
BROWN UNIVERSITY
 
Department of Computer Science
 

Master's Project
 
CS-89-Ml
 

"Learning Through Exploration" 

by
 
David S. Mead
 



Learning Through Exploration 

submitted by 

David S. Mead 

III partial fulfillment of the requirements for the
 
Master of Science Degree
 

in Computer Science at Brown University
 

January, 1989 



Abstract 

This project has been an implementation of learning through exploration in the 

field of elementary set mathematics. Using heuristics given to it, the computer is able to 

enhance the knowledge it has about the concepts it knows about and also to supplement 

those concepts with new concepts that it discovers. Discussed in this paper will be the 

project SiAM which does discovery in the field of set theoretic mathematics. Previously, 

all work on this topic has been done by Douglas B. Lenat on AM and Eurisko. These two 

projects will be discussed as regards their implementations, whether they are good or 

bad. Also discussed will be the reasons for supporting current directions of research in 

this area. Finally, future directions for this work are suggested. 



Introduction 

When considering the impressive Artificial Intelligence learning 

programs and paradigms, one particular group stands out as quite 

revolutionary. The paradigm is known as learning through exploration. The 

programs are AM and Eurisko. A program that learns through exploration is a 

heuristic search program, but it is different from most heuristic search 

programs. Most heuristic search programs have a well defined search space 

with heuristics to prune the search to the most likely nodes in that space to 

yield the required results. A program that learns through exploration, on the 

other hand, does not have a well defined search space. Thus its heuristics are 

used to suggest plausible moves, for without the plausible move generation, 

the exploration would not go anywhere. "In the first kind of search, removing 

a heuristic widens the search space; in AM's kind of search, removing a 

heuristic reduces it"([4] p.lO). 

The paradigm will be explored with respect to AM and Eurisko. Many 

questions naturally arise from such works: What problems exist within AM? 

What problems exist within Eurisko? Where do the benefits of such a system 

lie? Why are the implementations good or bad? How can the paradigm be 

improved and how can the implementations be improved? 

In order to answer these questions, it was necessary to write a new 

implementation of the learning through exploration paradigm. This work is 

based upon the AM project done by Lenat. The description of what was done 

and the results are also herein. 

The Program 

The name of the program is SiAM (pronounced sigh-am) which stands 

for Simple Automated Mathematician. The program is a discovery program, 

that is, its "goal" is to discover new concepts. The idea behind the program is 

that when a human scientist sets about the task of discovering new concepts 

and ideas, he or she will use general rules of thumb that he or she knows 

about. These rules generally mutate and add to the concepts that the scientist 

already knows. Such is the case with a discovery program such as SiAM. The 

field in which SiAM does its discovery is elementary set mathematics. 



Initially SiAM begins with a small number of concepts that it knows 

about. Examples of these concepts are Sets, Bags, Set-Union, Coalesce, Compose, 

etc. Concepts themselves are made up of slots which help define the concept 

for SiAM. There are slots such as Name, Generalizations, Examples, etc. Thus, 

the Sets concept would have "Set" as a value in the Name slot and it might have 

" {a b c}" as a value in the Example slot. At the outset of the program, many of 

these slots are empty. There is no information in them. SiAM's job, therefore, 

is to fill in this missing information from the multitude of slots that stand 

empty in the many concepts. As each slot has information placed into it, it is 

obvious that the machine "knows" more than it did before the information was 

filled in. Whether or not that information is useful is not yet determined, but 

it does know more. The machine uses heuristics, or rules of thumb to fill in 

that missing information. Heuristics are the backbone of the system; they 

guide SiAM in the discovery process. For instance, suppose SiAM wants to fill 

in examples of Sets. The program has a heuristic to tell it how to do this. It 

basically says: In order to fill in examples of a structure, find operations 

whose ranges are that structure and then run the operations on random 

examples from their domains (domain being the input value and range being 

the output value). Since sets are a type of structure and the current task is to 

find examples of sets, this heuristic executes. 

