midpoint method, indicates on 
which side of the primitive the midpoint between two pixels lies and 
limits the distance between the pixel chosen and the primitive to one 
half the distance between two pixels. We shall use this method as a 
basis for the circle, standard ellipse and general ellipse algorithms. 

Fig. 1. Pixel, P. surrounded by 8 adjacent pixels 

In order to make the scan-conversion algorithms efficient, we avoid 
floating point arithmetic, and use incremental techniques to minimize 
the calculations required for each pixel plotted. The basic strategy of 
incremental scan-conversion algorithms is to choose the next pixel 
from the previously chosen pixel by determining which of the 
adjacent pixels lies closest to the curve being drawn. Figure 1 
illustrates a pixel, P, surrounded by its 8 adjacent pixels, where the 
pixels are named by their relative geographical location. However, 
the choice of the next pixel can be reduced to only a pair of adjacent 
pixels depending on which octant the slope of the curve is in at the 
currently selected pixel. We define within which octant the slope of a 
curve lies by the slope of the curve and the direction in which we are 
tracking the primitive. If, for example, we are tracking a line with a 
slope of 1/2 and we are tracking the line from left to right, then we 
define the slope of the line to lie within the first octant. For the case 
when the slope of the curve lies in the first octant, the choice of the 
next pixel is reduced to the pair, E and NE. Furthermore, the 
calculations used to determine the closer pixel of the pair can be 
done incrementally. That is, the calculations done to choose the 
current pixel can be used to simplify the calculations for the choice of 
the next pixel. 

1. Scan-converting Lines 

The task of scan-converting a line involves selecting the pixels that 
best approximate the equation of the line, 

f(x,y) = y - mx - b = 0 (L 1) 
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where m is the slope and b is the y-intersect. For simplicity, assume 
that the end points of the line segment fall on integer coordinates 
and that the slope of the line lies in the first octant, where x ~ y > O. 
Symmetry can be used to draw lines in other octants. Since the slope 
of a line m is constant, the choice of the next pixel in an incremental 
algorithm is always chosen from the same pair of pixels adjacent to 
the currently chosen pixel. In the case of a line with a slope in the 
first octant, the choice of pixels is between E and NE. 

NE 
NE 

(Xi,Yi) E 
Fig. 2a. Pixel P is currently Fig. 2b. Determining which 
selected and next pixel is pixel, E or NE, is closer to the 
chosen from E or NE. line. 

The selection process at each pixel is illustrated in figure 2a. At the 
i th step pixel P has been determined to be closest to the line and we 
now want to decide whether pixel NE or pixel E should be chosen 
next. Some method is necessary to select which pixel, NE or E lies 
closer to the line. In figure 2b, the distances from the pixels, NE and 
E, to the line are denoted by ne' and e', respectively. By similar 
triangles, the ratio of ne' to e' is the same as the ratio of ne to e and 
hence the distances ne and e can be used as accurate indicators of 
which pixel, NE or E is closer to the line. 

Bresenham's algorithm [BRES65] calculates the smaller of the 
distances, ne and e, using only integer arithmetic. The algorithm 
uses a decision variable d which at each step is proportional to the 
difference between ne and e. If d = e - ne > 0 then ne < e and pixel 
NE is closer and is set, otherwise e < ne and pixel E is set. Figure 2b 

i thillustrates the step where pixel P at coordinate (xi,Yi) has been 
determined to be closest to the line and we now want to decide 
whether pixel ~E or pixel E should be chosen. From examination of 
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figure 2b, the distance ne is the Y coordinate, Yi + 1, of the pixel NE 
minus the Y coordinate of the line when the x coordinate is Xi + 1. 
The distance e is the Y coordinate of the line when the x coordinate is 
Xi + 1 minus the Y coordinate, Yi, of the pixel E. The distance, e and 
ne, are given by the following equations. 

ne = Yi + 1 - m(xi + 1) - b (L2) 

e = m(xi + 1) + b - Yi (L3) 

Thus, 
e - ne = 2mxi - 2Yi + 2m + 2b - 1 (L4) 

Assuming we are drawing a line from starting point (xs,Ys) to ending 
point (Xf,Yf), where both end points fall on integer coordinates and 
Xs ~ xf, then m = dy/dx, where dy = Yf - Ys and dx = Xf - xs' Also, 
using (xs,Ys) to solve for b in (Ll), b = Ys - mx s' After substituting 
dy/dx for m and Ys - mx s for b, in (L4), we have 

Multiplying both sides by dx, we have 

dx(e-ne) = 2xidy- 2Yidx + 2dy + 2Ysdx- 2dyx s - dx. (L5) 

Since dx is positive, it does not change the sign of (e - ne) so we can 
use dx(e-ne) as the decision variable to determine which pixel should 
be the next pixel chosen. In addition, since all the terms on the right 
hand side of (L5) are integers, the decision variable can be calculated 
using only integer arithmetic. Therefore 

(L6) 

The equation of the decision variable can be further simplified by
 
calculating it in terms of the previous decision variable di.
 
Subtracting 1 from each index gives:
 

d i = 2xi_l dy- 2Yi-l dx + 2dy + 2Ysdx- 2dyx s - dx. 

Subtracting di from d i+ 1 gives: 
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In the case of the pair of pixels, NE and E, we know that Xi = xi-l + 1. 
Hence 

if di ~ 0 then pixel NE is chosen so Yi = Yi-l + 1 and 

di+1 = di + 2dy - 2d x (L7) 

if di < 0 then pixel E is chosen so Yi = Yi-l and 

di+l = di + 2dy (L8) 

Since the line starts out at (xs,Ys)' from (L6) 

dl = 2dy - dx. (L9) 

procedure LINE (Xs, Ys, Xf, Yf : integer) 
var dx, dy, const1, const2, ct, x, y integer; 

begin 
dx := Xf - Xs; 
dy := yf - Ys; 
d := 2 * dy - dx; initial d from (L9) 

const1 := 2 * dy; increment from (L8) 

const2 := 2 * (dy - dx); increment from (L7) 
x : = Xs; 
y := Ys; 
setpixe1 (x, y) ; 
while x < X f do begin 

x = x + 1; 
if d < 0 then ( choose pixel E ) 

d := d + const1 
e1ae ( choose pixel NE ) 

begin 
y = y + 1; 
d := d + const2 

end 
setpixel(x,y) 

end {while} 
end 

Fig. 3. Algorithm for drawing lines in the first octant 

From the derivation above we have an incremental algorithm for 
drawing a line using minimal integer arithmetic per point plotted 
(see figure 3). This algorithm draws the bestfit approximation to a 
line. Another way of looking at the derivation of Bresenham's 
algorithm would be to examine the function of the line f(x,Y) = Y - mx 
- b. In the case of non-vertical lines, the function is positive for 
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coordinates above the line and negative for coordinates below the 
line. The line is defined by the points at which the function 
evaluates to zero. Since the function is linear, the evaluation of the 
function at any point is linearly related to the distance the point is 
from the line. Therefore, in figure 2b, if we compared the absolute 
value of the function at pixel NE with that at pixel E, the smaller 
value would be associated with the closer pixel. On examination of 
(L2), (L3), and (L4), this is exactly the situation in Bresenham's 
algorithm. However, this method does not extend well to non-linear 
functions like ellipses, where the value of the function of an ellipse 
increases more rapidly outside the ellipse than it decreases inside, 
hence becoming an unreliable indicator of distance from the curve. 
Therefore we shall describe a different method that does extend well 
to such non-linear functions. Piueway [PITT67] was the first to use 
this method and Van Aken [VANA84] later referred to it as the 
midpoint method. In order to choose the next pixel from a pair of 
adjacent pixels, instead of comparing the values of the function at the 
two pixels, this method evaluates the function at the midpoint 
between the two pixels. It then uses the value of the function at the 
midpoint to tell which side of the midpoint the function passes hence 
indicating which of the two pixels lies closer to the function. 

Therefore, in the case of the line, instead of comparing the value of 
the function at pixel NE and at pixel E, the function is evaluated at 
the midpoint between pixel NE and pixel E. If the function evaluated 
at the midpoint is negative, then the line passes above the midpoint 
and pixel NE is closer. Conversely, if the function at the midpoint is 
positive then the line passes below the midpoint and pixel E is closer. 
If the midpoint falls exactly on the line, then both pixels, E and NE, 
are 1/2 the distance between two pixels from the line and either 
pixel can be chosen as the closer pixel. Using the same techniques as 
before, the algorithm can be written incrementally. A derivation of 
this algorithm was published by Van Aken and Novak [VANA85] and 
the resulting algorithm is exactly the same as Bresenham's algorithm. 

In the case of lines that do not start and end at integer coordinate 
points, the starting pixel, (xs,Ys), is the rounded value of the starting 
coordinate point and the decision variable is initialized at 
(x s+l,ys+1/2). However, the algorithm has to implemented using 
floating point arithmetic since the values of dx and dy in (L6) may 
not be integers. 
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2. Scan-converting Circles 

Scan-converting circles involves selecting the pixels that best 
approximate the equation of a circle. 

f(x,y) = x2 + y2 - R2 = 0 (Cl) 

represents a circle with radius R centered at the ongm. To simplify 
the algorithm we shall assume the circle is centered at the origin and 
shall draw only the arc of the circle that lies in the first octant. Other 
octants can be drawn trivially using symmetry and circles centered 
elsewhere can be drawn using a simple translation. Since only the 
arc in the first octant is considered and the slope of the arc stays 
within the third octant, the choice of the next pixel in an incremental 
algorithm is always reduced to the pair of pixels, Nand NW, relative 
to the currently chosen pixel. 

I 

~ 

~ 

I 

I 
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i 
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I 
I 
I 

t 

i 
I 

~ 
NWi\ N 

1\ (Xi,Yi) 

I 

mid P 

point 
It. 

I I 

Fig. 4. Pixel P is currently selected and the next pixel 
is chosen from N or NW. 

In figure 4, if pixel P has been determined to be the closest to the 
circle, we can use the midpoint method to determine whether pixel N 
or NW should be the next pixel set. The function f(x,y) given in (el) 
is negative for points inside the circle and positive for points outside 
the circle. The circle is defined by the points at which the function 
evaluates to zero. If the function at the midpoint between NW and N 
is negative, then the midpoint is situated inside the circle so pixel N 
is closer to the circle and should be set. On the other hand, if the 
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function at the midpoint is positive, then the midpoint is situated 
outside the circle so pixel NW is closer and should be set. In figure 4, 
the midpoint is inside the circle so pixel N should be the next pixel 
selected. 

If P is located at (Xi, Yi) then the decision variable, which is the 
function of the circle evaluated at the midpoint between pixel NW 
and pixel N becomes 

d = f( xi -1/2, Yi + 1) = ( Xi -1/2)2 + ( Yi + 1)2 - R2 

In order to calculate the decision variable incrementally, instead of 
using the same techniques that we used for the line algorithm we 
shall use partial differences [PRAT85). If we define the partial 
difference Fn as 

Fn(x,y) = F(x,y+l) - F(x,y), 

where the subscript, n, represents a partial increment by one unit in 
the north direction, then every time we increment the evaluation 
point (xp, yp) of the function, F, by one in the positive y direction, to 
calculate the new value of the F at (xp' yp +1), we only have to add 
the value of Fn at (xp, yp) to the value of the F at (xp ' yp)' That is 
F(xp, yp+l) = F(xp' yp) + Fn(x p, yp). In the case of the equation of a 
circle, 

Fn(x,y) = [x2 + (y+l)2 - R2] - [x2 + y2 - R2] = 2y + 1 

Since the function of a circle is a second order function, the functions 
that define the first partial differences cannot be higher than first 
order functions. Consequently, the calculations needed to evaluate 
the partial differences are usually simpler than the calculations 
needed to evaluate the function itself. So we can evaluate the 
function at a partial increment from the current evaluation point by 
simply calculating the partial difference and adding it to the current 
value of the function. Furthermore, to simplify the calculations 
needed to evaluate the partial differences, we can again use partial 
differences. In the case of the first partial difference Fn, we define 
F u_ asu 

8
 



where the second n in the subscript represents a partial increment of 
the evaluation point by one unit in the north direction. If the 
evaluation point, (xp' yp), of Fn is incremented by one in the y 
direction, we can calculate the new value of Fn at (xp' yp +1) by 
simply adding F _ to the previous value of Fn. Therefore, the newn n 
value of the function, F, at (xp,yp+1) can be calculated using the 
values of F and Fn at (xp' yp)' and then the new value of Fn at (xp' 
yp+1) can be calculated using the value of Fn and Fn_n at (xp' yp)' 
That is, 

F = F + Fn
 
Fn = Fn + Fn n
 

In the case of a circle, since the first partial differences, like Fn, are 
no higher than first order functions, the second partial differences, 
like F _ n, can be no higher than zero order functions. That is, then 
functions that define the second partial differences are all constants 
and hence do not have to be updated when the evaluation point 
changes. In the case of a circle, 

Fn_n(x,y) = [2(y+l) + 1] - [2y + 1] = 2 

As described above, we can define the other partial differences for 
partial increments in other directions. The partial difference Fnw ' for 
example, would represent an increment by one unit in the north 
direction and one unit in the west direction. In order to draw the arc 
of the circle that lies in the first octant, we initially set the current 
pixel, P, to the pixel at (R,O) (assume integer radii), which is the 
intersection of the circle with the positive x-axis. We then calculate 
the associated decision variable, d, at the midpoint between the pixel 
Nand NW. That is at the coordinate point (R-l/2,1). In addition, the 
values of Fn and Fnw have to be initialized at the same point, (R
1/2,1), as the initial decision variable. In order to decide which pixel, 
N or NW, is the next pixel chosen, we use the sign of the decision 
variable. If d < 0, then the midpoint is inside the circle and pixel N is 
chosen. In this case, the current pixel moves to the pixel N and so the 
corresponding evaluation point of the decision variable changes by 
one unit in the north direction. Using partial differences, we can 
updatf:; the decision variable by adding to it the current value of Fn , 

and then update the value of Fn by adding to it Fn_n. In addition, 
F n w has to be updated, so its value corresponds to the new 
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evaluation point of the decision variable. The following equations 
perform the necessary updates. 

d =d+ Fn 
Fn =Fn + Fn_ n 
Fnw = Fnw + Fnw n 

If d ~ 0, then the midpoint is outside the circle and pixel NW is 
chosen. In this case, the current pixel moves to the pixel NW and so 
the corresponding evaluation point of the decision variable changes 
by one unit in the north direction and one unit in the west direction. 
Using partial differences, the decision variable, d, and the partial 
differences, Fn and Fn w, can be updated with the following 
combination of equations. 

d =d + Fnw 
Fn =Fn + Fn _nw 

=Fnw Fnw + Fnw nw 

For the equation of a circle, the partial differences used 10 the above 
equations are defined by the following functions. 

