
BROWN UNNERSITY

Department of Computer Science

Master's Project

CS-89-Mll

"Graphical User Interface to ENCORE --Type and Instance Browser"

by
Young Woo Koh

Graphical User Interface to ENCORE

- Type and Instance Browser

Young \Voo l~oh

Department of Computer Science

Brown University

Submitted in partial fulfillment of requirements

l'or the degree ot \Iaster of Science in tl1e

Department of Computer Science at Brown Cniversity

December. 1989

This project by Young Woo Koh

is accepted in its present form by the Department of

Computer Science in partial fulfillment of the

requirements for the degree of Master of Science.

Date

Contents

1 Introduction 2

1.1 Related Work. 4

1.2 Data Model . . 5

2 GUI Functionality 6

2.1 Type Hierarchy and Type Tracking Window . 6

2.2 Operation Invocation 8

2.3 Type and Instance Creation. 8

2.4 Type Browser Window. . . 9

2.5 Instance Browser Window 11

3 Implementation 13

3.1 Class Hierarchy . 13

3.2 TypeStaticWindow and InstStaticWindow Class 14

4 Future Work 15

5 Conelusion '. 17

6 Acknowledgment 17

7 References 17

1

1

Graphical User Interface to ENCORE

Young Woo Koh

December 21, 1989

Abstract

This paper presents a graphical interface to ENCORE, an Object­
Oriented Database system being developed at Brown University. The
overall design criteria and a description of interface will be discussed. In
particular, Schema and Instance browsing and modification will be de­
scribed in detail. The Schema browser allows a user to browse through
the type system of ENCORE by following chains. Similarly, the Instance
browser allows the navigation of instances, which are the actual data.
Our browser utilizes the location of interesting data through a series
of selections on a large number of objects, thus, providing an easy and
convenient way to narrow the range of data of interest.

Introduction

Advances in window systems, availability of high resolution bitmapped dis­
plays, and pointing devices such as the mouse make it easy to build sophisti­
cated graphical displays of data. The primary purpose of graphically display­
ing data is to provide an easy and convenient way to access and manipulate
data. Often people understand better the logical structure of data through
visualization than through any other representation. Another advantage of a
graphical interface is that it gives immediate feedback of the user's actions on
data. For example, when the user adds a new instance, the change is immedi­
ately reflected graphically so that the user can see that the instance has been
added. Many traditional database interfaces, usually textual, fail to provide

2

an easy use of the underlying system. Browsing data through a sequence of
query operations is certainly not convenient and it is especially so for novice
and infrequent users. The forming a query in textual interface is not only
difficult, but also leads to errors such as simple typing mistakes, which are not
detected until execution time. The graphical interface aims to provide an easy
and convenient way to use a database system without requiring the user to
have extensive knowledge about the underlying system or query language.

This document describes the graphical user interface(GUI), to the EN­
CORE[15] object oriented database system. Using GUI, the user can graphi­
cally browse the type structure and instances of ENCORE. It also provides an
interface to operation invocation and some of the schema design facility. More
formally, GUI consists of 3 main components:

1.	 The Schema interface is divided into two parts:

•	 Schema design allows the user to create new types and modify
existing ones.

•	 Schema browser allows the user to browse through the existing
types of ENCORE.

2.	 The Instance interface also has two parts:

•	 Instance design allows the user to create new instances and modify
existing ones.

•	 Instance browser allows the user to browse through the instances
of ENCORE.

3.	 The Query Interface allows the user to operate on the data via queries
made in the operation invocation facility. Unfortunately, at this time,
most of query interface is textual rather than graphical.

This report mainly concerns Type and Instance Browser, which the author
designed and implemented. A more detailed report on the Query and Type
Hierarchy can be found in [5]. Functionalities of GUI are discussed in more
detail in Section 2.

3

1.1 Related Work

There has been some work on graphical user interfaces to database systems
in the last 10 years. CUPID, QBE[16]' and GUIDE[S] are graphical query
languages to relational databases. In QBE, the user forms a query by filling in a
skeleton of table in QBE. In CUPID, the user constructs a query by graphically
using graphical elements such as rectangles, circles which represent the query
components and comparison operators. Even though both systems provide
some form of graphical aid in query operation, they do not provide a facility
for browsing the schema. Also, the user cannot browse the answers of query
operations in those systems. In GUIDE, the database schema is displayed as a
network of entity relation types. The user expresses a query as a traversal path
on the network. The GUIDE does provide a facility of browsing meta-data, the
E-R schema. Browsing Meta-data gives general view of the data, instances,
even though the user has no direct access to instances. That is, the browsing
is restricted to only schema level. It is hard to directly compare GUI with
the systems mentioned above. Since they are graphical query languages, they
provide similar features of Query Interface of GUI. However, browsing results
of a query operation is not incorporated in these systems while the Query
Interface in GUI is closely related to both Schema and Instance browser.

SDMS[6] provides more sophisticated browser of actual data. SDMS pro­
vides the graphical view of actual data so that user can directly manipulate
data through graphical images. SDMS shows the entire database in several
screens, from which the user can browse data using a joystick. Unlike other
systems mentioned, it presents data at several different levels. For example,
one screen shows entire database to give an overall picture and another screen
designated for a detailed view allows the user to examine details of the data.
detailed view. This systems, however, lack a schema browser, which is nec­
essary to guide the user through complex database. Also, the comparison
between data is not convenient unless they were displayed together to begin
with. That is, the user has no control over the layout of data. More recently,
PICASSO[7] is a graphics-based database query language derived from the
universal relation database system. The user can form quite complex queries
and immediate feedback is available during the process of forming query. How­
ever, as with other systems mentioned, the result of query is textual and the
user cannot browse the result.

4

ISIS[4] and SNAP[l] are graphical interfaces "to a semantic data model.
These systems allow graphical schema design, browsing, and query operation.
In each system, starting from a subset of a global hierarchy of schema, the
user can interactively examine the detail of data graphicany. The user of ISIS
can browse results of a query at the data level while the results of a query in
SNAP are presented textually and can not be browsed. In ISIS, the brows­
ing of schema and data are combined together where schema and data are
displayed side by side, while SNAP only provides schema browsing. An inter­
esting feature of schema browser of SNAP is that the user can reposition, hide,
and redisplay objects. Both systems introduce useful features, particularly in
the query interface which GUI cannot provide at this point. However, ISIS
shows an inconsistency where browsing the schema is treated differently from
browsing at the data level. As mentioned above, SNAP lacks· a connection
between query interface and instance interface. Also, neither systems provides
a global hierarchy facility as in GUI though they show a subset.

There has been some documented research on object-oriented database
systems. SIG[ll] has type model similar to that of Smalltalk. 5-IG allows the
user to customize the way objects are displaye9. One interesting feature of
SIG is that it provides an update facility on multiple views of same database
object. This update facility was not supported by previous systems. Another
feature is that it allows the customization of the layout of objects. Since
GUI currently does not have these features, their addition would certainly
enhance GUI. However, SIGlacks schema browsing and a query facility which
is necessary in co~plexdara;base. Its main concern is automaticgeneration of
graphical display of data from descriptions.

In general, each system introduces a useful feature, but none has .all the
features identified as important for a good graphical database interface.

1.2 Data Model

The data model for ENCORE is based on the notion of a type. A Type
is a behavioral template for instances of that type. In ENCORE, a type
definition is composed of three components: P, a set of properties, 0, a set of
operation, and C, a set of constraints. A Property is an object that is used to
relate types to other types. An Operation is a procedure that can be invoked

5

through method invocation and is the user's only interface to instances of the
type definition. Operations insure the encapsulation of objects. Finally, the
constraints are a set of conditions that has to be maintained for the type
during its lifetime.

In GUI, the type definition is represented as a quadruple, type = (T,
S, P, 0). The constraints are not represented as separate items, but are
understood within the context of a given type definition. T is the name of the
type, S is a list of supertypes for T, P is a list of properties and finally, and 0
is a list of operations defined on that type. Since ENCORE supports multiple
inheritance, a type can have more than one supertype. In displaying a type,
we only include the immediate parents as supertypes. However, both property
and operation sections display all the properties and operations including those
inherited. Allowing multiple inheritance makes implementation more difficult,
but is a more elegant way for software reuse than single inheritance. As will
be described late, our Type Hierarchy shows is-a relationships between types
including multiple inheritance.

2 GUI Functionality

This Section describes briefly the functionalities of GUI. Currently, 5 different
windows are used, one for each function: Type Hierarchy, Type Tracking,
Type Static, Instance Static and Operation Invocation. Following sections
will discuss each of the 5 windows, particularly, the Type Static and Instance
Static windows.

2.1 Type Hierarchy and Type Tracking Window

As in other object-oriented database systems ENCORE's type structure is
very complicated. Grasping the relationships among types without any help
is very difficult because the user does not know where and how to start. It is
necessary to allow the user to explore the schema of the underlying system so
that the user understands the overall structure of data in the system. The user
can graphically browse the entire schema of ENCORE in the Type Hierarchy
window. Every type in ENCORE is connected by an is-a, supertype-subtype

6

~ri

.....•••••••••••••••"",},.,••/.;•••....,.•.:...:.:•••::,.::.•./:., ;:::::::::,:,:1 1.:::;::::::::::;::::.:::.;.·.·.·.·.··.-·

(a) Global hierarachy graph

IIG T\lpe Hler ..rch\l

File Edll Display Goodie.

'\

T
z

1ili

~

Al3ocialePrvfe,sar

~

.~
1" "101

m5rT\lpe Hler..rch\l IiiJ
File EdiI Display Goodie.

P......n ... \

-=
IE"",,,,,, I

~ ~

~
--------­

~

I

reo<hl09 A....lul I ".....

~r~

Qr::: .:./:::::::.: ..:.:,:::,::...:=:;: :\\}:::':':'::::': :::::::::;:::::::;::':':"':':':':':':':'::::;=;:;:;:;}=::::::::::::: :::::::::;:;:; ::;::::: .:.:;: ·:;:;:}'::lol
'@

~Loc .. l Hler ..rch\l lii1

~
IPerson I

TEmployeol

ITenurodproreoor I
IAnoclatePror..sor

IFullPror..sor I
IUntenurodProre.sor I

ILeclurer I
tAssistantProfessor

(c) Local hierarchy

(b) Multiple Inheritance display

Figure 1. Type Hierarchy Window

http:���������������"",},.,��/.;���....,.�.:...:.:���::,.::.�

relationship. Type Object is the highest object and it is supertype of all
other types in the system. Figure 1(a) and (b) show two different portions
of an example type system. In these figures, the boxes indicate types and
the line shows the is-a relationships. A picture of TypeHierarchyWindow
with an example type system is shown in Figure l(a). In Figure l(b) the
reader should notice that Lab Consultant has two supertypes, Employee and
Undergrad student, which shows multiple inheritance. If there is more than
one supertype for a type, then that type has edges from each of those super­
types. Since the window can not show entire the schema at one time, the user
examine the schema using both horizontal and vertical scrollbar attached to
the window. Another way to focus on objects of interest is to have localized
view of a hierarchy centered on a particular type. The Figure 1(c) shows the
localized hierarchy of type Professor. Each type can be selected, and detailed
information about the type can be examined in the Type Tracking or Type
Static window.

