
BROWN UNNERSITY

Departn1ent of Computer Science

Master's Project

CS-S9-M2

"Relationship Between Temporal Bayes Networks

and Markov Random Process Transition Tables"

by

Linda I. Mensinger Nunez

.,

Relationship Between

Temporal Bayes Networks

and

Markov Random Process

Transition Tables

by
Linda I. Mensinger Nunez

B.A., Douglass College, Rutgers University, 1982

Submitted in partial fulfillment of the requirements for the

Master of Science Degree in Computer Science

at Brown University

April 1989


~~~-
Thomas L. Dean, advisor 



Acknowledgements 

This project satisfies the final requirement for a Master's 
Degree from Brown University. Although it is impossible to mention 
and thank everyone who helped me reach this point, there are a few 
whose contributions I'd like specifically to acknowledge. 

First, I would like to thank Tom Dean for agreeing to serve as 
my advisor for the past two years - I couldn't have asked for a 
better one. I am grateful for the discussions I have had with him 
and Keiji Kanazawa, which formed the basis for my work. Along 
these lines, I would like to acknowledge the National Science 
Foundation grant IRI-8612644 and DARPA/AFOSR contract F49620­
88-C-0132DEF which helped to support some of this work. 

I am also grateful for the support I received from my friends 
and colleagues at Nestor, Inc., which was generally more emotional 
than financial in nature. In particular, I'd like to mention Sushmito 
Ghosh, because throughout it all, he never lost faith in me and 
encouraged me to continue even when I was unsure. I would also 
like to thank Alex Contovounesios, Sandra Mehlmann and Paul 
Stefancyk for their understanding and support, particularly as the 
end of my work drew near. A special thank you to Debbie Bossian, 
who offered many valuable suggestions regarding the style and 
appearance of this paper. 

I am particularly appreciative of the support of my husband, 
Ray Nunez. He never begrudged me the time or money spent on my 
education, and never complained about all the times he ate dinner 
late or alone because I was working. On the contrary, he knew how 
important it was to me, shared my joys as the various milestones 
were reached, and encouraged me in so many ways, including 
spending some evenings with me while I worked, his mere presence 
giving me the confidence to tackle the next obstacle. Thank you, 
sweetheart, for your love and patience (I know those were some 
rather boring nights and uncomfortable chairs you waited in!) 

Finally, I would like to thank God for the strength it took to 
finish a Master's Degree while working at a demanding full-time job 
and managing so many other priorities. It could only have been by 
the help of God that I was able to achieve this goal. 



1 

Table of Contents
 

Temporal Bayes Networks 
1.1 Definition 
1.2 Uses 

2	 Markov Random Process Transition Tables 
2.1 Definition 
2.2 Uses 

3	 Equivalence of the Two Models 

4	 Conversion from Temporal Bayes Network to Markov Random 
Process Transition Table 

4.1 Algorithm in General 
4.2 Example 

5	 Conversion from Markov Random Process Transition Table to 
Temporal Bayes Network 

5.1 Algorithm in General 
5.2 Example 

6	 Summary 

Related Work 

References 

Appendix A Structures 

Appendix B Source Code 

Appendix C Sample Input and Output 



1 Temporal Bayes Networks 

1.1 Definition 

Most natural and man-made systems contain partial 
dependencies among their compositional elements. Researchers are 
particularly interested in developing an intuitive model that can be 
used to formulate problems and incorporate uncertain knowledge, 
but at the same time is a precise description of information that can 
be stored and manipulated by a computer. 

The desired model would be a graphical representation of 
uncertain quantities that explicitly reveals probabilistic dependence 