Fn = 2y +1,
 
Fnw = 2y - 2x + 2,
 

Fn_n = 2,
 
F n_nw = 2,
 
F nw_n = 2,
 

= 4.F nw_nw 
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procedure CIRCLE (R : real) 
var x, y : integer; 

d, Fn, Fn_n, Fn_nw, Fnw, Fnw_n, 
begin 

x := ROUND(R); y := 0: 
Fn := 3; Fn_n := 2; 
Fnw := 5 - 2 * x; Fnw n ;= 2; 
d := x * x - x + 5/4 - R * -R; 
while x > y do begin 

setpixel (x, y) : 
y = y + 1; 
if d < 0 then 

begin 
d := d + Fn; 
Fn := Fn + Fn_n; 
Fnw := Fnw + Fnw_n; 

end 
el•• 

begi.n 
x - x-I; 
d := d + Fnw; 
Fn := Fn + Fn_nw; 
Fnw := Fnw + Fnw_nw; 

end 
end (while) 

end 

Fnw_nw: real; 

Fn_nw := 2; 
Fnw nw := 4: 
( initial d from (C3) ) 

( choose pixel N ) 

{ choose pixel NW ) 

Fig. Sa. Algorithm to draw the arc of a circle 
(real radii) that lies in the first octant. 

If R is an integer, then setting the current pixel to the pixel at (R,O), 
the values of d, Fn , and Fnw , are initialized at the coordinate point 
(R- 1/2,1). The initial value of d is 

d1 = 5/4 - R (C2) 

If R is not an integer, then setting the current pixel to the pixel at 
(Xo,O), where Xo is the rounded value of R, the values of d, Fn , and 
F nw , are initialized at the coordinate point ( Xo- 1/2,1). The initial 
value of d is 

(C3)
 

The algorithm for real values is presented in figure 5a. If we restrict 
R to only integer values, then the algorithm can be implemented 
using only integer arithmetic. Using the initial decision variable d1 

from (C2), we can substitute the new decision variable, h = d - 1/4 
in the algorithm to eliminate the 5/4 fractional term in the 
initialization of d. The initial value of h will now be h = 1 - R. 
However, the comparison d < 0 will become h < -1/4. Since h can 
only take on integer values, the comparison h < 0 will have the same 
effect. The integer version of the algorithm is listed in figure 5b. 
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Fn_n := 2; 
Fnw_n := 2; 

y ;= 0; 

end 
end 

procedure CIRCLE (R ; inteqer) 
var x, y, h, Fn, Fn_n, Fn_nw, 

beqin 
x ;= R: 
Fn ;= 3; 
Fnw ;= 5 - 2 * R; 
h := 1 - R: 
while x > y do beqin 

setpixel (x, y) : 

y = y + 1: 
if h < 0 then 

beqin 
d ;= d + Fn; 
Fn ;= Fn + Fn_n: 
Fnw ;= Fnw + Fnw_n: 

end 
e18e 

beqin 
x = x - 1; 
d := d + Fnw; 
Fn ;= Fn + Fn_nw; 
Fnw := Fnw + Fnw_nw: 

end 
{while} 

{ choose pixel NW } 

{ choose pixel N } 

Fn_nw ;= 2; 
Fnw_nw := 4; 
{ initial d from (C2) } 

Fig. 5b. Algorithm to draw the arc of a circle 
(integer radii only) that lies in the first octant. 

It is interesting to note that if we used Bresenham's method to 
derive' the algorithm for a circle, we would arrive at the same 
algorithm with only the initialization of d being different. In the case 
of integer radii the initial value of d would be 3/2 - R instead of 5/4 
- R. However, using the same kind of transformations as above, we 
can derive exactly the same algorithm. Therefore, in the case of 
integer radii, both algorithms draw exactly the same circle. In 
addition, Bresenham [BRES77] showed that in the ca~e of integer radii 
his algorithm draws the bestfit approximation to the circle. 

McIlroy [McIL83] extensively examined the bestfit nature of 
Bresenham's circle algorithm and showed that In the case where the 
square of the circle's radius is an integer, Bresenham's algorithm 
draws the bestfit approximation to the circle. Although this may not 
be true for a circle algorithm that uses the midpoint method, the 
attraction of the midpoint method is that by definition the linear 
error of the curve drawn is bounded by 1/2. That is, the minimum 
distance between any pixel selected and the curve is never greater 
than half the distance between two pixels. Therefore, although the 
midpoint algorithm might not draw the bestfit approximation to a 
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b 

circle In the case of real radii, the error will always be bounded by 
1/2. 

An optimization of the algorithm can be performed by noticing that 
for the arc of a circle in the first octant, pixel N is selected more often 
than pixel NW. This can be shown using simple geometry. If instead 
of using the partial differences, Fn and Fn w, we use Fn and Fw ' 
where Fw = -2x + 1. Then when pixel N is selected, the decision 
variable can be updated with the following sequence of equations. 

d = d+ Fn
 
Fn = Fn + Fn n
 

We do not have to update Fw because Fw_n = O. When pixel NW is 
selected, the decision variable is updated with the following set of 
equations. 

d = d+ Fn + Fw 

F n = Fn + Fn_nw 
Fw = Fw + Fw_nw 

Therefore, only 2 additions are performed when pixel N is chosen, 
while 4 additions are performed when pixel NW is chosen. By 
shifting the computation ftom pixel N, which is chosen more 
frequently, to pixel NW, the average number of additions performed 
per pixel is reduced, producing a slightly faster algorithm. 

3. Scan-Converting Standard Ellipses 

Standard ellipses are the class of ellipses that are symmetric about 
the x and y axes. 

y 

a 
-_-:-ia r------+------+-- x 

~-b
 

Fig. 6. A standard ellipse 
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They are described by the equation 

(El) 

where 2a is the diameter along the x axis and 2b is the diameter 
along the y axis. Again, to simplify the algorithm, we shall only draw 
the arc of the ellipse that lies in the first quadrant since other 
quadrants can be drawn trivially by symmetry. Also standard 
ellipses centered elsewhere can be drawn using a simple translation. 
The algorithm presented here is original in that it combines the 
approaches used by Van Aken[VANA84] and Kappel [KAPP85] along 
with using the technique of partial differences 

Since the slope of the arc of the ellipse in the first quadrant changes 
continuously from one end of octant 3 to the other end of octant 4, 
we can divide the arc into two regions such that the slope in region 1 
stays within octant 3 and the slope in region 2 stays within octant 4 
(see figure 7). Thus for each region, the choice of the next pixel in an 
incremental algorithm is reduced to the same pair of pixels. In the 
case of region 1 the choice of pixels is between Nand NW, and in the 
case of region 2 the choice of pixels is between NW and W. The curve 
in each region can then be dr.awn using the same techniques that 
were used for the circle algorithm. However. we still need to 
determine when region 1 ends and region 2 begins. 

y 
tangent
 

slope =-1
 

b t---__ ~
 

I component 

-j--------------.L.-_x
a 

Fig. 7. Dividing the arc of the ellipse into two regions 
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Since the gradient of a curve at a point P on the curve is orthogonal 
to the tangent to the curve at p. we can use the gradient to 
determine when region 1 ends and region 2 begins. The boundary 
between the two regions is the point at which the slope of the curve 
is -lor equivalently. when the i and j components of the gradient 
are of equal magnitude. 

grad f(x,y) = af/ax i + af/ay j = 2b2x i + 2a2y j 

Therefore. by comparing the magnitudes of the two components, we 
can determine when we have left region 1 and entered region 2. 

The function f(x.y) given in (E 1) is negative for points inside the 
ellipse and positive for points outside the ellipse. The ellipse is 
defined by the points at which the function evaluates to zero. In 
region 1, (figure 8a) if the current pixel P is located at (xit Yi), then 
the decision variable for region 1, d1, which is the function of the 
ellipse evaluated at the midpoint between pixel NW and pixel N, 
becomes 

Region 1 Region 2 

NNW 

(Xi,Yi) 

p 
w 

I 

NW 

iexi,Yi) 

i 

Fig. 8a. Pixel P is currently Fig. 8b. Pixel P is currently 
selected and the next pixel selected and the next pixel 
is chosen from N or NW is chosen from NW or W 

Again. we can use partial differences to calculate the rlecision 
variable incrementally. For region 1. the choice of pixels is between 
t-.'W and N. If d 1 < O. then the midpoint between NW and N is inside 
the ellipse and pixel N is chosen. Using the techniques for partial 
differences as developed for the circle algorithm, the difference 
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variable, dl, and the partial differences, Fn and Fnw , are updated as 
follows. 

dl = dl + Fn 
Fn = Fn + Fn_n 
Fnw = Fnw + Fnw n 

Otherwise, if dl ~ 0, pixel NW IS chosen and the difference variable is 
updated as follows: 

dl = dl + Fnw 
Fn = Fn + Fn_nw 
Fnw = Fnw + Fnw nw 

In region 2, the choice of pixels is between NW and W (figure 8b) 
and the decision variable for region 2, d2, is evaluated at the 
midpoint between NW and W. If d2 < 0, then the midpoint between 
NW and W is inside the ellipse and pixel NW is chosen. The 
difference variable, d2, and the partial differences, Fnw and Fw , are 
updated as follows. 

d2 = d2 + Fnw 
Fw = Fw + Fw_nw 
Fnw = Fnw + Fnw nw 

Otherwise, if d2 ~ 0, pixel W is chosen and the difference variable is 
updated as follows: 

d2 = d2 + Fw 
Fw=Fw+Fw_w 
Fnw = Fnw + Fnw w 

As for the case of circles, the function of a standard ellipse is a 
second order function. So the first partial differences are no higher 
than first order functions and the second partial differences are 
constants. For the equation of an ellipse, the partial differences used 
in the above equations are defined by the following functions. 

= 2a2y + a2 , (E2)
 

= 2a2y + a2 - 2b2 x + b2 ,
 

= -2b2 x + b2 ,
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Fn _ = 2a2,n 

Fn_ = 2a2,nw 
F nw _n = 2a2 , 
Fnw _nw = 2a2 + 2b2, 
Fnw _w = 2b2, 
Fw_ = 2b2,nw
 
Fw_ = 2b2,
w 

In region 1, we also have to compare the i and j components of the 
gradient to determine when we have entered region 2. The algorithm 
remains in region 1 while the magnitude of the j component is less 
than the magnitude of the i component. That is, while 2a2y < 2b2x. 
Fortunately, instead of computing the i and j components of the 
gradient, we can use the already calculated value of Fnw to 
determine when we have entered region 2. From the function of Fn w 

in (E2), we notice that the inequality Pnw < a2+ b2 , is the same as the 

inequality 2a2y < 2b2x. 

When we leave region 1 and enter region 2 the decision variable 
changes from being evaluated at the midpoint between NW and N to 
being evaluated at the midpoint between NW and W. In order to 
simplify the computation involved in calculating from scratch the 
initial value of the decision variable, d2, for region 2, we can use 
value of the decision variable, d1, from the last step in region 1. The 
difference between the function evaluated at the midpoint, (xp,yp), 
between NW and N, and the midpoint, (xp-1/2,yp-l/2), between NW 
and W is given by: 

Therefore, we can calculate the initial value of d2, which corresponds 
to f(x p-1/2,yp-1/2), from the value of d1, which corresponds to 
f(xp'yp)' as follows: 

d2 = d1 - b2xp + b2/4 - a2 xp + a2 /4 

Also, Fw and Fnw have to be initialized at (xp-l/2,Yp-1/2), the initial 
evaluation point of d2. Using (E2), the initial values of F and Fn ww 
are 
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Fw = -2b2xp + 2b2 , 

and Fnw = 2a2 yp - 2b2xp + 2b2, 

In terms of the algorithm's variables, d2, Fw and Fn w , can be 
calculated with the following sequence of equations. 

