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Figure 1: Sample surrogate-types

tuples which share attribute values except for one attribute whose values are collected into a set to form the
attribute’s value for the nested tuple. COALESCE can be executed on the tuples resulting from a NEST to
ensure that the sets created for the attribute NESTed upon are not duplicated. UNNEST provides the op-
posite functionality to NEST in that it modifies tuples that have a set-valued attribute by creating multiple
tuples. each with a different member of the set as the value for the (originally set-valued) attribute.

3 Surrogate-Types

This section describes the first of two extensions to the ENCORE data model. A surrogate-type is associated
with an existing abstract type (the base type). A surrogate-type provides a different interface for objects
created as instances of a base type. In other words, surrogate-types are object-level views. Consider the
sample types shown in figure 1. Tvpe Emp includes properties name, address. company, and salary and
operations (rive_Bonus and Send-Mail.To. A different interface to Emp instances might include name,
company and Send_Mail-To but exclude company, salary and Give-Bonus. \We can provide this restricted
interface to Emp instances by creating a surrogate-type (Restricted_Emp) for type Emp which hides some
of the features of type Emp while retaining others. As an illustration of the usefulness ol surrogate-types
for data abstraction consider the Integer_Stack/Integer_Array (adapted from [HZ8R]) example also shown
in figure 1. Integer_Array includes operations such as Put_At_Index. Get_At_Index, and Number_Of_Elems.
These operations manipulate properties (i.e.. state) which implement an integer array. -\ surrogate-type
of Integer_Array, called Integer_Stack, is defined which provides a stack abstraction implemented in terms
of the Integer_Array representation. The operations provided for Integer_Stack include Push, Pop, and
Number_Of_Elems. Push and Pop invoke operations copied from type Integer-Array to manipulate the array

representation rather than manipulating it directly. Number_Of_Elems in included in both type definitions
with the implementation being defined on Integer_Array.

Objects cannot be created as instances of a surrogate-tvpe within the context of the base view of a
database. Instead, a surrogate-type may replace its corresponding base type as the interface of choice for
instances of the base type within a database view. When such a replacement occurs. all instances of the
base type may only be accessed using operations and properties in the interface of the chosen surrogate-
type. In the case of the Restricted_-Emp surrogate-type. all properties and operations esxcept salary, address
and Give.Bonus are accessible when Restricted-Emp replaces Emp within a view. A surrogate-type always
includes the initialization information needed to create an instance of the base type when the surrogate-type
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is active within a view.

Many surrogate-tvpes may be created for a single base type. A base type and its corresponding surrogate-
types form a set of interfaces valid for a particular set of objects. Only one member of this interface set may
be active for a particular view of the database. The active member in the context of the base schema is the
base type. Since only one interface is available for a particular view, it is possible to statically type-check
programs written against the view. This is because the type of any object can be uniquely determined during
compilation. Explicitly associating multiple types (interfaces) with an object [Shi81, HZ88, FBHPC*87]

requires that runtime checking be performed to determine which types are valid for an object before allowing
access to that object.

A surrogate-type is initially specified by including the public and internal properties of its base type, and
their associated Get_Property_Value and Set_Property_Value operations 2, in the public and internal interface
of the surrogate-type. Thesc properties and operations dcfine the state, and constraints on that state, that
is available for use on the surrogate-type. The visibility of properties copied from the base type may be
modified by moving them to other levels of interface on the surrogate-type 2. The operations defined on the
base type are not automatically included in the definition of the surrogate-type. A potential reason for this
1s that the operations of the base type may reference properties or operations which are private to the base
type and therefore not included in the definition of the surrogate-type. The dynamic binding process used
by ENCORE addresses this problem by switching context from the surrogate-type to the base type when an
operation copied from the base type is invoked [HZ88, MD86]. This is similar to the binding process which
occurs when an operation defined on a supertype {and not overloaded on the subtype) is invoked. In fact, the
reason for not automatically including base type operations is that semantic correctness is not guaranteed.
For example, consider the Emp and Restricted_Emp types. Suppose that Emp includes an operation called
Display _Emp which displays the values of each property of an Emp object. If the salary property is hidden
on Restricted_Emp by moving it to the private interface, then the inclusion of Display_Emp in the interface
of Restricted_Emp is not semantically correct because the value of the salary property may be displayed.
Therefore, the inclusion of base type operations is left to the type definer *.

The next step in defining a surrogate-type is to specify it as a subtype of some type (base orsurrogate) on
the path from the supertype of its base type to the root of the subtype hierarchy (Object). If no supertype is
specified. the surrogate-type defaults to being a subtype of type Object. If there is more than one supertype
defined for the base type. the surrogate-type may be specified as a subtype of a type on each path to the root
of the subtype hierarchy. The supertypes chosen for a surrogate-type provide an additional set of properties
and operations to consider. ENCORE does not permit name conflicts between inherited properties and
operations and will raise an error condition if a conflict occurs.

Properties of the proposed supertypes are compared to the properties copied from the base type. Prop-
erties of the same name and signature are deemed equivalent and are considered to be inherited from a
supertype. Properties of the same name and different signatures are in conflict and result in an error con-
dition that must be resolved by the type definer. All properties copied from the base type which are not
inherited from a supertype are eligible to be moved to the any interface of the surrogate-type.

Operations defined on the proposed supertypes must also be defined on the surrogate-type. Supertype
operations may be inherited or re-implemented as long as the substitutability of the surrogate-type for
each supertype is maintained. Additional operations may be added to the surrogate-type. As alluded to

21t is assumed that these operations have no side-effects.
®Movement of properties may be restricted by the choice of supertypes for the surrogate-type.
4 As with properties, the inclusion or exclusion of operations may be restricted by the choice of supertypes.
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Figure 2: Hierarchy containing Restricted-Emp surrogate-tvpe

previously, operations defined on the base type may be explicitly copied to the surrogate-type. For the
purposes of type-checking, a surrogate-type is treated like any other type in the type hierarchy. Additional
properties may also be defined for a surrogate-type. If an added property is to be stored, then local storage
must be provided on each instance of the base type. This storage is only available when the surrogate-
type defining the added property is the current interface of an object. Local storage for a surrogate-type
is implemented using the chunking method described in [Zdo88]. Properties local to a surrogate-type are
stored in a separate ‘chunk’ of each object. A new stored property must specify a default value which is
propagated to an object when the property is first accessed on that object.