The Type tracking window shows a localized view of the relationship cre­
ated between a type and another type as its property value. This window
is opened from Type Hierarchy window when the user selects a type. The
selected type is displayed in the center of this window along with 4 other
relationships:

1.	 A list of supertypes is displayed at the top of the selected type.

2.	 A list of subtypes of the selected type is displayed at the bottom.

3. A list of types	 that have the selected type as a property value are dis­
played on the left side.

4. Types	 that the given type has as property values are displayed on the
right side.

The TypeTrackingWindow is shown in Figure 2(a), where Professor is the
.center type and the 4 relationships are displayed accordingly. When the user
selects TenuredProfessor to make it the center type, the 4 relationships are
changed accordingly as in Figure 2(b). Notice that Professor is the supertype
of TenuredProfessor. This facility is very useful when the user wants to ex­
amine all relationships of a particular type, which are not shown in the global

7

III T\lp" Trllckina

File OO.Ooodl..
Di8play Type De lInltlon AT

Di8play IMtance Propertl.. AN •Hlghllght In Hierarchy

In...,ke Method... AK

•-+ ~•
I!!!'l:S

~

p

Fill

a.jectType

-+ String

String

Addrea

String

,2 String

String

String

String

Strlnt1. 'l:S

~

mlT\lp" Trllcklna b1I
File Edit Dl~lay GoocIleo

~

t=?j'

• a.jeclType

~. ~
string

String

• Addrea

String
jl string

String

String

String

'l:S StrIn~ 'l:S

~ FuIll'rofe.Jr

~

(a) Professor as center type (b) TenuaredProfessor as Center type

Figure 2. Type Tracking Window

==Op"rlltlon Invoclltion Fill

File Edit Di8play Goodin

{Stan Zdonlk} NumberOlChlldrenj

lie:

1:1 Cr""t,, Instllnc". 6111

'(N.... Inatance 1(N...TvDe I
Typec.....tIon-
TYpe name:, rreacher

Initialize Routine Source: ,

Super1J7pel:

,2­

Empl.".

@)
'l:s N...Member: [Y]!

Propertieo:

I

~I

(Cancel)

,

I~
@

, Figure 3. Operation Invocation Window Figure 4. Type Creation Dialog Box

hierarchy. The user can change the center object by issuing the Make Center
Type on a selected type within the window. Four relations with a new center
object are updated accordingly.

2.2 Operation Invocation

Operation invocation in GUI is done textually. Query operations are done in
the Operation Invocation window. Operation invocation window is shown in
Figure 3. The user formulates an operation invocation string by specifying an
object, a name of an operation, and parameters. The object is represented by
a string enclosed by curly braces. For example, the user wants to invoke the
operation NumberOfChildren on the object, Stan Zdonik in Figure 3. Forming
the invocation string is done by copy and paste functions using the clipboard
window. Since an invocation string can be long and complicated for a fairly
complex operation, it would be appropriate to formulate the string incremen­
tally. That is, the user can form a subsequent string based on the previous
intermediate results. The result of each operation is displayed in the Oper­
ation Invocation window and the result can be examined graphically in the
Instance Static window. In this way, operation invocation can be effectively
combined with a browser.

2.3 Type and Instance Creation

In ENCORE, creating a type is equivalent to creating an instance of type,
Type because every type is an instance of type, Type. To create a type, the
user specifies names of supertypes so that the properties and operations of
the supertypes are inherited to the type to be created. Its own properties
and operations are added by explicitly defining them in the Type creation
dialog box. The type creation dialog box is shown in Figure 4, where the
user is creating a new type Teacher and just added Employee as its supertype.
Currently, a facility for defining operations for type creation is not provided,
but should be added in near future. Instances are created in a similar dialog
box when the user select a type and issues Create Instance. Assigning values
for the properties of the selected type is achieved either by explicitly typing in
the value or by selecting ob jects from list of instances of the appropriate type.

8

If a value is of primitive type, the user can simply type the value. Otherwise,
the user must select an object for a value from existing list of instances if one
exists. If it does not exist, a new instance must be created and the level of
nesting can go on until there is no need for creation of instances as values.

2.4 Type Browser Window

Once the user gets familiar with the overall type structure, the next step is to
examine the contents of an individual type. The user usually selects a type
from the Type Hierarchy or Type Tracking window and opens a Type Static
window by issuing ShowType to examine its contents. The full view of the
selected type is displayed at the left in the window and each type object is
represented as a rectangular box with subdivision as in Figure 5(a). The top
of the box shows the name of type, a property of type Type in ENCORE.
Below the name, it shows the supertypes of the type. Properties of the type
are shown below and a list of operations for the type is shown in last portion
of the box. In Figure 5(a), TenuredProfessor is the name of the type and
Professor is its supertype. Since window space is limited while the number of
properties or operations for a type can be large, we initially display a portion
of entire definition of the type, and the rest of the definition can be examined
by using the scrollbars attached to each part of the type object. Each item
in the supertype list is the name of a supertype. Each property item shows
the name of a property and an icon. There are three different types of icons,
which indicate the kinds of types in ENCORE. Primitive types like Integer,
Real are represented by a circle with a character, "8" inside it, complex types
by a triangle, and collection types by a double triangle. Figure 5(a) shows
that the address property is of complex type while firstName is of primitive
type. Each operation item also has a corresponding icon for its return type.
The name and return type of an operation are both displayed.

To examine contents of a supertype or a property, the user selects the
desired item and issues Follow Chain. The selected item becomes highlighted
and a full view of the selected item is displayed next to the object containing
the item. Also, an edge is drawn to the newly displayed object from the
object containing the selected item to indicate a derivation. Figure 5(c) shows
a chain of type objects, starting from TenuredProfessor to Person. When the

9

user issues FollowChain after selecting Professor, it displays the Professor
type definition next to it. When an additional full view of a type is chained
from the same type object, the existing display is collapsed to a simple object.
If the collapsed object has chains following it, an arrow will be displayed in
that simple object so that user can recognize that there are further chains
as in Figure 5(d), where Employee type is collapsed and it has an object,
Person following. The simple object can be expanded to a full view when the
Expand command is executed. By default, only one full view is displayed for
all the types referenced from one type object. However, there is a command
ExpandAll which will expand a selected simple object to its full view while
the current full view object remains the same. The ExpandAll command is
useful when the user wants to compare two type objects. Figure 5(b) shows
that Address and String types are displayed in their full view. There are two
commands for the operation object, Show Parameter and Show Definition.
Show Parameter displays an object with list of parameters for an operation
and each parameter can be examined by following the chain as with supertypes
and properties. Source code for an operation is displayed in Source window
when Show Definition is issued.

The number of objects in a chain is not limited. The user may also display
more than one chain of type objects by executing NewChain. A full view of
the selected type is displayed below the last chain and it becomes the head of
a new chain.

Any object in the Type Static window can be removed by executing Re­
moveObject. This does not delete the selected object from the database, but
removes the corresponding display object. If the deleted object has objects fol­
lowing, all objects along its chain are also removed. The user may also remove
objects from the display with the Simplify which will explicitly shrink a full
view object to simplified object with only the name of type displayed. If there
is a further chain following that type, all the following objects are removed
from the display. An arrow is inserted into the simplified object to indicate
that there are further chains. However, this differs from RemoveObjeet since
those objects are not actually deleted from the display list, but temporarily
invisible. Therefore, all these invisible objects can be redisplayed when sim­
plified object is expanded to its full view. This feature is useful because the
user may want to save space, but not want to delete whole chains of an object.
This is specially true if the deleted chain is very long because rebuilding the

10

chain will take time.

Since inheritance is a very important mechanism in an ob ject-oriented sys­
tem, visualizing the inheritance relationship between type objects is a neces­
sary feature. The ShowProp and ShowOper will show properties and op­
erations inherited from the selected supertype by dimming out all others.
ShowAll display both properties and operations for a supertype.

When the user issues ShowInst on a type object, a new window is opened
to show the list of instances for the selected type. This window is Instance
Static window and individual instances can be explored in the window.

2.5 Instance Browser Window

As with type objects, each instance is represented by a rectangle and the name
of the instance is shown at the top. Property values for each of the instances
are displayed below the name. Figure 6(a) shows the Instance browser, where
the Department instance is shown as the head of a chain. Primitive types
such as Integer, Real, and Boolean are displayed as actual values (see Figure
6(a), where the value is a telephone number of Stan Zdonik). For a value of
a Complex type, which is indicated by single triangle, the objects' display
name is shown and the user can examine it further by following chains. Each
type in ENCORE defines a display name property which will contain a string
to be displayed for an instance of Complex or Collection type. The exam­
ple shows that StanZdonik is of complex type while CSfaculty is of collection
type. StanZdonik is a value of CSfaculty. The display name is not used as
an identifier for an object, but as descriptive name for an object. As in the
Type Browser, a new edge is drawn to the newly displayed instance. Existing
instances with a full view are collapsed and following instances are removed
as in the Type Browser. A property value of ColType is indicated by double
triangle and when it is expanded, it displays an object containing the list of
instances which are the values for that property.

Edges along a chain connect those instances which belong to the chain.
There can be,however, ambiguity concerning which instances refer to which
other instances. When an instance is selected, it is fully highlighted while in­
stances selected along the chain are halftone-highlighted as long as it remains
in the browser. Thus, following the halftoned items, the user can easily rec­

11

• Tlipe StlltiC lfiilII Tlipe StlltiC II'ill
File Edit ot.play SuperWPe F·r,.. Foot'l·~J ('}.'":"1'1)'';''111 Goodie.File Edit DI.play ~"l",rr:p. ProperlY ('1."",,';',11 Goodl..

I,Q Ei

I§I P...­

ID~T7~
I I> OIoJ­
D~7

I§I AdoInH

DT7~

.1 I> 0l0J­

DP_7~

D 0p00.0I_
•

1/ iJjli~::)iilf~:i H 4mn; I> OI>J... "
"-7 Ii'T;..:;Po:::-=:";;.,,­V

:::,: I> t"po ­

:) I> dl.pla7M.....(1) n..oM.....,!iii;
o,.-atlon 0,.-..1_

D 0p0nC1­ r. I~

to P.lnt I> &hrl.... I> DoOnJI....ct ~or.
f't &OnR.wI
:.:.:~::::

~

(a) After address is followed

rn
~ kJT

(c) A chain from TenuaredProfessor

~
1101

191 Tlipe Stllti c

FUe Edit Dil'play SlJl't~l't='JA'1 F·rQp61~ (~~Mti~m Ooodln

6iJ

~ I§I AdoInH

DT"po

I> OIoJ...

I§IPor_

DT7po
 I
I> OIoJ... ~ OponClon

D ~"

1>­ ~ ~)!::~):t,) I§I !IIrl...

DT"poD 0p00..1­

CE:~or.] to 0l0J...

:.:.:~~;:: D "-,,

D. Opontlon

Icl"

II Tlipe StlltiC l'iiJ
File Edit Of.play SlJ~W:"rt:p6 F·,rf.'fj61~ C~l~rt)ti~jll Goodies

~.
kt

T..-..I_,_ Prof_

~

fliilUiitat

.
IT..-..IP.oI.._
n ..-..__..ID.....'_..._

)li::~::
Po_"

i:, to t7po
) I> d..pb"M.....

Opo...lon ..
to Point
... w #­

~
10I

(d) After simplification of Employee type
(b) Both String and Address types are displayed in full viev

Figure 5. Type Browser

--1

01

II Instance Static Fffi

File Edit_Ooodle.