Fw = Fnw - Fn + b2 

d2 =dl + ( Fw + Fw - Fn - Fn + b2 + 3a2)/4 

Fnw = Fnw - a2 + b2 

It is important to note that the location that the algorithm compares 
the i and j components of the gradient is at the location of the 
decision variable. If we used only the comparison of the two 
components to decide when region 2 was entered, we would 
sometimes enter region 2 early. Hence causing a pixel to be selected 
whose minimum distance from the curve may be greater than 1/2 
the distance between two pixels. 

Region 2 

separating 
regions 

Region 1 

Fig. 9. Pixel P is currently selected with dl being evaluated in 
region 2. If a region change is made, so d2 is evaluated between NW 
and W. then erroneously NW will be the next pixel selected. 

In figure 9, pixel P is currently selected, and the evaluation point of 
dl is in region 2, indicating a change in regions. The decision 
variable, d2, would then be initialized at the midpoint between NW 
and W, and the choice of the next pixel would be between NW and 
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W. However, if dl, which is the midpoint between Nand NW, is 
inside the eliipse, then the ellipse will pass above both Nand NW 
and, as in figure 9, it may pass more than 1/2 a unit distance above 
NW. Then using the criteria for region 2, we would erroneously 
select NW, a pixel that may be more than 1/2 a unit distance from 
the ellipse. This situation can be rectified by including a check to 
determine whether dl is inside the ellipse. Using the or operator, 
this check is done only after the test, (Fnw < a2+ b2), to compare the 
two components of the gradient fails. In figure 9, if dl were outside 
the ellipse, it may still pass above both NW and W. However, in this 
case, it can be shown that the ellipse cannot pass more than 1/2 a 
unit distance above NW and so will be less than 1/2 a unit distance 
from the ellipse. 

The algorithm is started at (XO,O), where Xo is the rounded value of a, 
the intersection of the ellipse with the positive x-axis. The initial 
values of the decision variable, dl, Fnw ' and Fn , are calculated at the 
point (Xo-1/2, 1). 
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Fn nw .= a2Sq; 

Fnw w "= b2Sq; 

bSq; 
region 1 } 

ELLIPSE (a, b : real) 
x, y : integer; 
dl, d2, aSq, bSq, a2Sq, b2Sq, aS~bSq, Fn, Fnw, Fw, 
Fn_n, Fn_nw, Fnw_n, Fnw_nw, Fnw_w, Fw_w, Fw nw : reaJ.; 

begin 
x := ROUND (a) ; 
y := 0; 
aSq := a * a; 
bSq := b * b; 
a2Sq := aSq + aSq; 
b2Sq := bSq + bSq; 
aS~bSq := aSq + bSq; 
Fn :- a2Sq + aSq; Fn_n :~ a2Sq; 
Fnw := a2Sq + aSq - b2Sq * x + b2Sq; 
Fnw_n :- a2Sq; Fnw_nw :- a2Sq + b2Sq; 
Fw nw :", b2Sq; Fw w := b2Sq; 
dl-:- bSq * (x - 1/2) * (x - ::.12) + aSq - aSq * 
while (Fnw < aS~bSq) or (dl < 0) do begin 

setpixel (x, y) ; 

y - y + 1; 
if dl < 0 then ( choose pixel N ) 

begin 
dl := dl + Fn; 
Fn := Fn + Fn n; 
Fnw :- Fnw + Fnw n 

end 
else ( choose pixel NW 

begin 
x :- x - 1; 
dl := dl + Fnw; 
Fn := Fn + Fn nw; 
Fnw := Fnw + Fnw nw 

end 
end (while) 

procedure 
var 

Fw : = Fnw - Fn + bSq; { change regions 
d2 := dl + (Fw + Fw - Fn - Fn + a~bSq + a2Sq)/4; 
Fnw :- Fnw + bSq - aSq; 

while x ~ 0 do begin 
setpixel (x, y) ; 
x := x - 1; 
if d2 < 0 then 

begin 
y := y + 1; 
d2 := d2 + Fnw; 
Fw := Fw + Fw_nw; 
Fnw .- Fnw + Fnw nw 

end 
else 

begin 
d2 := d2 + Fw; 
Fw := Fw + Fw w; 
Fnw := Fnw + Fnw w 

end 
end (while) 

end 

( region 2 ) 

( choose pixel NW 

( choose pixel W ) 

) 

) 

Fig. 10. Algorithm to draw the arc of an ellipse 
(real a and b) that 1ies in the fi rst quadrant 
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The complete algorithm is presented in figure 10. This algorithm is 
based on Van Aken's [VANA84] midpoint method algorithm but uses 
Kappel's [KAPP85] technique of using the gradient to determine a 
change in regions. It algorithm is an improvement over Van Aken's 
algorithm because unlike his algorithm, in order to determine a 
change in regions, it does not have to incrementally keep track of the 
decision variable for region 2 while traversing region 1. Kappel used 
the gradient to determine a change in regions, hence avoiding the 
additional arithmetic Van Aken's algorithm used to keep track of the 
decision variable for region 2 while traversing region 1. However, 
because his algorithm calculates the gradient at the nearest pixel, it 
sometimes enters region 2 one pixel too late. Hence causing a pixel to 
be selected whose distance from the curve may not be bounded by 
1/2 the distance between two pixels. In addition, since his algorithm 
is incremental, the error caused by one pixel being displaced is 
propagated, causing other pixels to be selected whose distance from 
the curve may not be bounded by 1/2. Although, the algorithm in 
this paper, has more initialization overhead than Van Aken's 
algorithm, it uses fewer additions per pixel than both Kappel's and 
Van Aken's algorithms. Therefore, the efficiency of this algorithm 
becomes more evident for large ellipses. 

Kappel Van Aken This paper 

-
I: 
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Fig. 11. Comparison of additions performed to keep 
track of decision variable for each pixel plotted. 

In the case of integer a and b, the algorithm can be implemented 
using only integer arithmetic. The initial value of dl becomes 

d11 = b2(-a + 1/4) + a2 
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procedure ELLIPSE (a, b : inteqer) 
var x, y, dl, d2, aSq, bSq, a2Sq, b2Sq, a4Sq, b4Sq, 

a8Sq, b8Sq, a4S~b4Sq, Fn, Fnw, Fw, 
Fn_n, Fn_nw, Fnw_n, Fnw_nw, Fnw_w, Fw_w, Fw nw i.nteger; 

beqin 
x :=- a: y := 0; 
aSq := a * a; a2Sq := aSq + aSq; a4Sq := a2Sq + a2Sq; 
bSq := b * b; b2Sq := bSq + bSq; b4Sq := b4Sq + b4Sq; 
a8Sq := a4Sq + a4Sq; b8Sq := b4Sq + b4Sq; 
a4~b4Sq := a4Sq + b4Sq; 
Fn := a8Sq + a4Sq; Fn_n:= a8Sq; Fn nw := a8Sq; 
Fnw := a8Sq + a4Sq - b8Sq * a + b8Sq; 
Fnw n : = a8Sq; Fnw nw := a8Sq + b8Sq; Fnw w := b8Sq; 
Fw_~w : = b8Sq; Fw_w := b8Sq; 
dl := bSq - b4Sq * a + a4Sq; 
while (Fnw < a4S~b4Sq) or (dl < 0) do begin region 1 } 

setpixel (x, y); 
y ~ y + 1; 
if dl < 0 then { choose pixel N } 

beqin 
dl := dl + Fn; 
Fn := Fn + Fn_n; 
Fnw := Fnw + Fnw n 

end 
else { choose pixel NW } 

beqin 
x := x-I; 
d1 := d1 + Fnw; 

Fn := Fn + Fn_nw; 
Fnw := Fnw + Fnw_nw 

end 
end {while} 

Fw := Fnw - Fn + b4Sq; { change regions
 
d2 := dl + (Fw + Fw - Fn - Fn + a4S~b4Sq + a8Sq)/4;
 
Fnw := Fnw + b4Sq - a4Sq;
 

while x ~ 0 do beqin region 2 } 
setpixel (x, y) ; 

x := x-I; 
if d2 < 0 then choose pixel NW 

beqi.n 
y := y + 1; 
d2 := d2 + Fnw; 
Fw := Fw + Fw_nw; 
Fnw := Fnw + Fnw nw 

end 
else { choose pixel W } 
beqin 

d2 := d.2 + Fw; 
Fw := Fw + Fw_w; 
Fnw := Fnw + Fnw 'II 

end 
end {while} 

end 

Fig. 12. Algorithm to draw the arc of an ellipse 
(integer a and b) that lies in the first quadrant 

Using program transformations [SPR082], we can eliminate the 1/4 
fraction by multiplying the above equation by 4. The new decision 
variable will then be 4 times the old decision variable. Therefore all 
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the equations used to calculate the old decision variable need to be 
transformed by multiplying them by 4. The integer version of the 
algorithm is presented in figure 12. While initializing d2, we perform 
an integer division by 4. We do not loose any precision by this 
division since the numerator consists of integer variables that are all 
multiples of 4. In fact, we could perform the division by doing a right 
shift by 2 bits. 

1. Decision variable crosses ellipse 2. Region 1 exits when y value of current
 
causing region 2 to be entered prematurely pixel equals b (top of ellipse)
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Fig. l3a. Thin ellipse where decision Fig. 13b. Same ellipse, but i 
variable crosses ellipse causing ellipse to component of gradient is used so that 
be truncated tracking of ellipse is not truncated. 

It is interesting to note that in the case of thin vertical ellipses, 
where the sides of the ellipse taper to less than a one pixel width, the 
algorithm truncates the ellipse. This is caused by the decision 
variable in region 1 jumping across the whole width of the ellipse 
and being evaluated on the opposite side. When this happens, the 
component of the gradient becomes negative and region 2 is entered 
prematurely. However, no pixels are selected while the algorithm is 
in the region 2 loop. Since the decision variable is on the opposite 
side of the ellipse, the x coordinate of the current pixel is equal to 
zero and after one iteration, the region 2 loop is exited (see figure 
13a). This problem also occurs in both, Van Aken's and Kappel's 
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ellipse algorithms. We can rectify the situation in our algorithm by 
making the following changes to the algorithm in figure 10. Replace 
the test in the first while loop with 

while ((Fnw < aS~bSq) or (dl < 0) or ((Fnw - Fn > bSq) and (y < b))) 

and in the same while loop, replace the test condition for the if clause 
with 

if ((dl < 0) or (Fnw - Fn > bSq)) 

If the decision variable has jumped across the ellipse, the i 
component of the gradient will be negative and hence will be less 
than the j component, which is positive, causing the test, (Fnw < a2+ 
b2 ), to fail. However, the test, (Fnw - Fn > b2 ), which has the same 
effect as comparing the i component of the gradient against zero, will 
be true, indicating that the i component is negative and that we are 
still in region 1 (see figure 13b). In the case of thin vertical ellipses, 
where the width of the ellipse is less than one pixel wide, the change 
in regions occurs at the top of the ellipse, close to where the ellipse 
intersects the positive y-axis. Therefore we will continue to track 
region 1 while the y coordinate of the current pixel is less than b, the 
intersection of the ellipse with the positive y-axis. The change in the 
condition clause of the if statement, forces the choice of pixel N if the 
i component is negative. Otherwise, the algorithm would pick pixels 
that would form a diagonal line crossing the y-axis into the second 
quadrant. Since the or operator is used to include the additional test 
for the while condition clause, it is only made when the region 1 
loop is complete, or in the case of thin ellipses when the decision 
variable jumps across the ellipse. The additional test in the if clause 
is made only when dl is greater than zero, which on the average 
occurs less than half the time. 

As in the case of the circle algorithm, we can again obtain a 
performance optimization of the algorithm by taking advantage of 
the fact that in region 2, pixel W is chosen more often than pixel NW. 
By using the partial differences , Fn and Fw instead of Fn and Fnw ' we 
can shift one addition for the computation done for pixel W, to the 
computation done for pixel NW, her.ce reducing the average 
computation per pixel plotted. We cannot take advantage of the 
corresponding change in region 1 because we would not have the 
value of Fnw to determine the change in regions. Hence, we would 
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have to use some other means to determine a change III reglOns, 
thereby increasing the computation. 

