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Abstract 

Views are an important feature of database management systems. In this paper. we describe an 

implementation of views based on the ENCORE data model supplemented by two extensions. The first 

extension allows for the definition of multiple interfaces for a set of objects in the database. The second 

extension is a mechanism for collecting objects into sets based on queries formed using EN CO RE's query 

algebra. The extents of these sets are dynamically maintained to always reflect the result of the query used 

to define the set, We use a combination of function application and procedural attachment to implement 

the maintenance of these sets. Our extended ENCORE model includes the necessary features to define 

flexible database views which provide a. context in which a user can access an ENCORE database. An 

important goal of our definition is the maintenance of strong typing of the objects visible within a view. 

Introduction 

\'iews are an important feature of traditional database management systems. They are used to provide 

data independence from the physical organization of the database or from changes to the database schema. 

Views give the user a picture of the database which has been tailored and simplified to meet their needs. 
Many different views of the same database may exist for different groups of users. Views can also be used 

to implement data security by hiding portions of the database from the external user. The term view can 

mean either a picture of a particular database entity or a picture of the overall database. In this paper, the 

term view is used to mean a picture of the overall database. The phrase object-level view is used to mean a 
picture of an individual entity. 

In the relational model, views are built from existing relations by means of a query [UJl88]. The result of a 

query over a set of relations is a new relation built using a combination of project, select, and join operators. 
The select and project operators describe a new relation which is a row or column subset (respectively) of 

another relation while the join operator builds a new relation by combining tuples from two existing relations. 

A view is therefore a relation defined by designating a query as its constructor. The extent of a view is not 

usually stored in the database to avoid the costs of maintenance in the face of changes to base relations. 
When an access is made through a view, the query which defines the view is composed with the query being 

made against the view to produce an equivalent query. In this way, a view relation is always consistent with 

the base relation or relations it was created from. 



Updating; a relational view is not as straight-forward as reading; one. There are views which are not 

updateable [Dat88). Examples include views which do not contain the primary key of an underlying relation, 

(some) views created with a join operator, and views created with queries involving an aggregate operator 

(e.g., Sum, Avg). In these cases, a view update may dictate an ambiguous update of the underlying database 

or may introduce null values into a base relation. View updates are restricted in many relational database 

systems to those view relations formed using a project and!or select operation which retains the key at­
tribute(s) of the base relation. In order to overcome these restrictions, [Kel86) proposes that the ambiguity 

of many view updates can be resolved by acquiring information about view semantics from the view definer. 

Views are useful to include in object-oriented database systems (OODBs) for many of the same reasons 

that they are useful in other database systems. Existing object-oriented database systems [MS87, LRV88, 

ESZ89, AH87, BCG+87, MD86, FBHPC+87) are based upon the concepts of object identity, complex state, 
abstract types, and inheritance. Since data abstraction is an integral part of object-oriented database sys­

tems, yiews are not necessary to provide independence from physical organization. In fact. data abstraction 

provides a built-in viewing mechanism in that it limits access of an object to those operations provided by 
the object's abstract type. An OODB viewing mechanism should allow the definition of new abstract types 

and objects based on existing abstract types and t heir instances. Views can be used in addition to data 
abstraction to simplify the interface of an existing abstract type for a particular group of users. Views can 

also provide a level of data security and may be useful in addressing problems related to schema modification. 

Defining views in an object-oriented database is different from defining views in a relational database. 

Unlike tuples. objects in an OODB have a behavioral aspect in addition to their state, although behavior 
is strongly related to state. In a relational database, the inclusion of a tuple in a view is based purely on 

attribute values within the tuple. There is no notion of specifying the operations that may be performed on 
a tuple in a relational view I. A view model in an OODB must address both behavior and state. Objects to 

include in a view should be selectable based on their behavior as well as their current state. Furthermore, 

the behavior of an object within a particular view should also be selectable. The ability to accomplish these 

goals is dependent on the query mechanism provided by the OODB. 

Unlike the relational modeL object-oriented database systems support object identity [KC86]. In other 

words. f"ach object in the database has an identity that does not change over time. This is usually imple­

memed as an immutable object identifier that can always be used to reference an object. Object identity 

transcends all views of a database. The same object may be viewed in several different ways while main­

taining its identity. Cpdates made to an object in the context of one view are visible in the context of other 
views which include the object. :"iew objects may be created for the purposes of a view (e.g .. as the result of 

a join operator). In this case, object identity provides flexibility over tIle relational model in handling view 

updates with ambiguous interpretations. The identity of an object or objects used t.o create a new object for 
the purposes of a view can be stored with that object [RS79, CM84, HZ90). This allows an update of a view 

object to explicitly operate on the object(s) that was used to create it. The ability of an object to reference 

other objects also has implications for data security as provided by a view. Objects that are meant to be 

protected may be accessible by evaluating references from non-protected objects. 

Once a view is defined, it should form a complete context in which a user can access a database. The 

t.ype of all objects visible within a view should be visible. Similarly, if an operation is visible. the types of 

its arguments should also be visible (defined as type-closure in [HZ90]). Normal database operations such 

as querying and operation invocat.ion should he available. In short. database access within the context of a 

view should be indistinguishable from dat.abase access in the context of the underlying database schema. 

I The Rigel system is an exception. see section 6 for details 
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In this paper, we present a view model and implementation for the ENCORE [ES289] database. In 
E:iCORE, objects are strongly typed. All objects that are instances of a type are also members of a 

collection (class) associated with that type. In order to support database views, we have extended the 

ENCORE data model with two features that provide object-level views. First we define a mechanism for 
providing multiple interfaces for a set of objects. This is accomplished by defining new abstract types as 

possible replacements for an existing abstract type. Each of these new types is a potential interface for 

the objects which are instances of the existing type. Only one type can be specified for an object within a 

particular database view. This restriction maintains the strong typing of objects. The second feature allows 

the definition of new collections of objects by executing queries over existing collections. The resulting 

collections are dynamically maintained with regards to the query used to create them. Additional behavior 

may be defined for objects which are members of a collection. A database view is defined by specifying a 

set of types and object collections which are available to a user of the view. The types included in a view 

definition specify the hehavior of all visible object.s. The object collections included in a view definition 

specify the sets of objects that can be queried. The enumerated collections do not include all objects that 

are visible to the users of a view since references (possibly transitive) to other objects may be present in the 

objects which are members of a visible collection. 

The next section briefly describes the ENCORE data model and query algebra. Sections 3 and 4 discuss 

our extensions to the ENCORE model. A definition of database views is given in section 5. A comparison 
t.o other work is included in section 6 and a summary discussion concludes the paper. 

ENCORE 

E~CORE is an object-oriented database system which supports abstract types, type inheritance, object 

identity and collections (classes) of objects. ENCORE includes a basic set of types (e.g., Integer. String, 

etc.) which may be used in constructing new abstract types. Additionally, ENCORE includes the param­

eterized types Set[T] and Thple[< (A1,Ttl, .... (An,Tn ) >] which may be used to generate new types and 
objects. Sets are strongly .typed collections .()f objects which are manipulated using pre-defined operations. 

Tuples consist of pairs of t·YPt7d (T1.. ..• Tn) attributes (..11" ... .-i n ) and values.Ciet-Attribute_Value and 
Set_Attribute_Value operations are provided for each attribute of a type generated from type Tuple. 

An abstract type is defined by giving it a name. a set of supertypes, a set of properties. and a set of 

operations. Together these features describe the interface and implementation of the type being defined. 

Types are objects which are instances of type Type. Properties are typed objects that make up the state 

of the object-s with whose type they are asSociated. Properties may be stored or computed with no visible 

difference t~ external users of a type. Dot notation is used to denote property access within a query.. . 

Since properties are typed, they may themselves have properties and operations. Every property includes 
Get_Property_Value and Set-Property_Value operations. 

The set of operations defined for a type specifies the behavior of instances of that type. At a minimum, 

the set of operations includes Get-Property which provides access to the property objects defined for a type. 

Operations are .typed objects as well. The operations and properties defined for a type are divided into 

public, internal, and private interfaces. Features of the public interface are available to external ,:,sers of 
the type (e.g. other types. database users), features of the internal interface are available to subtypes and 

features of the private interface are only available to the type itself. 

The supertypes of a type contribute operations and properties to the type's definition. A subtype may 
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override (overload) inherited operations and properties and/or add new operations and properties as long as 

the substitutability of instances of the subtype for instances of a supertype is maintained. In particular. the 

domain of an overridden property may not be changed. This is a consequence of the Get-Property _Value 

operation which is included with every property. If a supertype accesses a property on an instance of a 

subtype, the value returned by invoking Get-Property_Value on the property may be outside the domain 

of the property as defined on the supertype. In the case of operations, if the first argument (e.g., self) is 

ignored. then the signature of an operation may be changed according to the rules of contravariance [Car88] 

which specify that the domain of an operation may increase while the range may decrease. In summary, a 

subtype may not constrain the behavior inherited from its supertypes. The subtype relationship between 

types organize the types into a lattice. 