Another l...tanee Chain AN I iJ.

Make It Simple Ay

I\.eIlllMl Q,Ject AR.

Show Type AT

Make It Front AF

Make It Full AE

In...ke... AK

aDep-- I

Ir~~n.-I
~ Hlol...,. Dopaot..­

'"
ICl

~.!I Instance Static

File Edit Daplay Ooodle.

~

a Compul... &1__an.­
~ Johns..­
~ cs-,.

I~~o..--l ~ CSoblr
~ m....,.o..-­

~ CSolullonl.

700

",::L.I2:_

C; Instance Static

FUe Edit DIsplay Goodie.

~)~~.jii:.*d'jiu./ffr~
~~o..-­

~ m....,.o.-­
~-......
~ GollShaw

(a) Instance chain from Department object

Instance Static

FUe Edit DIsplay Ooodle.

a ,,"-lot.Prof......

t~:Bitt\t(=fi//~I
~ PwU Kanolbldo

C> Roherto T;..,u,,~i:l

a _ZdooUk

!D 111....1-IMt

!DID

~it_:~rt:~

!D 4I1-4Zl.-12A
lll_

~~tsili.i:i=t
~ GoIiShaw

(1l II1-lIt-aW

lllW

(b) Multiple chains

Figure 6. Instance Browser

ognize the reference relations among instances in a chain. Figure 6(it) shows
that there is a chain of references from ComputerScience to Advises through
CSfaculty and StanZdonik. It is very useful because displaying many objects
without tracing will certainly confuses the user. Smalltalk interface has similar
mechanism for series of related objects.

More than one chain of instances can be displayed when the user exe­
cutes NewChain on a selected instance. Figure 6 (b) shows such two chains:
One started from AssociateProfessor and the other from AssistantProfessor.
Deleting an instance object is done by RemoveObj. As mentioned in Type
Browser, the selected instance and instances following it are removed from
display. A similar effect is achieved by Simplify with the difference that the
selected instance is not removed, but is simplified, and following instances are
temporarily invisible. DisplayFront will expand the selected simple object to
its full view and all the instances following are redisplayed as they were before
they were removed. Since FollowChain only displays one full view while col­
lapsing all others, it saves window space. Figure 6(c) shows the display after
the user followed from CSstudent. CSfaculty object is now collapsed and fol­
lowing instances are removed from the display. However, the user can display
more than one full view of instances expanded from the same instance at the
same time by DisplayFull. That is, the selected instance is expanded to its
full view while current full view instance also remains the same. This feature
is useful since the user may want to compare two instances.

Currently, GUI does not 'provide automatic update of an object across
the different windows.. If there is any change in the status' of an 'instance
outside of the Instance. Browser, the change does not automatically trigger
update of display. It is a responsibility of the user to execute periodically
UpdateInstance so that it is reflected in the Instance Browser if there was
any change. Automatic update of different views of a same object is certainly
required and furthe~ work is necessary in the future. Figure 7 shows different.
windows of GUI opened during a typical session.

12

~Instaner Static 61J

File Edit Obpl." Goodl..-------------------------mj

r::::oC....,D=-_--------,:..----'" c ~_Sc'-­
t> ._80.-­
~ CSIaouh7
~ CSllbff

K I§l csr_lty J
C! CSot_

t> GaIlShowt> _sa...

(c) Simplification of CSfaculty object

Figure 6. Instance Browser

n;; Encorr bJJ
ENCORE U.... Interlue 7414

File Edit Window GoodI..

IIT~pr Hirrareh~

Fila EdIt OWpIay GoocII...

File FAJt Dbplay Goodl...

I
bJJl

ICoIIOf-.

File Edit Obplay GoocII..

c p-­
... I.~ ...~~.:':':~ ..

~'WJjjj.lijlil#
t> 91."......... ,_.

Cl u",...itJ>

tti;;~jii;'iii"(jji.Ji"'''ij;~tfrr???fff?jjj
l> -.....U"'•.....,.
t> MUAcll.-.lnltituteol'l'echnoIOO'

Cl

Cl Bra...U..i.eri0t7

,Jtilii_iii.)::::
~Bro~

Figure 7. Overlapping GUIwindows during a session

3 Implementation

CUI is implemented using the object oriented graphical user interface pack­
age InterViews[10]. InterViews is written in C++ and runs on top of the
X window system. We chose InterViews as implementation package because
CUI is naturally object-oriented, many of its predefined classes can be easily
used and it provides a derivation of subclasses. Also, InterViews has relatively
shallow class hierarchy, which is desirable feature for quick prototyping since
we can easily understand the relationships of classes. If levels of a class hier­
archy are too deep, understanding relationships among them may not be easy.
InterViews is not really as low level a toolkit as X, but neither very high level
package. Thus, InterViews provides enough support for user interface design
while it does not restrict the freedom of interface design too much. There are
two major classes in InterViews: Interactor is the base class for all interactive
objects from which the user interface is built, Scene class is the base class for
composite object and is a subclass of the Interactor. Classes defined for the
Type Browser and Instance Browser are derived from a subclass of the Scene
class. In the following section, I will describe the overall hierarchy of classes
defined in CUI in relation to InterViews' classes. Figure 8(a) shows the hier­
archy of InterViews' classes from which CUI classes implementing the browser
are derived. Figure 8(b) shows the hierarchy of CUI classes with InterViews.
Rectangles with italicized strings represent the CUI classes for Browser while
others are from InterViews.

3.1 Class Hierarchy

This Section will describe the hierarchy of classes defined for the Type Browser
and Instance Browser, relating them to existing InterViews classes.

The Scene class has 3 major subclasses: Box, Tray, and Deck. The Box
class is a composite object that tiles it's components while Tray overlaps its
objects. The Deck class provides a composition of objects on top of each
other, where only the top object is visible. The Deck class does not provide
an appropriate layout for a browser even though it is very useful in multiple
page text layout. Our main classes TypeStaticWindow, InstStaticWindow,
TypeObject, BaseObject, and InstanceObject are all derived from the Box

13

I TextButton I 1 MonoScene

(a) Hierarachy of InterViews classes from which classes of
OUI browser are derived

IGUlwindow [

l-j TypeS<aticWimtow

r------ I InslSlaticWina'ow

InsrObjecI

CollecrObiecl

OperObj SimpieObjecr

(b) Hierarchy of Classes of Oill browser and InterViews

Figure 8. Class hierarchy of InterViews and OUl browser

classes.

TypeStaticWindow and InstStaticWindow are used for laying out the
type and instance objects of ENCORE and provide data and operations for
manipulating those objects. TypeObject, BaseObject, and InstObject are
classes for display objects corresponding to types and' instances~ TypeOb­
ject is merely a composite object of instances of BaseObject. A TypeOb­
ject consists of 4 subobjects, which are subclasses of BaseObject: NameObj,
SuperObj, PropObj and OperObj. InstObject also has 3 subclasses, In­
stanceObject, CollectObject, and SimpleObject. InstanceObject is a class
for displaying objects of single complex type while CollectObject is a class
for displaying objects of type ColType. SimpleObject is a dass for different
view of both InstanceObject and CollectObject. This class is added for saving
display space when many objects are displayed simultaneously. Since there is
no class for stacking objects where top object is fully visible while the other
objects shows a part of full view, we collapse an ob jed (type or instance)
when it is not of current interest so that available space is allocated for other
object's display.

3.2 TypeStaticWindow and InstStaticWindow Class

Type Browser is implemented using TypeStaticWindow class. A type object
is an instance of the TypeObj~ct class. TypeObject is derived from the VBox
class of InterViews and is a; class for composite objects. BaseObje~t is also
derived from the VBox because it implements subobjects of a type object and
each of these subobjects-tiles its components, instances of Listltem, vertically.
It is a base class for classes for components of a type object. NameObjis the
class for name component of a type and SuperObj is the class for supertype
components. Property and operation components are created from PropObj
and OperObj class', respectively. A simplified object is implemented by Sim­
pleObj. class. SimpleObj is a vertical box containing one TextButton, which
is used to display the name of a type. Thus, when a type object is simplified,

. TypeObject only contains SimpleObj as components. Each element of sub­
components is again an object and each is implemented using class ListItem,
which is a subclass of TextButton class from InterViews. Thus, when the
user selects an item from one of those subcomponents, it is highlighted using

14

inverse video. Currently, 2 supertypes, 4 properties and operations each are
displayed in full view of a type object. A scrollbar is used to examine the rest
of the elements. InterViews provides a built in scrollbar object.

Since the TypeStaticWindow is subclass of VBox, more than one chain
of type objects can be displayed, vertically. Internally, the type browser is
composed of number of horizontal boxes vertically tiled with each other. Each
chain is displayed in one of the horizontal boxes. In turn, each of horizontal
box is composed of vertical boxes tiled horizontally. Thus, each type object
along a chain is displayed in one of these inner vertical boxes.

As with TypeStaticWindow, the InstStaticWindow is also a subclass of
VBox class of InterViews. InstStaticWindow class is used to layout the in­
stances and provides the operations to manipulate on instances. Each instance
object has two views. One is a full view and is implemented by InstObject.
The other one is a simplified view and is implemented by SimpleObject. An
instance can be either an instance of simple or complex type or an instance of
a collection type. An instance of a collection type is in turn a list of instances
and it is implemented using CollectObjeet class. All three classes, InstOb­
ject, CollectObject, and SimpleObject, are derived from InstanceObjeet class,
which is a subclass of VBox class.

Since the size of an instance object determines the number of objects that
can be displayed in the Instance Browser, determining a reasonable size for an
instance is very important for a display. Currently, the height of an object of
InstObjeet class is limited to the height of 5 TextButton objects. The size of
components of Box object is changed when the size of a containing object is
changed because components are glued together by a Glue object. However,
we felt that it is not desirable to change the size of type or instance objects
when a window is resized because the change of size produces an undesirable
shape.

Future Work

This Section will mention future directions for this project. In particular,
Schema design and Instance creation will be mentioned.

GUI should provide different levels of the interface for different users. Even

15

4

though our interface was intended for mainly novice users, it would be desirable
to have different levels for those who are more advanced. Hiding or providing
different features at different levels could be considered.

As mentioned, GUI currently does not provide complete facilities for schema
design. Partial work is done in this area and but it is more textual than graph­
ical. Further work is necessary for the design review and the implementation.
Separate windows for type and instance creation are desirable. Since any user
types are subtypes of existing types, creation of types is basically a modifica­
tion of a template of a supertype of the type to be created. The system should
provide an way to move objects so that the user can supply definitions graph­
ically. Likewise, the user can create an instance graphically by moving actual
display objects, or assigning edges between properties and values in addition
to the current facility.

Since the performance of GUI was not primary consideration in building
the prototype, it does not meet the speed expectations of the user. However,
this should be resolved in near future to meet the end user's expectation.

It is often confusing when many different windows are displayed simultane­
ously and the windows contains different views of the same ob ject. GUI should
provide a mechanism to reflect any changes in an object across all windows;
Now one window could show an object A while the object A had been deleted
from other window.

It is often the case that too many objects are displayed at once which may
over burden the user. It would be nice if the user could hide unrelated or
unimportant display objects if they are not of current interest. As in Type
Hierarchy window, a feature for localizing a chain of objects can be added for
the purpose of hiding non-focal objects.