The regular (as opposed to surrogate) types form a type hierarchy in the context of the base schema
of.a database. Surrogate-types form parallel pieces of the type hierarchy, illustrated in figure 2 . that can
overlay pieces of the base type hierarchy within the context of a particular database view. This restricts the
meta-level behavior of a surrogate-type. We have already stated that instances of a surrogate-type cannot
he created unless the creation oceurs ini the context of a view where the surrogate-type replaces its base
type. We have also placed restrictions on the definition of properties and operations for a Shrrogate—type.
Further restrictions are a consequence of ENCORE’s semantics for the collection of a type's instances.

As described above. a surrogéyte-type must “hook in” to the same path of the specification hierarchy as
its base type. Section 2 states that the instances of a subtype are included in the collection of instances of
each supertyvp'e. In order for a surrogate-type to replace its base type within a view, tl.xe'sub_set relationship
of the surrogate-tybe’s instance collection to that of its supertypes must be maintained thereby restricting
the choice of supertypes. Subtypes of a base type might not be subtypes of a surrogate-type associated with
that base type. If this is the case, the subtype and the surrogate-type cannot both exist within the same view
because a subset relationship of instances of the two types will exist while a subtype relationship between
the two types does not exist. A new surrogate-type of the subtype in question may be defined to be a valid
subtype of the original surrogate-type in which case both surrogate-types may exist within a single view.
A final restriction is: that a regular sub'ty‘pe cannot be created from a surrogate-type. This is because the
subtype relationship may not exist between the type being created and the base type of the surrogate-type

5Restricted-Emp could have been made a subtype of type Person if the address property were included in its public interface.
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chosen as supertype. Consequently, the subset relationship of instances of the subtype to instances of the
supertype may not be maintained.

4 Derived Classes

As stated previously, ENCORE maintains a collection of each type’s instances. We will now call these
collections base classes. The name of a base class is the pluralized name of the type it is associated with
(e.g., type Emp => class Emps). We extend the class mechanism by allowing the definition of derived classes.
A derived class 1s created by executing a query over an existing class or classes in the context of a DEFINE
CLASS statement. A derived class forms an object-level view by grouping related objects based on a query.
A derived class may be included in the definition of a database view in which case the derived class is visible
to be queried over in the context of that view. The result of a query is a collection of objects (the query
collection). The query collection returned within the context of a DEFINE CLASS statement forms the
initial extent of the derived class being defined. At any point in time, the members of a derived class reflect
the result of the defining query as if it had been executed at that point. Therefore. the membership of a
derived class fluctuates as a result of changes to the database. Objects cannot be explicitly added to or
removed from a derived class, this task is reserved to the database system. The member {ype of a derived
class is the type of the members of the query collection used to create the class. This may or may not be

the same as the member type of the collection originally queried over. We will call the member type of the
original collection the base iype.

Consider the derived class example shown in figure 3. Type Car has an associated base class. Cars. which
includes all instances of Car. A derived class is created from Cars which includes those car objects which
are colored blue. This i1s expressed by the following DEFINE CLASS statement:

DEFINE CLASS Blue-Cars USING SELECT(Cars. Ac c.color = “blue")

The derived class defined is named Blue_Cars and contains Car instances whose color property has a value of
“blue”. The member type (and base type) of Blue_Cars is Car, therefore Blue_Cars has type Class[Car]. De-

rived classes are basically sets and support operations such as Member.Of. Number-Of_Members. Subset_Of,
Get_Member with the obvious semantics.

The extent of a derived class is stored to avoid re-computation on each reference. Furthermore, derived
classes defined with a PROJECT. OJOIN. or (in some cases) IMAGE query will contain new objects which






The objects which are physical members of a derived class are implemented as closure functions. An
object is created as a class member which embodies a particular closure function and its arguments. We will
distinguish between logical members of a derived class (e.g., instances of the member type of the class) and
physical members of a derived class (e.g., objects implemented as closure functions which produce logical
members of the class) whenever there is ambiguity. The closure function implementation of a physical class
member is executed whenever that member is referenced. The result of the function execution is an instance
of the member type of the derived class or an error condition. The functions referenced in the first argument
of a class member closure function generally test to see if a particular instance of the class member type
is a valid participant in the derived class. For example, the closure function implementation of a member
of a derived class created with a SELECT query tests to see if an instance of the class member type meets
the requirements of the predicate specified by the SELECT. If it does not, the member type instance is not
considered to be a participant in the derived class at that point in time. In other cases, a closure function
may take an instance of the base tvpe of a class and produce an instance of the member tvpe of the class.

The physical members of a class are merely place holders for logical members of the class. The visibility
of physical class members is obscured by the operations provided for derived classes. For example, if the
Get-Element operation is invoked on a derived class. the result is an object obtained by finding a physical
class member whose closure function successfully produces an instance of the member type of the class.
Similarly, if the Number_Of_Members operation is invoked on a derived class, the closure function of each

physical member of the class is executed. Only those executions which complete successfully contribute to
the count of logical members of the class.

Closure functions provide a mechanism for testing the inclusion of a particular cbject in a derived class.
Additional functionality is required to add or remove members of a derived class in response to external
database changes. Removal of members is actually handled by closure functions in a form of lazy evaluation
[Bun82]. We use actions (triggers) associated with specific operations in the database to add members to a
derived class as needed. The following sections describe. among other things, the maintenance of different

kinds of derived classes using closure functions and actions. Section 4.8 provides details on how actions are
formed and what operations they are associated with.

4.2 SELECT Derived Classes

A SELECT query can be used to define a derived class which expresses a constraint on an existing class.