An object is created as an instance of a single type and has a unique identity which may be used to 

reference the object. The physical implementation of an object includes a reference to its type object as well 

as storage for references to the instances of the property type objects which correspond to the properties 

defined by the object's type. The instances of a type t are collected into a set whose type is Set[t]. This 

set is automatically maintained by the system. Due to ENCORE's subtyping rules (e,g .. substitutability), 

all objects are considered instances of type Object as well as every other type on a path from their declared 

type to type Object. Consequently, an object is made a member of the instance set of every type on the 

path. 

The abstract types defined for an ENCORE database form a base schema. The base schema combined 

with each type's instance set forms a base VIew of the database. This is further elaborated in section 5. 

2.1 Query Algebra 

ENCORE's query algebra is described in [SZ89]. The algebra can be divided into operators which produce 

collections of objects and operators which modify the returned collections. The query algebra supports 

abstract types in that only features of the interface provided by an abstract type may be used when forming 

a query, The objects in a collection returned by a query are strongly typed and consequently the collection is 

"trongly typed. This behavior is accomplished llsinll; the parameterized types Set and Tuple. Object identity 

is preserved for existing objects returned by a query. \ew objects that are created as the result. of a query 

have a unique identity. 

The query operators which produce collections of objects are UNION, INTERSECTION. DIFFERENCE. 

SELECT. L\IAGE. PROJECT, and OJOIN. The first three operators have the expected semantics for 

manipulating sets of objects. SELECT produces a subset of a collection of objects where members of the 

subset satisfy a predicate. IMAG E returns a collection of objects obtained by executing a function on each 

member of another collection. PROJECT is a generalization of IMAGE which produces a collection of tuple 

objects where the attribute values of each tuple are the result of executing functions on a member of the 

collection queried over. OJOIN also produces tuples whose attribute values are pairs of objects from the 

collections queried over where each pair is related by a specified predicate. PROJECT and OJOIN (and 

possibly IMAG E) create new objects as a result of their execution. New types which are instantiations of 

type Set and/or Tuple are also created by these operators. 

The FLATTEN, DUP_ELI~IINATE, NEST, COALESCE. and UNNEST operators are used to restruc­

ture a collection of objects returned as the result of a query. FLATTEN takes a collection of set objects 

and returns a collection of the unique objects that are members of the set objects in the original collection. 

DUP_ELIMIN ATE deletes duplicate objects from the result of a query. NEST provides a way to group 
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Figure 1: Sample surrogate-types 

tuples which share attribute values except for one attribute whose values are collected into a set to form the 

attribute's value for the nested tuple. COALESCE can be executed on the tuples resulting from a NEST to 

ensure that the sets created for the attribute NESTed upon are not duplicated. L:NI\'EST provides the op­

posite functionality to :--iEST in that it modifies tuples that have a set-valued attribute by creating multiple 

tuples. each with a different member of the set as the value for the (originally set-valued) attribute. 

3 Surrogate-Types 

This section describes the first of two extensions to the ENCORE dat.a model. A sllrrogate-type is associated 

-;.	 with an existing abstract type (the base type). A surrogate-type provides a different interface for objects 

created as instances of a base type. In other words, surrogate-types are object.-Ievel views. Consider the 

sample types shown in figure 1. Type Emp includes properties name, address. company, and salary and 

operations Give.J3onus and Send_MaiLTo. A different interface to Emp instances might include name, 

company and Send_~IaiLTo but exclude company, salary and Give.J3onus. We can provide this restricted 

interface to Emp instances by creating a surrogate-type (Restricted_Emp) for type Emp which 11iJes some 

of t he features of type Emp while retaining others. As an illustration of the usefulness of surrogate-types 

for data abstraction consider the Integer_Stack/Integer-Array (adapted from [HZ88j) example also shown 

in figure 1. Integer-.Array includes operations such as Put-At-Index. Get_At.Jndex, and Number-OLElems. 

These operations manipulate properties (i.e .. state) which implement an integer array. ,\ surrogate-type 

of Integer_Array, called Integer_Stack. is defined which provides a stack abstraction implemented in terms 

of the Integer-Array representation. The operations provided for Integer_Stack include Push, Pop, and 

Number-OLElems. Push and Pop invoke operations copied from type Integer_Array to manipulat.e the array 

representation rather than manipulating it directly. Number_OLElems in included in both type definitions 

with the implementation being defined on Integer-Array. 

Objects cannot be created as instances of a surrogate-type within the context of the base view of a 

database. Instead, a surrogate-type may replace its corresponding base type as the interface of choice for 

instances of the base type within a database view. \"'hen such a replacement occurs. all instances of the 

base t.ype may only be accessed using operations and properties in the imerface of the chosen surrogate­

type. In the case of the Restricted_Emp surrogate-type. all properties and operat.ions except salary, address 

and Give_Bonus are accessible when Restricted_Emp replaces Emp wit.hin a view. A surrogate-type always 

includes the initialization information needed to create an instance of the base type when the surrogate-type 
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is active within a view. 

Many surrogate-types may be created for a single base type. A base type and its corresponding surrogate­

types form a set of interfaces valid for a particular set of objects. Only one member of this interface set may 

be active for a particular view of the database. The active member in the context of the base schema is the 
base type. Since only one interface is available for a particular view, it is possible to statically type-check 

programs written against the view. This is because the type of any object can be uniquely determined during 

compilation. Explicitly associating multiple types (interfaces) with an object [Shi81, HZ88, FBHPC+87] 

requires that runtime checking be performed to determine which types are valid for an object before allowing 

access to that object. 

A surrogate-type is initially specified by including the public and internal properties of its base type, and 
their associated Get-Property_Value and Set-Property_Value operations 2, in the public and internal interface 

of the surrogate-type. These properties and operations define the state, and constraints on that state, that 

is available for use on the surrogate-type. The visibility of properties copied from the base type may be 

modified by moving them to other levels of interface on the surrogate-type 3. The operations defined on the 

base type are not automatically included in the definition of the surrogate-type. A potential reason for this 

is that the operations of the base type may reference properties or operations which are private to the base 

type and therefore not included in the definition of the surrogate-type. The dynamic binding process used 

by ENCORE addresses this problem by switching context from the surrogate-type to the base type when an 

operation copied from the base type is invoked [HZ88, MD86]. This is similar to the binding process which 

occurs when an operation defined on a supertype (and not overloaded on the subtype) is invoked. In fact. the 

reason for not automatically including base type operations is that semantic correctness is not guaranteed. 

For example, consider the Emp and Restricted_Emp types. Suppose that Emp includes an operation called 

Display-.Emp which displays the values of each property of an Emp object. If the salary property is hidden 
on Restricted_Emp by moving it to the private interface, then the inclusion of Display-.Emp in the interface 

of Restricted_Emp is not semantically correct because the value of the salary property may be displayed. 

Therefore, the inclusion of base type operations is left to the type definer 4. 

The next step in defining a surrogate-type is to specify it as a subtype of some type (base or surrogate) on 

t he path from the supertype of its base type to the root of the subtype hierarchy (Object). [f no supertype is 

,;pecified. the surrogate-type defaults to being a subtype of type Object. If there is more than one supertype 

defined for the base type. the surrogate-type may be specified as a subtype of a type on each path to the root 

of the subtype hierarchy. The supertypes chosen for a surrogate-type provide an additional set of properties 

and operations to consider. ENCORE does not permit name conflicts between inherited properties and 

operations and will raise an error condition if a conflict occurs. 

Properties of the proposed supertypes are compared to the properties copied from the base type. Prop­

erties of the same name and signature are deemed equivalent and are considered to be inherited from a 
supert.ype. Properties of the same name and different signatures are in conflict and result in an error con­

dition that must be resolved by the type definer. All properties copied from the base type which are not 

inherited from a supertype are eligible to be moved to the any interface of the surrogate-type. 

Operations defined on the proposed supertypes must also be defined on the surrogate-type. Supertype 

operations may be inherited or re-implemented as long as t.he substitutability of the surrogate-type for 

each supertype is maintained. Addit.ional operations may be added to the surrogate-type. As alluded to 

2It is assumed that these operations have no side-effects.
 

3 Movement of properties may be restricted by the choice of supertypes for the surrogate-type.
 

4 As with properties, the inclusion or exclusion of operations may be restricted by the choice of supertypes.
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Figure 2: Hierarchy containing Restricted_Emp surrogate-type 

previouslY, operations defined on the base type may be explicitly copied to the surrogate-type. For the 

purposes of type-checking, a surrogate-type is treated like any other type in the type hierarchy. Additional 

properties may also be defined for a surrogate-type. If an added property is to be stored, then local storage 

must be provided on each instance of the base type. This storage is only available when the surrogate­

type defining the added property is the current interface of an object. Local storage for a surrogate-type 

is implemented using the chunking method described in [Z9088].' Properties local to a surrogate-type are 

stored in a separate 'chunk' of each object. A new stored property must specify a default value which is 

propagated to an object when the propert.y is first accessed on that object. 

The regular (as opposed to surrogate) types form a type hierarchy in the context of the base schema 

of a database. Surrogate-types form parallel pieces of the type hierarchy, illustrated in figure 2 5. that can 

overlay pieces of the base type. hierarchy \'.ithin the context of a particular database view. This restricts the 

meta-level behavior of a surrogate-t~·pe. We ha....e already stated that instances of a surrogate-type cannot 

he created unless the creation occurS in the context of a view where the surrogate-type replaces its base 

type. We have also placed restrictions on the definition of properties and operations for a surrogate-type. 