Zooming on a view of the Type and Instance browser windows is another
feature which could be added. Currently, the user adjusts the view using
vertical and horizontal scrollbars. However, this does not change the view of
an object itself, but shows different portions of a window. Zooming is a good
feature in providing the different levels of views of objects.

Finally, customization of a display of objects and an object itself can be
added as a browsing feature. This implies also the capability of moving graph­
ical objects, which allows easier comparison among the ob jects.

16

5 Conclusion

Overall functionality of GUI, particularly, Type and Instance browser was
described in this report. Since databases contain huge amount of data and their
schemas are very complex, some kind of browsing facility is essential. With
advances of window systems ,high resolution bitmapped displays, and pointing
devices, graphical interfaces to databases become an increasingly interesting
field. However, many interfaces fall short in meeting the users' expectation.
Some fail because they do not provide a suitable browsing facility. Others
have a global hierarchical display of types that does not capture the entire
schema of the underlying database and the schema display is disconnected from
instance display. Some fail to group coherent or related objects for comparison
purposes. Therefore, they do often fail to utilize the strength of a graphical
interface to provide an efficient and convenient way to manipulate data.

Our browser provides a convenient way to browse data at both the schema
and instance level by simply following chains, and it provides a consistent view
across levels. With some improvements in the areas mentioned above, GUI
will be a convenient and efficient tool to access the database and manipulate
data.

6 Acknowledgment

I would like to thank Stan Zdonik for his direction in the project. I also thank
Page Elmore for her guidance and helpful advice in the development of project
and the preparation of this paper. Finally, My thanks go to Greg Brail and
Hisato Kato for implementing several parts of our graphical interface.

7 References

1.	 D.Bryce em and R.Hull, SNAP: A Graphics- Based Schema Manager,
IEEE conference on Data Engineering, Los Angeles, CA, February 1896.

2.	 Davidson,J.W. em and S.B.Zdonik, A Visual Interface for a Database
with Version Management, Trans. OIS, 4(3):226-242, 1986.

17

3. Dennis Fogg Lesson From a "Living in a Database" - Graphical Query
Interface, ACM SIGMOD, 14,2, Proceedings of Annual Meeting, June
18-21, 1984.

4.	 Goldman,K,J., S.A.Goldman, P.C.Kanellakis and S.13.Zdonik ISIS: Inter­

face for a Semantic Information System, International Conference on

Management of Data, 1985.

5.	 Hisato Kato, Graphical User Interface to Object-Oriented Database,
Brown University Master's Project Report, 1989.

6. Herot, C.F, Spatial Management of Data, TODS, 5(4): 493-513, 1980.

7.	 Kim, H-J., H.F.Korth, and A.Silberschatz,PICASSO: A Graphical Query

Language, Software - Practice and Experience, 18(3):169-203,1988.

8.	 Harry K.T.Wong and Ivy kuo, GUIDE: Graphical User Interface for

Database Exploration, Proc. Eighth VLDB, 22-32, Mexico City, Sept.

1982.

9.	 J.A.Larson, A Visual Approach to Browsing in a Database Environ­

ment, IEEE Computer, 62-70, 1986.

10.	 Linton,M.A., Vlissides and P.R.Calder, Composing User Interfaces with
InterViews, IEEE Computer, 22(2):8-22,1989.

11. D.Maier, P.Ncirdquuistand M.CaIder, Displaying. Database Objects, Ex­
pert Database Systems, 59-73, .1986.

12. Shaw,G.M. and S.B.Zdonik, A Query Algebra for Object-Oriented Databases,
Brown University Tech Report CS-89-19, March 1989.

13. Skarra,A.H, S.B.Zdonlk	 ~nd S.P.Reiss, Observer:An Object Server for
an Object Oriented Database System, Brown University Tech Report
CS-88-08, July, 1987.

14. Stonbreaker,M. and J .Kalash, TIMBER:A Sophisticated Relational Browser,
Eighth International Conference on Very Large Data Bases, 1-10, 1982.

18

15.	 Zdonik,S.B. and P.Wegner, Language and Methodology for Object Ori­
ented Database Environments, Nineteenth Annual International Con­
ference on System Sciences, 1986.

16.	 M.M.Z1oof, Query by Example, Proceedings of the National Computer
Conference, May 1982.

19

Graphical User Interface to ENCORE

- Specification for Type and Instance Browser

Young Woo Koh

Department of Computer Science

Brown University

December, 1989

,j'

Contents

1 Introduction 2

2 Type Browser 2

2.1 Class TypeStaticWindow 2

2.2 Class TypeObject 10

2.3 Class BaseObjeet 15

2.4 NameObj 17

2.5 SuperObj 17

2.6 PropObj 18

2.7 OperObj 19

3 Instance Browser 19

3.1 Class InstStaticWindow 20

3.2 Class InstanceObject 25

3.3 Class InstObject 27

3.4 Class CollectObject 28

3.5 Class SimpleObject 29

3.6 Class ListItem .. 30

3.7 Class DisplayBox 33

3.8 Class TypeBox 33

1

Documentation for Type and Instance Browser

Young W. Koh

December 21, 1989

1 Introduction

This document describes the classes used in implementing Type Browser
and Instance Browser of GUI. TypeStaticWindow class provides oper­
ations to manipulate type objects and InstStaticWindow is the class for
manipulation of instance objects. TypeObject and InstanceObject are
the classes to construct the types and instance objects for display. Since the
type and instance objects are made of smaller objects Qf differeIit'classes,
both TypeObject and InstanceObject composes those smaller objects.
Listltem is the class that creates the smallest element of both type and
instance object. In the following, Each of these classes will be described in
detail.

2 Type Browser

This section describes the classes used for implementation of Type Browser.
TypeStaticWindow is a subclass of GUlwindow, which is ,in turn, a sub-­
class of InterViews's Scene class. It provides data and operations to ma­
nipulate the displays of ENCORE type objects so that user can browse
the schemas of ENCORE graphically. Construction of actual display ob­
jects corresponding to ENCQRE type objects is accomplished by uses of
TypeObject an,d BaseOhJect classes, which are explained in following, sub­
sections. - ­

2.1 Class TypeStaticWindow

TypeStatic Window class is a subclass of G UIwindow class, which is the base
-class for all the window classes in GVI.
- .

- Superclass : GUlwindow
Instance Variables :

TypeBox* : thebox
The outer most box object contains all the displays of the type
objects in the Type Browser.

TypeObject* : curtypeobj
Currently selected type object.

void* : cursubobj
select.ed subobjects of the current type object. The subobjects is one
of name, property, supertype, or operation object.

ButtonState* : typestate
The buttonstate for the Type Browser.

TypesNode* :' curtypenode
The currently selected typenode, which contains the information

2

about the type object.
GUlbaseNode* : curitemnode

Currently selected item node, which contains the information about
the current item.

ListItem * : curitem
Currently selected item, which is the smallest component of a type
object.

ObjectList* : boxlist
The list of boxes for a given level.

ObjectList* : typelist
The list of type objects for a given box.

boolean: nameobject
Indicates whether the name object is displayed or not for a type
object is displayed or not for a type object.

boolean: superobject
Indicates whether the supertype object is displayed or not for a type
object.

boolean: operobject
Indicates whether the operation object is displayed or not for a type
object

boolean: parmobject
Indicates whether the parameter object is displayed or not for a type
object

boolean : itemobject
Indicates whether the item object is displayed or not for a type
object

VBox	 * : dummyinnerbox
Dummy inner box containing no object. This is needed to hold the
space when all the objects in the box are removed.

VBox	 * : dummyinnerbox
Dummy outer box containing no object. This is needed to hold the
space when all the objects in the box are removed.

MenuActivator* : propertyMenu

Menuactivator for property menus.

MenuActivator* : supertypeMenu

Menuactivator for supertype menus.

MenuActivator* : operationMenu

Menuactivator for operation menus.

*** Internal Operation

void

ClearBoxes (TypesNode* typenode)

Effects: This routine clears boxes that contains type objects to be removed
from the display because the instance object of typenode is simplified.
The objects to be removed are chained from the instnode. The infor­
mation for those objects are not deleted because they are temporarily
removed from the screen.

void

DeleteBoxes (TypesNode* typenode)

Effects: his routine deletes boxes that contains type objects to be removed
from the display. The objects to be removed are chained from the
instnode. The information of deleted objects is also removed from the
database of browser.

3

void
DispNormalO

Effects: This routine display all the items that were dimmed to their nor­
mal state.

void
DisplayParameter 0
Effects: This routine displays the list of parameters for a selected oper­

ation from a type object. The list of parameters are displayed in a
rectangular box as with any other type object except that it only has
one subcomponent, which is the list of parameters.

void
DisplaySuperRefer (ObjectList* superlist)

Effects : This routine displays all the objects referred from the elements
of supertype component of a type object. All those objects will be
displayed as exactly same as before they were removed from display.

void
DisplayPropRefer (ObjectList* proplist)

Effects: This routine displays all the objects referred from the elements
of property component of a type object. All those objects will be
displayed as exactly same as before they were removed from display.

void
DisplayOperRefer (ObjectList* operlist)

Effects: This routine displays all the objects referred from the elements
of operation component of a type object. All those objects will be
displayed as exactly same as before they were removed from display.

void
DisplayParmReferRefer (ObjectList* parmlist)

Effects: This routine displays all the objects referred from the elements
of parameter component of a type object. All those objects will be
displayed as exactly same as before they were removed from display.

void
ExpandTitle (TypesNode* typenode)

Effects: This routine expands a simplified type object to its intermediate
form, which only shows the titles of it components. Each title can be
expanded further.

void
ExpandAll (TypesNode* typenode)

Effects: This routine expands a simplified trype object to its full view
where all the components are shown.

void
ExpandProperty (TypesNode* typenode)

Effects: This routine expands a property portion of a type object if it was
simplified.

4

void

ExpandSuperType (TypesNode* typenode)

Effects: This routine expands a property portion of a type object if it was
simplified.

void

ExpandOperation (TypesNode* typenode)

Effects: This routine expands an operation portion of a type object if it
was simplified.

void
ExpandParameter (TypesNode* typenode)

Effects: This routine expands a parameter portion of a type object if it
was simplified.

void
FindBoxes (TypesNode* typenode)

Effects: This routine assigns a box object that will contain the object in
typenode to the next box object following a box that conatins curnode.
If the box is dummy box, it will create box and assign it to typenode.

void
InitO

Effects: This routine initializes the instance variables to their initial val­
ues. InitO of GUlwindow is called to initializes the instance vari­
ables inherited from it because TypeStaticWindow is the subclass of
GUlwindow.

void
InitMenus 0
Effects : This routine constructs the menus for the browser. It inherits

common menus such as File and Edit from GUlwindow. Display,
Supertype, Property, and Operation menus are created for the Type
Browser.

void
MakeltSimple (TypesNode* typenode, ltemType itype)

Effects: This routine simplifies the type object to its simple object de­
pending on the itemtype, itype. If itype is NameTitle, it will simplify
whole type object to its simple form. If itype is SuperTitle, it will
simplify the supertype portion of the type object to its simple form.