The Blue-Cars example illustrates a derived class created with SELECT. Consider the following alternative
example:

DEFINE CLASS Highly-Paid-Emps USING SELECT ( Emps, Ae e.salary > 50000)

Highly -Paid-Emps is a derived class whose instances represent a constrained subset of the collection of Emp
instances (Emps). In particular, those Emp instances whose salary property has a value greater than fifty
thousand dollars are present in the extent of Highly_Paid_Emps. The member type of Highly_Paid_-Emps is
Emp. In SELECT derived classes, the base type of a class is always equivalent to the member tvpe. In this
example, the semantics of Highly_Paid_-Emps are expressed in the SELECT constraint used to create the
derived class. Other semantics may be expressed by the addition of behavior to the Highly_Paid-Emps class

(see section 4.9).
The closure function implementation of physical members of a SELECT derived class is of the form:

closure(Check_Select_Predicate : Object x Function — Object.o. f)
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where Check-Select_Predicate is a system supplied function, o is a member of the class SELECTed from,
and f is a function which implements the relevant SELECT predicate. The execution of a closure func-
tion of this form in turn executes Check_Select_Predicate on the given object and predicate function.
Check_Select_Predicate returns the object sent to it if the.predicate function evaluates to true on that
object. If the predicate function evaluates to false, Check.Select_Predicate returns an error condition. The
object sent to Check_Select_Predicate is an instance of the member type of the class. If the execution of
Check_Select_Predicate is successful (e.g., it does not return an error condition), then the member type in-
stance 1s considered a logical member of the class. If Check_Select_Predicate returns an error condition, then
the member type instance is not considered a valid member. In the Highly Paid_Emps class, the arguments

to Check_Select_Predicate are an instance of Emp and the predicate function used in defining the class (e.g.,
Ae e.salary > 50000) ©. '

The logical extent of a SELECT derived class may be effected by updates made to the database. The
most obvious examples are changes made to instances of the class member type. Creation of an instance
of the member type requires the inclusion of a new member in the logical extent of a SELECT class if the
relevant predicate evaluates to true on the created object. Similarly, an update may cause a predicate to
become true on a member type instance requiring its inclusion in the logical extent of a SELECT derived
class. An update could also falsify a predicate on an object requiring its removal from a SELECT derived
class. Deletion of an instance of the member type requires that the object be removed from all derived
classes as well as the base class. Updates to instances of types other than the member type of a SELECT
derived class may also affect the extent of the class. For example, consider a SELECT derived class defined
on Emps called Boston_Emps which includes the predicate function Ae e.dept.city = “Boston”. An update
to an instance of Dept might affect the extent of Boston_.Emps by requiring insertion (in the case that a
department’s city is changed to “Boston™) or deletion (in the case that a department’s city s changed to
something other than “Boston”) of a class member if the update'd instance is referenced by at least one
Emp instance. The effect of a Dept instance update on the extent of Boston-Emps is not autonomously
computable [BCL89] since objects which are not included or referenced in the extent of Boston-Emps must
be consulted in order to determine the update’s effect. In our model, autonomous computability bounds the
number of objects that have to be referenced in order to maintain the extent of a derived class. If the effect
of an update on a derived class is autonomously computable then fewer objects need to be referenced. Note

that the creation or deletion of an instance of Dept does not affect the extent of Boston.Emps  unless it is
referenced by an Emp instance. '

Maintenance of a SELECT derived class can be handled in two different ways. All of the events described
in the previous paragraph are at the logical level. Therefore, one approach to class maintenance is to include
an object in a derived class for each’instance of the member type. Each physical member of the class will
produce, via closure function execution, an instance of the member type if the instance is a valid logical
member of the class. Using this implementation, the number of objects in the derived class is always equal to
the number of instances of the member type. At any particular time, the number of logical class members is
most likely less than the number of physical members of the class. This approach is not space efficient if the
logical extent of the derived class is a small subset of the member type’s base class. However, tie insertion
and deletion of physical class members in response to external database updates is minimized. In particular,
objects need only be inserted into a SELECT class when instances of the member type are created.

The alternative approach is to illiilledi'ately add or remove physical members of a SELECT derived class
in response to external updates. This minimizes the number of objects that are members of the derived

€Note that the ,Checkﬁelect,.Pl;edjcat.e function and the predicate function are both objects and therefore are shared by all
physical members of a derived class.
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class at any point in time but requires more processing to reach a consistent database state when an update
occurs. Additionally, this approach requires that more actions be generated and associated with operations
in the database since more database events must be monitored in order to maintain a derived class extent.
The choice between the two approaches can be made based on the cardinality of the query collection initially
used to define a SELECT derived class versus the cardinality of the member type’s base class.

In either approach, the deletion of a derived class member which corresponds to a deleted instance of the
member type can be delayed until next reference of the class member. The next reference will perform a
closure function execution to determine if the referenced member type instance is a valid logical member of
the class. Check Select_Predicate returns a distinct error condition if the object sent to it is deleted. The
derived class operations which (indirectly) execute Check Select_Predicate respond to this error condition
by deleting the corresponding physical class member. A query over the extent of a derived class qualifies as
a next reference so that query results are always consistent with the current state of the database.

4.3 IMAGE Derived Classes

An IMAGE query produces a new collection of objects by executing a function on each member of an existing
collection. There is a bijective correspondence hetween objects in the original collection and objects in the
resulting query collection. An IMAGE query can be used to define a derived class which maps the members
of a class to the members of a derived class using function execution. Consider the class definition:

DEFINE CLASS Emp_Roster USING IMAGE (Emps. e Name_O f(e))

Assume that the Name.Of function returns String objects. The IMAGE query shown takes the collection
of Emp instances {Emps) and produces a collection of String objects where each member of the collection
represents the name of an emplovee. The member type of Emp_Roster is String.

The physical members of a derived class created with IMAGE are implemented using closure functions
of the form:

closure(Update Image : Object x Function — Object, o. f)

where Update_Image is a system supplied funcuicn. o is an instance of the tvpe queried over and f is the
function used in the query. Executing a closure function of this form is equivalent to executing Update.Image
on object o and function f. Update_-Image returns the object which resuits from applying function f to object
0. The object returned may be different at different times depending on the state of o (and possibly other
objects that o references). Update_Image is executed by the closure function rather than executing f directly
to handle the case that o is a deleted object without requiring { to do so. In the Emp_Roster class, the
arguments to Update_Image are an instance of Emp (o) and the Name-Of function (f). The result of
executing Update.Image in this case is the same as executing the Name_Of function on the referenced Emp
instance. If the name of the employee has changed since the last time the function was executed, the resulting

String object is different. Each physical class member is a place-holder for a String object which may change
over time.