Further restrictions are a consequence of ENCORE's semantics for the collection of a type's instances. 

As described above. a surroga.te-type must "hook in" to the same path of the specification hierarchy as 

its base type. Section 2 states that the instances of a subtype are included in the collection of instances of 

each supertyp·e. In order for a surrogate-type to replace its base type within a view, the subset relationship 

of the surrogate-type's instance collection to that of its supertypes must be ma.intained thereby restricting 

the choice of supertypes. Subtypes of a base type might not be subtypes of a surrogate-type associated with 

that base type. If this is the case, the subtype and the surrogate-type cannot both exist within the same .... iew 

because a subset relationship of inst.ances of the two types will exist while a subtype relationship between 

the two types does not exist. A new 5\lrrogate-type of the subtype in question may be defined to be a valid 

subtype of the original surrogate-type in which case both surrogate-types may exist within a singLe view. 

A final restriction'is t.hat a. regular subtype cannot be created from a surrogate-type. This is because the 

subtype relationship may not exist between the type being created and the base type of the sUHogate-type 

5 Restricted.Emp could have been made a subtype of type Person if the address property were included in its public interfa~e. 
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chosen as supertype. Consequently, the subset relationship of instances of the subtype to instances of the 

supertype may not be maintained. 

4 Derived Classes 

As stated previously, ENCORE maintains a collection of each type's instances. We will now call these 

collections base classes. The name of a base class is the pluralized name of the type it is associated with 

(e.g., type Emp =;. class Emps). We extend the class mechanism by allowing the definition of derived classes. 

A derived class is created by executing a query over an existing class or classes in the context of a DEFINE 

-:.	 CLASS statement. A derived class forms an object-level view by grouping related objects based on a query. 

A derived class may be included in the definition of a database view in which case the derived class is visible 

to be queried over in the context of that view. The result of a query is a collection of objects (the query 

collection). The query collection returned within the context of a DEFINE CLASS statement forms the 

initial extent of the derived class being defined. At any point in time, the members of a derived class reflect 

the result of the defining query as if it had been executed at that point. Therefore. the membership of a 

derived class fluctuates as a result of changes to the database. Objects cannot be explicitly added to or 

removed from a derived class, this task is reserved to the database system. The member type of a derived 

class is the type of the members of the query collection used to create the class. This mayor may not be 

the same as the member type of the collection originally queried over. We will call the member type of the 

original collection the base type. 

Consider the derived class example shown in figure 3. Type Car has an associated base class. Cars. which 

includes all instances of Car. A derived class is created from Cars which includes those car objects which 

are colored blue. This is expressed by the following DEFINE CLASS statement: 

DEF I NEe LASS Blue-Car's USING SELECT(Cars. Ae c.eolor = "blue") 

The derived class defined is named Blue_Cars and contains Car instances whose color property has a value of 

"blue". The member type (and base type) of Blue_Cars is Car, therefore Blue_Cars has type Class[Car]. De­

rived classes are basically sets and support operations such as Member_Of. Number_Of-Members. Subset-Of, 

Get-\'Iember with the obvious semantics. 

The extent of a derived class is stored to avoid re-computation on each reference. Furthermore, derived 

classes defined with a PROJECT. O.JOIN. or (in some cases) IMAGE query will contain new objects which 
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did not exist before the defining query was executed. Re-computation of the extent of these derived classes 

would not preserve references to class members. Storing a derived class extent requires that maintenance be 

performed in order to update the extent as changes are made to the database. 

Once an object is retrieved from a derived class, no guarantee exists that the object will always be a 

member of that class. Subsequent updates to the retrieved object may invalidate its membership. Member­
ship in a class can always be checked using the Member_Of function provided for all classes. Changes in class 

membership do not affect other references to an object. If a car object is retrieved (and therefore locked) 

from the Blue_Cars class it is safe to assume that the object is a car whose color property has value "blue". 

If the Paint operation is executed on the retrieved car changing the value of its color property to "red", 

references to the car object do not change. In other words, membership of a car object within Blue_Cars is 

mutable while external references to the car object remain valid and unchanged. An alternative functionality 

is to supply an updated reference which reflects the fact that the membership of a car object in Blue_Cars 

may change. For example, access through an updated reference could return a warning or error condition if 

the relevant car object is no longer a member of the Blue_Cars derived class. A subset of this functionality 

could be implemented using a computed property which embodies the desired query. However. this does not 

address the need for updated references which are not properties of an object (e.g., database variables. set 
members). Although it is a useful feature to consider, it is not further discussed in this paper. 

In the sections of this paper which describe the different kinds of derived classes, we assume that only 

base classes exist. The creation of a derived class from another derived class is discussed in section 4.7. 

In the interest of saving space, we do not include derived classes created with UNION, INTERSECT or 

DIFFERENCE. The implementation of derived classes formed using these operators is analogous to the 

derived class implementations that are presented. 

4.1 Closure Functions 

Logically, the objects that are members of a derived class are instances of the member type of that class 
(e.g., members of Blue_Cars are Car objects). In fact. they are initially identical to the objects returned in 

the query collection used to ,Idine the class. However. in order to facilitate the maintenance of the extent 

of a derived class. we chose to physically implement the members of a derived class as separate objects from 

those which are instances of the class member type. This implementation is hidden from a user of a derived 

class. An object retrieved from a derived class, by invoking Get_Member. is an inst.ance of the member type 

of the class. The retrieved object is generated, however, from a different object which is physically a member 
of the derived class. 

The mechanism that we apply to represent logical members of a derived class is that of a closure function 

[GP79] (similar to the Apply function described in [Shi81]). A closure function is of the form: 

closw·e(funct.ion, vahlel, value2, .... value n ) 

A closure function takes an arbitrary funct.ioll as its first argument. The remaining arguments to a closure 

function are values bound to the arguments of the function referenced in the first argument. The result of 

executing a closure function is equivalent to executing the function bound to the first argument with its 

arguments bound to the values specified in the remaining arguments. For example, consider the function 

Add which takes two int.egers and produces their sum. A closure function binding function Add to its first 

argument and the integers two and seven to its remaining arguments will always produce the integer nine 
when executed. 
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The objects which are physical members of a derived class are implemented as closure functions. An 

object is created as a class member which embodies a particular closure function and its arguments. We will 

distinguish between logical members of a derived class (e.g., instances of the member type of the class) and 

physical members of a derived class (e.g., objects implemented as closure functions which produce logical 

members of the class) whenever there is ambiguity. The closure function implementation of a physical class 

member is executed whenever that member is referenced. The result of the function execution is an instance 
of the member type of the derived class or an error condition. The functions referenced in the first argument 

of a class member closure function generally test to see if a particular instance of the class member type 

is a valid participant in the derived class. For example, the closure function implementation of a member 

of a derived class created with a SELECT query tests to see if an instance of the class member type meets 

the requirements of the predicate specified by the SELECT. If it does not, the member type instance is not 
considered to be a participant in the derived class at that point in time. In other cases, a closure function 

may t.ake an jnstane/' of t,hl' base type of a elllS.'l and produce an instance of the member t.ypl' of the class. 

The physical members of a class are merely place holders for logical members of the class. The visibility 
of physical class members is obscured by the operations provided for derived classes. For example, if the 

Get-Element operation is invoked on a derived dass. the result is an object obtained by finding a physical 

class member whose closure function successfully produces an instance of the member type of the class. 

Similarly, if the Number_OLMembers operation is invoked on a derived class, the closure function of each 

physical member of the class is executed. Only those executions which complete successfully contribute to 
the count of logical members of the class. 

Closure functions provide a mechanism for testing the inclusion of a particular object in a derived class. 

Additional functionality is required to add or remove members of a derived class in response to external 
database changes. Removal of members is actually handled by closure functions in a form of lazy evaluation 

[Bun82], We use actions (triggers) associated with specific operations in the database to add members to a 

derived class as needed. The following sections describe. among other things, the maintenance of different 

kinds of derived classes using closure functions and actions. Section 4.8 provides details on how actions are 
formed and what operations they are associated with. 

4.2 SELECT Derived Classes 

A SELECT query can be used to define a derived class which expresses a constraint on an existing class. 
The Blue_Cars example illustrates a derived class created with SELECT. Consider the following alternative 
example: 

DEFIN E CLASS Highly_Paid_Emps USING SELECT (Emps, >.e e.salary > :)0000) 

Highly_Paid_Emps is a derived class whose instances represent a constrained subset of the collection of Emp 

instances (Emps). In particular, those Emp instances whose salary property has a value greater than fifty 
thousand dollars are present in the extent of Highly_Paid_Emps. The member type of Highly_Paid_Emps is 

Emp. In SELECT derived classes, the base type of a class is always equivalent to the member type. In this 

example, the semantics of Highly-Paid_Emps are expressed in the SELECT constraint used to create the 
derived class. Other semantics may be expressed by the addition of behavior to the Highly_PaicLEmps class 
(see section 4.9). 