TypesNode*
NewTypeNode (TypeObject* typeobject)

Effects: It returns a TypesNode that contains the information about the
type object to be displayed. TypesNode is used to stores the informa­
tion about the display objects corresponding to ENCORE type objects
displayed in the Type Browser.

void

NewChain 0

5

Effects: This routine creates a new chain to display new type object se­
lected. New chain starts right below the last chain and newly displayed.
type object becomes the head of the ·chain. The chain is placed ina
HBox of InterViews and type objects belonged to that chain become
the components of the HBox.

void

InnerBoxExist (TypesNode* typesnode)

Effects: This routine checks if there are other type objects referred from
the same type object that this new type object was referred from. If
so, it will place the new type object at the bottom of the same VBox
where those objects are placed. typenode contains information about
the new type object to be displayed.

void
OuterBoxExist (TypesNode* typesnode)

Effects : This routine creates a space (VBox) where· this new type object
is displayed. Since there was no previous type objects that have the
same parent with this new one, this routine creates a space, for the
group. Subsequently, any new object referred from same parent will
be displayed at the same box just created.

void
NoBoxExist (TypesNode* typesnode)

Effects: This routine creates both outer box and inner box because there
is no objects displayed at the same level that this new type object is
to be displayed. A level is determined by number of objects displayed
along horizontal box. For example, if an object A is at levell, then
any objects referred from A are displayed at the level 2.

void
MakeItFront 0
Effects: This routinedispliys the. full view of typenode and simplifies any

fully displayed objects which are referred from same type object:

void
Remove (TypesNode* .typenode, boolean flag)

Effects: This routine will either remove a type object permanently or tem­
.	 porarily remove· from the display. If the flag is true, it will remove the

type object both froni the display and display list. Otherwise, it is
removed from display.

void.
RemoveObject 0
Effects: This routine removes a type object selected.

void
SimplifyAll (TypesNode* typenode)

Effects: This routine will simplify a type object so that only the name
.of type is shown. All the objects following that type will be r~moved
from the display, temporarily.

void
SimplifyProperty (TypesNode* typenode)

6

Effects: This routine simplifies the property portion oftype object, typen­
ode, so that only the title is shown.

void

SimplifySuperType (TypesNode* typenode)

Effects: This routine simplifies the supertype portion of type object, typen­
ode, so that only the title is shown.

void

SimplifyOperation (TypesNode* typenode)

Effects: This routine simplifies the operation portion oftype object, typen­
ode, so that only the title is shown.

void
SimplifyParameter (TypesNode* typenode)

Effects: This routine simplifies the parameter portion of type object so
that only the title is shown.

void
SimplifySuperRefer (ObjectList* superlist, boolean flag)

Effects: This routine is called when the supertype portion of a type object
is simplified. All the object following the simplified one will be removed
from display. It simplifies those objects referred from each element of
supertype object of the type.

void
SimplifyPropRefer (ObjectList* proplist, boolean flag)

Effects: This routine is called when the property portion of a type object is
simplified. All the object following the simplified one will be removed
from display. It simplifies those objects referred from each element of
property object of the type.

void
SimplifyOperRefer (ObjectList* operlist, boolean flag)

Effects: This routine is called when the operation portion of a type object
is simplified. All the object following the simplified one will be removed
from display. It simplifies those objects referred from each element of
operation object of the type.

void
SimplifyParmRefer (ObjectList* parmlist, boolean flag)

Effects: This routine is called when the parameter portion of a type object
is simplified. All the object following the simplified one will be removed
from display. It simplifies those objects referred from each element of
parameter object of the type.

void
ShowProperty 0
Effects: This routine shows all the properties inherited from a supertype

selected by dimming out all other properties in the type definition.

void
ShowOperation 0

7

Effects: This routine shows all the operations inherited from a supertype
selected by dimming out all other operations in the type definition.

void
ShowAll 0
Effects: This routine shows all the operations and properties inherited

from a supertype selected by dimming out all other properties and
operations of the type object.

void
TogglesSrcWindow ()

Effects : This routine opens the source window if it is not already opened.
The window s empty. If the window is already opened, it will close
the window.

void
U pdateSrcWindow 0
Effects : This routine updates the contents of the source window to the

contents of newly selected operation object if the source window is
already opened. Otherwise, it opens the window first and displays the
contents of the operation.

*** Protected Operation

virtual void

Reconfig 0

Effects: This routine recalculates browser window's configuration when

there are any changes.

virtual void

Resize 0

Effects: This routine is called when the window's size is modified.

virtual void

Draw 0

Effects: This routine redraws the contents of the window when there are

changes such as view change or damage on the window.

virtual void

Copy 0

Effects: This routine copies the any strings selected and puts in the clip­

board window.

virtual void

Handle (Event& events)

Effects : This routine receives events from either from a keyboard or mouse
and invokes appropriate operations.

*** Public Operation

TypeStaticWindow (GUlappl* parent)

8

Effects: This routines creates a TypeStaticWindow by calling Init and
InitMenus routine. parent is the instance of GUIwindow.

TypeBox*
GetBox 0
Effects: This routine returns the outer most box that contains all the

display objects of the Type Browser.

void
DisableExtraMenus 0
Effects: This routine disables all the extra menu which are not needed at

given moment when an object is selected.

void
DisplayType 0
Effects: This routine will display the type object, typenode. Depending

on the status of type object, it will construct and display the selected
type object and all the other type objects following that type object.

void
EnableOper 0
Effects: This routine enables the menu items for manipulation of opera­

tion objects. This is called when an operation object is selected in
most time.

void
EnableProp 0
Effects: This routine enables the menu items for manipulation of property

objects. This routine is called when a property object is selected.

void

EnableSuper 0

Effects : This routine enables the menu items for manipulation of opera­

tion objects. This routine is called when a supertype object is se­
lected.

void

Expand 0

Effects: This routine expands the type object that previously simplified

to its intermediate view. The intermediate view shows only the title of
its subcomponents. Each of subcomponent can be further expanded
to show the contents of it.

void

ExpandType 0

Effects: This routine expands a selected type object. The user can select

whole type object or portion of it, then it will expand the selected
portion to its full view.

virtual void

Invoke 0

Effects: This routine invokes an operation on selected object.

9

void

NewDef (ENObject* enobject, ModificationType mtype)
. .

Effects: This routine displays new type object which was selected from
outside of the Type Browser.

void

NewType (Type* type)

Effects: This routine searches list of type objects being displayed to find
if there is a type, type. If it exist, it replaces the 'old one with newly
constructed one of type.

void

SetCurObject (TypeObject* curobject)

Effects: This routine sets curobject to the currently selected type object.

virtual void

ShowType 0

Effects: This routine displays a full view of the type object next to the

object referred if the new object is not already displayed. If the object
exists, it will highlight the name of the existing type object.

void

Simplify 0

Effects: This routine simplifies the selected object if the object is not

already simplified. The simplified object displays only the name of
the type. If there are type objects following this object, all following
objects are removed and an arrow is displayed at the simplified one to
indicate further chain of objects.

virtual void

ShowlnstO

Effects : This. routine displays a list of instances of the selected type object
in the Instance Browser. If instance browser window is not opened,
it will open the ,window first.

2.2 Class TypeObject

. This section describes the class TypeObject. It is a subclass of VBox of In­
.terViews. It constructs a display type object corresponding to ENCORE
types by composing the subcomponents. A type object is composed of

.Name, SuperType, Property, and Operation objects. Thus, this class
provides the data and operations for composing and manipulating those sub
objects.

SuperClass : VBox

Instance Variables :

TypeStaticWindow* : typewindow

TYPeStaticWindow that this type object is displayed.

TypesNode*': typenode

. . 'TypesNode that contains this type object.

Type* : type

ENCORE type for the type object.

ButtonState* : state

10

Buttonstate for the type object.
Command : pop

Command for expanding simple object to full view.
Command : shrink

Command to shrink the type object to simplified one.
Command : follow

Command to display the contents of the selected item(type).
ObjectList* : proplist

List of properties belong to the type.
ObjectList* : operlist

List of operations belong to the type.
ObjectList* : superlist

List of supertypes belong to the type.
ObjectList* : parmlist

List of parameters belong to the type.
PropObj* : propobject

Property object of the type.
OperObj* : operobject

Operation object of the type.
SuperObj* : superobject

Supertype object of the type.
PropObj* : parmobject

Parameter object of the type.
NameObj* : nameobject

Name object of the type.
boolean * : titleitem

Indicates whether the name object is selected.
boolean * : arrow

Indicates whether the type has following chains from it.
void* : cursubobj

Currently selected subobject of the type.
ListItem * : curitem

Currently selected item of the type.
ListType : listtype

Indicates which part of the type is being displayed.
NameNode* : namenode

Namenode that contains an item object of the Name object.
NameNode* : supernode

Namenode that contains an item object of the Supertype object.
NameNode* : propnode

Namenode that contains an item object of the Property object.
N ameNode* : opernode

Namenode that contains an item object of the Operation object.
NameNode* : parmnode

Namenode that contains an item object of the Parameter object.
int : width

Width of the box containing the type.
int : itemwidth

Width of the box containing an individual item of the type.

int : itemheight

Height of the box containing an individual item of the type.

*** Internal Operation

void

Init ()

11

Effects: This routine initializes the instance variables of the type object.

void

MakeList (Type* type)

Effects: This routine calls routines that makes the list offor the subobjects
of the type object. Subobjects are Name, property, Supertype, and
Operation object.

void

MakeParmList (GUlobject* operobj)

Effects: This routine forms list of parameters for an operation object,
operobj of the type object.

void

MakeObject (Type* type)

Effects: This routine constructs the type object of given type ,type by
composing subobjects.

void
MakeParmObject 0
Effects: This routine forms Parameter object for the selected operation

object. The list of parameters is formed by MakeParmList.

void

MakeTitleObject (Type* type)

Effects: This routine makes the title object of each subobject. Title object
is the display object indicating subobjects of the type object. That is,
it constructs titlebars for each subcomponent of the type.

void

MakePropList (Type* type)

Effects: This routine forms a list of properties of the type object given in
type.

void

MakeSuperList (Type * type)

Effects: This routine forms a list of supertypes of the type object given in
type.

void

MakeOperList (Type* type)

Effects: This routine forms a list of operations of the type object given in
type.

ObjectList *

InheritPropList (Type* supertype)

Effects : This routine forms and returns a list of properties of the type that
are inherited from supertype.

ObjectList *

InheritOperList (Type* supertype)

12

Effects : This routine forms and returns a list of operations of the type
that are inherited from supertype.

NameObj*

MakeNameObj (Type* type)

Effects: This routine makes a name object of the type, type.

SuperObj*

MakeSuperObj (ObjectList* superlist)

Effects: This routine returns a supertype object of the type constructed
from the supertypes in superlist.

PropObj *

MakePropObj (ObjectList* proplist)

Effects: This routine returns a property object of the type constructed
from the properties in proplist.

OperObj *

MakeOperObj (ObjectList* operlist)

Effects: This routine returns an operation object of the type constructed
from the operations in operlist.

*** Protected Operation

void
Reconfig 0
Effects: This routine reconfigures the type object when there is any change

in the type object.

*** Public Operation

TypeObject (GUlobject* guiobj, ButtonState* state, ListType
ltype, TypeStaticWindow* typewindow, Command pop, Comm
and shrink, Command follow, boolean
parmflag)

Effects: This constructor creates a type object when the type is first dis­

played. guiobj is a GUlobject corresponding to this type object. state

is a buttonstate and Itype is list type which determines what portion

to be displayed. typewindow is TypeStaticWindow where this type

is displayed. pop, shrink, and follow are commands for expanding,

shrinking, and newly displaying of the type object. parmflag indi­

cates whether the type is referred from a parameter object.