and the flow of information. It would be compact and intuitive, 
emphasizing the relationship among variables, and yet it must 
represent a complete probabilistic description of the problem. 

Numerous researchers have defined and explored the merits of 
a particular type of probabilistic graphical representation that uses 
directed acyclic graphs in which the nodes represent propositions (or 
variables), the arcs signify the existence of direct causal influences 
between the linked propositions, and the strengths of these 
influences are quantified by conditional probabilities. These 
graphical representations have been called Bayes networks (Pearl 
1988), belief networks (Duda, Hart and Nilsson 1981), influence 
di ag rams (Shachter 1986) and probability networks (Dean and 
Kanazawa 1989). 

A temporal Bayes network is a specialization of these networks, 
that represents the relationships between variables at successive 
points in discretized time. The network is in the form of a grid 
where points in discretized time form the columns in the graph, with 
each of the variables forming a row in the graph. The nodes 
correspond to states of propositional variables at points in time. 

1
 



The propositional variables may be of two types: those 
traditionally referred to as fluents, which, if they become true, tend 
to persist without additional effort; and those corresponding to the 
occurrence of eve nts, which, if true at a point, tend to prompt a 
change of state of other variables (Dean and Kanazawa 1988). Let 
holds(P, t) indicate that the fluent P is true at time t, and occurs(E, t) 
indicate that an event of type E occurs at time t. The notation E P 

indicates an event that generally causes the fluent P to become true, 
while E ~P indicates an event that generally causes the fluent P to 

become false. 

The arcs in the graph are used to indicate dependence between 
two variables. They are always directed from a variable at one point 
in time to a variable at the next point in time. At each node we must 
specify conditional probabilities and prior probabilities for each 
possible combination of values of the dependent variables. 

Let A denote the state of the variable at the current node (for 
instance, A == holds(fluent, t) or A '7 occurs(event, t), let n denote the 

number of variables the current variable. is dependent upon, and let 
Ci indicate the value of dependent variabie i at the previous point in 

time, t - 1!1. Then we need 2n conditional probabilities of the form 

peA I CI 1\ C2 1\ ••• 1\ Cn) and we need 2n prior probabilities of the 

form P(CI 1\ C2 1\ ••• 1\ Cn), that correspond to· the 2n possible 

combinations of values for the n dependent variables. 

To predict the value of A at this node, we use the model 

peA) =L peA I CI 1\ C2 1\ ••• 1\ Cn) P(CI 1\ C2 1\ ••• 1\ Cn) 

where the summation is taken over the 2n possible combinations. As 
discussed by Pearl (1988), the unique distribution corresponding to 
the model is given by 

n 

p(V1, V2, ... , Vn) = IT P(Vi I Si) 
i=l 

2 



where the Vi denote the propositional variables in the model, and Si 

is the conjunction of boolean variables associated with those nodes 
for which there exist arcs to Vi in the network. 

A general temporal Bayes network (without the specific 
conditional and prior probabilities at each node) is shown in Figure 1. 

t . t :t- b.
J J 

E.,p 

p 

E 
p 

Figure 1: A General Temporal Bayes Network 

3
 



The fluent P is dependent on events occurring that generally cause P 
to become true or false, EP and E...,p respectively, as well as on P itself 
at the previous time point - the persistence factor. The event E p is 

dependent on the conditions for its occurrence being right - the 
causation factor (Dean and Kanazawa 1987). For instance, 
proposition Q1 being true and event E 1 occurring or proposition Q2 
being true and event E2 occurring. Thus Ep is depicted as being 