The closure function implementation of physical members of a SELECT derived class is of the form: 

closure(Check-SelecLPredicate : Object x Function - Object. o. f) 
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--

where Check_Select_Predicate is a system supplied function, a is a member of the class SELECTed from, 

and f is a function which implements the relevant SELECT predicate. The execution of a closure func­

tion of this form i.n turn executes Check...5elect-Predicate on the given objl?ct and predicate function. 

Check_Select-Predicate returns the object sent to it if the. predicate function evaluates to true on that 

object. If the predicate function evaluates to false, Check_Select_Predicate returns an error condition. The 

object sent to Check...5elect_Predicate is an instance of the member type of the class. If the executio~ of 

Check_Select-Predicate is successful (e.g., it does not return an error condition), then the member type in­

stance is considered a logical member of the class. If Check_Select_Predicate returns an error condition, then 

the member type instance is not considered a valid member. In the HighlyYaid-Emps class, the arguments 

to Check_Select-Predicate are an instance of Emp and the predicate function used in defining the class (e.g., 

.\e e.salary > 50000) 6. 

The logical extent of a SELECT derived class may be effected by updates made to the database. The 

most obvious examples are changes made to instances of the class member type. Creation of an instance 

of the member type requires the inclusion of a new member in the logical extent of a SELECT class if the 

relevant predicate evaluates to true on the created object. Similarly, an update may cause a predicate to 

become true on a member type instance requiring its inclusion in the logical extent of a SELECT Jerived 

class. An update could also falsify a predicate on an object requiring its removal from a SELECT derived 

class. Deletion of an instance of the member type requires that the object be removed from all derived 

classes as well as the base class. Updates to instances of types other than the member type of a SELECT 

derived class may also affect the extent of the class. For example, consider a SELECT derived class defined 

on Emps called Boston_Emps which includes the predicate function Ae e.dept.city = ·'Boston". An update 

to an instance of Dept might affect the extent of Boston_Emps by requiring insertion (in the case that a 

department's city is changed to "Boston") or deletion (in the case that a department's city is changed to 

something other than "Boston") of a class member if the updated instance is referenced by at least one 

Emp instance. The effect of a Dept instance update on the extent of Boston_Emps is not, autonomously 

computable [BCLS9j since objects which are not included or referenced in the extent of Boston_Emps must 

be consulted in order to determine the update's effect. In our model, autonomous computability bounds the 

number of objects that have to be referenced in order to maintain the extent of a deri ved class. If the effect 

of an update on a derived dass is autonomously computable then fewer objects need to be referenceJ. :\'ote 

t hat the creation or deletion of an instance of Dept does not affect the extent of Boston~Emps' nnless it is 

referenced by an Emp instance. 

\faintenance of a SELECT derived class can be handled in two different ways. All of the events described 

in the previous paragraph are at the logical level. Therefore, one approach to class maintenance is to include 

an object in a derived class for each'instance of the member type. Each pnysical member of the class will 

produce, via 'closure function execution, an instance of the member type if the instance is a valid logical 

member of the class. l'sing this implementation, the number of objects in the derived class is always equal to 

the number of instances of the member type. At any particular time, the number of logical class members is 

most likely less than the number of physical members of the class. This approach is not space efficient if the 

logical extent of the derived class is a small subset of the member type's base class. However. tile insertion 

and deletion of physical class members in response to external database updates is minimized. In particular, 

objects need onl,y be inserted into a SELECT class when instances of the member type are crfated. 

The alternative approach is to imi11ediatelY add or remove physical members of aSELECT derived class 

in response to external updates. This minimizes the number of objects that are members of the derived 

6 :"jote that theCheck-Select...Predicat,e function and t.he predicate function are both objects and therefore are 'shared by all 
physical members of a derived class. 
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class at any point in time but requires more processinll; to reach a consistent database state when an update 

occurs. Additionally, this approach requires t hat more actions be generated and associated with operations 

in the database since more database events must be monitored in order to maintain a derived class extent. 

The choice between the two approaches can be made based on the cardinality of the query collection initially 

used to define a SELECT derived class versus the cardinality of the member type's base class. 

In either approach, the deletion of a derived class member which corresponds to a deleted instance of the 

member type can be delayed until next reference of the class member. The next reference will perform a 

closure function execution to determine if the referenced member type instance is a valid logical member of 

the class. Check..5elect_Predicate returns a distinct error condition if the object sent to it is deleted. The 

derived class operations which (indirectly) execute Check..5elecLPredicate respond to this error condition 

by deleting the corresponding physical class member. A query over the extent of a derived class qualifies as 

a next reference so that query results are always consistent with the current state of the database. 

4.3	 IMAGE Derived Classes 

An I.\:IAG E query produces a new collection of objects by executing a function on each member of an existing 

collection. There is a bijective correspondence between objects in the original collection and objects in the 

resulting query collection. An IMAGE query can be used to define a derived class which maps the members 

of a class to the members of a derived class using function execution. Consider the class definition: 

DEF IN E CLASS Emp_Roster CSING 1MAGE (Emps.;l.e Name_Of(e)) 

Assume that the NameDf function returns String objects. The IMAGE query shown takes the collection 

-:.	 of Emp instances (Emps) and produces a collection of String objects where each member of the collection 

represents the name of an employee. The member type of Emp_Roster is String. 

The pllysical members of a derived class created with IMAGE are implemented using closure functions 

of the form: 

closure(UpdateJmage : Object x Function - Object. o. f) 

\yhere l:pdate_Image is a ,;ystem supplied funcllon. 0 is an instance of the type queried over and f is the 

function used in the query. Executing a closure function of this form is equivalent to executing {]pdate.lmage 

on object 0 and function f. Update_Image returns the object which results from applying function f to object 

o. The object returned may be different at different times depending on the state of a (and possibly other 

object.s that 0 references). Update_Image is executed by the closure function rather than executing f directly 

to handle the case that 0 is a deleted object without requiring f to do so. In the Emp_Roster class. the 

arguments to Update_Image are an instance of Emp (0) and the Name-Of function (f). The result of 

executing Update_Image in this case is the same as executing the Name-Of function on the referenced Emp 

instance. If the name of the employee has changed since the last time the function was executed, the resulting 

String object is different. Each physical class member is a place-holder for a String object which may change 

over time. 

As wit,h SELECT derived classes, the process of obtaining logical members of an IMAGE derived class 

involves the execution of closure functions. The difference is that instances of the base type of the class 

are not prorluced by the executions. The closure functions reference an instance of the base type. but they 

produce an instance of the IMAG E function return type (the member type). This process maintains the 

logical extent of an PI/lAG E derived class with regards to the extent, of the class it was created from. It 

also allows the determination of the effect of an update to a base type instance on the logical f'xtent of <l. 
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correspondinJ!; IMAGE derived class to be deferred until next reference. Due to the bijective correspondence 

of an IMAGE derived class to the base class it was created from. the creation or deletion of base type 

instances always requires a corresponding update to the extent of the derived class. Insertion of physical 

derived class members is handled by attaching an action to the Create_Instance operation of the base type 

(as described in section 4.8). Deletion of a derived class member is deferred until next reference as shown 

for SELECT derived classes. 

4.4 PROJECT Derived Classes 

A. PROJECT query is similar to an IMAGE query in that it applies functions to a collection of objects 

to produce another collection of objects. A PROJECT query, however, always produces a collection of 

tuple objects. This may be desirable to provide a common interface (e.~ .. Get-Attribute and Set_Attribute) 

for objects of numerous types. It is also possible that the well understood interface of tuples will provide 

better opportunities for query optimization (e.g. relational algebra transformations) [SZ89]. There is a 
bijective correspondence between objects in the original collection and the collection of luples produced by 

a PROJECT. Like IMAGE. PROJECT can be used to define a derived class which maps the members of an 

existing class to the members of a derived class. An example of a PROJECT derived class is: 

DEFINE CIA.55 Emp_Directory U5LVG
 
PROJECT(Emps,A.e < (Name, Name_Of(e)).
 

(Phone, PhoneJVumber(e)) »
 

EmpJ)irectory is an abstraction of Emps which stores the name and phone number of each employee in 

tuple form. The query used to define Emp_Directory produces tuples with attributes Name and Phone. The 

values for these attributes are obtained by executing the Name_Of and Phone_Number functions on instances 

of Emp. The member type of EmpJ)irectory is a type generated from the parameterized type Tuple (e.g., 
Emp_Directory _Type). :"lote that the definition of the new type also defines a corresponding base class which 

includes all instances of the type. 

The physical members of a derived class created by PROJECT include closure functions of the form: 

closllre(Update_Pl'ojecLTuple : Object x Tuple x Function1 x ... x Functionn - Tuple. 

a.t.h.····fn) 

where Update_Project_Tuple is a system provided function which updates a tuple (I) by executing the 

functions (/1, ... , fn) on the given object (0) to obtain values for each attribute of t. Update_Project_Tuple 
returns an appropriate error condition if 0 is a deleted object in which case the corresponding derived class 

member and tuple object are deleted. The arguments to Update_ProjecLTuple in the case of Emp_Directory 

are an instance of Emp (0), a tuple of type Emp_Directory_Type to update (t), the Name_Of function (11) 
and the Phone_Number function (h). 