TypeObject (TypesNode* typenode, ButtonState* state, List

Type ltype, TypeStaticWindow* typewindow, Command

pop, Command shrink, Command follow, boolean parm­

flag)

Effects: This routine constructs the type object using the information

stored in typesnode. This constructor is used to rebuild the type

objects that were temporarily removed from the browser. typenode

contains information for the type to be displayed.

13

TypeObject (TypesNode* typenode, ButtonState* state, List
Type ltype, TypeStaticWindow* typewind6w, Command
pop, Command shrink)' .

Effects: This constructs an special type object, which is the list of pa­
rameters of an operation object. Thus, the type object has only one
subcomponent, which is a list of parameter.

TypeObject 0
Effects: Destructor of TypeObject.

void

SetCurObject (Listltem*)

Effects: This routine sets the selected item to the currently selected item.
The selected item is an instance of ListItem.

TypesNode*
GetTypesNode ()

Effects : This returns the TypesNode that contains currently selected type
object.

ListType
GetListType 0
Effects: This returns the type of the display of the type object, which

determines the portion of the type to be displayed. That is, the type
may be displayed with only the list ,of properties or operations of the
type, instead of full view.

NameObj*

GetNameObject 0

Effects : This routine returns the name object of the type.

PropObj*

GetPropObject 0

Effects: This routine returns the property object of the type.

SuperObj*.
GetSuperObje~t()

Effects: This routine returns the supertype object of the type.

OperObj*

GetOperObject 0

Effects: This routine returns the operation object of the type.

ObjectList*

GetSuperList 0

Effects: This routine returns the list of the supertypes of the type.

ObjectList*

GetPropList 0

Effects: This routine returns the list of the properties of the type.

14

ObjectList*
GetOperList 0
Effects: This routine returns the list of the operations of the type.

ObjectList*
GetParmList 0
Effects: This routine returns the list of the parameters of an operation

object of the type.

TypeStaticWindow*
GetTypeStat ()

Effects: This routine returns the TypeStaticWindow where this type is
being displayed.

void
SetCurltem (Listltem* curitem)

Effects: This routine sets curitem to the currently selected item of the
type.

Listltem*
GetCurltem 0
Effects: This routine returns the currently selected item of the type.

void
GetCoord (Coord& xcoord , Coord& ycoord)

Effects: This routine returns x and y coordinate at the right top corner
of the box forming the type object. X and y coordinates are stored in
xcoord and ycoord, respectively.

void
GetltemCoord (Coord& xcoord , Coord& ycoord)

Effects : This routine returns x and y coordinate at the left top corner
of the box forming a type object. X and y coordinates are stored in
xcoord and ycoord, respectively.

2.3 Class BaseObject

The BaseObject is a subclass of VBox of InterViews, which is an interac­
tor object that tiles it components. BaseObject is the superclass for the
NameObj, PropObj, OperObj and SuperObj and it provides data and
operations common to its subclasses. NameObj is the class for name ob­
jects. PropObj is the class for Property objects. SuperObj is the class for
Supertype objects. Finally, OperObj is the class for Operation objects.

SuperClass : VBox

Instance Variables:

Listltem* : nameitem

Title object of the base object.

IconType* : icontype

Icontype of this base object.

ClearPort* : viewport

Clearport where this object is drawn.

TypeObject* : typeobject

15

Type object that this base object is belonged to.
ButtonState* : state

Buttonstate for the type object.
Command: pop

Command for expanding simple object to full view.
Command: shrink

Command to shrink the type object to simplified one.
Command: follow

Command to display the contents of the selected item(type).
int : width

Width of the box containing the type.
int : itemwidth

Width of the box containing an individual item of the type.
int : itemheight

Height of the box containing an individual item of the type.

*** Internal Operation

Interactor*
ScrollFrame 0
Effects: This routine returns the vertical scroller for this object. The

scrollbar is used to scrolls the contents of the baseobject, which is a
list of properties or operation because size of the baseobject is fixed
while the list can be quite large.

void
Reconfig 0
Effects: This routine reconfigures the base object when there is any change

in the size of the box forming the base object.

void

MakeItemBox 0

Effects: This routine constructs a box containing the items belong to this

object. Each item is an instance of ListItem.

*** Protected Operation

virtual void

MakeObject (ItemType itype)

Effects: This routine composes subcomponents of baseobject to constructs
a baseobject, whose items are of itype. That is, if the itype is property,
then it constructs a property object portion of a type object.

*** Public Operation

BaseObject (ButtonState* state, TypeObject* typeobject, Type
StaticWindow* typewindow, Command pop, Command
shrink)

16

Effects: Constructor of BaseObject. state is the button state and typeob­
ject is the type object where this base object is belonged to. typewin­
dow is the TypeStaticWindow where typeobject is to be displayed.
pop and shrink are commands for expanding and simplifying the
baseobject, respectively.

void

SetCurltem (Listltem* curitem)

Effects : This routine sets curitem to the currently selected item of the
baseobject.

Listltem*
GetCurltem 0
Effects: This routine returns the currently selected item of the base object.

TypeObject*
GetTypeObject 0
Effects: This routine returns the TypeObject to which this base object is

belonged to.

int
GetWidth 0
Effects: This routine returns the width of the base object. The width of

the object is the width of the widest item of the base object.

VBox*
GetltemBox 0
Effects: This routine returns the box forming the base object.

void

SetltemWidth (int width)

Effects: This routine sets the width of the box to width.

Listltem*

GetNameltem 0

Effects: This routine returns the item that representing name object of

the base object.

2.4 NameObj

This section describes NameObj class which implements the name object
portion of a type object.

SuperClass : BaseObject

Instance Variables:

Type* : type

ENCORE type.

boolean : arrowflag

Flag indicating existence of an arrow.

*** Public Operations

NameObj (Type* type, char* name, ButtonState* state, Type
Object typeobj, TypeStaticWindow* twindow, Command
pop, Command shrink, ItemType itemtype, boolean
commandflag, boolean arrowflag)

17

Effects: Constructor of Name object of a type object. type is ENCORE
type of object and name is string name of the type. state is a button
state of a type object. typeobj is a type object where this name object
is belong to. twindow is TypeStaticWindow.where the type object is
displayed. itemtype is type of ListItem for this object. pop, shrink,
and follow are Commands for expanding, shrinking, and displaying
full view of the type definition, respectively.

2.5 SuperObj

This section describes SuperObj class which implements the supertype ob­
jects of a type object.

SuperClass : BaseObject

Instance Variables:

ObjectList* : superlist

List of supertypes of a type object.

Listltem* : curitem

A supertype item currently selected.

*** Internal Operations

void Init ()

Effects : This routine initializes the instance variables.

void MakeltemBox 0
Effects: This routine constructs a VBox containing all the supertypes of

the type object of which this supertype object is a component.

*** Publi~ OperatIons

SuperObj (ObjectLil?t* superlist, ButtonState* state, Type
Object* typeobj, TypeStaticWindow* twindow, Command
pop, Command ·shrink, Command follow) .

. Effects: Construct9rof Supertype object of a type object. state is a but­
ton state of-a type.object. typeobj is a type object where this super­
type object is belong to. twindow is TypeStaticWindow where the
type ohject is displayed. itemtype is type of ListItem for this object.
superlist is the list of supertypes of typeobj. pop, shrink, and follow
are Commands for expanding, shrinking, and displaying full view of
the type definition, respectively.

void Reconfig 0
Effects: This routin~ reconfigures the supertype object shape. It over­

writes ReconfigO of BaseObject because the shape of supertype ob­
: ject is different from property and operation object.

18

2.6 PropObj

This section describes PropObj class which implements the property objects
of a type object.

SuperClass : BaseObject
Instance Variables :

ObjectList* : proplist
List of properties of a type object.

ObjectList* : parmlist
List of parameters of a type object.

ListItem* : curitem
A property item currently selected.

*** Internal Operations

void Init (boolean flag)

Effects: This routines creates a string name for the title of the object. If
flag is True it is Property. Otherwise, it is Parameter.

void MakeItemBox ()

Effects : This routine constructs a VBox containing all the properties of
the type object of which this property object is a component.

void MakeParmBox ()

Effects: This routine constructs a VBox containing all the parameters of
an operation of the type object of which the operation object is a
component.

*** Public Operations

PropObj (ObjectList* proplist, ButtonState* state, TypeObject*
typeobj, TypeStaticWindow* twindow, Command pop,
Command shrink, Command follow, boolean flag)

Effects: Constructor of Property object of a type object. state is a button
state of a type object. typeobj is a type object where this property
object is belong to. twindow is TypeStaticWindow where the type
object is displayed. itemtype is type of ListItem for this object. pro­
plist is the list of properties of typeobj. pop, shrink, and follow are
Commands for expanding, shrinking, and displaying full view of the
type definition, respectively. flag determines the object is either of
property or parameter. If flag is True, it is a Property. Otherwise, it
is a Parameter object.

2.7 OperObj

This section describes OperObj class which implements the operation ob­
jects of a type object.

SuperClass : BaseObjeet

Instance Variables :

19

ObjectList* : operlist
List of operations of a type object.

ListItem* : curitem
An operation item currently selected.

*** Internal Operations

void Init 0
Effects: This routine initializes the instance variables.

void MakeltemBox 0
Effects : This routine constructs a VBox containing all the operations of

the type object of which this operation object is a component.

*** Public Operations

OperObj (ObjectList* superlist, ButtonState* state,
TypeObject* typeobj, TypeStaticWindow* twindow, Com­

mand
pop, Command shrink, Command follow)

Effects: Constructor of Operation object of a type object. state is a but­
ton state of a type object. typeobj is a type object where this oper­
ation object is belong to. twindow is TypeStaticWindow where the
type object is displayed. itemtype is type of ListItem for this object.
operlist is the list of operations of typeobj. pop, shrink, and follow
are Commands for expanding, shrinking, and displaying full view of
the type definition, respectively.

3 Instance Browser

This section describes the classes used to implementInstance Browser. In­
stStaticWindow class provides data and operations to display and mani-p­
ulate intsance objects so that the user can browse instances of ENCORE.
InstanceObjeet is the base class for InstObject, CollectObject, and Sim­
pleObject. InstObject class provides operations for constructing instance
objects of single complex ENCORE type. CollectObjeet class provides data
and operations for constructing the instances of Collection Type. SimpleOb­
jeet is the class for displaying different view of both InstObject and Col­
lectObject.

3.1 Class InstStaticWindow

InstStaticWindow class is a subclass of GUlwindow class, which ,in turn,
is a subclass of VBox of InterViews. This class provides data and opera­
tions for implementing browser operations. Construction of actual instance
objects is accomplished by uses of InstanceObject, InstObject, CollectO­
bject, and SimpleObjeet.

SuperClass : GUIwindow

Instance Variables:

20

DisplayBox* : thebox
The box containing all the instance object displays of the Instance

Browser.
BoxList* : boxlist

The list of top level boxes where the instance objects are placed.
OjectList* : typelist

The list of types whose instances are currently being displayed.
VBox * : dummyinnerbox

Dummy inner box containing no object. This is needed to hold the
space when all the objects in the box are removed.

VBox * : dummyinnerbox
Dummy outer box containing no object. This is needed to hold the

space when all the objects in the box are removed.
InstanceNode* : curinstnode

InstanceNode containing currently selected instance object.
ltemNode* : curitemnode

ItemNode containing currently selected item object.
void* : curitem

Currently selected item object.
boolean : instance

Flag for selection of instance.
boolean: collection

Flag for selection of collection.
boolean: nameobject

Flag for selection of name object.
boolean: simple

Flag for selection of simple obje ct.
ButtonState* : state

Buttonstate for InstStaticWindow.