4. Scan-converting General Ellipses 

General ellipses are ellipses that do not have to be symmetric about 
the x and y axis. That is, they include all classes of ellipses, standard 
ellipses and standard ellipses that are rotated an arbitrary angle 
about their center. Although it is intuitively easier to define a 
general ellipse as a standard ellipse that is rotated an arbitrary 
angle, in order to derive the equation of a general ellipse, we shall 
present the mathematical definition of an ellipse. Given two points, 
Fl and F2, called the focal points of the ellipse, the ellipse is the set 
of points (x,y) such that the sum of the distances from (x,y) to the 
two focal points is equal to the constant 2a (figure 14a). 

yy 

-+-----------x 

--+----f----I----X 

L1 +L2=2a 

Fig. 14a. General ellipse Fig. 14b. General ellipse 
centered at the origin centered at an arbitrary point 

In the case of standard ellipses, the two focal points lie centered on 
the x-axis, and the a in the constant 2a is the same as that in (E1). 
Using simple geometry, we can derive the equation of a general 
ellipse that is centered at an arbitrary point. The equation is 

f(x,y) = Ax2 + Bxy + Cy2 + Ex + Fy + D = 0, (Gl) 

where the coefficients, A through F, are calculated using the focal 
points and the constant 2a. Equation (G 1) actually defines all conic 
sections, including parabolas and hyperbolas, where the values of the 
coefficients determine the conic section. To simplify the algorithm, 
we shall only draw general ellipses that are centered at the origin, 
since general ellipses centered elsewhere can be drawn using a 
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simple translation. In the case of general ellipses centered at the 
origin, the coefficients E and F equal zero, so the function becomes 

f(x,y) = Ax2 + Bxy + Cy2 + D =O. (G2) 

Also, in this case, the focal points are symmetrically located about 
the x- and y-axis. That is, if the focal point Fl is located at the 
coordinate point (Xr,Y r) then the other focal point, F2, will be located 
at (-Xr,-Yr) (figure 14b). Using the mathematical definition of the 
ellipse, the coefficients in (02) are defined in terms of the coordinate 
point of one of the focal points and the constant a. 

A = a2 - X~ (G3) 
B = -2XrYr 

2C = a - Y~
 
D = a2( X~ + Y~ - a2 )
 

I component 

Fig. 15. Ellipse divided into 8 regions. 
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To further simplify the algorithm, we shall only draw the arc of the 
ellipse where the slope of the ellipse lies in the third through sixth 
octants. The other half of the ellipse can be trivially drawn by 
symmetry. Analogous to standard ellipses, we can divide the ellipse 
into eight regions, where we shall only draw the half-arc that 
includes the first four regions. The first four regions are defined such 
that the slope of the arc in region 1 stays within octant 3, the slope in 
region 2 stays within octant 4, the slope in region 3 stays within 
octant 5 and the slope in region 4 stays within octant 6 (see figure 
15). Thus for each region, the choice of the next pixel in an 
incremental algorithm is reduced to the same pair of pixels. In region 
1, for example, the choice of the next pixel is between Nand NW. 

As for the case of standard ellipses, we can use the gradient to 
determine the boundaries between regions. The gradient of (G2) is 
given by 

grad f(x,y) = af/ax i + af/ay j = (2Ax + By)i + (2Cy + Bx)j 

The magnitudes of the i and j components can then be used to 
determine the boundary between two regions. The boundary 
between region 1 and region 2, for example, is the point at which the 
slope of the curve is -lor equivalently, when the i and j components 
of the gradient are equal and positive. Likewise, the boundary 
between region 2 and region 3 is the point at which the slope of the 
curve is horizontal or when the i component is zero and the j 
component is positive. Similarly, we can determine the boundaries 
between the other regions. Instead of comparing the magnitudes of 
the two components to determine a change in regions, as we did in 
the case of standard ellipses, we shall calculate the coordinate points 
of the boundaries between regions and compare the coordinate point 
of the current pixel against the boundary point to determine a 
change of regions. In region 1, for example, the choice of the next 
pixel is between Nand NW, and in either case the y-value of the 
current pixel increases by one. Therefore, we can determine when 
region 2 has been entered by comparing the y-value of the current 
pixel against the y-value of the boundary coordinate point. In order 
to determine the coordinate point of the boundary between region 1 
and region 2, we calculate the inter~.ection between the line, 2Ax + By 
= 2Cy + Bx, determined by setting the i and j components of the 
gradient to each other, and the equation (G2) of the ellipse. However, 
the line, 2Ax + By = 2Cy + Bx, which passes through the origin, 
intersects the ellipse at two symmetrically located points. The point 
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that is the boundary between reglOn 1 and region 2 is the one at 
which both the i and j components are positive. The other point is 
the boundary between region 5 and region 6, where both the i and j 
components are negative. Therefore, by checking the sign of one of 
the components, we can determine which intersection point is the 
coordinate point of the boundary between region I and region 2. In a 
similar manner, we can calculate the coordinate points at the 
boundaries between the other regions. We also have to calculate the 
coordinate point of the boundary between region 8 and region 1, 
since this is the first pixel of region 1 and the starting point of the 
algorithm. In the algorithm, the coordinate points of the boundaries 
are named as in figure 15. 

In order to describe a general ellipse in the most intuitive manner, 
we shall describe it as a rotated standard ellipse. Therefore, the 
parameters to our algorithm shall be the a and b parameters that 
describe a standard ellipse and an angle of rotation, theta. In a 
standard ellipse the focal points are located at (c,O) and (-c,O), where 
c 2 = a2 - b2. The focal points of the new ellipse are calculated by 
rotating the focal points, (c,O) and (-c,O), theta degrees. This is done 
by using a rotation matrix or equivalently sines and cosines. Once a 
focal point of the rotated ellipse is calculated, we can calculate the 
values of the coefficients to (0.2) and then the coordinate points of 
the boundaries between regions. When checking for a change in 
regions, instead of comparing the current pixel against the real value 
of the coordinate point at the boundary between regions, we shall 
use the rounded integer value of the coordinate point. This speeds up 
the algorithm, since an integer comparison is faster than a real 
comparison. As in the algorithm for standard ellipses, we shall use 
the method of partial differences to incrementally keep track of the 
decision variable. Also, when changing regions, we shall use the 
decision variable from the previous region to simplify the 
calculations needed to initialize the new decision variable. 

In the case of thin ellipses, where the sides of the ellipse taper to less 
than one unit length, the decision variable may jump across the 
ellipse causing a streak of pixels to be selected that cross the ellipse 
and keep going until the boundary condition for the region is met 
(figure 16a). In order to rectify this problem, we can use the 
gradient of F, the function of the ellipse, to determine whether the 
decision variable has jumped across the ellipse. While selecting 
pixels in region 1, for example, in order for the decision variable to 
cross the ellipse and be located in either regions 3, 4, 5 or 6, it has to 
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have also crossed the line that passes from the boundary between 
region 2 and region 3 through the origin to the boundary between 
region 6 and region 7 (figure 16b). This line is determined by setting 
the i component of the gradient to zero. That is, 2Ax + By = O. When 
the decision variable is in regions 1, 2, 7, or 8, the value of the 
component is positive. When it crosses over into regions 3, 4, 5 or 6, 
the value of the i component becomes negative. The line is defined 
by the points at which the i component is zero. Therefore, by 
determining the sign of the i component at the evaluation point of 
the decision variable, we can determine if it has jumped across the 
ellipse. While 
the same test 
the ellipse. 

selecting pixels in 
to determine if the 
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Fig. 16a. Thin ellipse with major axis in Fig. 16b. Same ellipse, but if decision 
octant 3. While tracking region I, the variable crosses ellipse while tracking 
decision variable crosses ellipse causing region 1, pixel N is chosen to bring 
streak of pixels to be selected that are on decision variable closer or back to side 
opposite side of ellipse. being tracked. 

Similarly, in regions 2 and 3, in order for the decision variable to 
cross the ellipse, it has to cross the line defined by setting the j 
component of the gradient to zero. When the algorithm determines 
that the decision variable has crossed the ellipse, it has to choose the 
pixel that is closer to the side of the ellipse it is tracking. While 
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selecting pixels in region 1, in order for the decision variable to jump 
across the ellipse, the ellipse has to be a thin ellipse and its major 
axis has to have a slope in the third octant. The major axis is the axis 
along which the width of the ellipse is the widest. In region 1 the 
choice of the next pixel is between Nand NW. When the deci~ion 

variable is on the opposite side of the ellipse, pixel N will always be 
closer to the side of the ellipse the algorithm is tracking. In fact, 
choosing pixel N will tend to correct the problem of the decision 
variable being located on the opposite side of the ellipse by bringing 
the decision variable closer to or back to the side of the ellipse that is 
being tracked (figure 16b). In the case of the other regions, we can 
similarly determine which pixel to choose when the decision variable 
crosses the ellipse. 

The first partial differences that are used in the algorithm are given 
by: 

= 2Cy + Bx + C, (04) 
= 2Cy + Bx + C - 2Ax - By + A - B, 
= -2Ax - By + A, 
= -2Ax - By + A - 2Cy - Bx + C + B 
= -2Cy - Bx + C, 

Again, as in the case of standard ellipses, the first partial differences 
are all first order functions, and so the second partial differences are 
all constants. The necessary second partial differences can be 
calculated from the equations above. Instead of keeping track of the 
appropriate component of the gradient to determine if the decision 
variable has crossed the ellipse, we can fortunately use the first 
partial differences. In region 1, for example, the choice of the next 
pixel is between Nand NW and so we have to keep track of the 
values of the first partial differences, Fn and Fn w' In order to 
determine if the i component of the gradient is less than zero, that is 
2Ax + By < 0, we can use the comparison Fn - < -A + B. In the Fnw 
same manner, in the other regions we can avoid the computations 
needed to keep track of the appropriate component of the gradient 
by using the available partial differences. 

The complete algorithm is presented in figure 17. The algorithm is 
original in that it combines existing methods. It uses the midpoint 
method to choose pixels while using the gradient technique to 
determine a change of regions. The technique of using the gradient to 
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solve the problem of thin ellipses, where pixels cross the ellipse, was 
originally suggested by Pratt[PRAT85]. The algorithm uses floating 
point arithmetic because the coefficients of the ellipse function are 
floating point numbers. One way to make the coefficients of the 
ellipse function integers, would be to restrict the focal points and the 
constant a to integer values. However, when a particular ellipse is 
rotated, in order to draw the new ellipse, the focal points have to be 
rounded to the nearest integer value, causing a slightly different 
ellipse to be drawn. Another method to speed up the algorithm 
would be to approximate the floating point values with integer 
values so that each of the inner loops for the regions consist of only 
integer arithmetic. 

As in the case of standard ellipses, we could have used the 
comparison of the two components of the gradient to determine a 
change in regions. This would have eliminated the computations 
needed to calculate the three coordinate points of the boundaries 
between regions and we could avoid calculating the components of 
the gradient by using the available partial differences. However, in 
order to handle thin ellipses, the test condition to exit each region 
would be more complex. While tracking region 1, for example, the 
test condition for the while loop becomes 

while «Fnw < (A-B+C» or (dl < 0) or «Fn - Fnw < cross!) and (y < Ytop») 

The first test, (Fnw < (A-B+C), in the while loop tests whether the 
decision variable has crossed the line that passes from the origin 
through the boundary point between region 1 and region 2. That is, it 
tests whether the j component of the gradient is not greater than the 
i component of the gradient. The second test, (dl < 0), is used only 
when the first test indicates a change in regions that is too early. This 
is similar to the test used for standard ellipses. The final test is used 
in the case of thin ellipses to determine if the decision variable has 
crossed the ellipse. If the decision variable has jumped across the 
ellipse, then the width of the ellipse at the point of the current pixel 
has to be less than one unit length. Therefore, the rest of region 1 is 
represented by a line and the end of region 1 coincides with the end 
of the line or the top of the ellipse. The top of the ellipse, Ytop, is 
calculated by first using the larger of the parameters, a and b, and 
the angle of rotation to represent the ellipse as a line segment and 
then calculate the top end point of the line segment. 
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The reason for not presenting this method as the algorithm of choice, 
instead of the method used in the algorithm in figure 17, is that in a 
small class of thin rotated ellipses, the comparison of the two 
components of the gradient is not an accurate indicator of a change in 
regions. This is caused by the fact that a change in regions using the 
comparison method is determined only when the decision variable 
jumps across the line that passes from the origin through the 
boundary between the regions. In a class of thin rotated ellipses, this 
dividing line between regions can be slopped such that the decision 
variable crosses the line a number of pixels too late. However, even 
this problem can be solved with additional tests in the test condition 
for the while loop. But then by increasing the arithmetic in the inner 
loops of the algorithm, we increase the arithmetic per pixel plotted, 
erasing the benefits obtained from not having to calculate the 
boundary points between regions. 
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procedure GENERAL_ELLIPSE (a, b, theta : real) 
var	 x, y, X:V, 'tV, YR, XH, XL : integer;
 

aSq,Xf,Yf,XfSq,YfSq,A,B,C,D,A2,B2,C2,B_2,kl,k2,k3,k4,
 
Fn,Fnw,Fw,Fsw,Fs,Fn n,Fn nw,Fnw n,Fnw nW,Fw w,Fw nw,Fnw w,
 

Fw sw, Fsw w, Fsw sw,Fs ;;Fs ;;',Fsw ;; dl, d2-; d3, d4-; Xinit., Yinit-; 
XV~Yv,Xr,Yr,Xh,Yh,Xl.Yl,cr~ssl,c;;ss2,cross3,cross4real; 

begin 
aSq := a * a; 
c :- sqrt(aSq - b * b) focal point to standard ellipse } 
Xf = c * cos (theta); focal point rotated theta degrees 
Yf = c * sin(theta); 
XfSq = Xi * Xf; 
YfSq = Yf * Yf; 

A := aSq - XfSq;	 { Coefficients to (G2) } 
B := -2 * Xf * Yf;
 

C aSq - YfSq;
 