dependent on Q1, E1, Q2 and E2, at each successive time point. 

1.2 Uses 

A temporal Bayes network is a graphical representation for 
probabilistic models that clearly indicates the assumptions 
concerning dependence and independence between the variables. 
Simply by inspecting the graph, one can identify the conditional 
dependence inherent in a model. Therefore, a temporal Bayes 
network is a convenient method of constructing a model·, and 
verifying its correctness. 

The temporal Bayes network is designed to simplify certain 
computations generally used in planning and decision support. For 
instance, the temporal Bayes network can be used to answer 
questions of the form "What is the probability of P at t given 
everything else we know about the situation?" 

2 Markov Random Process Transition Tables 

2.1 Definition 

A Markov chain is a special type of stochastic process and a 
stochastic process is a collection of random variables. More 
specifically, a stochastic process is defined to be a family of random 
variables defined on some sample space, n (Grenander and 

Rosenblatt 1957). The set of distinct values assumed by a stochastic 
process is called the state space. If the state space of a stochastic 
process is countable, or finite, the process is called a chain. 

4 



A stochastic process (Xk}, k = 1, 2, 3, ... with state space 

S = (1, 2, 3, ...} is said to satisfy the Markov property (Isaacson and 
Madson 1976) if for every n and all states iI, i2, ... , in it is true that 

p(Xn =in I Xn-l =in-I, Xn-2 =in-2, ..., Xl =it} =p(Xn =in I Xn-l =in-t} 

Roughly speaking, the Markov property is satisfied if the future state 
of the variables depends on the present state, but not on past states. 
Once a stochastic process falls into the subclass of a discrete-time 
Markov chain, the movement of the process among the states of S is 
determined by the conditional probabilities p(Xn = j I Xn-l = i), often 

called the transition probabilities (Revuz 1975). 

A discrete-time Markov chain is said to be stationary or 
homogeneous in time if the probability of going from one state to 
another is independent of the time at which the step is being made 
(Adke and Manjunath 1984). Let (Xk} denote a discrete-time 

stationary Markov chain with a finite state space, S = (1, 2, . . . , n}. 
For this chain, there are n2 transition probabilities, 

(Pij} =p(Xn =j IXn-l =i) i =1, 2, ... , n; j =1, 2, ... , n. 

Each transition probability Pij is actually a conditional probability 
with the following meaning: Pij = p(the process is in state i and goes 

to state j in the next step) / p(the process is in state i). 

The most convenient way of recording· these transition 
probabilities is in the form of a matrix or table T, as in Figure 2. This 
matrix, typically called the transition probability matrix or transition 
table, associates the ith row and column of T with the ith state of S. 
It contains all of the relevant information regarding the movement of 
the process among the states in S, and has the following properties 
(Rosenblatt 1962): 

i) all the entries are non-negative,
 
ii) the sum of the entries in each row IS one.
 

5
 



T =
 

Figure 2: A General Transition Table 

2.2 Uses 

The transition matrix contains all the information needed to 
describe the motion of the chain among the states in S. However, if 
you are interested in where the process is at any particular time, you 
must first know where the chain started (Isaacson and Madson 
1976). 

A vector ao =(CXIo cx2, ... , cxn) is called a starting vector if 

n 

L cxi = 1 and cxi ~ 0 for i = 1, 2, ... , n. 
i=l 

In the case where the chain starts deterministically at one state, ao 
has a one in the coordinate corresponding to that state and zeros 
elsewhere. In general, the process can start at various states 
according to some probability distribution, given by the starting 