*** Internal Operation

InstanceNode*

NewInstNode (void* instance)

Effects: This routine constructs an InstanceNode that stores all the in­
formation for the display of an instance object, instance. When the
instance object is deleted, the corresponding node is also deleted.

virtual void

Activate ()

Effects: This routine activates the InstStaticWindow.

void

Addlnstance (GUIinstance * instance)

Effects : This routine adds the new instance, instance, to the existing list
of instances of the same type. It redraws the updated object, which is
a CollectObject.

void

ChangeValue (GUlinstance* instance)

Effects : This routine changes the value of the selected instance. The in­
stance containing changed item is redrawn with a new value.

21

void

ClearBoxes (InstanceNode* instnode)

Effects: This routine clears boxes that contaiIl:s instance objects to be
removed from the display because the instance object of instnode is
simplified. The objects to be removed are chained from the instnode.
The information for those objects are not deleted because they are
temporarily removed from the screen.

void

DeleteBoxes (InstanceNode* instnode)

Effects: This routine deletes boxes that contains instance objects to be
removed from the display. The objects to be removed are chained
from the instnode. The information of deleted objects is also removed
from the database of browser.

void
DeleteInstance (G Ulinstance * instance)

Effects : This routine deletes instance from the display because corre­
sponding model object was deleted from actual database. If the in­
stance deleted has further chain from it, all those objects are also
removed from the screen.

void
DisplayFront 0
Effects: This routine displays the full view of the selected instance object

while simplifying all the fully displayed instance objects which were
referred from same instance object as the selected one.

void
DisplayFull 0
Effects: This routine displays the full view of selected instance object while

displaying ill the fully displayed instance objects which were referred
from same instance-object as the selected one, if there are ones.

22

Effects: This routine assigns a box object that will contain the object
in instnode2 to the next box object following a box that contains
instnodel. If the box is dummy box, it will create box and assign it
to instnode2.

void
InnerBoxExist (InstanceNode* curnode, InstanceObject* new

object)

Effects: This routine checks if there are other instance objects referred
from the same instance object that this new type object was referred
from. If so, it will place the new instance object at the bottom of
the same VBox where those objects are placed. newobject is the new
instance object to be displayed. curnode is the node containing all
the information about current object from where the new object is
referred.

void
OuterBoxExist (InstanceNode* curnode, InstanceObject* new

object)

Effects: This routine inserts new instance object, newobjeet to the box
where the objects referred from the object other than curnode are
placed. Those object must be at the same outer level as with newob­
jeet. New box is created for newobject and subsequent object referred
from curnode will be placed in the new box.

void
NoBoxObject (InstanceNode* curnode, BoxNode* outerboxnode,

InstanceObject* newobject)

Effects : This routine creates both outer box and inner box because there
is no objects displayed at the same level that this new instance object,
newobject is to be displayed. A level is determined by number of
objects displayed along horizontal box. For example, if an object A is
at levell, then any objects referred from A are displayed at the level
2.

void
Init 0
Effects: This routine initializes the instance variables for the InstStat­

icWindow.

void
InitMenus 0
Effects : This routine constructs the menus for the Instance browser. It in­

herits common menus such as File and Edit from GUIwindow. Display
menus are created for the Instance Browser.

void
MakeItFront (InstanceNode* instnode)

Effects: This routine displays the full view of instnode and simplifies any
fully displayed objects which are referred from same instance object.

void
MakeItSimple (InstanceNode* instnode)

23

Effects: This routine simplifies the object in instnode to its simple object.
If there are any objects referred from it, they are temporarily removed
from the display. Those object would be redisplayed if simplified object
is expanded, later. An arrow will be displayed at the simplified object
to indicate that there is further chain of objects.

void

Removelnstance (InstanceNode* instnode, boolean flag)

Effects: This routine removes instance object in instnode. If the flag is
True, it will delete also corresponding instnode because it is perma­
nently deleted from browser database.

void
RemoveCollection (InstanceNode* collnode, boolean flag)

Effects: This routine removes collection object in collnode. If the flag is
true, it will delete also corresponding collnode because it is perma­
nently deleted from browser database.

void
RemoveSimple (InstanceNode* simplenode, boolean flag)

Effects: This routine removes simple object in simplenode. If the flag is
true, it will delete also corresponding simplenode because it is perma­
nently deleted from browser database.

InstanceNode*
SearchlnstNode (ObjectNode* objnode)

Effects: This routine searches the entire list of instance nodes that are
active in the browser to find the instance object in objnode. It returns
an instance node corresponding to searched one if there is a such one.
Otherwise, it returns nil.

void
TypeExist (ObjectNode* objnode)

Effects: This routine searches the list of types to find if there is a type
whose instance is to be displayed. This routine is called when the
user wants to display the list of instances belong to a type from either
TypeStaticWindowor TypeTarckingWindow. If there is a such type,
it means that corresponding instance(collection) is already displayed
in the instance browser. Thus, it highlights that instance. Otherwise,
it displays proper instance objects.

*** Protected Operation

virtual void
Handle (Event& event)

Effects: This routine invokes proper operation corresponding to the input
either from the keyboard or the mouse.

virtual void
Reconfig ()

Effects : This routine reconfigures the instance browser window if there is
any change in the configuration of the window.

24

virtual void
Resize 0
Effects: This routine is called when the instance browser window is resized.

virtual void
Copy 0
Effects: This routine copys the selected instance object to the buffer.

Copied object is pasted into the Clipboard Window.

virt ual void
Invoke 0
Effects: This routine invokes an operation on the selected instance object.

virtual void
ShowType 0
Effects: This routine displays the type object whose instance object is

currently selected in the Type Browser window. If the Type browser
is not currently opened, it will first open that window before it displays
the type object.

*** Public Operation

InstStaticWindow (GUIappl* parent)

Effects: This routines creates an InstStaticWindow by calling Init and
InitMenus routine. parent is the instance of GUlwindow.

DisplayBox*

GetBox ()

Effects: This routine returns the box containing all instance objects being
displayed in the browser.

void

ExamineInst (GUIobject * guiobject)

Effects: This routine will display the instance object corresponding to
guiobject. guiobject is the result of a query operation.

void

FollowChain 0

Effects : This routine displays the contents of the selected item of current

instance object in the full view. Since it only displays one full object
among those object referred from current instance, it will simplify
previous full object to simple one, if there is one. This routine calls
MakeItSimple, which implements actual simplification and further
removal of objects following simplified one.

void

NewChain 0

Effects: This routine starts new instance chain starting from the selected

instance. The new chain will be displayed right below the last chain
of the browser. The chain is created only when the selected instance
is the last object of some previous chain.

25

void
NewInstList 0
Effects: This routine is similar to NewChain except it is called when an

instance of ENCORE collection type is displayed. The type is selected
from either Type Browser or Type Tracking Window.

void
NewInstance 0
Effects : This routine inserts and displays newly instance created by a cre­

ation operation. New instance is inserted into a collection· instance
where it is member of. The collection object is updated and redis­
layed.

void

RemoveObj 0

Effects: This routine removes instance object selected. Depending on the

type of instance, it calls one of RemoveInstance, RemoveCollection,
or RemoveSimple to actually remove it.

void

Simplify 0

Effects: This routine simplifies the selected instance object to simple ob­

ject if it is not already simplified. This routine calls MakeItSimple,
which is the routine to actually simplify the object.

v~d .

UpdateInstance (GUIinstance* inst; ModificationType mtype)

Effects : This routine updates the display of instances currently on the
screen, if there are any changes such as a deletion, an addition of
an instance, or change of a value. inst is the instance object to be
updated. ModificationType is one of Add, Delete, or ChangeValue.

3.2 Class InstanceObject

This section describes. the InstanceObject class which implements instance
object of browser. InstanceObject is a base class for InstObject, CollectO­
bject, and SimpleObject. InstObject is the class for constructing instances
ofa single complex ENCORE type while CollectObject is the class for con­

. structing instances of ENCORE collection type. SimpleObject is the class
.for representing different view of both InstObject and CollectObject when
they are simplified.

SuperClass : VBox

Instance Variables:

InstStaticWindow* : pwindow

InstStaticWindow where this object is displayed.

VBox* : itembox

. VBox* containing the list of items belong to this object.

Listltem* : nameitem . .

. . ListItem for the name of the object.

ClearPort* : viewport .

ClearPort for the object.

ButtonState* .: state

Button state of the object.

26

InstanceNode* : instnode
InstanceNode that contains this object.

ObjectList* : itemlist
List items of the object.

Command : namecommand
Command that are applied to the name of the object.

Command: itemcommand
Command that are applied to the other items beside the name of

the object.
void* : object

Command object.
int : itemwidth

Width of the object.
int : itemheight

Height of the object.

*** Protected Operation

void
Reconfig 0
Effects: This routine reconfigures the instance object when there is any

change in the shape of the object.

*** Public Operation

InstanceObject (ButtonState* state)

Effects: Constructor of InstanceObject. This routine initializes the in­
stance variables. state is the button state for that instance.

InstanceObject 0
Effects: Destructor of InstanceObject.

void
SetlnstStat (InstStaticWindow* iwindow)

Effects: This routine sets iwindow to the InstStaticWindow where this
object is to be displayed.

InstStaticWindow*
GetInstStat 0
Effects: This routine returns the InstStaticWindow where this object is

displayed.

VBox*
GetItemBox 0
Effects: This routine returns a VBox containing the list of item belongs

to this object.

Interactor*

ScrollFrame 0

27

Effects: This routine returns the vertical scroller for this object. The
scrollbar is used to scrolls the contents of the instance, which is a list
of values because size of the instance object is fixed while the list can
be quite large.

ObjectList*
GetltemList 0
Effects: This routine returns the list of items belong to this instance ob­

ject. The list of items is a list of values of properties of the type if
it is InstObject. If it is CollectObject, a list of items is a list of
InstObject.

void

GetCoord (Coord& xcoord , Coord& ycoord)

Effects : This routine returns relative x and y coordinates for the right top
corner of the instance object in the browser. Coordinates are stored
in xcoord and ycoord, respectively.

void

GetItemCoord (Coord& xcoord, Coord& ycoord)

Effects : This routine returns relative x and y coordinates for the left top
corner of the instance object in the browser. Coordinates are stored
in xcoord and ycoord, respectively.

void

MakeObject (GUIinstance* inst)

Effects: This routine make an instance(or collect object) by arranging the
components of the object. The components are name of object and
one of SimpleObject, InstObject, or CollectObject.

3.3 Class InstObjeet

This section describes InstObject class which is used for constructing in­
stance objects of single complex ENCORE type.

SuperClass : InstanceObjeet

Instance Variables :

G Ulinstance* : inst

GUIinstance object corresponding to this instance object.

ObjectList* : valuelist

List of property values of the type of this instance.

ltemNode* : curitem

Currently selected ItemNode.

*** Internal Operation

void

Init 0

Effects: This routine initializes the instance variables.

void

MakeltemBox 0

28

Effects : This routine forms a box containing all the list of values for the
instance. The values corresponds to the values of the properties for
the type of the instance.