D := aSq * (YfSq - A);
 

A2 :- A + A; B2 := B + B; C2 := C + c; 

kl := -B/C2; { boundary point bet reg 8 and 1 }
 
Xv :- sqrt( -D/(A + B*kl + C*kl*kl) ) ;
 

if (Xv < 0) then Xv := -Xv;
 
Yv "= kl * Xv;
 

k2 .- -B/A2; { boundary point bet reg 2 and 3 } 
Yh :- sqrt( -D/(A*k2*k2 + B*k2 + C) ); 
if (Yh < O) then Yh := -Yh; 

Xh .= k2 * Yh; 

k3 .= (A2 - B)/(C2 - B); { boundary point bet reg 1 and 2 } 
Xr := sqrt( -D/(A + B*k3 + C*k3*k3) ); 
Yr := k3 * Xr; 

if (Xr < Yr*kl) then Yr := -Yr; 

k4 := (-A2 - B)/(C2 + B); { boundary point bet reg 3 and 4 } 
Xl :- sqrt( -D/(A + B*k4 + C*k4*k4) ); 
Yl :- k4 * Xl; 

if (Xl> Yl*kl) than Xl := -Xl; 

x:v .- ROUND (Xv) ; YV : = ROUND (Yv) ; { rounded boundary points }
 
YR ROUND (Yr) ; XH "= ROUND (Xh); XL .= ROUND (Xl};
 

x := XIJ; { starting pixel }
 
y := W;
 

Xinit :- x - 0.5; { initial evaluation point of decision variable } 
Yinit := y + 1; 

Fn := C2*Yinit + B*Xinit + C; { initial Fn, Fnw and dl } 
Fnw = Fn - A2*Xinit - B*Yinit + A - B; 
dl := (A*Xinit*Xinit) + (B*Xinit*Yinit) + (C*Yinit*Yinit) + D; 

{initialization of second order part.ial differences } 
Fn n "= C2; Fn nw := Fnw n "= C2 - B; Fnw nw .- A2 - B2 + C2; 

Fw w := A2; Fw nw := Fnw w := A2 - B; Fsw_sw := A2 + B2 + C2; 
Fs s := C2; Fw sw := Fsw w := A2 + B; Fs sw := Fsw s .- C2 + B;-

(constants used in determining ~f decision variable has crossed ellipse } 
crossl ;= B - A; cross2:= A - B + C; cross3:= A + B + C; cross4:= A + B; 

Fig. 17. Algorithm to draw half arc of general ellipse 
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while (y < YR) do begin { ----------------- REGION 1 ------------------ } 
setpixel (x, y) ; 
y := y + 1; 
if (d1 < 0) or (Fn - Fnw < cross1) than 

beqin 
d1 := d1 + Fn; Fn:= Fn + Fn_n; Fnw := Fnw + Fnw_n; 

end
 
elae beqin
 

x := x - 1;
 
d1 := d1 + Fnw; Fn := Fn + Fn_nw; Fnw := Fnw + Fnw_nw;
 

end 
and { ------------------------------------------------------------------- 

{ Change Regions
 
Fw :~ Fnw - Fn + A + B + B_2; Fnw := Fnw + A - C;
 
d2 := d1 + (Fw - Fn + C)/2 + (A + C)/4 - A;
 
while (x > XH) do beqin (----------------- REGION 2 ----------------- 


setpixel{x,y);
 
x := x - 1:
 
if (d2 < 0) or (Fnw - Fw < cross2) than
 

beqin
 
y := y + 1;
 
d2 := d2 + Fnw; Fw:= Fw + Fw_nw: Fnw := Fnw + Fnw_nw;
 

end
 
elae beqin
 

d2 := d2 + Fw; Fw:= Fw + Fw_w; Fnw := Fnw + Fnw_w; 
end
 

and { ------------------------------------------------------------------- 
{ Change Regions
 

d3 := d2 + Fw - Fnw + C2 - B; Fw := Fw + B;
 
Fsw = Fw - Fnw + Fw + C2 + C2 - B;
 
while (x < XL) do beqin {---------------- REGION 3 ----------------- 


setpixel (x, y) ;
 
x := x - 1;
 
if (d3 < 0) or (Faw - Fw > cross3) then
 

beqin
 
d3 :~ d3 + Fw; Fw:2 Fw + Fw_W; Fsw :~ Fsw + Fsw_w; 

end
 
elae beqin
 

y := y - 1;
 
d3 :~ d3 + Faw; Fw:= Fw + Fw_aw; Fsw := Faw + Faw_aw;
 

end 
and ( ------------------------------------------------------------------- 

{ Change Regions } 
Fs := Fsw - Fw - B; d4 := d3 - Faw/2 + Fa + A - (A + C - 8)/4;
 
Fsw := Fsw + C - A; Fs := Fs + C - B_2:
 
'N := -'N;
 
while (y > YV) do beqin ( ---------------- REGION 4 ------------------ }

setpixel (x, y) ; 
y := y - 1; 
if (d4 < 0) or (Fsw - Fs < cross4) then 

beqin 
x := x - 1;
 
d4 := d4 + Fsw;
 Fsw := Fsw + Fsw_sw; 

end
 
elae beqin
 

d1 := d1 + Fs; Fsw := Fsw + Faw_a; 
end 

end ( ------------------------------------------------------------------- 
setpixel (x, y) ; 

end { end GENERAL ELLIPSE f 

Fig. 17. cont. 
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B. FILLED PRIMITIVES 

The algorithms presented m the prevIOUS sections only draw single
pixel outlines of primitives. However, algorithms to draw filled 
primitives have many uses in 2D graphics applications. These 
algorithms can be divided into two tasks: calculating the pixels that 
form the filled primitive, and deciding with what value to fill each 
pixel. 

1. Calculating Representation of Filled Primitive 

The algorithms to scan-convert single-pixel outlines can be easily 
extended to draw filled primitives. Determining which pixels to fill 
involves intersecting successive row of pixels with the single-pixel 
outline to calculate the spans of adjacent pixels in each row that lie 
inside the filled primitive. Therefore, for the intersection of the 
primitive with a particular row, a span is characterized by a start 
pixel, which is the leftmost pixel of the single-pixel outline within the 
row, and an end pixel, which is the rightmost pixel of the single-pixel 
outline within the row. To draw the filled primitive, we fill each 
span that represents the primitive. 

2. Fill Patterns 

Once we have determined the spans that represent the filled 
pnmltlve, we can fill the spans with either a solid color or a pattern. 
Filling the primitive with a solid color involves simply setting each 
pixel within a span to the same color. However, filling the primitive 
with a pattern raises a number of issues. In the simplest case, the 
pattern is a bitmap, where this bitmap is repeated over the 
primitive. Calculating the value of a pixel within a span, involves first 
calculating the corresponding scanline within the bitmap that repeats 
over the span, and then calculating the corresponding bit within that 
scanline of the bitmap that represents the pixel to the colored. If we 
are using the bitmap as an opaque pattern, a 1 in the bitmap 
represent shading the pixel with the foreground color, and a 0 
represents shading the pixel with the background color. On the other 
hand, if we use the bitmap as a transparent pattern, then only when 
the bit is aI, do we shade the pixel with the foreground color. An 
important issue in using patterns is how the pattern repeats over the 
primitive. That is, we need to know where the pattern is anchored to 
determine how the pattern repeats over the primitive or 
equivalently, which bit in the pattern corresponds to the pixel to be 
colored. One technique is to anchor the pattern to the primitive. 

35 



That is, the top-left pixel of the pattern is anchored to a particular 
pixel of the primitive. The advantage of this technique is that when 
we move the primitive, the pattern moves with the primitive. 
However, every time a primitive is drawn, we have to specify an 
anchor point. A second technique anchors the primitive to the 
window in which the primitive is being drawn. The disadvantage of 
this technique is that if the primitive is moved, the pattern does not 
move with the primitive. An interesting feature of this method is 
that primitives that are painted with the same pattern overlap and 
abut without any discontinuities in each primitives pattern. 

3. Tiling 

Instead of using a bitmap as a pattern, we can use a tile pixmap to 
tile the primitive. Here, we use the same technique as in patterns to 
index into the pixmap. However, instead of setting the pixel to be 
colored to either the foreground or background color, we set its color 
to the color of the corresponding pixel in the tile pixmap. In the case 
of a monochrome display, tiling is the same as using an opaque 
pattern, where the tile is a bitmap. 

C. THICK PRIMITIVES 

Thick primitives can be drawn using either of four methods. The first 
method is a crude approximation that replicates pixels in each 
column (or row) during scan conversion. The second method draws 
two copies of the primitive a thickness t apart and fills in the spans 
between the inner and outer boundaries. The third method traces 
the cross-section of the pen tip along the single-pixel outline of the 
primitive. The fourth method approximates primitives by polylines 
and then uses a thick line for each polyline segment. 

1. Replicating Pixels 

Here, instead of drawing one pixel per iteration of the inner loop of 
the scan-conversion algorithm, we draw multiple pixels. In the scan
conversion algorithm, if the choice of the next pixel is between two 
pixels that lie in the same column, for example E and NE, then we 
draw a stroke of pixels that lie in the column of the next pixel chosen 
and is centered on that pixel. Similarly, if the choice of the next pixel 
is between two pixels that line in the same row, the pixels are 
duplicated in rows. The thickness of the line is specified by the 
number of pixels replicated at each iteration of the inner loop. The 
advantage of this method is that it is very efficient. However, it does 
not produce the most visually pleasing thick primitives. In the case 
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of lines, the end points of the lines are restricted to vertical or 
horizontal edges. Furthermore, lines that are horizontal and vertical 
have a different true thickness from lines at an angle, where the true 
thickness of the primitive is defined as the distance between its 
boundaries perpendicular to the tangent of the primitive. This visual 
discrepancy becomes more apparent when we draw a circle or ellipse 
where the slope of the curve varies continuously. When drawing an 
ellipse, for example, the ellipse will appear thin where the slope of 
the ellipse is horizontal or vertical and will appe'ar thick where the 
slope of the ellipse is a diagonal. 

2. Filling Areas Between Boundaries 

This method draws a thick primitive as the approximation of the 
area that lies between the boundaries formed by stepping a distance 
t/2 on either side of the zero-width curve that is defined by the 
mathematical equation of the primitive. The strength of this method 
is that it is based on the intuitively correct definition of a thick 
primitive. However, when using this method, the extended 
boundaries of the thick primitives are not easily described by using 
only integer arithmetic. In the case of a line, a thick line is really the 
area enclosed by a rectangle or a rotated rectangle. Even if the end 
points of the line fall on integer coordinate points and the thickness, 
t, of the line is an integer, the end points of the bounding lines that 
define the thick line may not fall on integer coordinates. And since 
floating point arithmetic is needed to draw lines with end points that 
do not fall on integer coordinates, we need to use floating point 
arithmetic to select the pixels that define the bounding lines of a 
thick line. Therefore, in order to draw a thick line, we have to 
calculate the pixels that form the bounding lines of the thick line, and 
then, as in the case of filled primitives, use these pixels to calculate 
the spans form the thick line. 
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Fig. 18. Thick circle with radius 8 and thickness 4, 
displaying scanline representation 

In the case of a circle, a thick circle is the area enclosed by two 
concentric bounding circles. If the thick circle is defined by a radius 
R and a thickness t, then the inner bounding circle has a radius R-t/2 
and the outer bounding circle has a radius R+t/2. Therefore, in order 
to draw the thick border of a circle, we scan-convert the single-pixel 
outlines of the inner and outer bounding circles. The pixels that 
represent these outlines are then used to calculate the spans that 
form the thick boundary. In fact, we only need calculate the spans 
that form on octant of the thick circle and then by symmetry 
calculate the spans that form the other octants. 

A simple technique for calculating the spans of thick circles to use 
the pixels that form the inner and outer concentric circles to fill an 
array of entries that represent the scanlines that form the border of 
the thick circle. Figure 18 illustrates a circle with a radius of 8 and a 
thickness of 4, where the inner concentric circle has a radius of 6 and 
the outer concentric circle has a radius of 10. As illustrated, each 
array entry, representing a scanline, contains x-values of the start 
and stop pixels of the left border of the circle and the x-values of the 
start and stop pixels of the right border. The single-pixel outline of 
the outer concentric circle is used to fill in the values of StartLeft and 
StopRight. and the single-pixel outline of the inner concentric circle is 
used to fill in the values of StopLeft and StartRight. The array of 
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entries representing the scanlines are then used to draw the thick 
border of the circle, as illustrated in figure 18. 

Fig. 19. Filled border of thick circle 

Figure 19 illustrates the same thick circle as in figure 18, but with 
the area between the inner and outer concentric circles shaded. The 
pixels that form outer and inner concentric circles are shaded 
differently only for illustrative purposes. The thick border of the 
circle, therefore includes the pixels that form the inner and outer 
concentric circles, in addition to the pixels that lie in between the two 
concentric circles. If both, t/2 and R, are integers then the integer 
version of the circle algorithm can be used to select the pixels that 
form the bounding curves of a thick circle. 