These heuristics are used for basically five purposes: 

1. to fill in concept slots, 

2. to check the correctness of filled in slots, 

3. to apply a concept's algorithm to another concept 

4. to create new concepts, and 

5. to suggest what new tasks can be performed. 

It is the last of these purposes that gives SiAM things to do. Without 

suggestions to direct the program, the discovery process would go nowhere or, 

equally bad, the discovery process would become completely arbitrary and 

therefore could not be classified as a discovery process at all. 

The general algorithm of the program is simply one giant loop of SiAM 

repeatedly getting tasks from the agenda and executing them. The agenda is 

simply a long list of things for the program to do. For example, one task on the 

agenda could be: Find examples of Set-Union. SiAM simply picks the first task 



off of the agenda and then finds all of the heuristics that deal with the task 

that has been picked. These heuristics are then executed to try to do whatever 

task has been proposed. After each heuristic has been executed control 

returns to the top of the loop so that SiAM can pick the next task to be 

accomplished. 

The Agenda 

SiAM's list of tasks that it must do is called the agenda. Tasks on the 

agenda have a specific simple form. The first item in a task is the action that 

the program should do. There are three actions, namely Find, Check, and 

Apply. There are two possibilities for the second item in a task. If the action is 

Find or Check then the second item will be the name of the slot that the action 

is being performed upon. If the action is Apply then the second item will 

specify the name of the concept whose algorithm will be applied. The third 

item in a task is the concept being acted upon. It is the concept whose slot is 

being filled (the Find action) or checked or the concept which is having an 

algorithm applied to it. This very simple task representation is enough for 

SiAM to discover several concepts and to fill in the slots of many more 

concepts. The entire entry for the task on the agenda has the task itself (listed 

just above), the reasons why this task should be performed, and the overall 

worth of the task based upon the worth of each of the reasons. When SiAM 

picks a task, it removes it from: the agenda and puts it aside as something to do 

right now. After it finishes dealing with that task, SiAM throws it away and 

gets the next task from the agenda. 

The tasks on the agenda are kept in order by SiAM from top to bottom in 

decreasing order based upon the worth of the task. The agenda is by no means 

stagnant. Many times a task which is already on the agenda will be suggested 

again, but this time for a new reason. The reason will have some value and the 

existing task will then have the new reason tacked on to its list of reasons and 

the worth of the task will be increased to reflect the addition of the new 

reason. Then this task must be removed from the agenda and put into its new 

proper place on the agenda to keep the agenda in sorted order. 

For an example of the agenda in action, at one point SiAM has the task 

"Find Examples of Set-Union". The heuristic discussed above about finding 

examples of structures gets executed and fails because the domain of Set-Union 



is <Set Set> and there are no examples of sets yet. However, it suggests that 

finding examples of Sets would be good for the reason that it tried to find 

examples of Set-Union and failed because there are no examples of Sets. 

Previous to this suggestion, the task Find Examples of Sets was near the bottom 

of the agenda with only one reason: Finding examples of structures is 

worthwhiie (which is a fairly unimportant reason). Now, though, the task 

Find Examples of Sets actually moves up to be first on the list because the value 

of the second reason was enough to make the worth of this task the highest on 

the entire agenda! 