vector. The starting vector is referred to as the distribution at time 
zero, and cxk =p(XO =k), k =1, 2, ... , n. 

6
 



Now consider how to determine where the chain will be after 
m time steps. First, consider the problem of finding p(X1 = i), the 

distribution after 1 step. Using conditional probabilities, this can be 

written as 

p(Xl = i) = p(Xo = 1) p(Xl = i) I Xo = 1) + p(Xo = 2) p(Xl = i) I Xo = 2) 

+ ... + P(Xo = n) P(XI = i) I Xc> = n) 

n
 

=L elj Pji
 
j=l 

Similarly, the distribution after two steps can be written as 

n n 

P(X2 = i) = L L elj Pjk Pki 
k=l j=l 

and In the general case, the distribution after m steps is given as 

n n n n 

p(Xjm = i) = L L L L eljl Pjlh Phj3 ... Pjm-ljm Pjmi 
jm=l jm-l= 1 h=l jl=l 

The matrix notation for the transition table T is ideally suited 
for this problem. The expression for p(X1 = i), the probability of 

being in state i after one step, is simply the ith coordinate of the 
vector a 1 = a 0T, the vector that represents the distribution of 

where the Markov chain is after one step. Similarly, the vector 

that represents the distribution of where the Markov chain is after 
two steps is a2 = a 1T = (aoT)T = aOT2, and the ith coordinate of a2 is 
p(X2 = i). In general, the distribution of where the process is after m 
steps, given that the starting vector was aO, can be determined by 

am = aOTm. 

7 



3 Equivalence of the Two Models 

The first question faced by someone who wants to use the 
theory of Markov chains is whether or not the process is Markov. 
The temporal Bayes network described in section one meets the 
criteria to be a discrete-time Markov chain. First, it is discrete-time 
because it uses a discrete approximation of time with a fixed 6, the 

intervals that form the columns of the network. Second, it is a cha in 
because there are a finite number of states in the state space. In 

fact, there are 2n states in the state space for a temporal Bayes 
network of n variables, one for each possible combination of the 
truth or falsehood of each of the variables. Finally, it satisfies the 
Markov property, b~cause the state of each variable at time t + 6 is 
independent of the states of variables at time t - 6, given the state of 

the variables at time t. 

If we add the assumption that each of the conditional 
probabilities remain the same across each time point, the temporal 
Bayes network is also stationary. This does not appear to be a 
limiting assumption, since we could· simply add another variable to 
the network, to factor in the time dependency. For instance, if the 
conditional probabilities at two time points differ because a certain 
time point has been reached (for example, the end of the work day 
or the start of a new shift), we could add another variable to the 
network to indicate whether the specified time has been reached. 
We would then combine the two sets of conditional probabilities into 
one consistent set by conditioning on the new variable. 

Once you have determined that you are working with a 
discrete-time stationary Markov chain, the next step is to find the 
transition matrix. In some cases, it is not hard to determine the 
appropriate state space and the transition probabilities necessary for 
describing the Markov chain of interest. However, in some situations 
this determination is quite difficult. 

8
 



At this point, the distinction between the theory and 
applications of Markov chains must be understood. The theory of 
Markov chains states that each discrete-time stationary Markov 
chain with finite state space of size m has m2 transition probabilities 
that can be formed into a transition table. In practice, however, the 
appropriate transition table for the experiment in question must be 
found. The algorithm for determining the appropriate transition 
table, given a temporal Bayes network involving n variables, is the 