As with SELECT derived classes, the process of obtaining logical members of an IMAGE derived class
involves the execution of closure functions. The difference is that instances of the base type of the class
are not produced by the executions. The closure functions reference an instance of the base type. but they
produce an instance of the IMAGE function return type (the member type). This process maintains the
logical extent of an IMAGE derived class with regards to the extent of the class it was created from. It
also allows the determination of the effect of an update to a base type instance on the logical extent of a
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corresponding IMAGE derived class to be deferred until next reference. Due to the bijective correspondence
of an IMAGE derived class to the base class it was created from, the creation or deletion of base type
instances always requires a corresponding update to the extent of the derived class. Insertion of physical
derived class members is handled by attaching an action to the Create_Instance operation of the base type
(as described in section 4.8). Deletion of a derived class member is deferred until next reference as shown

for SELECT derived classes.

4.4 PROJECT Derived Classes

A PROJECT query is similar to an IMAGE query in that it applies functions to a collection of objects
to produce another collection of objects. A PROJECT query, however, always produces a collection of
tuple objects. This mayv be desirable to provide a common interface (e.g.. Get_Attribute and Set_Attribute)
for objects of numerous types. It is also possible that the well understood interface of tuples will provide
better opportunities for query optimization (e.g. relational algebra transformations) [SZ89]. There is a
bijective correspondence between objects in the original collection and the collection of tuples produced by
a PROJECT. Like IMAGE. PROJECT can be used to define a derived class which maps the members of an
existing class to the members of a derived class. An example of a PROJECT derived class is:

DEFINE CLASS Emp_Directory USING
PROJECT(Emps, e < (Name, Name_Of(e)),
(Phone, Phone_Number(e)) >)

Emp_Directory is an abstraction of Emps which stores the name and phone number of each employee in
tuple form. The query used to define Emp_Directory produces tuples with attributes Name and Phone. The
values for these attributes are obtained by executing the Name_Of and Phone_Number functions on instances
of Emp. The member type of Emp_Directory is a type generated from the parameterized type Tuple (e.g.,

Emp_Directory_Type). Note that the definition of the new tvpe also defines a corresponding base class which
includes all instances of the tvpe.

The physical members ol a derived class created by PROJECT include closure functions of the form:

closure(U pdate-Project.Tuple : Object x Tuple x Functiony x ... x Function, — Tuple,
ot fi,.... fa)

where Update_Project-Tuple is a system provided function which updates a tuple {t) by executing the
functions (fi,..., f.) on the given object (o) to obtain values for each attribute of t. Update_Project-Tuple
returns an appropriate error condition if o is a deleted object in which case the corresponding derived class
member and tuple object are deleted. The arguments to Update-Project_Tuple in the case of Emp-Directory

are an instance of Emp (o), a tuple of type Emp_Directory_Type to update (t), the Name_-Of function (f,)
and the Phone_Number function (fa).

The process of accessing members of a PROJECT derived class involves the execution of closure functions.
As with IMAGE derived classes, the closure function execution produces an object whose type is different
from the type originally queried over. In particular. the objects produced are tuple objects. This process
keeps the extent of a PROJECT derived class consistent with regards to the class originally queried over.
The updating of a class member is delaved until the next reference of that member. For example, if an
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employee’s phone number changes then the tuple object corresponding to that employee in the extent of
Emp_Directory is updated when it is next retrieved from the class. This will not affect external references
to the tuple if it was previously retrieved from the derived class since a new tuple object is not created when
an update occurs. As with IMAGE classes, there are no predicates involved in defining a PROJECT class.
Therefore, it is not necessary to immediately determine the effect of a base type instance update (other than
creation or deletion) on the extent of a PROJECT derived class. Creation or deletion of instances of the
base type always requires updating the extent of a PROJECT derived class. As previously, creations are
handled immediately by an action attached to the Create_Instance operation of the base type of the class.
Deletions are handled when the corresponding class member is next referenced.

Once a tuple object is retrieved from a PROJECT derived class, it must behave like other tuple objects
in the database. In particular, the Get_ Attribute and Set_Attribute operations for each attribute of the
tuple must be available. Since the functions which produce attribute values on a particular PROJECT tuple
may not be invertible. it is not possible to automatically provide Set_Attribute operations which update an
instance of the base type when an update is made to a tuple object. For this reason, the default Set_Attribute
operations provided by the system for tuple types generated as a result of a PROJECT derived class definition
are null operations. These operations may be overridden by the class definer. In order to facilitate access to
the object which to create a tuple in a PROJECT class. a property is defined in the private interface of the
tuple type whose value is the relevant object.

4.5 OJOIN Derived Classes

OJOIN queries express new relationships between objects by constructing tuples whose attributes contain
objects related by a predicate. The result of an OQJOIN query is not guaranteed to be in one-to-one or onto
correspondence with either of the two collections queried over. An QJOIN derived class may be defined

to express a relationship between the members of two existing classes. The following is an example of an
OJOIN derived class:

DEFINE CLASS Emp_.Phones USING
OJOIN( Emps, Phones. 4, 4,
AeAp p € e.dept.phones A p.loc = e.loc)

Emp_Phones is a derived class which contains pairs of employees and the phones that are in the employee’s
department and at the same location as the employee. The logical extent of Emp_Phones is made up of tuple
objects. The A, attribute value of each tuple is an Emp instance and the A4, attribute value is a related
Phone instance. Note that there may be several members of Emp_Phones which have the same Emp instance
as a value for attribute A.. Similarly, multiple members may have the same Phone instance as a value for
attribute Ap. The member type of Emp-Phones is generated from type Tuple (e.g., Emp_Phones_Type).