Representation of Knowledge 

The knowledge representation of SiAM is fairly straightforward. There 

are many concepts stored upon a list known as CONCEPTS. Each concept 

consists of different slots in which to put information. The slots have names 

such as NAME, GENL, SPEC, EXMP, DEF, ALGO, etc. Within some of these slots, 

there are facets. Facets are really just a form of slot; they are sub-slots. These 

facets have two names. One of the names is just the name of the slot itself 

again. This facet is used to store the actual information that SiAM Finds or 

Checks. It also contains the information concerning the concept that SiAM 

starts off with. The other name is HEUR and it is in this facet that the 

heuristics dealing with that slot and that concept are stored. Thus, a blank 

concept appears as follows: 

«NAME) 

(GENL (GENL) (HEUR» 

(SPEC) 

(EXMP (EXMP) (HEUR» 

(ISAS (ISAS) (HEUR» 

(DEF) 

(ALGO (ALGO) (HEUR» 

(IN-DOMAIN-OF) 

(IN-RANGE-OF) 

(DOMAIN-RANGE) 

(VIEWS) 

(CONJEC (CONJEC) (HEUR» 

(MYCREATOR» 



As can be seen, not all slots have facets, namely because not all slots 

have heuristics attached to fill them in. This is because many of these slots 

become filled in as side effects of performing some other operation. For 

example, when applying the coalesce algorithm to Set-Union, the new concept 

Set-Union-Itself is created. As a result of the coalesce algorithm, Set-Union-

Itself is listed as a specialization of Set-Union even though there are no 

explicit heuristics listed for filling in that slot. Spec, therefore, currently has 

no need for a HEUR facet. For consistency, and ease of alteration, of course all 

slots should have the two facets, but it was deemed easier for this project to 

leave it in the simpler form. 

The information contained in each of the slots is as follows: 

Name: The name of the concept 

Genl: Concepts which are more general than this one 

Spec: Concepts which are more specific than this one 

Exmp: Things which are examples of this concept 

Isas: Things of which this concept is an example 

Def: Lisp definition of this concept 

Algo: Lisp algorithm of this concept (Active concepts only) 

In-domain-of: Actives which have this concept as part of domain 

In-range-of: Actives which have this concept as their range 

Domain-range: Concepts making up domain and range of this 

concept (Active concepts only) 

Views: Lisp functions for viewing an example of one concept as 

an example of another 

Conjec: All of the conjectures SiAM comes up with for this 

concept 

Mycreator: The creator of this concept (perhaps a heuristic, an 

operation, or myself: DSM) 

Although all concepts have all of these slots, not all of the slots have meaning 

for all concepts. Two of them, Algo and Domain-range, only apply to concepts 

which are active, Le. which are examples of operations or predicates. 



Heuristics 

The heuristics are rules which SiAM uses to fill in slots, check slots, 

suggest new tasks, create new concepts, and to apply concept algorithms. The 

program begins with heuristics and all of them are found at the most 

general place where they are applicable. Find, Check, and Apply heuristics 

are attached to the HEUR facet of the various slots upon which they would be 

working. Suggestion heuristics are found on a separate list waiting to be 

executed when the agenda is empty. Heuristics are simply rules of thumb that 

are not necessarily always correct. If it is December and one is in Providence, 

one needs a winter coat to keep warm is an example of a heuristic that a person 

might use quite often. It is not, however, always correct. It could, for some 

reason, be very warm one day in December and one would not need a coat. 

Most of the time it is correct. This is the case with SiAM's heuristics. Usually 

they are correct, but not always. One heuristic in particular that is sometimes 

wrong is one that states that if one is trying to find examples of an operation 

then one can take an example of each domain element and run the operation's 

algorithm on them to obtain a result. These domain elements combined with 

the result constitute an example of the operation. Suppose then that we are 

trying to find examples of the operation restrict. The domain is simply 

Operations. Thus we can pick a random example of the concept Operation 

which could be Set-Union. Set-Union has Set Set as its domain. In order to 

restrict Set-Union, Set needs to have a specialization. It doesn't. Thus, the 

operation Restrict performed upon Set-Union is undefined. Restrict must 

return some result, so in SiAM's algorithm it returns NIL. Restrict(Set-Union) 

= NIL is not an example of Restrict so we see that the heuristic has failed to 

produce a necessarily correct answer. Usually the heuristic works, but 

sometimes it does not. 