subject of the next section. 

Section five gives the algorithm for obtaining the equivalent 
temporal Bayes network, given a Markov Random Process transition 
table. Using these two algorithms, you can convert from one format 
to the other without loss of information. Since the two models are 
equivalent in predictive or expressive power, you can choose the 
more appropriate model for any given situation. 

4 Conversion from Temporal Bayes Network to 
Markov Random Process Transition Table 

4 . 1 Algorithm in General 

This section describes the algorithm that converts a temporal 
Bayes network into a Markov Random Process transition table that 
encodes the same information. Suppose we are given a temporal 
Bayes network that involves n variables, and for each variable Vj, j 

= 1, 2, . . . , n, we are given all of the appropriate conditional 
probabilities cpj(Vj) = p(Vj at t + t::. I Ci at t) and all of the prior 
probabilities PPi = P(Ci) where the Ci range over all combinations of 

dependent variables. Since there are n variables, there are 2n 

possible combinations of the values of the n variables and the size of 

the state space is 2n . The information provided by the conditional 

probabilities can be used to create the corresponding 2n x 2n matrix 
of transition probabilities, called the transition table. 

9 



The information provided by the prior probabilities is not used 
in the calculation of the entries of the transition table, since each of 
the transition probabilities is actually a conditional probability. 
Knowing that the probability of a particular state Si is initially zero 
would tempt one to say that the transition probability Pij = p(the 

process is in state i and goes to state j in the next step) / p(the 
process is in state i) is undefined, or at the very least, that the chain 
is not stationary. Instead, the prior probabilities determine the 
initial distribution, or starting vector for the transition table. 

Each row of the transition table corresponds to one of the 2n 

possible states at time 1. For each of these initial states, there are 2n 

possible states at the next time point, t + Ii. The probabilities of going 

from one initial state to each of those 2n possible next states are 
recorded in one row of the transition table. 

These probabilities are calculated from the· conditional 
probabilities that were specified as part of the temporal Bayes 
network. The initial state specifies the subset of conditional 
probabilities that are applicable for each row in the transition table. 
The values of the variables in each of the output states determine 
whether the conditional probability CPi(Vj) itself is used, or whether 
its complement cPi(-, V j) = 1 - cPi(Vj) is used. The appropriate 

conditional probabilities for each of the variables are multiplied 
together to obtain the probability of each output state, given the 
current input state. The next subsection illustrates this process using 
a simple example. 

4.2 Example 

Suppose we are given a temporal Bayes network as depicted in 
Figure 3, with the time-interval set to one day. The 4 variables can 
be described as follows: 

10
 



t-~ t . t.+~ 1.+ 2~ 
1	 1i	 1 

maid comes
 

room clean 

kids come 

kids invited 

Figure 3: A Specific Temporal Bayes Network 

1 )	 maid_comes (MC) - the event of the maid commg to 
your home to clean up a specified room 

2)	 room_clean (RC) - a fluent that indicates whether the 
specified room could be called clean, or tidy 

3)	 kids_come (KC) - the event of a group of children 
coming to your home to play for a while 

4)	 kids_invited (KI) - the event of inviting the group of 
children to come to your home the next day 

The dependencies between these variables are described as 
follows: 

1 1
 



• maid_comes (MC) is independent of all other variables, since the 