*** Public Operation

InstObject (GUIinstance* guiinst, ButtonState* state, Command
namecom, Command itemcom , void* what) : (state)

Effects: Constructor of InstObject. guiinst is a GUIinstance object cor­
responding to this instance object and state is a button state of the
object. namecom and itemcom are commands that applied to the
name object and value objects, respectively. what is a Command ob­
ject.

void

SetCurltem (ltemNode*, boolean)

Effects : This routine sets itemnode to the current node that contains the
currently selected item object. titleflag is True if selected item is name
object, the name of the instance object.

ltemNode*
GetCurltem 0
Effects: This routine returns itemnode whose item object is currently se­

lected.

3.4 Class CollectObject

This section describes CollectObject that are used for implementation of
instances of ENCORE collection type. CollectObject is a collection of 1n­
stObject.

SuperClass : InstanceObject

Instance Variables:

Type* : type

Type of the collection object.

GUlcollection* : colI

GUIcollection object corresponding to this collection.

ObjectList* : instlist

List of instances that are values of the type of this collection.

ltemNode* : curitem

Currently selected ItemNode.

boolean : collection

Flag indicating the reference.

*** Internal Operation

void

lnit ()

Effects : This routine initializes the instance variables.

void

MakeTypeBox ()

29

Effects: This routine constructs a collection box when this object is re­
ferred from Type Browser. The box. contains the list of instances of
a selected type.

void
MakeCollectionBox 0
Effects: This routine constructs a collection box when this object is re­

ferred from some other instance objects in the Instance Browser. The
box contains the list of instance of the type whose instance is selected.

void

MakeObject (GUlobject* coll)

Effects : This routine makes a collection object for coll by arranging the
components. The components are name, a list of instance items and
at tached vertical scroller.

*** Public Operation

CollectObject (GUlobject* guiobj, ButtonState* state, boolean
flag, Command namecom, Command itemcom, void* what)
: (state)

Effects: Constructor of CollectObject. guiobj is a GUIobject cqrrespond~
ing to this object. state is a button state of this object. namecom
and itemcom are commands that are appliE:ld to name object and other
items, respectively. what is a Command object. flag is True if the
collection object is referred from the Type Browser. Otherwise, it is.
false.

void

SetCurltem (ItemNode* itemnode ,boolean titleflag)

Effects : This routine sets itemnode to the current node that contains the
currently ·selected item object. titleflag is True if selected item is name
object, the name (If the collection object.

ItemNode*

GetCurItem 0

Effects: This rqutine returns ItemNode whose item object is the current

selection.

. void
Reconfig 0
Effects : This routine re"configures the collection object when there is any

change in the shape of it.

3.5 Class SimpleObject

This section describes SimpleObjeet class which implements simplified ver­
sion·of both InstObjeet and CollectObject. The objects in the browser are
simplified to save the space when they are not current interest of the users.
Objects of this class contains only one component, which is a name of an
instance.

30

SuperClass : InstanceObjeet

Instance Variables:

GUIobject* : guiobj
GUIobject corresponding to this simple object.

ltemNode* : curitem
ItemNode whose item object is currently selected.

boolean : selected
Flag indicating the selection of this object.

*** Protected Operation

virtual void

Reconfig 0

Effects: This routine reconfigures the shape of the simple object. The

object is redrawn using this new configuration.

*** Public Operation

SimpleObject (GUIobject* guiobj, ButtonState* state, Instance
Type insttype, Command command, void* object, boolean
arrowflag)

; Effects: This routine constructs a simple object. guiobj is GUlobject
corresponding to this simple object. state is the button state of the
object. insttype is type of instance to be simplified. It is one of
Instance, or Collection. command is the command that applies to
this object and object is the Command object. arrowflag indicates
whether this object needs an arrow icon or not.

void

SetCurltem (ltemNode* item node)

Effects: This routine sets itemnode to the current itemnode whose item
is selected.

ltemNode*

GetltemNode 0

Effects: This routine returns the current itemnode whose item is selected.

3.6 Class Listltem

This section describes ListItem class, which is a subclass of TextButton
class of Interviews. ListItem class provides data and operations for con­
structing unit component of a type or an instance object. The unit element
is composed of an icon, and string describing the model object which it rep­
resents. It can be name of an object, or property, or operation, etc. Since
it is a subclass of TextButton, the item can be selected and highlighted.

SuperClass : TextButton

Instance Variables:

IconType : icontype
Icon type of the item. Icon types are Simple, Complex, and

31

Collection.

ItemType: itemtype

Item type of the item. Item type can be one of Property, Su­
perType, Operation, Instance, Collection, Narne.
Type* : type

ENCORE type of the object the item represents.
BaseObject* : baseobj

Baseobject where the item belongs to.
GUIobject* : guiobj

GUIobject corresponding to the item.
ObjectNode* : objnode

ObjectNode containing the item.
G UlbaseNode* : basenode

BaseNode containing a BaseObject where the item belongs to.
void* : object

Command object.
Command: command

Command that can be applied to the item.
HLstate : highlight

Highlight state of the item.
int curGroupId

Group Id whose element.is currently being fully highlighted.
int myGroupld

Id of the group where the item belongs to.
int : itemwidth

Width of the item.
int : itemheight

) Height of the item.
char* : title

String name for the face of the item.
boolean : arrow

Flag for arrowicon's existence.
Bitmap* : arrowicon

Arrow icon of the item.
Bitmap* : icons

Type icon of the item.

*** Protected Operation

virtual void

Reconfig 0

Effects : This routine reconfigures the shape of the item when there is any

changes in the configuration. Consequently, the item will be redrawn
using new configuration.

virtual void

Refresh 0

Effects : It refreshes the display of the item when there is any change in

the item. For example, if the item is selected, it will display the item
in reverse video. It also reshapes the item when shape of the item is
updated.

virtual void

Redraw (Coord xl , Coord yl, Coord x2, Coord y2)

Effects: This routine redraws the item by calling Refresh. (xl, yl) IS

lower left corner and (x2, y2) is upper right corner of the canvas.

32

virt ual void
Press 0
Effects: This routine takes appropriate action for the item being pressed.

It sets the associated state to the button's value, which will trigger all
related items to update their display.

*** Public Operation

Listltem (char* name, ButtonState* state, GUIobject* guiobj,
IconType icontype , ObjectNode* objnode, ItemType item
type, int gid)

Effects : Constructor of ListItem. name is string for the face. state is the
buttonstate. guiobj is GUlobject corresponding to this item. icontype
is type of icon and itemtype is a type of item for this item. objnode
is the ObjectNode containing this item. gid is the group id for this
item. Its default is O.

Listltem (char* name, ButtonState* state, Type* type, Icon
Type icontype, G UIbaseNode* basenode, ItemType item
type BaseObject* baseobj, Command command, void*
object, boolean arrowflag, int gid)

Effects: Alternative constructor for ListItem. type is the ENCORE type
for the object represented by this item. basenode is the BaseNode
containing the BaseObject where the item belongs to. baseobj is the
object where the item belongs to. command is the command that can
be applied to this item and object is the command object. arrowflag
indicates whether the item has an arrow or not.

virtual
Listltem 0
Effects : Destructor of ListItem.

virtual void
Update 0
Effects: This routine will updates the highlight state of the item. The

selected item will be fully highlighted while other items currently being
highlighted will be updated depending on the group of the selected
item. Any item in the same group with the selected item will be
dehighlighted while items in the different group will be half highlighted
if they were fully highlighted. All the listitem that belong to same
object have same group id.

void
Choose 0
Effects: This routine will fully highlight the item.

void
HalfChoose 0
Effects: This routine will halfhighlight the item.

void
UnChoose 0

33

Effects: This routine dehighlight the item.

void
Setlcon 0
Effects: This routine creates a bitmap for the icon of the item. It can be

one of Simple, Complex, Collection, Title, or Object.

TypesNode *
GetTypeNode 0
Effects: This routine returns the typenode that contains the type object

of which this item is member.

void

GetCoord (Coord& xcoord, Coord& ycoord)

Effects: This routine returns x and y coordinates for top right corner of a
box containing definitions of either type or instance object where this
item belongs to.

void
UpdateMenus 0
Effects: This routine updates the display of the menus corresponding to

the list item selected in the browser. That is, if an item of supertype
is selected, the menus for supertypes will be changed to normal from
dimmed state while all other menus that are not applicable to the
selected item will be disabled.

3.7 Class DisplayBox

This section describes DisplayBox class implementing composition of in­
stance objects in the Instance Browser. DisplayBox is a subclass of HBox
of InterViews which arranges its components horizontally. It provides a
drawing space for instance; objects of Instance Browser.

SuperClass·: HBox

Instance Variables.:

InstStaticWindow* :instwindow
InstStaticWindow where the box is in.

BoxList* : boxlist
List of boxes cont-ained in this box.

. boolean : flag .
Edge draw flag.

*** Internal Operation

void ItemRefer (InstanceNode* instnode)

Effects: This routine finds location of objects that are updated by some
operation. It iterates every item (value objects) of currently selected
object and checksif there are any changes among those object ref­

.~renced from those items. If there are any changes such as removal,
shrieked, it will find new location for those object. This is done recur­
sively until it reaches a level where objects are not affected by current
operation.

34

*** Public Operation

DisplayBox 0
Effects : Constructor of DisplayBox. flag is set to false to indicate that it

does not need to draw edges for its components.

void FindShape 0
Effects : This routine finds space where new instance object is displayed.

It reconfigures the DisplayBox after allocating the space.

void DrawEdge 0
Effects: This routine draws an edge to left top of an object,B, from an

object,A, containing the item that is related to B. The edge goes from
top right corner of A to top left corner of B.

3.8 Class TypeBox

This section describes TypeBox class implementing composition of type ob­
jects in the Type Browser. TypeBox is the outermost box object which
provides the drawing space for type objects.

SuperClass : HBox
Instance Variables :

TypeStaticWindow* : typewindow
TypeStaticWindow where the box is in.

BoxList* : boxlist
List of boxes contained in this box.

boolean : flag
Edge draw flag.

*** Internal Operation

void SuperTypeRefer (TypesNode* typenode)

Effects: This routine checks if there is any change among the type objects
referred from the supertype objects of current type object in typenode.
This routine is called by DrawEdge.

void PropRefer (TypesNode* typenode)

Effects: This routine checks if there is any change among the type objects
referred from the property objects of current type object in typenode.
This routine is called by DrawEdge.

void OperRefer (TypesNode* typenode)

Effects: This routine checks if there is any change among the type objects
referred from the operation objects of current type object in typenode.
This routine is called by DrawEdge.

void ParmRefer (TypesNode* typenode)

Effects: This routine checks if there is any change among the type objects
referred from the parameter objects of current type object in typen­
ode. This routine is called by DrawEdge.

35

*** Public Operation

TypeBox 0
Effects : Constructor of TypeBox. flag is set to false to indicate that it

does not need to draw edges for its components.

void FindShape 0
Effects: This routine finds space where new instance object is displayed.

It reconfigures the DisplayBox after allocating the space.

void DrawEdge 0
Effects: This routine finds location of objects that are updated by some

operation. It iterates every item (value objects) of currently selected
object and checks if there are any changes among those object ref­
erenced from those items. If there are any changes such as removal,
shrunk, it will find new location for those object. Then, it draws an
edge from an object A to another object B if they are directly re­
lated by some refer-referred relation. This is done recursively until it
reaches a level where objects are not affected by current operation.

36