Unfortunately, in the case of standard ellipses, the bounding curves 
that are formed by moving a distance t/2 on either side of the curve 
of the ellipse are not concentric ellipses. However, concentric ellipses 
may be used to approximate a thick ellipse since the functions that 
define the actual bounding curves are 8th order functions [SALM96] 
and the task of selecting the pixels that outline these curves is 
computationally expensive. Therefore, to draw a standard ellipse 
with thickness t and with dimensions a and b, as defined in the 
section on standard ellipses, we need to calculate the pixels that form 
the area between the two bounding concentric ellipses where the 
inner bounding ellipse has dimensions a-t/2 and b-t/2, and the outer 
bounding ellipse has dimensions a+t/2 and b+t/2. Again, as in the 
case of thick circles, the task of drawing a thick ellipse can be 
accomplished by using an array of entries that encode the scanlines 
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that form the thick ellipse. The limit as the width of the ellipse goes 
to zero is the case where the outer and inner concentric ellipses 
coincide with the zero-width curve of the ellipse. Therefore, as the 
width goes to zero, the pixels selected for the thick ellipse are the 
same pixels as those selected for the single-pixel outline of the 
ellipse. Using this method precludes the situation where if we define 
a zero-width ellipse as not being visible (no pixels selected), then 
drawing an ellipse with a thin width may appear as an outline of the 
ellipse with gaps of pixels missing. 

Since general ellipses are defined as standard ellipses that are 
rotated an arbitrary angle, in order to draw a thick general ellipse, 
the bounding concentric ellipses that define the thick standard 
ellipse are rotated and the pixels that lie between the two rotated 
bounding ellipses represent the thick general ellipse. Again, as in the 
case of thick standard ellipses, the task of drawing a thick ellipse can 
be accomplished by using an array of entries that encode the 
scanlines that form the thick general ellipse. 

3. Tracing The Outline With The Pen Tip 

This method uses a pen tip to trace the outline of the pnmlt1Ve. 
That is, a particular point of the pen tip follows the path of the 
single-pixel outline of the primitive. We can use pen tips of any 
shape, however circular pen tips produce the most visually pleasing 
thick primitives. The brute-force algorithm for drawing thick 
primitives using this method, is to draw the pen tip at each pixel of 
the single-pixel outline. However, since the pen tip overlaps at 
adjacent pixels, we will be setting pixels more than once. A better 
technique is to use the spans of the pen tip at each pixel of the 
single-pixel outline to compute the spans that form the thick 
primitive. This technique can be made more efficient by not using 
certain spans of the pen tip depending on the slope of the primitive 
and the shape of the pen tip. When a circular pen tip is used, this 
method produces the most accurate thick primitives. Also, this 
method is easily extensible to any primitive, including primitives 
with sharp corners. 

4. Thick Polyline Approximation 

All primitives can be "piecewise linearly" approximated by 
computing points on the boundary and then connecting these points 
with line segments to from a polyline. In order to closely 
approximate the primitive where the slope of the primitive varies 
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rapidly, the points must be calculated such that the points are closer 
together, and hence the line segments are smaller. Ellipses and 
circles, which are a class of ellipses, can be represented as two 
equations (one for the x and the other for the y value of the points 
that form the ellipse) that are each ratios of parametric polynomials 
[LIEN87]. This representation lends itself readily to such a piecewise
linear approximation of the ellipse. In order to draw the thick 
primitive, the individual line segments are then drawn as rectangles 
with specified thickness. Here however, the end points of the lines 
have to be joined smoothly. 

Again, as in the case of all raster drawing algorithms, the choice of 
which definition of thick primitives to use and the choice of which 
algorithmic approximations to use 
between the speed of the resulting 
appearance of the primitive. 

are dictated 
algorithm 

by 
and 

the trade-offs 
the visual 

5. Patterned Thick Primitives 

Once we have calculated the spans that represent the thick border of 
the primitive, as in the case of filled primitives, we can pattern or 
tile the spans that represent the border. In fact, we can draw filled 
primitives with thick borders, where the border is painted with one 
pattern and the region inside the border is painted with another 
pattern. 

6. Border Styles 

Another useful feature of 2D graphics applications, is the ability to 
draw primitives with various line styles. That is, using dashes to 
draw the border of the primitive. In the case of the single-pixel 
outline of a line, we can incorporate a mask of bits that describes the 
dashed style into Bresenham's line algorithm. Figure 20 illustrates 
using Bresenham's line algorithm for drawing dashed lines in the 
first octant. 
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procedure LINE(Xs,Ys,Xf,Yf, mask: integer) 
var dx, dy, const1, const2, d, x, y : integer; 

begin 
dx := Xf - Xs; 
dy := Yf - Ys; 
d := 2 * dy - dx: 
const1 := 2 * dy; 
const2 := 2 * (dy - dx): 
x := Xs; 
y := Ys: 
if (low order bit of mask is a 1) than 

setpixel (x, y) ; 
while x < Xf do begin 

x - x + 1: 
if d < 0 then choose pixel E 

d := d + const1 
el.e choose pixel NE 

begin 
y = y + 1: 
d := d + const2 

end 
Rotate Right(rnask); ( rotate mask one bit to right) 

-{ shifting low order bit into high order bit position 
if (low order bit of mask is a 1) then 

setpixel(x,y); 
end {whilel 

end 

Fig. 20. Algorithm for drawing lines in the first octant 

In the case of circles and ellipses, we can incorporate a similar mask 
into the scan-conversion routines to draw these primitives. 
However, since as in the case of a circle, only the pixels that form an 
octant of the circle are calculated and then the pixels for the other 
octants are drawn by symmetry, we have to draw the pixels in an 
order that is continuous around the circle. Otherwise, at the 
boundaries between octants, the dashed style may break down. 

In the case of thick primitives, we can extend this method only if we 
use the pen tip method to draw a primitive. However, doing this does 
not produce visually pleasing dashed primitives. In the case of thick 
lines, a thick dashed line is really a number of filled rectangles or 
rotated rectangles that are spaced in a regular manner. Therefore, in 
order to draw a thick dashed line, we have to scan-convert one 
repeatable unit of filled rectangles depending on the dashed style, 
and then draw the line by simply translating this repeatable unit for 
the length of the line. If we are using the polyline approximation to 
draw· primitives, then we can use the dashed lines to draw the 
dashed polyline approximation. However, the dashes must be 
continuous from one segment to the next. 
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III. CLIPPING
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Fig. 21. Clipping primitives to the application window 

Another concern of raster drawing algorithms is that when a 
windowing system is employed, the primitives that are drawn by an 
application have to be clipped to the window that belongs to that 
application. In addition, the application's window may be obscured 
by several other windows requiring the primitive to be clipped to 
several rectangular areas. Therefore, in order for a primitive to be 
drawn in only the visible portions of the application's window, it may 
have to be clipped to several rectangular areas. There are several 
approaches to clipping. One approach to clipping is to perform the 
clipping in the drawing algorithm right before a pixel is set. In the 
case of an unobscured window, clipping is done only to the bounding 
rectangle of the window. Therefore, before a pixel is set, its 
coordinates are compared against the bounding rectangle of the 
window. If the pixel lies inside the window then it is set and if it lies 
outside the window it is not set. The comparison of a pixel located at 
(x,y) and a clip rectangle can be done by the following simple 
s tatemen1. 

if ( (x ~ clip.left) and (x ~ clip. right)
 
(y ~ clip.bottom) and (y ~ clip.top)
 

then setpixel(x,y);
 

In using this approach, the drawing algorithm still calculates all the 
pixels that represent tne primitive, but only sets those pixels that lie 
in the visible portion of the window. 
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In the case of multiple clip rectangles, we could perform the above 
comparison for every clip rectangle. However, the speed of the 
drawing algorithm would decrease as the number of clip rectangles 
increased. A better solution would be to keep a list of visible and 
invisible rectangles. When the current pixel goes outside the current 
clip rectangle, then the list would be traversed to find the new clip 
rectangle in which the current pixel lies. In addition, a flag would 
indicate if the current clip rectangle is visible or invisible and if it is 
visible then the current pixel should be set. 

Although this approach is simple, it is inefficient when most or all of 
the primitive is located outside the window. This inefficiency arises 
because we calculate all the pixels that represent the primitive and 
then clip each pixel to the clip rectangle. A better approach would be 
to determine the visible and invisible sections of the primitive and 
then only draw the visible sections. Therefore, in order to clip a 
primitive, we need to calculate the end points of the sections that are 
visible and then be able to draw those sections. 

A. CLIPPING LINES 

In the case of line segments, the intersection of a line segment with 
the clip window can produce at most one line se"gment. Figure 22 
illustrates a number of line segments that are clipped to a window. 
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Fig. 22. Clipping lines to the application window 

1. Cohen-Sutherland Algorithm 

In order to clip a line to a window, we then only have to calculate the 
end points of the visible segment and then draw the visible line 
segment. Cohen and Sutherland [NEWM79] developed an algorithm 
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that efficiently calculates these end points. The algorithm first 
determines if the line is completely inside the window, in which case 
we already have the end points of the visible segment, or if the line 
can be trivially rejected by checking if both end points lie on the 
outside halfplane of any edge of the window, in which case the line is 
completely outside the window. If neither of the above cases is true, 
then it divides the line into two segments such that one segment can 
be trivially rejected. It then proceeds to clip the remaining segment 
by applying the above two tests, and so on. This is repeated until the 
remaining segment is completely inside the window or can be 
trivially rejected. 

outside halfpl~-:-1 ~outside halfplane
 
of left edge of Right edge
 

\ 
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0110 of Bottom edge 0101 0100 

Fig. 23. Extending edges of window to divide plane 
of window into 9 regions 

In order to test whether the line is completely inside the window or 
lies in the outside halfplane of an edge, the edges of the window are 
extended to divide the plane of the window into nine regions (see 
figure 23). Each region is assigned a 4-bit code, where the code is 
determined by within which outside halfplane of the edges the 
region lies. The 4 bits in the code are assigned the following meaning: 

First bit: outside halfplane of left edge. (left of left edge) 
Second bit: outside halfplane of right edge. (right of right edge) 
Third bit: outside halfplane of bottom edge. (below bottom edge) 
Fourth bit: outside halfplane of top edge. (above top edge). 
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Since the regIOn that lies above and to the left of the window, for 
example, lies in the outside halfplane of the left edge and in the 
outside halfplane of the top edge, it is assigned a code of 1001. Each 
end point of the line is then assigned the code of the region in which 
it lies. We can now use the codes of the end points to determine if 
the line lies completely inside the window or in the outside halfplane 
of an edge. From figure 23, it is clear that if both 4-bit codes of the 
end points are zero then the line lies completely inside the window. 
However, if both end points lie in the outside halfplane of a 
particular edge, then the codes for both end points will contain a set 
bit in the location that represents the outside halfplane of the edge. 
Therefore, if the logical and of the codes of the end points is not zero, 
then both end points must lie in the outside halfplane of one of the 
edges and hence the line can be trivially rejected. 

D 

Top edge 

Window 

,-------~~--------~---------------

Fig. 24. Subdividing line to determine 
visible segment 

If the line is not completely inside the window or cannot be trivially 
rejected, we have to subdivide the line into two segments such that 
one segment can be thrown away. This is accomplished by using an 
edge the line crosses to cut the line into two segments. Then, the 
section that lies in the outside halfplane of the edge is thrown away. 
The line segment AD in figure 24, for example, crosses two edges, the 
top edge and the left edge. If we use the left edge to cut the line, we 
can then throwaway the segment CD that lies in the outside 
halfplane of thB left edge. We now have to apply the inside window 
and trivial rejection tests to the new line AC. The line still fails both 
tests. Since the line only crosses the top edge, we use the top edge to 
cut the line into two segments AB and BC. The segment BC is in the 
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outside halfplane of the top edge and hence is thrown away. Finally, 
the remaining segment AB is found to lie completely inside the 
window and is the segment that is drawn. We can determine which 
edges the line crosses by examining the 4-bit codes of the end points. 
If one end point is in the outside halfplane of the left edge, and the 
line failed the trivial rejection tests, then the other point has to lie on 
the inside halfplane of the left edge. So the line must cross the left 
edge. Therefore, if a line has failed the trivial rejection tests, then the 
bits that are set in the codes of its end points represent the edges the 
line crosses. However, if an end point is inside the window, we 
cannot use it to determine which edges the line crosses. Hence, we 
must use the code of an end point that is outside the window or 
equivalently, the code of an end point that is not zero. The full 
algorithm is presented in figure 25. The codes are defined as sets, for 
illustrative purposes. 

Although this algorithm appears efficient, it is not the most efficient 
algorithm to clip lines. One problem with the algorithm is that every 
time it clips the line to the edge of the window, it recalculates the 
slope, m, of the line. However, this can be rectified by adding a test 
to check if the slope has already been calculated and only calculating 
it if it has not already been calculated. Another problem that is 
inherent in the algorithm is that the order of the edges it clips the 
line against makes a difference to the number of edges it clips 
against. That is, sometimes it clips the line to edges that it does not 
really have to clip against. In the line segment AD in figure 24, for 
example, if we first clipped the line against the left edge, then we 
would again have to clip it against the top edge. However, if we first 
clipped the line against the top edge, the remaining segment AB 
would be completely inside the window and we would not have to 
clip the line against any other edge. Therefore, in this case, clipping 
the line against the left edge is not really necessary. 