Physical members of a derived class created with OJOIN contain closure functions of the form:

closure(Check_Ojoin-Tuple : Objecty x Objecta x Tuple X Function — Tuple,
01,09, t, f)

where Check.Ojoin-Tuple is a system provided function which applies a predicate function (f) to two objects
(01,09) to determine if the predicate is true. If the predicate is true. then the tuple sent (t) is returned
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as the value of Check.Ojoin_Tuple. If the predicate does not hold or either of 0, and 0. are deleted. then
("heck_Ojoin_Tuple returns an error condition in which case the corresponding tuple and physical class
member are deleted. The arguments to Check_Ojoin_Tuple in the case of Emp_Phones are an instance of
Emp (o). an instance of Phone (04), an Emp_Phones_Type tuple te update (t), and the predicate function f:
AeAp p € e.dept.phones Ap.loc = e.loc. The result of executing Check.Ojoin_Predicate with these arguments
is a Emp_Phones_Type tuple which contains e and p as the values for .4, and A, respectively or an error

condition. This maintains the relationship between the extent of Emp_Phones and the classes Emps and
Phones.

The logical extent of an QJOIN class may bhe affected by updates to the database. Creation or update
of an instance of either base type may require insertion of a class member if there are instances of the other
base type which are matched by the relevant OJOIN predicate. An update to an instance of the either base
type may also require the deletion of an OJOIN derived class member if there is no longer a match between
the updated object and an instance of the other base type. Note that in order to determine the effect of a
database update on the extent of an OJOIN derived class. it is usually necessary to consider sets of objects
rather than individual objects. Deletion of an instance of either base type requires deletion of the derived
class members, if any exist. that reference the deleted object. As with SELECT classes. the update of an
object other than a base type instance may require a modification to the extent of an OJOIN derived class.
In the Emp_Phones example. the OJOIN predicate includes the expression p € ¢.dept.phones. If the phones
property of an instance of Dept is modified. an Emp_Phones member may have to be inserted or deleted. If
an instance of Dept is created or deleted it does not affect the extent of Emp_Phones unless the create or
delete 1s followed or preceded by an update to an Emp instance.

Maintaining an OJOIN derived class is analogous to maintaining a SELECT derived class because a
predicate is involved in both cases. There were two approaches described for maintaining-a SELECT derived
class. The first 1nvolves the creation of a physical class member for every member type instance. The
second approach involves more processing but keeps the number of physical class members at a minimum.
In the case of OJOIN derived classes. it is not feasible to create physical class members which correspond
to every combination of instances of the tvpes queried over. Clearly the cardinality of the resulting class
could be quite large and‘would include many unnecéssa.ry members. Therefore. the second approach must
Le adapted for use with OJOIN classes. The cost of maintaining the minimum number of physical members
of an OJOIN derived class is hig‘herfthan for SELECT classes. The effects of the updates described in the
previous paragraph on the extent of an OJOIN derived class (with the exception of the deletion of a base
Lype instance) are not autonomously computable while the effect of manv updates on a SELECT derived
class extent _are,autononiously computable. Therefore. more objects must be referenced to determine the
effect of an external update on an, OJOIN class extent. Furthermore, the instances of two base types must be
monitored which increases the chance that a database update will affect an OJOIN class. As with SELECT
classes, the deletion of derived class inembers may be delayed until next reference.

A tuple object retrieved from an OJOIN derived class must behave like other tuple objects. Once again,
the Set-Attribute operation defined for a type generated by an OJOIN class definition is a null operation.
The class definer may replace the default operations with operations which affect the objects used to create
a tuple in the class. There is no need for a hidden property which contains the objects used to create an
OJOIN tuple since both of the relevant objects are available as attribute values on the tuple.
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4.6 Query Modifiers

As described in section 2, the query operators DUP_.ELIMINATE. COALESCE, FLATTEN. NEST, and
UNNEST re-structure a query collection. They can be thought of as query modifiers. Query modifiers
destroy the one-to-one correspondence between a query collection and the members of the collection(s)
originally queried over. There may be several members of the original collection that contribute to the
inclusion of a particular object in the query collection. In the case of UNNEST or FLATTEN, a single
member of the original collection may contribute multiple objects to the query collection.

Needless to say, query modifiers complicate the task of maintaining a derived class extent. In previous
sections, the concern was whether or not to include a particular object in the logical extent of a derived
class based soley on a predicate or function executed on objects external to the class. Query modifiers
require that additional processing be done which may involve comparison to other class members (e.g.,
DUP_ELIMINATE}) or re-formating (e.g., UNNEST). In order to accomplish this, we supplement the closure
function execution performed when a physical class member is accessed by additional function executions
which are dictated by the query modifiers being used. These functions take the result returned by a closure
function execution and produce a partial logical extent of the class which reflects the effect of the query
modifiers on the result. If no query modifier is present. the result of a closure function execution is inserted
into the logical extent being constructed. The implementations of derived class operations (e.g., Member_Of,
Number_-Of_Members) use the temporary logical extent as necessary to perform their designated tasks.

Using the DUP_ELIMINATE modifier as an example, the inclusion of an object in the logical extent of a
derived class must be coupled with a test to determine if a duplicate object is already present. If the Num-
her_.Of_Members operation is invoked on a derived class whose definition includes DUP_ELIMINATE. each
physical member of the class is considered for its contribution to the logical extent of the class. Previously,
those physical members whose closure function produced an instance of the class member type contributed
to the count of logical members of the class. In this case, successful closure function execution must be
followed by a test to see if the member type instance produced is already present in the logical extent cre-
ated by executing the closure functions contained in previous physical members of the class. If the object is
nlready present. it is not added to the logical extent and therefore does not contribute to the count of logical
members of the class. The test for duplication is on the objects resulting from closure function execution

rather than on the physical class members themselves since the physical members are only place-holders for
the objects that they generate.

Similar functionality is provided for other query modifiers. Nested query modifiers are handled by com-
posing the functions needed to maintain the logical extent of the class. For example, an UNNEST modifier
nested within a DUP_ELIMINATE modifier requires that the initial logical class member be UNNESTed and
that each resulting object is testing for duplicity. Only those UNNESTed tuples which are not already present

in the logical extent of the class will be added. The processing required by query modifiers is performed
every time a derived class is referenced.

4.7 Nested Queries

The preceding sections have used simple queries to illustrate the various kinds of derived classes that can be
defined. It has been assumed that only base classes were available for use in defining derived classes. It is
certainly desirable to be able to create derived classes using nested queries and other derived classes. The
two cases are similar since an existing derived class represents the query that was used to define it. Creating
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a new derived class from an existing one is analogous to nesting the query used to define the existing class
within the query being used to define the new class.