The process of accessing members of a PROJECT derived class involves the execution of closure functions. 

A.s with IMAGE derived classes, the closure function execution produces an object whose type is different 
from the type originally queried over. In particular. the objects produced are tuple objects. This process 

keeps the extent of a PROJECT derived class consistent with regards to the class originally queried over. 

The updating of a class member is dt'layed until the next reference of that member. For example, if an 
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employee's phone number changes then the tuple object corresponding to that employee in the extent of 

EmpJ)irectory is updated when it is next retrieved from the class. This will not affect external references 

to the tuple if it was previously retrieved from the derived class since a new tuple object is not created when 

an update occurs. As with IMAGE classes, there are no predicates involved in defining a PROJECT class. 

Therefore, it is not necessary to immediately determine the effect of a base type instance update (other than 

creation or deletion) on the extent of a PROJECT derived class. Creation or deletion of instances of the 

base type always requires updating the extent of a PROJECT derived class. As previously, creations are 

handled immediately by an action attached to the Create_Instance operation of the base type of the class. 

Deletions are handled when the corresponding class member is next referenced. 

Once a tuple object is retrieved from a PROJECT derived class, it must behave like other tuple objects 

in the database. In particular, the Get-Attribute and Set..Attribute operations for each attribute of the 
tuple must be available. Since the functions which produce attribute values on a particular PROJECT tuple 

may not be invertible. it is not possible to automatically provide Set..Attribute operations which update an 

instance of the base type when an update is made to a tuple object. For this reason, the default Set-.Attribute 

operations provided by the system for tuple types generated as a result of a PROJ ECT derived class definition 
are null operations. These operations may be overridden by the class definer. In order to facilitate access to 

the object which to create a tuple in a PROJECT class. a property is defined in the private interface of the 

tuple type whose value is the relevant object. 

4.5 OJOIN Derived Classes 

OJOIN queries express new relationships between objects by constructing tuples whose attributes contain 

objects related by a predicate. The result of an OJOIN query is not guaranteed to be in one-to-one or onto 

correspondence with either of the two collections queried over. An OJOIN derived class may be defined 
to express a relationship between the members of two existing classes. The following is an example of an 

OJOIN derived class: 

DEFINE CLA.SS Emp_Phones USING
 

OJOI:V( Emps,Phones ..-1. e,Ap ,
 

AeAp p E f. .dept.phones 1\ p./oc =doc)
 

EmpYhones is a derived class which contains pairs of employees and the phones that are in the employee's 

department and at the same location as the employee. The logical extent of Emp-Phones is made up of tuple 

objects. The Ae attribute value of each tuple is an Emp instance and the Ap attribute value is a related 

Phone instance. Note that there may be several members of Emp_Phones which have the same Emp instance 

as a value for attribute Ae . Similarly, multiple members may have the same Phone instance as a value for 
attribute A p • The member type of Emp_Phones is generated from type Tuple (e.g., Emp_Phones_Type). 

Physical members of a derived class created with OJOIN contain closure functions of the form: 

c/osttre(Check_Ojoin_Tuple:	 Object! x Object~ x TuplE x Function - Tuple,
 

Ol,o~,t,f)
 

where ChecLOjoin_Tuple is a system provided function which applies a predicate function (f) to two objects 

(0!,02) to determine if the predicate is true. If the predicate is true. then the tuple sent (tl is returned 
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as the value of ChecLOjoin_Tuple. If the predicate does not hold or either of 0\ and 0'1 are deleted. then 

Check_Ojoin_Tuple returns an error condition in which case the corresponding tuple and physical class 

member are deleted. The arguments to ChecLOjoin_Tuple in the case of Emp_Pholles are an instance of 

Emp (od. an instance of Phone (0'1), an Emp_Phones_Type tuple te update (t), and the predicate function f: 

AeAp p E e.dept.phones /\p.loc =e.loc. The result of executing Check_OjoinYredicate with these arguments 

is a Emp_Phones_Type tuple which contains e and p as the values for .-1. and AI' respectively or an error 

condition. This maintains the relationship between the extent of Emp_Phones and the classes Emps and 

Phones. 

The logical extent of an OJOIN class may be affected by updates to the database. Creation or update 

of an instance of either base type may require insertion of a class member if there are instances of the other 

base type which are matched by the relevant OJOIN predicate. An update to an instance of the either base 

type may also require the deletion of an OJOIN derived class member if there is no longer a match between 

t.he updated object and an instance of the other base t.ype. Not.e that in order to determine the effect of a 

database update on the extent of an OJOIN derived class. it is usually necessary to consider sets of objects 

rather than individual objects. Deletion of an instance of either base type requires deletion of the derived 

dass members, if any exist. that reference the deleted object. As with SELECT classes. the update of an 

ohject other than a base type instance may require a modification to t.he extent of an OJOIN derived class. 

In the EmpYhones example. the OJOIN predicate includes the expression p E f.dept.phones. If the phones 

property of an instance of Dept is modified. an Emp-Phones member may have to be inserted or deleted. If 
an instance of Dept is created or deleted it does not affect the extent of Emp-Phones unless the create or 

delete is followed or preceded by an update to an Emp instance. 

~Iaintaining an OJOIN derived class is analogous to maintaining a SELECT derived class because a 

predicate is involved in bot.h cases. There were two approaches described for maintaining·a SELECT derived 

class. The first involves the creation of a physical class member for every member type instance. The 

second approach involves more processing but keeps the number of physical class members at a minimum. 

In the case of OJOI:-i derived classes. it. is not feasible to create physical class members which correspond 

to every combination of instances of the types queried over. Clearly the cardinality of the resulting class 

"ould be quite large and 'would include maiw unnecessary members. Therefore. t he second approach must 

!Je adapted for use with 0.10[0' rlasses. The cOst or-maintaining the minimum nU111ber of physical members 

of an OJOIN derived class is hi!?;herthan for SELECT classes. The effects of the updates d,escribed in the 

previous paragraph on the extent of an OJOIN derived class (with the exception of the deletion of a base 

Lype inst.ance) are not autonomously computable while the effect of many updates on a SELECT derived 

class extent are autonomously computable. Therefore. more objects must be referenced to determine the 

effect of an external updat.e on an, OJOIN class extent. Furthermore, the instances of two base types must be 

monitored which increases the ,chance that a database update will affect an OJOIN class. As wit.h SELECT 

classes, the deletion of derived class members may be delayed until next reference. 

A tuple object retrieved from an OJOIN derived class must behave like other tuple objects. Once again, 

the SeLAttribute operation defined for a type generated by an OJOIN class definition is a null operation. 

The class defilll"r may replace the default. operations with operations which affect. the objects used to create 

a tupJ" in tile class. There is no need for a hidden property which cont.ains thp objects used to create an 

OJOIN tuple since both of t.he relevarit objects are available as at.t,ribute values on the tuple. 
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4.6 Query Modifiers 

As described in section 2, the query operators OUP _ELIMIN ATE. COALESCE, FLATTEN, NEST, and 
U;\iNEST re-structure a query collection. They can be thought of as query modifiers. Query modifiers 

destroy the one-to-one correspondence between a query collection and the members of the collection(s) 

originally queried over. There may be several members of the original collection that contribute to the 

inclusion of a particular object in the query collection. In the case of UNNEST or FLATTEN, a single 

member of the original collection may contribute multiple objects to the query collection. 

:'ieedless to say, query modifiers complicate the task of maintaining a derived class extent. In previous 

sections, the concern was whether or not to include a particular object in the logical extent of a derived 
class based soley on a predicate or function executed on objects external to the class. Query modifiers 

require that additional processing be done which may involve comparison to other class members (e.g., 

DUP _ELIMIN ATE) or re-formating (e.g., UNNEST). In order to accomplish this, we supplement the closure 
function execution performed when a physical class member is accessed by additional function executions 

which are dictated by the query modifiers being used. These functions take the result returned by a closure 
function execution and produce a partial logical extent of the class which reflects the effect of the query 

modifiers on the result. If no query modifier is present. the result of a closure function execution is inserted 

into the logical extent being constructed. The implementations of derived class operations (e.g., Member_Of, 
:'l"umber_OLMembers) use the temporary logical extent as necessary to perform their designated tasks. 

Using the DUP _ELIMIN ATE modifier as an example, the inclusion of an object in the logical extent of a 

derived class must be coupled with a test to determine if a duplicate object is already present. If the Num­
beLOLMembers operation is invoked on a derived class whose definition includes OUP_ELIMINATE. each 

physical member of the class is considered for its contribution to the logical extent of the class. Previously, 
those physical members whose closure function produced an instance of the class member type contributed 

to the count of logical members of the class. In this case, successful closure function t'xecution must be 

followed by a test to see if the member type instance produced is already present in the logical extent cre­
ated by executing the closure functions contained in previous physical members of the class. If t he object is 

;11ready present. it is not added to the logical extent and therefore does not contribute to tbe count of logical 
members of the class. The test for duplication is on the objects resulting from closure function execution 

rather than on the physical class members themselves since the physical members are only place-holders for 
t be objects that they generate. 