We could become more specific with our heuristics so that they more 

narrowly define their domain of applicability to reduce their rate of fallibility 

to zero. Suppose we more clearly specify our earlier winter example. We can 

add the clause "and it is cold outside" to our if clause so that it more accurately 

reflects the domain of applicability. Now suppose we stay inside and the heat 

is on; we do not need a winter coat to keep warm. We can again modify our 

original heuristic as to include "and one is outside" in the if clause. Now, 



though we need more heuristics to cover what we should wear in December in 

Providence. 

The structure of the heuristics that find. check and apply is simple and 

straightforward. It is structured as and If-then construct. The first clause of 

the if-part decides applicability of this heuristic to the current task. It asks 

the following: "This heuristic applies to tasks of the form X Y Z (where X is the 

action. Y is a slot or concept name. and Z is a concept). Does the current task's 

action match X. the current task's slot or concept name match Y. and is the 

current task's concept a specialization or example of Z?" The subsequent 

clauses simply narrow down the domain a bit more by asking if miscellaneous 

bits of information about the concept are true. For example, the next clause 

might ask. "Does this concept have more than twenty examples?" The Then­

part of the construct is simply the action to be taken if the If-part is satisfied. 

It will specify one of the five actions heuristics can perform listed above. 

The heuristics which are exclusively suggestion heuristics have 

different structures. They do not ask about domain of applicability because 

they are run when the machine has an empty agenda. These heuristics simply 

perform the last of the five actions heuristics can do without asking any 

questions. These are also not stored like the rest of the heuristics. on the slot 

and concept to which they are applicable. They are simply kept on a separate 

list and all run when SiAM is out of tasks to perform. The reason for this is 

that unlike the rest of the heuristics, when the suggestion heuristics are run, 

they are all run. For example. if the action indicated by the task was Find. one 

would not want to run all of the heuristics that perform the action Find. On 

the other hand, when the action is "Suggest" (the action never really becomes 

Suggest. the agenda only becomes empty). SiAM should make all of the 

suggestions it can which means running all suggestion heuristics. 

Results 

SiAM's results showed much promise in what could have been acheived 

given more time. Beginning with set theoretic concepts. SiAM commenced by 

suggesting trying to find examples of the structures and operations that it 

knew about. While trying to find examples of some of these (such as Restrict. 

Coalesce. and Compose) SiAM created new concepts which needed examples 

filled in. After filling in examples of concepts, it suggested checking the 



examples and then trying to find conjectures involving those concepts. The 

most usual conjecture found was that the Equality predicate (a concept that 

SiAM knew about) held true for the domain and range, Le. the input and output 

of some function were the same. 

When SiAM found examples of Equality, it found that it did not have 

very many examples that resulted in True. Therefore, it suggested 

generalizing Equality, which it did, and defined Genl-Equality-One and Genl­

Equality-Two which have the CAR recursion removed or the CDR recursion 

removed (Genl-Equality-One was really the predicate Same-Length and Genl­

Equality-Two was really Same-First-Element). When SiAM canonized Same-

Length with Equality, it created the concept Canonical-Bag which was really 

just a unary representation of numbers. The last important thing SiAM did 

was to use Restrict on Bag-Union to create Restricted-Bag-Union (which had 

its domain restricted to <Canonical-Bag Canonical-Bag» and then to conjecture 

that the range of Restricted-Bag-Union was really Canonical-Bag (which it 

then changed in the concept Restricted-Bag-Union). Restricted-Bag-Union 

was really just addition. 

In addition to the promlsmg aspects, there were difficulties. For 

example, the concept of Compose was a difficulty by itself. Unlike the other 

operation generating concepts Coalesce and Restrict, Compose did not in some 

way reduce the concept it was working on. Coalesce changes the number of 

domain elements from N to N- 1. Restrict changes certain domain elements to 

specializations of the original domain elements (and there are only so many 

restrictions). Compose, on the other hand, increased the number of domain 

elements. Also, by Composing any of the operation generating concepts with 

each other one created a great excess of undesirable (and many times useless) 

operations simply by finding examples of this operation you have now 

Composed. 