We categorize the classes created with nested queries into those that do not involve a query modifier
on an inner query and those which do. An outermost query modifier does not affect the categorization. In
the first category, it 1s possible to create a derived class from a nested query by simply nesting the closure
functions that are necessary to represent each query operator. This is because the membership of an object
in the derived class can be determined using a single fixed object (or a pair of objects in the case of OJOIN).

Note that the process of executing a closure function is now more complicated since it is necessary to handle
nested executions.

An example of a nested query which does not have an inner query modifier is the following:
SELECT(IMAGE(Emps. de Car_.Of(e)), Xc c.color = “blue™)

This query first executes Car_Of on each instance of Emp and then selects those cars whose color property
has a value of blue. The nested closure function needed to represent this query is:

closure(C heck_Select_Predicate. closure({’ pdate_.Image.¢,Car_Of). f)

where e is an instance of Emp and f is the predicate function Ac c.color = ~blue”. Clearly, it is possible to
start with an employee and determine if a corresponding blue car is available to include as a member of the
derived class without considering other employees or cars.

If the derived class is created from an existing derived class (which also does not involve a query modifier),
the closure function representation used in the existing class can be nested within the closure function
representation of the new class. For example, suppose the following pair of derived classes were defined:

DEFINE CLASS Emp_Cars USING IMAGE(Emps, e Car_0Of(e))
DEFINE CLASS Blue-Emp_Cars USING SELECT(Emp_Cars, Ac c.color = “blue’)
The closure function representations corresponding to these two classes are:
closuret"pdate_Image.e. Cur_Of)

closure(C'heck_Select_Predicate. closure({ pdate_Image.c. Car.Of}. [)

The second representation is equivalent to the one formed by defining a single derived class using the nested
form of the query to obtain blue employee cars.

The second category of nested queries are those which contain inner query modifiers. Creating a derived
class from an existing derived class which involves a query modifier is considered to be equivalent. Assume
the nested query used to define a derived class is the following:

SELECT(DUP_ELIMINATE(IMAGE(Emps, Ae Dept-O f(e})), Ad d.loc = “Boston')

This query retrieves all unique department objects which are referenced by Emp objects and are located in

“Boston™. A first approximation of the nested closure function needed to represent a logical member of the
collection returned by this query is:

closure(Check_Select_Predicate. closure(l7 pdate_Image.e. f1), f2)

where f, 1s the Dept-Of function and f» is the function Ad d.loc = “Boston” .
include a test for the duplicity of the object returned by the nested closure.

Note that this does not
Therefore. assuming that
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many employee objects reference the same department object, the resulting derived class will contain many
duplicate members. The membership decision cannot be made without considering the entire collection
created by the inner IMAGE and DUP_ELIMINATE query.

We need a slightly different approach to represent the members of a derived class created with a query
in the second category. The first step is to create a derived class using the inner query which includes the
query modifier. For example, we can create the class Emp-Depts to represent the query:

DUP_ELIMINATE(IMAGE(Emps. Ae Dept_Of(e)))

The second step 1s to create a derived class which corresponds to the original query. The representation of
this derived class refers to the members of the intermediate derived class. In particular, the closure function
representation for the second derived class is of the form:

closure(Check Select_Predicate. d, f)

where d is an instance of tvpe Dept (the member type of Emp_Depts) and f is the function Ad d.loc =
“Boston' A Member_Of(Emp-Depts. d). This representation reflects the fact that it is necessary to consider
the entire set of objects produced by the inner query in order to obtain the correct result for the outer query.
[t is not sufficient to sav that d is defined as a member of Emp-Depts since the membership of a derived class
fluctuates. Object d must be an instance of the member type of Emp._Depts which is then explicitly tested
for membership in the Emp_Depts class. This is not surprising since every predicate implicitly includes a
test of the form Member_O f(base class, o) which is not included since the membership of an object in a
particular base class is guaranteed as long as the object exists.

Similar approaches can be used for the other query operators and modifiers. Some modifiers (such as
UNNEST) may need only a subset of the collection produced by the inner query, but the same general
approach can be used. It is important to mention that the construction of closure function representations
for derived class members is based only on the syntax of the query involved. Two equivalent queries which
are syntactically different will have different closure function representations.

4.8 Derived Class Maintenance using Actions

Derived class extents are maintained using a combination of closure functions and actions attached to specific
operations in tlie database. The utility of procedural attachment for performing database maintenance is
described in [Day8&%]. Actions associated with an operation are executed after an invocation of that operation
lias completed. There may be several actions associated with any given operation. Actions are executed in
the order in which theyv are attached to an operation. The placement of actions is determined by the kind
of derived class being defined. In all cases. actions must be associated with the Create_Instance operation
of the base type or types of the derived class. For example, the action associated with the Create_Instance
operation of type Emp as required by the derived class Emp-Roster is:

e = <new Emp object>

Insert_Member ( Emp_Roster,
Create_Closure_Function_Object ( Update_Image, e, Name_0f))

A derived class definition which involves a predicate (e.g., SELECT, OJOIN) requires testing the relevance
(as defined in [BCL8Y]) of a database update on the extent of the class. In the case of a base type instance
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creation, a member of the derived class should only be created if the base tvpe instance created meets the
predicate used to define the derived class 7. For example, in the derived class Highly Paid:Emp the action
associated with the Create_Instance operation on type Emp is:

e = <new Emp object>
if Get_Property_Value ( e, salary ) > 50000 then
Insert_Member ( Highly_Paid_Emps,

Create_Closure_Function_Object ( Check_Select_Predicate, e, predicate))
end

Additionally, derived classes involving a predicate require parsing of the predicate to determine which
aspects of a type’s interface are referenced. This is necessary in order to attach actions to operations in the
database which respond to updates other tlian base Lype instance creation. For example, in the Emmp-Phones
derived class defined in section 4.5, the QJOIN predicate references the dept and loc properties of Emp, the
phones property of Dept, and the loc property of Phone. If a property of a tvpe is referenced in a predicate,
then an action must be attached to the Set_Property.Value operation associated with that property. In
the case of Emp_Phones, an action must be attached to the loc property of Phone (among others) which

determines if instances of Emp_Phones must be added to correspond to the update of a phone’s location ®
The necessary action is shown below:

p = <updated Phone object>
for each instance of Emp do
e = <current Emp object>
if p is in Get_Property_Value(Get_Property_Value(e,dept),phones) and
Get_Property_Value (p, loc) =
Get_Property_Value(<Emp object>, loc) then
insert ( Emp_Phones, '
Create__Closurc_e._Funct‘ion_Object ( Check_0Ojoin_Tuple, e, p,