Similar functionality is provided for other query modifiers. Nested query modifiers are handled by com­

posing the functions needed to maintain the logical extent of the class. For example, an UNNEST modifier 

nested within a DUP_ELIMIN ATE modifier requires that the initial logical class member be l;NNESTed and 

tha.t each resulting object is testing for duplicity. Only those UNNESTed tuples which are not already present 

in the logical extent of the class will be added. The processing required by query modifiers is performed 
every time a deri ved class is referenced. 

4.7 Nested Queries 

The preceding sections have used simple queries to illustrate the various kinds of deriwd classes that can be 

defined. It has been assumed that only base classes were available for use in defining derived classes. It is 

certainly desirable to be able to create derived classes using nested queries and other derived classes. The 
two cases are similar since an existing derived class represents the query that was used to define it. Creating 
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a new derived class from an existing; one is analo~ous to nesting the query used to define the existing; class 

wit.hin the query being used to define the new class. 

We categorize the classes created with nested queries into those that do not involve a query modifier 

on an inner query and those which do. An outermost query modifier does not affect the categorization. In 
the first category, it is possible to create a derived class from a nested query by simply nesting the closure 

functions that are necessary to represent each query operator. This is because the membership of an object 

in the derived class can be determined using a single fixed object (or a pair of objects in the case of OJOIN). 

Note that the process of executing a closure function is now more complicated since it is necessary to handle 

nested executions. 

An example of a nested query which does not have an inner query modifier is the following: 

SELECT(IM AGE(Emps. Ae Car_Oj(e)), >.C c.color = "blue") 

This query first executes Car_Of on each instance of Emp and then selects those cars whose color property 

has a value of blue. The nested closure function needed to represent this query is: 

closure( CheckSelecLPredicate. closure( C pdate_Image. e, Car -0n. f) 

where e is an instance of Emp and f is the predicate function >.c c.color = ··blue". Clearly, it is possible to 

start with an employee and determine if a corresponding blue car is available to include as a member of the 

derived class without considering other employees or cars. 

If the derived class is created from an existing derived class (which also does not involve a query modifier), 

the closure function representation used in the existing class can be nested within the closure function 

representation of the new class. For example. suppose the following pair of derived classes were defined: 

DEFLV E CLASS Emp-Cars USING 1MAGE(Emps, Ae Car_Of(e)) 

DEF 1,\1 E CLASS Blue_Emp_Cars C'SING SELECT(Emp_Cars, AC c.color ::: "blue") 

The closure function representations corresponding to these two classes are: 

clOSW'f\ Cpdate_l mage. t. Cur _0 f) 

closure( CheckSelecLPl'edicate. closure( C pdateJmage. t. Car _0n. f) 

The second representation is equivalent to the one formed by defining a single derived class using the nested 

form of the query to obtain blue employee cars. 

The second category of nested queries are those which contain inner query mod1fiers. Creating a derived 

class from an existing derived class which involves a query modifier is considered to be equivalent. Assume 

t he nested query used to define a derived class is the following: 

SELECT(DU P _ELIM I N ATE(IMAGE(Emps, Ae DepLO J(e))), >'d d.loc::: "Boston") 

This query retrieves all unique department objects which are referenced by Emp objects and are located in 

"Boston". A first approximation of the nested closure function needed to represent a logical member of the 

collection returned by this query is: 

closw'e( Check_SdecLP l'edicate. closw'e( U pdate_I1llage. e. II ),1'2) 

where II is the Dept_Of function and h is the function Ad d.loc = ·'Boston". ~ote that this does not 

include a test for the duplicity of the object returned by the nested closure. Therefore. assuming that 
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many employee objects reference the same department object, the resultinl!; derived class will contain many 

duplicate members. The membership decision cannot be made without considering the entire collection 

created by the inner 1\IAGE and DUP_ELIMINATE query. 

We need a slightly different approach to represent the members of a derived class created with a query 

in the second category. The first step is to create a derived class using the inner query which includes the 

query modifier. For example, we can create the class EmpJ)epts to represent the query: 

DU P -ELIlvI IN ATE(lMAGE(Emps. Ae Dept-Of(e))) 

The second step is to create a derived class which corresponds to the original query. The representation of 

this derived class refers to the members of the intermediate derived class. In particular, the closure function 

representation for the second derived class is of the form: 

closure(Check --Select-Predicate. d, f) 

where d is an instance of type Dept (the member type of Emp_Depts) and f is the function Ad d.loc = 
.. Boston" 1\ Al ember_0 f( Emp_Depts. d). This representation reflects the fact that it is necessary to consider 

t be entire set of objects produced by the inner query in order to obtain the correct result for tbe outer query. 

It is not sufficient to say that d is defined as a member of EmpJ)epts since the membership of a derived class 

fluctuates. Object d must be an instance of the member type of EmpJ)epts which is then explicitly tested 

for membership in the EmpJ)epts class. This is not surprising since every predicate implicitly includes a 

test of the form Member _0 f( base class, 0) which is not included since the membership of an object in a 

particular base class is guaranteed as long as the object exists. 

Similar approaches can be used for the ot.her query operators and modifiers. Some modifiers (such as 

C'~NEST) may need only a subset of the collection produced by the inner query, but the same general 

approach can be used. It is important. to mention that the construction of closure function representations 

for deri ved class members is based only on the syntax of the query involved. Two equivalent queries which 

are syntactically different will have different closure function representations. 

4.8 Derived Class Maintenance using Actions 

Derived class extents are maintained using a combination of closure functions and actions attached to specific 

operations in tbe database. The utility of procedural attachment for performing database maintenance is 

described in [Day88]. Act.ions associated with an operation are executed after an invocation of that operation 

bas completed. There may be several actions associated with any given operation. Actions are executed in 

t lIe order in which they are attached to an operation. The placement of actions is determined by the kind 

of derived class being defined. In all cases. actions must be associated with the Create_Instance operation 

of the base type or types of the derived class. For example, the action associated with the Create_Instance 

operation of t.ype Emp as required by the derived class Emp_Roster is: 

e = <nev Emp object>
 
Insert_Member ( Emp_Roster.
 

Create_Closure_Function_object ( Update_Image, e, Name_Of))
 

A derived class definition which involves a predicate (e.g., SELECT. OJOI~) requires testing t.he relevance 

(as defined in [BeL89]) of a database update on the extent of the class. In the case of a base type instance 
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creation, a member of the derived class should only be created if the base type instance created meets the 

predicate used to define t he derived class 7. For example. in the derived class Highly..Paid,-Emp t,he action 

associated with the Create_Instance operation on type Emp is: 

e = <new Emp object> 
if Get_Property_Value ( e. salary) > 50000 then 

Insert_Member ( Highly_Paid_Emps, 

Create_Closure_Function_Object ( Check_Select_Predicate. e, predicate)) 

end 

Additionally, derived classes involving a predicate require parsing of t he predicate to determine which 

aspects of a type's interface are referenced. This is necessary in order to attach actions to operations in the 

database which respond to update~ other thall base type illstallce creation. For example, in the Emp..Phones 

derived class defined in section 4.5, the OJOIN predicate references the dept and loc properties of Emp, the 

phones property of Dept. and the loc property of Phone. If a property of a type is referenced in a predicate. 

t hen an action must be attached to the Set-Property_Value operation associated with tllat property. In 

the case of Emp..Phones, an action must be attached t.o the loc property of Phone (among others) which 

determines if instances of Emp..Phones must be added to correspond to the update of a phone's location 1>. 

The necessary action is shown below: 

p = <updated Phone object> 

for each instance of Emp do 
e = <current Emp object> 

:. if p is in Get_Property_Value(Get_Property_Value(e,dept).phones) and 

Get_Property_Value (P. loc) = 
Get_Property_Value«Emp object>. loc) then 

insert ( Emp_Phones, 
Create_Closure~Function_Object ( Check_Ojoin_Tuple, e, p, 

Create~Instance ( ~p~Phones_Type, e, p), <predicate function») 

end 

[f one of the operations defined on a type is referenced. tllen actions must be attached to all Set-Property 

operations on that type. This is because there is no way to determine. short of code inspection or explicit 

declaration: which properties of a tIPe an operation accesses. An update to any of tlie properties associated 

with a type. of a particular object may affect the result of invoking an operation on that object. For 

example. consider a derived class wllOse member type is Person which includes a predicate with the expression 

.-lssets(e) > 10000. The Assets operation on type Person may reference several properties of person including 

car, salary, and bank-account. A change to the value of anyone of these properties on a Person object could 

affect the result of invoking Assets on that, object. It is possi ble for an operation used in a predicate to 

reference properties or operations 011 object. of other types. This is regarded as a degenerat.f' case: associating 

actions with the operations of these types is If'ft to t.he class definer. 

7 In the case of SELECT derived classes, this.is only r~levant. if the second approach (0 class maintenance is used. 

8 Delet,ion of melnbers of Emp.Phones i~ 'handled hy closw'" execution. 
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4.9 Class Behavior 

The operations and properties defined by a type describe inherent features of an instance of that type. 