Previous Work 

There has been relatively little work done in this field, most or all of it 

having been done by Douglas Lenat. Lenat originally wrote a program called 

AM (Automated Mathematician) upon which my own work is based. It was 

quite similar, consisting of 115 set mathematic concepts and 243 heuristics. 

With all of this and AM's control structure, AM was able to discover quite alot 



in set theory and in number theory. AM began in set theory and slowly this 

evolved into number theory with the discovery of numbers. Its method of 

discovering numbers was using bags (multiple element, unordered structures) 

with only one element (in this case "T", the LISP value for true) zero or more 

times. Thus, AM had a unary representation for numbers. Using its heuristics, 

AM was able to find operations involving numbers, namely addition, 

subtraction, multiplication, division, squaring, etc. Finally, AM conjectured 

many things including the Unique Prime Factorization theorem which states 

that there is only one way to factor a number into prime numbers. 

Lenat's next project was to begin Eurisko, a learning program that was 

not confined to one area of exploration. Its main purpose was to find 

heuristics in the domain it was currently exploring. AM was never successful 

at finding new, more applicable heuristics for itself, but Eurisko has been 

quite successful at this task. Simultaneously, Eurisko broadens its knowledge 

in the given field of expertise and discovers new heuristics. Eurisko's fields of 

exploration include battle fleet design (for a game called Traveller Trillion 

Credit Squadron), elementary set mathematics (like AM), and VLSI design. 

Working together, Lenat and Eurisko were able to design champion battle 

fleets two years in a row. Eurisko was able to explore set mathematics farther 

than AM was able to. Finally, in the field of VLSI, Eurisko discovered new 

three dimensional devices. 

Both AM and Eurisko (as well as my own SiAM) are examples of expert 

systems. Usually when one refers to an expert system, systems of geological 

exploration or medical advice come to mind. However, AM and Eurisko are 

computer experts in their field and their field is simply discovery. AM is an 

expert Mathematics discoverer, whereas Eurisko is an expert heuristic 

discoverer. 

Problems of AM's Approach 

There were a few important problems with the approach taken when 

AM was created. The first problem was its inability to synthesize its own 

heuristics. As AM moved from set mathematics to number theory, the concepts 

it was working with moved farther and farther from its original set theoretic 

concepts. The new concepts were based upon the old concepts, but new 

properties also came about with the new concepts. Thus the specific heuristics 



that AM had were not useful because they no longer referred to the concepts 

that AM was working with and the general heuristics that were still valid did 

not capture enough of the properties of the new concepts to be truly useful. 

The second important problem was AM's static list of slots which its 

concepts could possess. Clearly, as AM's concepts became based upon one 

another to define new concepts, where the new concepts were expressly 

defined in terms of the old concepts, the amount of information contained in 

each slot of the new concepts increased in comparison with the old concepts. 

This most notably occurred in the definitions slot and the algorithms slot, 

where the most modification and combination of concepts occurred. As these 

two slots become more complex (specifically, just longer) it becomes 

increasingly difficult for the heuristics to notice what would be a meaningful 

change and to make that change after it has been discovered. As concepts 

become more complex, the average length and amount of information that 

each slot contains increases and the average productivity of the heuristics 

decreases, thus decreasing the overall performance of the system. 

A third related problem is that the slots tended to be too general. They 

were not specific enough. If one splits a single slot into two or more slots 

where there is a solid reason why the split occurs, then the computer has that 

much more knowledge about the information in each slot, even before it 

begins to work with the information in the slots. One example of this (which 

was not a problem in AM) is the division of the Examples slot into several 

facets like Typical, Boundary, Boundary-non-examples, and Non-examples. 

The program knows more about each of facets and therefore about the whole 

concept than it would if the Examples slot were without any subdividing facets. 