Create_Instance ( Emp_Phones_Type, e, p), <predicate function>))
end - o o

[f one of the operations defined on a type is referenced. then actions must be attached to all Set_Property
operations on that type. This is because there is no way to determine. short of code inspection or explicit
declaration: which properties of a type an operation accesses. An update to any of the properties associated
with a type of a particular ob'ject may affect the result of invoking an operation on that object. For
example, conSIder a derived class whose memiber type is Person which includes a |)red1cate with the expression

~ssets(e) > 10000. The —\ssets operation on type Person may reference several properties of person including

car, salary, and bank_account. A change to the value of any one of these properties on a Person object could

affect the result of invoking Assets on that object. It is possible for an operation used in a predicate to

reference properties or operations on object of other types. This is regarded as a degenerate case: associating
actions with the operations of these types is left to the class definer.

"In the case of QELECT derived classes, this is onlv relevant if the second approach to class mamcenance is used.
8Deletion of members of Emp-Phones is handled by closure execution.
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4.9 Class Behavior

The operations and properties defined by a type describe inherent features of an instance of that type.
We consider it useful to be able to define additional behavior for an object based on membership within a
particular class. This behavior is dynamic in that it is only available on an object as long as that object
is a member of the class that the behavior is associated with. This 1s analogous to the notion of roles in
data modeling [Che76. Haw84. Shi8l] or to attaching behavior to individual objects [LRV88]. Defining class
behavior is different from defining multiple types for an object because a fixed set of behavior 1s guaranteed, as
described by an object’s type, regardless of additional class behavior. For example, a tax-consultant property
and a Make_Charity-Contribution operation may be relevant to Emp instances which are also members of
the Highly Paid_Emps class. In this case, the added features are available only when an employee plays the
role of a highly paid employee.

Class behavior is separate from and in addition to the type specification of members of a class. In
particular, added class behavior is not relevant to the substitutability of one type for another. Class behavior
is. by default, collected and stored with the member type object of the class it is defined for. Class behavior
may also be specifically associated with a surrogate-type of the member type of a class. Distinct behavior
from more than one derived class associated with a particular type must have distinct names. A class feature
may be shared among several derived classes associated with a type in which case the name and signature of
the feature is also shared. Since class behavior is associated with a type, class operations may access public,
internal. and private features of that type. (lass properties may require local storage on the objects that
are logical members of the class. Once again. this is implemented using the “chunking” method described
in section 3. Class properties or operations may not have the same name as a feature of the type that they
are associated with. If a class property or operation is specified which has the same signature as a private
property or operation, it is assumed that the private feature i1s being “promoted” to a class interface. The

usefulness of this feature will become apparent when we describe security as provided by a view (see section
5.2).

In order to invoke a class operation or assign a value to a class property on a particular object. a runtime
check must be made to determine if the object is a member of the relevant derived class. If it is. then the
imvocation or assignment is allowed to continue. If not. a runtime error occurs. The membership of an
object in a class may change as a result of database updates. In other words. the class membership set for
a particular object 1s dynamic. This mtroduces a level of runtime checking into the system which did not
previously exist. The runtime testing does not involve type-checking per say since the type of any object

can he statically determined and therefore checked at compilation. Rather. the runtime testing is for class
membership (e.g., categorization).

5 Views in ENCORE

We are now ready to provide a definition for database views in ENCORE. Surrogate-types and derived classes
are extensions which provide specific functionality in the form of object-level views. A (atabase view is a

framework for combining these extensions with base types and classes in a manner which creates a context
in which a user can access the database.

Formally. a view is a pair V" = (T, (") where T is a set of tvpes and C is a set. of classes. T enumerates
the types (interfaces) that are visible in 1", It is assumed that ENCORE's basic types (e.g.. Object, Tvpe,
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Integer. String, etc.) are always included in the set T. A base type and its surrogate-types form a set of
types T;. Only one member of any given 7; may be present in T. This guarantees that the type of all
objects visible in V can be statically determined. It type ¢ is included in T, then one of two conditions
must hold. FEither ¢’s declared supertype, t,, is a member of T or none of the types in the set T; which
includes ¢, are visible. This maintains the consistency of the subtype relationship between types in T and
the subset relationship between classes in C. For example, refer back to the type hierarchy shown in figure
2. If Restricted.Emp is a member of T, then either Restricted_Person is also a member of T or neither
Restricted_Person or Person is a member of T. In other words, Restricted_Emp and Person cannot both be
members of T since the subset relationship exists between the two respective base classes while the subtype
relationship does not exist between the two types.

C enumerates the classes that are visible for the purposes of querying. A class ¢ may be a member of
C if its member type, or one of its surrogate-types, is a member of T. Objects that are not members of
any cinC might be obtained as the result of operation invocation on an object which is a member of some
cinC. The types of these objects must also be members of T if further access to the objects is to be allowed.
The types may not be present in T if access to the objects is to be denied (see section 5.2). In general, the
argument and return types of all operations defined on ¢ € T must also be members of T in order for V to
be considered complete. The class behavior available for members of a class cznC is dictated by the member
type (either the original member type of one of its surrogate-types) for the class. The argument and return
tvpes for class operations and properties must also be included in T in order for V' to be complete.

A view definition is an object in the database and includes properties which enumerate the members of

T and C. It also includes operations to add or remove type and/or classes from the view and to check the
completeness of the view.

A view affects the availability of objects and describes the interface of visible objects at the user level.
User programs and queries are compiled or interpreted in the context of a view. A user may not change
database views within a program or query session or operate in the context of two views. Other database
operations which occur (e.g., invoking a supertype or base type operation. actions to update derived classes,
etc.) may switch to execute in the context of the base view of the database. This ensures that all references by
these operations are statically resolved. As stated previously. the hase view includes all base and surrogate-
types (although surrogate-types are not instantiable within the context of the base view), all classes. and all
class behavior. Changes to the definition of tvpes or classes is always done in the context of the base view.