We consider it useful to be able to define additional behavior for an object based on membership within a 

particular class. This behavior is dynamic in that it is only available on an object as long as that object 

is a member of the class that the behavior is associated with. This is analogous to the notion of roles in 

data modeling [Che76. Haw84, Shi81] or to attaching behavior to individual objects [LRV88]. Defining class 

behavior is different from defining multiple types for an object because a fixed set of behavior is guaranteed, as 

described by an object's type, regardless of additional class behavior. For example, a tax-consultant property 

and a Make_Charity_Contribution operation may be relevant to Emp instances which are also members of 

the Highly..Paid-Emps class. In this case, the added features are available only when an employee plays the 

role of a highly paid employee. 

Class behavior is separate from and in addition to the type specification of members of a class. In 

particular, added class behavior is not relevant to the substitutability of one type for another. Class behavior 

is. by default. collected and stored with the member type object of the class it is defined for. Class behavior 

may also be specifically associated with a surrogate-type of the member type of a class. Distinct behavior 

from more than one derived class associated with a particular type must have distinct names. A class feature 

may be shared among several derived classes associated with a type in which case the name and signature of 

the feature is also shared. Since class behavior is associated with a type, class operations may access public, 

internal. and private features of that type. Class properties may require local storage on the objects that 

are logical members of the class. Once again. this is implemented using the "chunking" method described 

in section 3. Class properties or operations may not have the same name as a feature of the type that they 

are associated with. If a class property or operation is specified which has the same signature as a private 

property or operation, it is assumed that the private feature is being "promoted" to a class interface. The 

usefulness of this feature will become apparent when we describe security as provided by a view (see section 
;').2). 

In order to invoke a class operation or assign a value to a class property on a particular object. a runtime 

check must be made to determine if the object is a member of the relevant c1erived class. If it is. then the 

invocar.ion or assignment is allowed to rontinue. If not.. a runtime error occurs. The membership ot' an 

object in a class may change as a result of database updates. In other words. the class membership set for 

a particular object is dynamic. This introduces a level of runtime cllecking into the system which did not 

previously exist. The runtime testing does not involve type-checking per say since the type of any object 

can he statically determined and therefore checked at compilation. Rather. the runtime testing is for class 

membership (e.g., categorization). 

5 Views In ENCORE 

We are now ready to provide a definition for database views in ENCORE. Surrogate-types and deriwd classes 

are extensions which provide specific functionality in the form of object-level views. A database view is a 

framework for combining these extensions with base types and classes in a manner which creates a context 
in which a user can (l,ccess tht'database. 

Formally. a view is a pair \. = (T, C) where T is a set of types and C is a set of classes. T enumerates 

the types (interfaces) that are visible in \". It is assumed that ENCORE's basic types (e.g .. Object, Type. 
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Integer. String, etc.) are always included in the set T. A base type and its surrogate-types form a set of 

types Ti • Only one member of any given 'Ii may be present in T. This guarantees that the type of all 

objects visible in V can be statically determined. It type t is included in T, then one of two conditions 

nwst hold. Either t's declared supertype. t" is a member of T or none of the types in the set Tj which 
includes t. are visible. This maintains the consistency of the subtype relationship between types in T and 

the subset relationship between classes in C. For example, refer back to the type hierarchy shown in figure 
2. If Restricted_Emp is a member of T, then either Restricted_Person is also a member of T or neither 

Restricted_Person or Person is a member of T. In other words, Restricted_Emp and Person cannot both be 

members of T since the subset relationship exists between the two respective base classes while the subtype 

relationship does not exist between the two types. 

C enumerates the classes that are visible for the purposes of querying. A class c may be a member of 
C if its member type, or one of its surrogate-types, is a member of T. Objects that are not members of 

any cinC might be obtained as the result of operation invocation on an object which is a member of some 

cine. The types of these objects must also be members of T if further access to the objects is to be allowed. 

The types may not be present in T if access to the objects is to be denied (see section 5.2). In general, the 

argument and return types of all operations defined on t E T must also be members of T in order for V to 
be considered complete. The class behavior available for members of a class cinC is dictated by the member 

type (either the original member type of one of its surrogate-types) for the class. The argument and return 
types for class operations and properties must also be included in T in order for V to be complete. 

A view definition is an object in the database and includes properties which enumerate the members of 
T and C. It also includes operations to add or remove type and/or classes from the view and to check the 

completeness of the view. 

:. A view affects the availability of objects and describes the interface of \'isible objects at the user level. 

liser programs and queries are compiled or interpreted in the context of a view. A user may not change 
database views within a program or query session or operate in the context of two views. Other database 

operations which occur (e.g., invoking a supertype or base type operation. actions to update derived classes, 

etc.) may switch to execute in the context of the base view of the database. This ensures that all references by 

these operations are statically resolved. As stated previously. the base view includes all base and surrogate­

types (although surrogate-types are not illstantiable within the context of the base view), all classes. and all 

class behavior. Changes to the definition of types or classes is always done in the context of the base view. 

The types and classes shown in figure 4 form the base schema of a sample database of people and 
vehicles. In the interest of saving space. basic types such as Type, Class, Integer. String, etc. are not shown 

in the figure. A view can be created for this database which restricts query access to the Boston_Emps and 

Blue_Cars classes and applies the Restricted_Emp surrogate-type as a replacement for base type Emp. The 

view definition which meets these restrictions is V = ((Restricted_Emp, Car), (Boston_Emps. Blue_Cars)). 

A user of this view may issue queries over the Boston_Emps class and may invoke operations on the resulting 

Emp objects. The result of operation invocations may remove a particular Emp object from the Boston_Emps 

class. but existing references within the context of the view are still valid. The interface provided for all 

Emp objects in the context of this view is specified by Restricted_Emp. Queries may also be executed on the 

Blue_Cars class to obtain a Car object which can be accessed using all of the operations defined on type Car. 

A car object which is not a member of Blue_Cars may be obtained by getting the value of the car property 

on an Emp object. Membership of the resulting Car object in the Blue-Cars class can be tested using the 
Member_Of function. Car objects obtained in this fashion are also accessed using the operations defined on 
type Car. 
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Figure 4: Sample type and class hierarchies 

5.1 View Updates 

Multiple views of a database may be active at the same time. Updates that occur in the context of one view 

are visible to users accessing the database in the context of a different view. [n our model, views are defined 

in terms of types and classes. First we consider the case t.hat updates are made to an object through different 

interfaces in different views. Updates cannot be made to an object through different interfaces in the same 

,.. iew due to the restriction that only a base type or one of its surrogate-types may be visible in a single view. 

Each interface of an object shares a common set of properties (e.g, those defined on the base type) whether 

\'isible on t.he particular interface or not. A surrogate-type may include additional local properties. If an 

upclate is made to the value of a property which is shared among all of the interfaces of an object. the update 

is visible to all interfaces and therefore is available to all users of that object (either directly or indirectly 

,Jepending on the visibility of the property). Updates made to properties local to a particular interface are 

only visible through that interface and are therefore available to all users of that interface. 

We now consider updates made to objects which affect class membership. Base class membership can 

only be affected by deleting an object in which case the deleted object is removed from the database and 

is not visible in any view. The membership of an object in a derived class can change when the object (or 

some other object) is updated. When an object is removed from a derived class, this change is visible in all 

views which include the derived class. The removal of an object from a derived class affects the ability to 

obtain t.hat object using a query in a particular view. It does not affect other references (e.g., as a property 

value) t.o t.he object within a view. Conversely, an object may be updated such t.hat it becomes a member 

of a derived class, in which case it is available to be queried in all views which include the derived class. In 

summary, changes in class membership of an object occur in a uniform fashion regardless of the visibility of 

a class wit.hin a view. 

An important feature of a view is its consistency. [GPZ88] defines a view as being consistent if an update 

made in the context. of t.he view uniquely determines an update to the underlying database. Consistency 

is important in order to understand and therefore reason about the semantics of updates made at the view 

level. It is ba.c;ed on the notion that a translator exists which can map view updates to underlying database 
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6 Other Work 

Other systems provide features which are similar to our definition of surrogate-types, derived classes, and 

database views. 

Postgres [SHH88] and Rigel [RS79] are extended relational systems which include view definitions. In 

order to define a view in Postgres, a rule (query) is supplied which defines the extent of a view relation. 

If the rule defining a view is evaluated as needed. then the extent of a view relation is re-created each 

time query access is required. If the rule is evaluated early, then the view extent is stored and re-created 

each time a relevant update is made to the base relations. Updates to Postgres views are not allowed since 

the result of the updates cannot be automatically and un-ambiguously specified using the rule mechanism 

currently provided by the system. Rigel takes a more object-oriented approach in that relation definitions 

arl' part.itioned into modules which include relation schemes and operations which may be pl'rforml'd on the 

relations defined by these schemes. .A view is defined by creating new module which includes a query for 

defining the extent of a view relation. the scheme for that relation, and a complete set of operations which 

may be performed on the relation. These operations are supplied by t.he module definer and are used to 

address t,he problem of view updates. Only those operations which are specified by the module definer may 

be used to update the relations defined in the module. The definition of these operations is simplified by 

the ability to directly reference the base tuples responsible for the inclusion of a tuple in the view relation. 

This is unusual for a view model in the context of a relational system. 