In [4] on page 63, Lenat states: "One important constraint on the 

representation is that the set of facets be fixed for all the concepts. An 

additional constraint is that this set of facets not grow, that it be fixed once and 

for all." Clearly, Lenat's important constraint ultimately spelled AM's (and 

SiAM's) downfall. For a human being, it might be easy to manipulate 

mathematical concepts with the fixed set of slots, however, a computer has an 

exceedingly difficult time, due to the length of the information contained in 

the slots and to the generality of each slot. 

Language was AM's fourth limiting factor. In order for AM to continue 

the discovery process, AM needed to synthesize new heuristics. However, LISP 

may have lent itself well to expressing mathematical concepts concisely, but it 



did not work very well in expressing heuristics concisely. Without the benefit 

of conciseness, the heuristics were too bulky to be mutated with ease and every 

attempt was met with very little success. 

The fifth problem with the AM program is that it only has a syntactic 

knowledge of any of the concepts that it "knows"; there is no true semantic 

understanding. Parallel to this notion is the idea that the program does not 

have a real concept of importance. It does know when things are interesting, 

because it has heuristic rules that tell it this. Knowing that numbers are 

interesting because several other interesting concepts "use" them and because 

they are derived in an interesting way is not the same as saying that numbers 

are important. What makes numbers important? The ability to use them to 

count is the most important reason. Counting imposes order and at least for 

the human beings that use the program, imposing order upon the world is 

extremely important. Observing the way concepts are organized in AM, this 

imposition of order is also "important" to AM, but it never realizes this. 

Nothing is ever important to the AM program, things are only interesting. 

Finally, related to the fifth problem is the sixth problem. Although it 

does have limited interaction with a user if that user so desires, AM conducts 

all of its research in a vacuum. There is no interaction with the real world, 

and it has no way of "knowing" anything about it. One can imagine what it 

might be like to have grown up inside of a la' x 10' X 10' room with no windows 

and no doors and trying to do the process of discovery in some arbitrary field. 

The discovery process could and would quickly become strange and not quite 

natural. Picture trying to discovery anything about morals. It would be 

impossible to discover anything that held any value. Although morality is not 

a formalizable field (at least not in a way I can see), it illustrates the point just 

the same. The "outside" does matter to the process of discovery, even in a fully 

formalizable field like mathematics. One good example of how the "outside" 

could have helped AM is to look at the fourth problem with AM discussed 

above. With knowledge of the outside, AM may have been able to successfully 

discover the importance of numbers. 

Eurisko's Improvements 

A number of the problems with the AM system were corrected in Lenat's 

second project Eurisko. Those pieces that were corrected dealt with enabling 



Eurisko to successfully synthesize its own heuristics which it was able to do. 

This enabled Eurisko to change with its changing knowledge, to keep up with 

the new concepts that it was producing so that it could always have domain 

specific heuristics with which to manipulate the concepts it had. Thus, AM's 

first problem was solved. 

In order for that problem to be solved, however, the second problem of a 

static list of slots had to be solved. Using a static list of slots, one could not code 

the heuristics as concepts because the amount of information in each slot was 

too large to be usefully altered. To alter a heuristic, one would have to get at 

the definition of the heuristic and then mutate it. If there is too much code. it 

is impossible to find the piece that must be mutated, let alone mutate that piece 

meaningfully. Thus there had to be an expandable list of slots and facets that 

the concepts could possess in order to satisfy the expanding need. 

The third problem is also related to the first problem because it too 

needed solving before the first could be solved. The third problem was that the 

slots were too general and needed to be more broken down into specific facets. 

This problem was tackled and solved somewhat in Eurisko, though it is unclear 

as to what extent. 

The fourth problem that was solved in Eurisko was the issue of 

language. The approach that was taken was to create a new language called 

RLL which stands for Representation Language Language. This is the 

language which Eurisko depends upon. Without RLL, Eurisko would not work. 