The types and classes shown in figure 4 form the base schema of a sample database of people and
vehicles. In the interest of saving space. basic tvpes such as Type, Class, Integer. String, etc. are not shown
in the figure. A view can be created for this database which restricts query access to the Boston_Emps and
Blue_Cars classes and applies the Restricted_Emp surrogate-type as a replacement for base type Emp. The
view definition which meets these restrictions is V' = (( Restricted-Emp, Car),(Boston_Emps. Blue_Cars)).
A user of this view may issue queries over the Boston-Emps class and may invoke operations on the resulting
Emp objects. The result of operation invocations may remove a particular Emp object from the Boston-Emps
class. but existing references within the context of the view are still valid. The interface provided for all
Emp objects in the context of this view is specified by Restricted-Emp. Queries may also be executed on the
Blue_-Cars class to obtain a Car object which can be accessed using all of the operations defined on type Car.
A car object which is not a member of Blue_Cars may be obtained by getting the value of the car property
on an Emp object. Membership of the resulting Car object in the Blue_Cars class can be tested using the

Member.Of function. Car objects obtained in this fashion are also accessed using the operations defined on
tvpe Car.
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Figure 4: Sample type and class hierarchies

5.1 View Updates

Multiple views of a database may be active at the same time. Updates that occur in the context of one view
are visible to users accessing the database in the context of a different view. In our model, views are defined
in terms of types and classes. First we consider the case that updates are made to an object through different
interfaces in different views. Updates cannot be made to an object through different interfaces in the same
view due to the restriction that only a base type or one of its surrogate-types may be visible in a single view.
Each interface of an object shares a common set of properties (e.g, those defined on the base type) whether
visible on the particular interface or not. A surrogate-type may include additional local properties. If an
update is made to the value of a property which is shared among all of the interfaces of an object. the update
is visible to all interfaces and therefore is available to all users of that object {either directly or indirectly
Jdepending on the vistbility of the property). Updates made to properties local to a particular interface are
only visible through that interface and are therefore available to all users of that interface.

We now consider updates made to objects which affect class membership. Base class membership can
only be affected by deleting an object in which case the deleted object is removed from the database and
1s not visible in any view. The membership of an object in a derived class can change when the object (or
some other object) is updated. When an object is removed from a derived class, this change is visible in all
views which include the derived class. The removal of an object from a derived class affects the ability to
obtain that object using a query in a particular view. It does not affect other references (e.g., as a property
value) to the object within a view. Conversely, an object may be updated such that it becomes a member
of a derived class, in which case it is available to be queried in all views which include the derived class. In

summary, changes in class membership of an object occur in a uniform fashion regardless of the visibility of
a class within a view.

An important feature of a view is its consistency. [GPZ88] defines a view as being consistent if an update
made in the context of the view uniquely determines an update to the underlying database. Consistency
is important in order to understand and therefore reason about the semantics of updates made at the view

level. It is based on the notion that a translator exists which can map view updates to underlying database
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updates without ambiguity. Views in Encore are consistent. Updates made through different interfaces of an
object unambiguously update the state of that object. This is because the necessary translators are encoded
in the operations provided on each interface. The operations are specified by the type/view definer and will,
by definition, produce un-ambiguous results. Similarly, the rules for inclusion of an‘object-in a derived class
are deterministic and apply across all views. Therefore, updates made to an object which affect its class
membership will affect it in the same way regardless of the view in which the update was made. -

5.2 Security

Views can be used to provide a level of security for the objects stored in the database.” This is accomplished
by creating derived classes which hide objects and surrogate-types which hide features of objects and then

combining them in a view. Security, as implemented by views. is complicated in an OODB by the ability of
an object to reference other objects using their identity.

A view defines ali of the types that are available to a user of the view. All references to the database
are made in the context of a view. Objects whose type is not included in the current view may not he
operated upon as long as that view remains the context of reference. For exampl'e. assume Emp 1s a type
in the current view and Resume is a type not included in the current view. If Emp has a property called
Current_Resume whose value is of type Resume, then the value of the Current_Resume property for an Emp
instance may be retrieved but not accessed. In other words, an operation invocation is not allowed on a
retrieved Resume object. A better solution would be to create a surrogate-type of Emp which does not

include the Current_Resume property in its public interface. The surrogate-type can-then replace Empin a
view to restrict access to resumes.

Another example of providing data security with a view is illustrated by the following; assume Emp is
a type with properties name. address, manager. and salary where the manager property is of type Emp.
It might be desirable to allow access to an employee’'s manager but not to allow access to that manager’s
salary. This can be accomplished in our view model with the following sequence of steps. ['irst a derived
class of Emps is cpeatedf using SE’_L_ECT to include all Emp instances which are also managers (e.g.. Man-
agers). Another derived class-is created ‘nsing SELECT which includes all Emp. instanees which are not
managers (e.g., Non_.\lanager_EmpS). A surrogate-type is then defined on.type Emp 'which provides the
same interface as Emp except the salary property is not included (e.g., Restricted_.Emp). Note that the
tvpe of the manager property on Restricted_Emp remains Emp. The property salary is specified as class
behavior for Non_Manager_Einps and explicitly associated with the Restricted-Emp surrogate-type. In this
case, salary.is a private propertv of Restricted_Emp which is promoted to the class interface for members of
Non-Managér_Emps. This alles'accéss to the salary property despite its being part of the private interface
of Restricted-Emp at the cost of a runtime check for membership in Non_Man_agé_r-_Emps.- Finally, a view

can be defined which includes the surrogate-type Restricted_-Emp in place of Emp and the classes Managers
and Non_-Manager-Emps.

Note that the issue of user ownership of objects is not addressed by our view model. For example. it
might be desirable to allow a particular user to only see the objects that they own. This can be accomplished
at some level by creating separate views for each user which include only the objects that the user owns.
This approach does not address access tofother objects which may be obtained by following references from
visible objects. It 'alsol would require a great deal of view definition maintenance to add and remove objects

belonging to a particular user. Therefore, we consider ownership of objects to be an orthogonal issue to
views. ' ' '
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