47
 



var xLeft,xRight,yBottom,yTop : real: {clip rectangle of window} 

procedur8 CLIP LINE(Xl,Yl,X2,Y2 : real} 
type edge-- (LEFT,RIGHT,BOTTOM,TOP); 

code - set of edge: 
var Cl,C2,Cout code; x,y: real: accept,done boolean 

procedur8 ENCODE(x,y real; var C : code}: 
begin 

C := [];
 
if x < xLeft then C := [LEFT]
 
el.e if x > xRight then C := [RIGHT];
 
if x < yBottom then C := C + [BOTTOM]
 
al.e if x > yTop then C := C + [TOP]
 

end 

beqin 
ENOODE(Xl,Yl,Cl}; ENCODE(X2,Y2,C2); 
repeat 

if (Cl = []) and (C2 = []) then {Line is inside window} 
beqin 

accept := true: {trivially accept line} 
done := trua 

end 
al.e if (Cl * C2) <> 1:] then (logical intersection of codes) 

done := true (trivially reject line} 

el.e (failed both tests} 
beqin 

if Cl <> [] then (pick code of an end point} 
Gout := Cl: {than is outside clip recti 

el.e Cout := C2; 

if LEFT in Cout then begin (crosses left edge) 
x := xLeft; 
y := Yl + (Y2 - Yl) * (xLeft - Xl)!(X2 -Xl): 

end el.e 
if RIGHT in Cout then begin (crosses right edge} 

x :- xRight; 
y :- Yl + (Y2 - Yl) * (xRight - Xl)!(X2 -Xl); 

end el.e 
if BOTTOM in Cout then begin {crosses bottom edge} 

y :... yBottom; 
x :- Xl + (X2 -Xl) * (yBottom - Xl)!(Y2 - Yl); 

end el.e beqin {crosses top edge} 
y := yTop: 
x := Xl + (X2 -Xl) * (yTop - Xl)!(Y2 - Yl): 

end: 

if Cout = Cl then 
Xl .= x: Yl "- y; ENCODE(Xl,Yl,Cl): 

el.e 
X2 .= x; Y2 := y; ENCODE(X2,Y2,C2); 

end 
until done; 

if accept then DrawLine(Xl,Yl,X2,Y2): 
end 

Fig. 25. Cohen-Sutherland Line-Clipping algorithm 
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2. Nicholl-Lee-Nicholl Algorithm 

Nicholl, Lee and Nicholl [NICH87] developed a line clipping algorithm 
that avoids computing intersection points which are not end points of 
the final visible line segment and hence uses fewer arithmetic 
operations than the algorithm in figure 25. The algorithm works as 
follows. As before, the edges of the window are extended to divide 
the plane of the window into nine regions. There are three types of 
regions, corner regions, side regions and the region that is the 
window. We pick one end point, pI, of the line, and depending on 
within which type of region the end point lies, it subdivides the 
plane of the window as illustrated in figure 26. 
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Fig. 26. Subdivision of the plane of the window 
depending on the type of region in which pI is located 

The subdivisions are determined by dividing all positions of the end 
point, p2, such that each subdivision corresponds to intersections of 
the line with the same boundaries of the clip rectangle. In figure 26, 
the letters L,R,T and B stand for the left, right, top and bottom 
borders of the clip rectangle. In addition, any region that is bounded 
by solid lines and is labeled with a letter or a letters represents the 
subdivision where if p2 were located in that region, the line would 
cross the border(s) of the clip rectangle that the label indicates. If p2 
is located in a subdivision that is not labeled, then we do not need to 
calculate any intersection points. That is, the line is either completely 
outside or completely inside the clip rectangle. Therefore, the 
algorithm first determines within which of the 9 regions the end 
point pI lies, and then depending on that region it determines the 
location of p2 among the appropriate subdivisions. The algorithm 
incrementally determines the subdivision within which p2 is located, 
by eliminating subdivisions that are easier to check to home in on 
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the correct subdivision. Once we have determined within which 
subdivision p2 is located, we can determine which borders of the 
window to clip against. In this way, only the necessary intersection 
points are calculated. 

The algorithm in figure 27 illustrates the calculations of the 
intersection points when pI is in the top-left corner region. Note that 
the calculations (topproduct, leftproduct, etc.) performed for 
eliminating the easier subdivisions are reused to simplify the 
calculations for subdivisions that are not as easy to check. In 
addition, these calculations are also used again if we need to calculate 
any intersection points. By symmetry, we can derive the calculations 
of the intersection points when pI is in any of the other corner 
regions. We can also similarly derive the calculations if pI is located 
in a side region or the window region. Nicholl, Lee and Nicholl 
describe the computations for each type of region. Instead of 
deriving the calculations for each region that is of the same type, 
they use geometrical transformations and use the calculations for one 
of the regions in that type. If pI lies in the bottom-left corner region, 
for example, then we can use the calculations for the top-left corner 
region in figure 27 by reflecting both the line and the clip rectangle 

\	 about the x-axis and then using the fact that the reflected location of 
pI lies in the top-left corner region. When the final end points of the 
line are calculated, these end points are reflected back across the x
axis to give the end points (if any) of the line to be drawn. 

var xLeft,xRight,yBottom,yTop : real; {clip rectangle of window} 

procedur. CLIP_LINE (Xl,Yl,X2,Y2 : real) 
beqin 

i~ Xl < xLeft than LeftColumn(Xl,Yl,X2,Y2,display) {-------->} 
el.e if Xl > xRight then RightColumn( ... ) {right column} 
el.e CenterColumn( ... ) {center column} 

end 

procedure LeftColumn(Xl,Yl,X2,Y2 : real; var display:boolean); 
beqin 

if X2 < xLeft than display := fal.e; {Trivial reject} 
el.e if Yl > yTop than 

TopLeftCorner(Xl,Yl,X2,Y2,display) {-------->} 
el.e if Yl < yBottom then BotLeftCorner( ... ); {bot-Left corner} 
el.e LeftSide( ... ) {Left Side} 

end 

Fig. 27. Nicholl-Lee-Nicholl Algorithm to 
clip line if pI lies in top left comer 
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procedure TopLeftCorner(Xl,Yl,X2,Y2 : rea~: var display:boo~e&n): 

var deltaX,deltaY,topproduct,leftproduct : rea~: 

beqin 
if Y2 > yTop then display := fa~ae: (Trivial regect} 
e~ae beqin
 

deltaX :- X2 - Xl: deltaY :- Y2 - Yl:
 
topproduct :- (yTop - Yl) * deltaX:
 
leftproduct :- (xLeft - Xl) * deltaY:
 
if topproduct > leftproduct then
 

BelowTopLeftCornerPoint(Xl,Yl,X2,Y2,display, 
deltaX,deltay, leftproduct): {-------->} 

(line passes below top left corner of clip rectangle} 
e~ae 

AboveTopLeftCornerPoint( ... ) {symmetric to below case} 
end 

end 

procedure BelowTopLeftCornerPoint(Xl,Yl,X2,Y2 : rea~; var 
display:boo~ean: deltaX,deltaY,leftproduct real): 

var deltaX,deltaY,topproduct,leftproduct : rea~: 

beqin 
if Y2 >- yBottom then beqin 

if X2 > xRight then beqin {intersects right edge} 
X2 := xRight 
Y2 := Yl + (xRight - xl) * deltaY/deltaX; 

end
 
Xl := xLeft; {intersects left edge}
 
Yl : = yl + leftproduct/deltaX;
 
display :- true
 

end 
e~.e beqin 

bottomproduct :- (yBottom - Yl) * deltaX; 
if bottomproduct > leftproduct then {line passes below } 

display :- fal.e: {bot-left corner of clip rect - reject} 
e~ae beqin 

if X2 > xRight then beqin 
rightproduct :- (xRight - Xl) * deltaY; 
if bottomproduct > rightproduct then beqin 
{line passes below bot-right corner of clip rectangle} 

Y2 := yBottom; {intersect bottom edge} 
X2 := xl + bottomproduct/deltaY; 

end 
e~ae beqin 

X2 := xRight; (intersects right edge} 
Y2 := yl + rightproduct/deltaX; 

end
 
end
 
e~.e beqin
 

Y2 := yBottom; (intersect bottom edge} 
X2 := xl + bottomproduct/deltaY; 

end 
Xl := xLeft; (intersects left edge} 
Yl := yl + leftproduct/deltaX; 
display := true 

and
 
end
 

end
 

Fig. 27. cont. 
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3. Drawing The Clipped Line 

Once we _have determined the end points of the visible line segment, 
we then have to draw the visible segment. The pixels selected to 
draw the line have to be exactly the same as the pixels that 
represent the original unclipped line. That is, if the window grows, 
and the whole line becomes visible, the section that becomes visible 
has to be drawn so it abuts the previous visible segment correctly. 
In addition, if the line is erased later, we cannot undraw pixels that 
are different from those originally set. The algorithms of the 
previous sections describe clipping a line to a clip rectangle and 
produce the end points of the segment that lies within the clip 
rectangle. If these end points have been clipped by one of the edges 
of the clip rectangle, then the end points can have real coordinates. 
We are faced with two problems: starting the line algorithm at a 
clipped (real) end point, and making sure we draw all the pixels from 
the original line that lie within the clip rectangle. 

For a line with a slope in the first octant, for example, the line 
algorithm has to choose the next pixel from the pixels E and NE. It 
does this by choosing the pixel that lies closer to the line. We can 
accomplish the same result by taking the y-value of the line at the x
value of the two pixels, E and NE, and rounding it to determine the 
next pixel. Therefore, all the pixels that form a line can be calculated. 
by using the rounded y-value of the line for each integer x-value 
that spans the line. If a line with a slope in the first octant is clipped 
by the left edge, then the intersection of the line with the edge has 
an integer x coordinate, xleft, and a real y coordinate, (mxleft + b). 
And the pixel at the left edge (xleft, ROUND(mxleft + b)) is one of the 
pixels of the original unclipped line. If we start our incremental line 
algorithm at a pixel that lies on the original line and initialize the 
decision variable correctly, then all the other pixels selected for the 
rest of the line will be the same pixels that form the original 
unclipped line. In order to initialize the decision variable for a line 
with a slope in the first octant, if the first pixel is (xp,yp), then we 
simply calculate the decision variable at the midpoint between the 
pixels E and NE or equivalently at (xp+l,yp+l/2). 

The second problem of making sure we draw all the pixels of the 
unclipped line that lie inside the clip rectangle is not evident when a 
line with a slope in the first octant is clipped by only vertical edges. 
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However, when the same line is clipped by a horizontal edge, there 
may be multiple pixels that form the line along the horizontal edge. 
(see figure 28). When we clip the line, the clipped end point has a 
real x coordinate, (ybot - b)/m, and an integer y coordinate, ybot. 
Although we can show that the pixel at (ROUND«ybot - b)/m), ybot) 
is a pixel that lies on the original unclipped line, this pixel may not 
be the leftmost pixel of the span of pixels shown. From the figure 
and the midpoint method, it is clear that the leftmost pixel is the one 
that lies just above the place on the grid where the line first crosses 
above the midpoint y = ybot - 1/2. Therefore, we simply find the 
intersection of the line with the line ybot - 1/2 and take the ceiling 
of the x-value. That is, we start the algorithm at (CEILING(ybot - 1/2 
-b)/m), ybot). We run into the same problem if the line is clipped by 
the top edge, however, in this case we are calculating the ending 
pixel of the line. Here we clip the line to ytop + 1/2 and the ending 
pixel is the FLOOR of the intersection points x-value. 