maid has been hired to come once a week. 

• room_clean (RC) is dependent upon the state of 3 other variables 

at the previous time .- whether the maid came to clean it up (MC), 

whether the room was clean to start with (RC), and whether the 

group of kids came to mess it up (KC) 

• kids_come (KC) is dependent on one variable - whether or not 

they were invited (KI) 

• kids_invited (KI) is also dependent on this one variable (KI), that 

is, the likelihood of inviting them one particular day depends on 

whether you just invited them the previous day 

Suppose also that the conditional probabilities are specified as: 

cPl(MC) =p(MC at t + ~) =0.15 

cPl(RC) =p(RC at t + ~ I MC 1\ RC 1\ KC at t) =0.3 

cP2(RC) = p(RC at t + ~ I MC 1\ RC 1\ ...,KC at t) = 1.0 

cP3(RC) = p(RC at t + ~ I MC 1\ ...,RC 1\ KC at t) = 0.4 

cP4(RC) =p(RC at t + ~ I MC 1\ ...,RC 1\ ...,KC at t) =1.0 

cps(RC) = p(RC at t + ~ I...,MC 1\ RC 1\ KC at t) = 0.0 

cP6(RC) = p(RC at t + ~ I...,MC 1\ RC 1\ ...,KC at t) = 0.8 

cP7(RC) =p(RC at t + ~ I...,MC 1\ ...,RC 1\ KC at t) =0.0 

cpg(RC) = p(RC at t + ~ I...,MC 1\ ...,RC 1\ ...,KC at t) = 0.05 

cPl(KC) =p(KC at t + ~ I KI at t) =1.0 

cP2(KC) =p(KC at t + ~ I...,KI at t) =0.1 

and 

cPl(KI) =p(KI at t + ~ I KI at t) =0.0 

cP2(KI) =p(KI at t + ~ I ...,KI at t) =0.3 

The algorithm described in the previous subsection can be 

applied to this information to create the corresponding transition 

table. Since there are 4 variables, there are 24 = 16 possible 

12
 



combinations of the values of these variables. Let the states be 
numbered as follows: 

80 = (-.MC 1\ -,RC 1\ -KC 1\ -.KI)
 

81 = (-.MC 1\ -,RC 1\ -KC 1\ KI)
 

82 = (-.MC 1\ -,RC 1\ KC 1\ -.KI)
 

83 = (-.MC 1\ -,RC 1\ KC 1\ KI)
 

84 = (-.MC 1\ OC 1\ -,KC 1\ -.KI)
 

85 = (-.MC 1\ OC 1\ -KC 1\ KI)
 

86 = (-.MC 1\ OC 1\ KC 1\ -.KI)
 

87 = (-.MC 1\ OC 1\ KC 1\ KI)
 
8g = (MC 1\ -,RC 1\ -KC 1\ -.KI)
 

89 = (MC 1\ -,RC 1\ -,KC 1\ KI)
 

810 = (MC 1\ -,RC 1\ KC 1\ -.KI)
 

811 = (MC 1\ -,RC 1\ KC 1\ KI)
 

812 = (MC, 1\ OC 1\ -KC 1\ -.KI)
 

813 = (MC 1\ OC 1\ -KC 1\ KI)
 

814 = (MC 1\ OC 1\ KC 1\ -.KI)
 

815 = (MC 1\ OC 1\ KC 1\ KI)
 

Let the first row of the transItIOn table correspond to starting 
with initial state 80, in which all 4 variables are FAL8E. The subset of 
conditional probabilities that are applicable for this initial state 
contains 

cPl(MC) = p(MC at t + ~) = 0.15 
cpg(RC) = p(RC at t + ~ I -.MC 1\ -.RC 1\ -.KC at t) = 0.05 
cP2(KC) = p(KC at t + ~ I -.KI at t) =0.1 
CP2(KI) = p(KI at t + ~ I -.KI at t) = 0.3 

and their complements, that are 

CPl(-.MC) = 1 - cPl(MC) = 1 - 0.15 = 0.85
 
cpg(-.RC) = 1 - cpg(RC) = 1 - 0.05 = 0.95
 
cP2(-.KC) = 1 - cP2(KC) = 1 - 0.1 = 0.9
 
cP2(-.KI) = 1 - cP2(KI) = 1 - 0.3 = 0.7
 

1 3
 



The appropriate conditional probability (or its complement) for 
each of the n variables are multiplied together to obtain the 

transition probability for each of the 2n possible output states. For 
example, in output state So all 4 variables are FALSE, so the 
appropriate conditional probabilities to be multiplied are cPl (..., M C), 
cpg(...,RC), CP2(...,KC) and CP2(...,KI) and the transition probability is 

p(So at t + 6 I So at t) =Poo	 =CPl(...,MC) cpg(...,RC) cP2(...,KC) cP2(...,KI) 

= (0.85) (0.95) (0.9) (0.7) 

= 0.508725 

Similarly, 
Po 1 =CPl(...,MC) cpg(...,RC) cP2(...,KC) cP2(KI) = 0.218025 
P02 = CPl(...,MC) cpg(...,RC) cP2(KC) CP2(...,KI) = 0.056525 

Po 15 =cPl(MC) cpg(RC) cP2(KC) CP2(KI) = 0.000225 

These probabilities form the first row of the transition table. 
Let the second row correspond to initial state S1; the appropriate 

subset of conditional probabilities and their complements contains 

cPl(MC) = 0.15 cPl (...,MC) = 0.85
 
cpg(RC) = 0.05 cpg(...,RC) = 0.95
 

cPl(KC) = 1.0 CPl(...,KC) =0.0
 
cPl(KI) = 0.0 cPl(...,KI) = 1.0
 

As with the first row, the transition probability for each output 