Eurisko is able to manipulate the parameters of RLL to change its own 

language and therefore its representation in small ways. 

It becomes clear therefore that these last three problems are 

underlying problems which needed to be solved in order to solve the first 

problem which is the problem that is most obvious and desirable to solve. All 

three of the underlying problems are questions of representation. How does 

the representation fall short of what is needed for the machine to create new 

heuristics? 

Why This Direction Is Correct 

In [l], Saul Amarel discusses the issue of representation as regards his 

example of the Missionaries and Cannibals problem. As he progresses through 

the paper, he introduces new representations (five in all) for the problem and 



\ 

I 
/ 

each time he does, the solution becomes easier and more obvious. Clearly, in 

the M&C problem, the proper representation is more than half of the problem. 

Once the representation is good the solution for the problem flows very 

naturally without any struggle. 

The analogy to Eurisko is clear and important. Having the correct 

representation for the problem allow Eurisko to execute better and cleaner and 

it will discover many more things with greater ease. The difficulty in 

Eurisko's case is that there is not just one problem to solve. Each Eurisko task 

is a separate problem, although a simple one. However, as Eurisko acquires 

more knowledge, the problem space changes because now there are more 

concepts and more information in the slots of the concepts. Eurisko. like the 

M&C problem above needs to have a good representation so that solutions 

(discoveries) flow from it easily. In order for Eurisko to keep a good 

representation in a slowly evolving problem space, Eurisko needs to be able to 

change its representation to match the evolving needs of the system. 

Overall, it should be clear that for a program to do this kind of heuristic 

search, the machine needs to be able to generate new heuristics. It really 

needs this power for all of the reasons listed above. Eurisko's search space 

continually changes because of the heuristics. Therefore the heuristics must 

evolve as well. If not, AM's problem of heuristics which do not properly 

capture the nuances of a particular concept because they are too general will 

reappear. 

Eurisko: The Good and The Bad 

Eurisko's several good points certainly include its improvements over 

AM. It is clear that an evolving representation and an ability to alter its own 

heuristics when necessary are both vital and therefore good points. Eurisko 

has other clear advantages in terms of approach. 

First, the idea of learning through exploration, through heuristic 

search is a good methodology. It avoids giving the program a precise problem 

to solve, allowing the program to find its own problems and solve them. Each 

task that Eurisko performs is really a small research problem. The advantage 

of this is that in most AI problem solving approaches, the program is given a 

problem and then it solves it. Someone is required to conceive of the problem 

in the first place before the machine can be asked to solve it. Using programs 



like Eurisko, the machine is able to encounter problems that the researchers 

themselves have not even thought to ask. 

Along these same lines, a program like Eurisko can be made to discover 

in fields which have no real experts. The program, through experimentation, 

can discover on its own, domain specific heuristics for the field it is expected 

to work in. One of the most important pieces of information that Eurisko can 

provide researchers in an untrodden field IS domain specific heuristics. 

Using an interface the program can also be guided by the researcher in its 

discovery process into areas that the researcher finds interesting or 

important. 

Additionally, a machine that learns through exploration does not view 

anything semantically, only syntactically. Also, the machine does not have 

any knowledge of the outside world to give it preconceived ideas that might 

"color" what it does like a true researcher has. For these two reasons, 

programs like Eurisko are able to approach the discovery process from a 

different angle than a human researcher and therefore might easily make 

discoveries that the human researcher is unable to realize on his or her own. 

Eurisko also has some bad points. The first of these is the same as the 

last of the good points. The machine only manipulates syntax and it has no 

knowledge of the outside world to give it some direction. Most notably, it has 

no true notion of importance, similarly to AM. 

Next, Eurisko has no notion of a goal. Again, this shows that the 

machine has no direction in the discoveries it makes except in what it finds 

interesting. With the inclusion of some sort of goal system, possibly as only 

suggestions of directions for the machine, the program might operate much 

more productively with less human interaction. 