SDM [HM81] includes subclasses which are defined over base classes using predicates or grouping expres­

sions. Subclasses are analogous to our SELECT derived classes and a subset oflMAGE derived classes. The 

SDM model does not include behavioral features of objects. New state can be added to objects which are 

included in a subclass. We also include new behavior for members of a class. The combination of subclasses 

and subclass features provides a basic form of viewing in SDM although the visibility of a subclass and the 

features described by a subclass cannot be controlled. 

The DAPLEX [Shi81] functional data model is based on entities (objects) and functions. Types are 

defined in terms of the functions that can be applied to entities which are to be associated with a type. 

An entity ('an [law" more than one type associated with it. The set of types that an entity has may ('hange 

dynamically. Subtypes can be defined which inherit function definitions from existing t.ypes. .A new type 

may be derived from the definition of an existing type by defining functions which use those provided by 

the existing type. A subset of the entities which exist in the database can be associated with the new type 

by using a query. Views provide a new name space in which to define new types and collections of entities 

which are visible to a user of the view. Our model maintains a stronger notion of t.ypes; multiple types may 

be defined for an object, but only one may be active at any given time. Furthermore the types (base and 

surrogate) that are associated with an object can only be added to, no types can be removed. We separate 

the definition of new collections (derived classes) from the definition of new types. This is advantageous 

because the type of an object is fixed regardless of which collections that it belongs to. In DAPLEX. an 

t>ntity may have a particular type by virtue of being in a particular collection. If an update to the entity 

removes it from the collection. it also removes the type. This creates a problem in viewing. ff a type is 

removed from an entity such that. no type associated with the entity is visible within a view. then t.he entity 

becomes undefined in the context of that view. In other words, the entity leaves the view. This cannot 

happen in our model. If the type of an ohject is included in a view definition. then the object. is always 
defined in the context of the view. Once again, this is a consequence of our separating the definition of t.ypes 

from collect.ions. 
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[HZ88] describes a viewing model in the context of the FUGUE data model which is based on DAPLEX. 

FUGUE's definition of a. database view is similar to ours in that it includes a pair of sets, one specifying 

types and one specifying objects. They describe how views (at the object-level) can be used to implement 

data abstraction and inheritance. Function execution is accomplished by changing context from one type 

to another dynamically in order to execute the necessary functions to accomplish a particular task. This is 

analogous to our definition of surrogate-types where each surrogate-type is an abstraction on its underlying 

base type. FUGUE has a similar problem to DAPLEX in that objects may leave a view as the result of an 

update which invalidates an object's membership in the extent of a type visible within the view. A later 

FUGUE paper [HZ90] addresses this issue by not allowing updates which would remove an object from the 

extent of a view type; a restriction which they define as "value closure" . 

Database systems which apply a functional model [FBHPC+ 87, MD86] include many of the features 
described above. PDM does not allow an object to have more than one type, but an object may change 

type. IRIS allows more than one type to be associated with an object. An interesting addition in both cases 

is the ability to store the extent of a function. A stored function is represented as tuples which pair values 

of the input arguments with corresponding output arguments. This is analogous to a derived class created 

usin.2; a combination of PROJECT and OJOIN. PDM allows the definition of a new type whose instances 

a.re the tuples in a stored function extent. IRIS restricts stored functions to being in first normal form and 

does not associate a type with the tuples in a stored function extent. 

\Iost of the functional models are not strongly typed in that an object may have multiple types associated 

with it and/or can change type dynamically. We now consider models which have a notion of typing that 

is closer to that of ENCORE. Galileo [AC085] is a database programming language which includes viewing 

features which are similar to those in our model. The definition of a type may be modified within different 

"environments" by dropping or adding features which is analogous to our definition of surrogate-types. 

Galileo maintains collections of objects associated with a type (classes). Subclasses can be defined from an 
existing class using several selection methods. A subtype of the member type of a class may be associated 

with objects which are members of a subclass created from that class. Objects may therefore have multiple 

types hy being members of multiple classes. Galilee maintains strong typing by not allowing an object to 

change types. This is accomplished by restricting the definition of a subclass to reference only immutable 

;\spects of tin object. \Ye consider approach to dassification to he restrictive a.nd allow the movement of 

ubjects between classes. Our objects have only a single type in a given view but may add additional behavior 

as a consequence of class membership. We feel that this approach is more flexible and natural. 

The viewing model described in [SS89] deals with defining multiple interfaces for an object. It does not 

consider the visibility of objects in a view. The approach outlined is to provide multiple interface definitions 

based on a single (base) type. Each new interface is a modification of the base type produced by including, 

excluding or re-implementing methods and instance variables (properties). The ability to read or write 

properties is also addressed. An access made to an object must specify which of the multiple interfaces 

associated with the object's type is the desired interface for that access. \-Iultiple copies of the state of an 
object are kept: one for each ·'instantiation" or usage of the object. Each instantiation is a pairing of object 

and interface which is dictated by the current view. This has the disadvantage that updates made to an 

object in the context of one instantiation are not visible to other instantiations of the object. In other words, 

instantiations are distinct and can be thought of as versions of the original object which operate using one 
of the available interfaces for the object. 

ORION [BCG+Si]. GemStone [~lS87]. and VBASE [AH87] are database systems which are similar to 

E:\CORE. Objects have a single type associated with them which is not changeable. VBASE includes the 

25
 



7 

notion of a union type which can be thought of as an object-level view where the actual interface to an 

object referenced via a union type is not fixed. In general, however, the viewing capability provided by 

these systems is limited to making changes to a type's definition within the database schema. This does not 

address the need for multiple views of an object or database to be available at the same time for different 
users. [Ke88] proposes a schema and type versioning model which extends the data model of ORION. Type 

versioning could begin to support some of the viewing capabilities that we have described. However, objects 

in the proposed model may only have a single type version associated with them. This does not provide the 

flexibility of multiple interfaces for the same object. 

Many of the systems described include the ability to create collections of objects based on queries or 
function application. The maintenance of these collections in response to database updates is a problem in 

all cases. The maintenance of computed extents is orthogonal to the problem of determining the affect of a 

view update on the underlying database. This problem is handled in most systems by user written operations 
or functions. Rigel and Postgres avoid the issues of extent maintenance by re-creating the extent of a view 

relation (which is analogous to a derived collection) for each reference. DAPLEX and PDM include rules 

attached to database operations which update derived collections of objects. In this paper. we describe a 
method for maintaining derived classes using closure functions and procedural attachment. Our contribution 

is a comprehensive description which describes the different kinds of derived classes and how they must be 

maintained. Furthermore, our approach uses a combination of early and late evaluation to decrease the 
overhead of class maintenance. 

Summary 

We have described a flexible implementation of database views based on the ENCORE data model extended 

to include two kinds of object-level views. The viewing capability described is at least equivalent in modeling 

power to the viewing mechanisms provided by relational database systems. Surrogate-types provide multiple 
interfaces which may replace a type within a database view. This allows the view definer to simplify or 

abstract the interface of a set of objects. Surrogate-types provide functionality similar to relational project 

hy dropping features from the interface provided by t he base type. Surrogate-types are much more powerful. 
however. because new features can also be added to those specified by the base type. Additionally, surrogate­

types handle behavior as well as state. Derived classes provide the ability to create dynamic sets of objects 

which correspond to queries over the database. This allows the view definer to limit query access to those 

objens which are members of specific classes. Derived classes provide functionality similar to a relational 
select, project or join. They are more powerful because the query operators provided in tIle ENCORE query 

algebra may produce new types and objects as well as execute arbitrary functions to obtain query results. 

Derived classes may also include additional behavior for the objects which are members of a class. View 

updating is a diffh-ult problem for relational database systems. Our model addresses the problem of view 
update by applying object identity and user defined operations to deterministically map view updates to the 

underlying database. 

An interesting feature of om model is te ability to specify type and class behavior for objects. We feel 

that it is useful to distinguish between inherent and dynamic features of an object. A type defines static 
features of an object that are always available and may be statically checked. Additional ff:'atures may be 

provided by the inclusion of an object. in a class. These features are considered to be tlynamic or short-term 

and therefore require tha t dynamic checking be performed before they are accessed. This maintains static 

typing while allowing the flexibility of dynamic behavior. Our approach is more efficient. than assigning 
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multiple types to an object. since a runtime check for the validity of an object access need only occur in some 

cases rather than every t.ime. 

A difficult problem for OODBs, and database systems in gener~l, is how to nandk changes in the definition 

of a type (e.g., schema modification). Our view model may provide some leverage into addressing these 

problems. For example, multiple versions of a type produced by changing a type's definition over time can 
be modeled using surrogate-types of the original type definition. New properties or operations to be added 

to a type's definition can be included in a surrogate-type's definition. Similarly, properties and operations 

removed from a type's definition can be dropped in a surrogate-type's definition. The most difficult problem 

is how to handle changes in the domain of a property or the domain,. range and implementation of an 
operation. A simple way to handle these changes is to drop the old definition of a -property or operation 

and include the new definition, using a different name, on a surrogate-type. This method does not allow 

old programs written using a previous version of a type to access objects created using a new version of the 

type. Some sort of mapping from the old definition to the new definition would have to be provided in order 

to accomplish this. In the future, we will be looking at the applicability of views in addressing the problems 

of schema modification. 
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