ClipLeft 

ClipBottom 

(Xs.Ys) 

Fig 28. line with a slope in the first octant that is clipped 
by a horizontal edge 

To summarize, if we are clipping a line with a slope in the first octant 
against the clip rectangle (ClipTop, ClipLeft, ClipBottom, ClipRight), 
then we use one of the clipping algorithms presented in the previous 
section and clip the line against the clip rectangle (ClipTop + 1/2, 
ClipLeft, Clipbottom - 1/2, ClipRight). The clipping algorithm returns 
the real-valued start point (Xs,Ys) and the real-valued end point 
(Xe,Ye) of the clipped line. The starting pixel (XS,YS) and the x 
coordinate of the ending pixel XE are calculated as follows: 

XS := CSILING(Xs); 
YS := ~OUND(Ys); 

XE := "LOOR(Xe}; 
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We only need the x coordinate of the ending pixel to calculate how 
many pixels to draw. By symmetry, we can solve the same problem 
that occurs when lines with a slope in the second octant are clipped 
by the left and right clip edges. In this case, we clip the line against 
the clip rectangle (ClipTop, ClipLeft - 1/2, ClipBottom, ClipRight + 
1/2). The starting pixel (XS,YS) and the y coordinate of the ending 
pixel YE are calculated as follows: 

XS := ROUND(Xs);
 
YS := CEILING1Ys);
 
YE := FLOOR(Ye);
 

If all the end points of lines are restricted to integer values, then we 
can use the inner loop of the algorithm in figure 3 to select the pixels 
for the rest of the line. However, in order to calculate the initial 
decision variable with the constants, dx and dy, we have to use the 
end points of the original unclipped line. Again, the pixels selected 
will be exactly the same pixels that would represent the original 
unclipped line. The algorithm to draw the visible portion of a line 
with integer end points and with a slope in the first octant is given in 
figure 29. 

var 
begin 

dx := Xf - Xs; 
dy := Yf - Ys; 
const1 := 2 * dy; 
const2 := 2 * (dy - dx); 
x :- CEILING(xs); 
y : = ROUND (ys) ; 
Xend : = FLOOR (xf) ; 
d := 2*dy*(x - Xs) - 2*dx(y - ~s); 

setpixel (x, y) ; 
while x < Xend do begin 

x = x + 1; 
if d < 0 then 

d := d + const1 
el.e 

begin 
y = y + 1; 
d := d + const2 

end 
setpixel(x,y) 

end {while} 
end 

procedure LlNE(Xs,Ys,Xf,Yf: integer; 
xs,ys,xf,yf : real;) 

dx, dy, const1. const2. d, 

choose pixel NE 

choose pixel E 

{end points of original line} 
{end points of clipped line} 

x, y, Xend: integer; 

Fig. 29. Algorithm for drawing the visible portion of lines with a slope In the 
first octant and with integer end points. 
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---------

B. CLIPPING CIRCLES 

In the case of circles the task of clipping a circle is more complex 
because the primitive could intersect the window at more than two 
points causing multiple segments to be visible. In order to clip a 
circle, we first should check if the bounding square of the circle 
intersects the clip rectangle. If the bounding square is completely 
inside the clip rectangle, then the whole circle is visible. On the other 
hand, if the bounding square is completely outside the clip rectangle, 
then the circle is outside the window and is not visible. If the 
bounding square partially intersects the clip rectangle, then the circle 
mayor may not be partially visible. Once we have determined that 
the bounding square partially intersects the clip rectangle, we can 
continue clipping the circle by dividing the circle into quadrants, 
where each quadrant is bounded by a square. We then check if the 
bounding squares of the quadrants intersect the clip rectangle. If the 
bounding square of a quadrant lies completely inside the clip 
rectangle, then the curve of the circle that lies in that quadrant is 
completely visible and hence is drawn. If you recall, the algorithm to 
draw a circle only calculates the pixels for one octant and we have to 
use symmetry to plot the pixels in the other octants. If the bounding 
square of a quadrant lies completely outside the clip' rectangle, then 
the curve of the circle that lies in that quadrant is outside the 
window and hence does not have to be drawn. 

Bounding square of circle Bounding square of quadrant 
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Fig. 30. Bounding box of circle, quadrant and octant 

If the bounding square of the quadrant partially intersects the clip 
rectangle, we can further divide the curve of the circle that lies in 
the quadrant into octants (see figure 30) and then intersect the 
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bounding rectangles of the octants with the clip rectangle to 
determine if the curve in the bounding rectangle is completely 
visible or not. Finally, if the bounding rectangle of an octant partially 
intersects the clip rectangle, we can then draw the curve in the 
bounding rectangle by clipping each pixel to the clip rectangle. If the 
circle is very large, clipping each pixel of the curve that lies in the 
bounding rectangle of an octant may be expensive. A better method 
is to find the pixels that are the end points of the visible section of 
the circle in the octant and draw the pixels from one end point to the 
other. When we clip the bounding rectangle of an octant against the 
clip rectangle, we can also determine which edges of the clip 
rectangle intersect the bounding rectangle of the octant. We then 
intersect these edges with the curve of the circle to determine the 
intersection points of the edge with the circle. The intersection, for 
example, of the left edge of the clip rectangle, which is defined by 
the equation x = xLeft, with a circle centered at the point (Xc,Yc), 
which is defined by the equation (x-Xc)2 + (y-Yc)2 - R2 = 0 is 
calculated by substituting xLeft for x in the equation of the circle and 
solving for y. That is, 

x = xLeft 

and y =-Yc ± -VR2 - (xLeft + Xc)2. 

If the term in the square root is negative, then the edge does not 
intersect the circle. However, since we are only checking edges that 
intersect the bounding rectangle of the curve in the octant, the edge 
has to intersect the circle and it can intersect the circle at at most 
two points. We then check each intersection point, to see if it lies on 
the boundary of the clip rect and within the bounding rectangle of 
the octant. In addition, since an edge can intersect the curve of a 
circle in an octant at only one point, if we find that the first 
intersection point satisfies these conditions, then we do not have to 
check the other point. 

Furthermore, since only at most two borders of the clip rectangle can 
intersect the curve in the octant, once we have found two 
intersection points, we do not have to check the remaining edges. 
Figure 31 illustrates how to calculate the end points of the visible 
section of the curve in an octant. If we have a representation of the 
pixels that form an octant of the circle in memory I we can then use 
the end points to determine which pixels to set. That is, if only one 
border of the clip rectangle intersects the curve in the octant, we 
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determine the nearest pixel to the intersection point and then plot all 
the pixels of the curve in the octant that are in the inside halfplane 
of the edge. On the other hand, if two borders intersect the curve, 
then we determine the nearest pixel to one intersection point and 
plot all the pixels of the the octant that are in the inside halfplane of 
both edges. If no borders intersect the curve then we do not plot 
any pixels. In using. this method, we only calculate the pixels that 
form an octant of the curve when some or all of the circle is visible in 
the window, and we only have to perform these calculations once. If 
we do not have a representation of the pixels that form an octant in 
memory, we can calculate the pixels that only form the visible 
section of the octant. 

, 
left boundary clip rect	 : 

3. use intersection of clip rect "-.... 
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Fig. 31. Calculating the end points of the visible section of an octant of the 
circle that panially intersects the clip rect. 

For the specific example of figure 31, the algorithm to draw the 
visible section is given in figure 32. Note that when a vertical edge 
clips the first octant of the circle, there may be multiple pixels that 
form the circle and lie along the vertical edge. We have to make sure 
that all the pixels of the original unclipped circle that are within the 
clip rectangle are drawn. This situation is the same as that when a 
line with a slope in the second octant is clipped by a vertical edge. 
Using the same reasoning as in the case of clipped lines, for the 
example in figure 31, we can solve this problem by intersecting the 
circle the the clip edge xLeft - 1/2 instead of xLeft. The y-value of 
the last pixel within the clip rectangle is then FLOOR of the y-value of 
the intersection point. We therefore, modify the clip rectangle by 
changing the left edge to xLeft - 1/2 and changing the right edge to 
xRight + 1/2. (Xb,Yb) and (XI,YI) are the intersection points of the 
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curve in the octant with the bottom and left edges of the modified 
clip rectangle, respectively. The algorithm is started at the pixel 
(XB,YB), which is the rounded value of (Xb,Yb) and the decision 
variable and partial differences are initialized at (XB-l/2,YB+l). The 
algorithm stops when the y-value of the current pixel equals the 
FLOOR ofYl. 

procedure CIRCLE (R, Xb,Yb,Xl,Yl: rea~) 

var x, y, Yend: integer; 
d, Fn, Fn_n, Fn_nw, Fnw, Fnw_n, Fnw_nw, xinit, 

begin 
x :- ROUND (Xb) ; y : = ROUND (Yb) ; 
Yend :- FLOOR (Yl); 
xinit :- x - 1/2; yinit :- y + 1; 
Fn := 2* (yinit) + 1; Fn_n :- 2; 
Fnw := 2*yinit - 2*xinit + 2; Fnw_n:= 2; 
d :- xinit*xinit - yinit*yinit - R * R; 
whi~e y <- Yend do begin 

setpixel(x,y}; 
y - y + 1; 
if d < 0 then 

begin 
d :- d + Fn; 
Fn := Fn + Fn_n; 
Fnw :- Fnw + Fnw_n; 

end 
el.. 

b.gin 
x = x - 1; 
d := d + Fnw; 
Fn := Fn + Fn_nw; 
Fnw := Fnw + Fnw_nw; 

end 
end {while} 

end 

yinit: real; 

Fn_nw := 2; 
Fnw nw := 4 

{ choose pixel N } 

{ choose pixel NW } 

Fig. 32. Algorithm to draw the visible section of 
curve in figure 31 

C. CLIPPING STANDARD ELLIPSES 

In the case of standard ellipses, we can use the same method as for 
circles. The bounding rectangle of the ellipse is defined by the 
constants, a and b, from the equation of the ellipse. However, since a 
standard ellipse is symmetric by quadrants, we can only divide the 
bounding rectangle of the ellipse to the level of quadrants. As in the 
case of octants for a circle, when a quadrant partially intersects the 
clip rectangle, we can use the edges of the clip rectangle to calculate 
the intersection points of the border of the clip rectangle with the 
curve in the quadrant. These points can then be used to determine 
which pixels of the curve in the quadrant should be set. 
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D. CLIPPING GENERAL ELLIPSES 

In the case of general ellipses, the bounding rectangle is defined by 
the terms Yh and Xv from figure 15. Since all general ellipses are not 
symmetric by quadrants, we cannot further divide the bounding 
rectangle into quadrants. However, since we can calculate the end 
points of regions, as in the algorithm to scan-convert general ellipses, 
we can divide the bounding rectangle of a general ellipse into 
rectangles, where each rectangle bounds the curve of the ellipse in 
one region. In the case of thin general ellipses, it is possible for a 
bounding rectangle of one region to overlap the bounding rectangle 
of another region. Therefore, when the bounding rectangle of the 
general ellipse partially intersects the clip rectangle, we then 
intersect each of the bounding rectangles of the regions against the 
clip rectangle. When a bounding rectangle of a region only partially 
intersects the clip rectangle, then we have to determine the 
intersection points of the curve in the region with the borders of the 
clip rectangle. If any or all of the curve in that region is visible, then 
we have to plot the pixels that form the visible section. One approach 
is to calculate all the pixels that form the region, and then use the 
intersection points to determine which pixels to plot. Another 
approach would be to calculate only the pixels that form the segment 
of the curve that is visible. This can be accomplished by calculating 
the nearest pixel to an end point and then correctly initializing 
decision variable. However care must be taken to fine tune 
algorithm so exactly the same pixels are selected as would 
selected if the whole unclipped ellipse were drawn. 

the 
the 
be 

E. CLIPPING THICK AND FILLED PRIMITIVES 

In order to clip a thick or filled primitive, we can first use the 
bounding rectangle of the primitive to determine if the primitive is 
completely visible or if it is completely outside the clip rectangle and 
can be trivially rejected. If the bounding rectangle partially 
intersects the clip rectangle, then we need some means of clipping 
the primitive. The approaches used for clipping the single-pixel 
outlines of primitives do not extend well to thick and filled 
primitives because we do not have simple equations that define the 
thick primitives. Since both thick and filled primitives are first 
reduced to spans and then the spans are drawn, we can clip the 
primitive by simply clipping each span against the clip rectangle. 
Figure 33 illustrates a thick circle clipped to a window. 
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Fig. 33. Thick circle clipped to window by clipping 
each scanline of the thick circle to the window 

An interesting observation is that thick primitives are really regions 
that are represented by spans. Therefore, if we have a span 
representation of any arbitrary region, we can clip the region to a 

)	 clip rectangle by simply clipping each of the spans to the clip 
rectangle. 

F. CLIPPING To WINDOWS THAT ARE NOT RECTANGLES 

The ability to define windows as circles, ellipses, or arbitrary regions 
is sometimes a useful feature in 2D graphics. Moreover, using these 
windows requires the ability to clip primitives to them. By using a 
representation of spans to define a window, we can define windows 
of any arbitrary shape, including windows with holes in them and 
windows consisting of distinct separate regions. In order to clip a 
primitive to the window, we have to first represent the primitive 
using spans. This is not a problem for thick primitives and filled 
primitives, since in order to draw them we already use a span 
representation. In the case of a single-pixel outline of a primitive, we 
can either use representation of a thick primitive with a width of 
zero, or calculate the span representation from the single-pixel 
outline of the primitive. The primitive is then clipped to the window 
by clipping each scanline of the primitive to the corresponding spans 
of the window. In fact, if we have a span representation of any 
arbitrary region, we can use that representation to clip the region 
against a window that is also defined by some other arbitrary region. 
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In addition, when using regions to define windows or pnmltiveS, we 
can use the bounding rectangle of the region to initially trivially 
accept or reject a primitive by intersecting the bounding rectangle of 
the primitive with the bounding rectangle of the window. The 
bounding rectangle of a region can be calculated by finding the 
smallest rectangle that encloses the region. The left edge of the 
bounding rectangle, for example, can be found by searching for the 
left-most pixel of the region. 

IV. SUMMARY 

In choosing 2D algorithms, we must determine the trade-offs 
between efficiency of the algorithm and the visual appearance of the 
primitive. We have presented algorithms to scan-covert lines, circles, 
standard ellipses, and general ellipses. In addition, we have 
presented techniques to draw thick and filled primitives, as well as 
methods to clip all primitives under study. Several original 
algorithms were presented in addition to the discussion of previously 
published algorithms, thus forming a comprehensive body of 
algorithms to draw simple 2D primitives. Although we cover basic 
techniques, we do not address in detail many areas of scan
conversion, such as line styles and join styles. Also, we discuss only 
discrete approximations to primitives. A logical extension of this 
thesis would address the issue of anti-aliasing primitives. 
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