An important, but seemingly unresolvable, problem is that only highly 

formalizable fields of research can be implemented on a computer using this 

method of learning. Clearly, the machine would find it difficult the generate 

new heuristics for finding geological formations if it does not have the 

capacity to get outside and do digging and probing like a geologist. This is an 

unfortunate limitation to this method of learning. 

Finally, Eurisko does not yet appear to alter its own representation as 

well as it should be able to. Truly, this is something which should happen as 

infrequently as possible, but from reportings by Lenat, the machine has only 

altered its representation a couple of times. Perhaps, this is all that was 



necessary and the changes that Lenat himself made were "extras". but those 

"extras" which make the program run better should be coded as more 

heuristics. if possible so that Eurisko can do this routine maintenance itself. 

Future Directions 

The future directions for a program like Eurisko which learns via 

heuristic search seem to be many. Some of these directions are: 

1. Seek new formalizable fields in which to do discovery 

2.	 Seek partially formalizable fields in which to aid a researcher to do 

discovery 

3. Give Eurisko more heuristics in order to alter its own representation 

4.	 Give Eurisko itself as a domain to do discovery and possibly discover 

representations for itself that would be better suited for itself. 

5. Give Eurisko the domain of knowledge representations to explore. 

6.	 Give Eurisko the ability to ask questions of the researcher using the 

program. 

7. Try	 to give Eurisko "intuition". Try to give it a sense of the real world 

so it knows importance. 

8.	 Try to refine Eurisko's representation as fine as possible and classify 

it all so that Eurisko has more information. Give Eurisko the 

ability to do this itself (See 3. 4 .5) 

9.	 Give Eurisko a goal-based system to help guide it. Perhaps the goal 

system can simply be something with which Eurisko can guide 

its own discovery process more effectively. 

Conclusion 

One of the most important and powerful methods for machine learning 

has been learning through exploration. With this technique, the computer is 

able to learn by itself or with the help of a researcher. A program. written in 

this style. can acheive great success learning and discovering in highly 

formalizable disciplines. It is truly a technique that has earned its mark in 

Artificial Intelligence and should lead the way towards better learning 

techniques and programs. 



Bibliography 

[1]	 Amarel, Saul, "On Representations of Problems of Reasoning About 

Actions", Machine Intelligence 3, pp 131-171, (1968). 

[2]	 Charniak, Eugene and McDermott, Drew, Introduction to Artificial 

Intelligence, pp 642-650, Addison-Wesley, Reading, 1985. 

[3]	 Lenat D. B., "On Automated Scientific Theory Formation: A Case Study 

Using the AM Program", Machine Intelligence 9, pp 251-283, 

(1979). 

[4] Lenat,	 Douglas B., "AM: Discovery in Mathematics As Heuristic Search", 

pp 1-225 in Knowledge-Based Systems in Artificial Intelligence, 

ed. Randall Davis and Douglas B. Lenat, McGraw-Hill, New York. 

(1982). 

[5]	 Lenat, Douglas B., "The Ubiquity of Discovery", Artificial Intelligence 9, 

pp 257-285, (1977). 

[6]	 Lenat, Douglas B., "Theory Formation by Heuristic Search", Artificial 

Intelligence 21, pp 31-59. (1983). 

[7]	 Lenat, Douglas B., "Eurisko: A Program That Learns New Heuristics And 

Domain Concepts", Artificial Intelligence 21, pp 61-98, (1983). 

[8]	 Lenat, Douglas B. and Brown, John Seely, "Why AM and Eurisko Appear 

to Work", Artificial Intelligence 23, pp 269-294, (1984). 

[9]	 Ritchie, G. D. and Hanna. F. K.. "AM: A Case Study in AI Methodology", 

Artificial Intelligence 23. pp 249-268. (1984). 