state is calculated by multiplying the appropriate conditional 
probability (or its complement) for each variable. Continuing this 
process for each row produces the transition table shown in Figure 4. 

14
 



0.508725 0.218025 0.056525 0.024225 0.026775 0.011475 0.002975 0.001275 0.089775 0.038475 0.009975 0.004275 0.004725 0.002025 0.000525 0.000225 

0.000000 0.000000 0.807500 0.000000 0.000000 0.000000 0.042500 0.000000 0.000000 0.000000 0.142500 0.000000 0.000000 0.000000 0.007500 0.000000 

0.535500 0.229500 0.059500 0.025500 0.000000 0.000000 0.000000 0.000000 0.094500 0.040500 0.010500 0.004500 0.000000 0.000000 0.000000 0.000000 

0.000000 0.000000 0.850000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.150000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.107100 0.045900 0.011900 0.005100 0.428400 0.183600 0.047600 0.020400 0.018900 0.008100 0.002100 0.000900 0.075600 0.032400 0.008400 0.003600 

0.000000 0.000000 0.170000 0.000000 0.000000 0.000000 0.680000 0.000000 0.000000 0.000000 0.030000 0.000000 0.000000 0.000000 0.120000 0.000000 

0.535500 0.229500 0.059500 0.025500 0.000000 0.000000 0.000000 0.000000 0.094500 0.040500 0.010500 0.004500 0.000000 0.000000 0.000000 0.000000 

T= 0.000000 

0.000000 

0.000000 

0.000000 

0.850000 

0.000000 

0.000000 

0.000000 

0.000000 

0.535500 

0.000000 

0.229500 

0.000000 

0.059500 

0.000000 

0.025500 

0.000000 

0.000000 

0.000000 

0.000000 

0.150000 

0.000000 

0.000000 

0.000000 

0.000000 

0.094500 

0.000000 

0.040500 

0.000000 

0.010500 

0.000000 

0.004500 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.850000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.150000 0.000000 

0.321300 0.137700 0.035700 0.015300 0.214200 0.091800 0.023800 0.010200 0.056700 0.024300 0.006300 0.002700 0.037800 0.016200 0.004200 0.001800 

..... 0.000000 0.000000 0.510000 0.000000 0.000000 0.000000 0.340000 0.000000 0.000000 0.000000 0.090000 0.000000 0.000000 0.000000 0.060000 0.000000 

Ul 0.000000 0.000000 0.000000 0.000000 0.535500 0.229500 0.059500 0.025500 0.000000 0.000000 0.000000 0.000000 0.094500 0.040500 0.010500 0.004500 

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.850000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.150000 0.000000 

0.374850 0.160650 0.041650 0.017850 0.160650 0.068850 0.017850 0.007650 0.066150 0.028350 0.007350 0.003150 0.028350 0.012150 0.003150 0.001350 

0.000000 0.000000 0.595000 0.000000 0.000000 0.000000 0.255000 0.000000 0.000000 0.000000 0.105000 0.000000 0.000000 0.000000 0.045000 0.000000 

Figure 4: A Specific Transition Table 

,. 



5 Conversion from Markov Random Process 
Transition Table to Temporal Bayes Network 

S. 1 Algorithm in General 

This section describes the algorithm that converts a Markov 
Random Process transition table of the appropriate format into a 
temporal Bayes network that encodes the same information. 
Suppose we are given a model of a problem in the form of a Markov 
random process in which time is discrete and the state space S 
corresponds to all possible valuations of a finite set of boolean 
variables V = {VI, V2, ... , Vn }. Given such a model, including the 

2n x 2n transition table that defines the transition probabilities for 
all states in S, we can use the following algorithm to transform the 
description of the problem into the equivalent temporal Bayes 
network. 

Recall that a temporal Bayes network IS a graphical 
representation that indicates dependencies between the n variables, 
and for each variable, specifies conditional probabilities cPi(Vj) = 

p(Vj at t + Ii I Ci at t) and prior probabilities PPi = p(Ci) where the Ci 

range over all combinations of the dependent variables. 

If a starting vector is specified with the transition table, this 
vector uniquely defines the entire set of prior probabilities for the 
first time point in the temporal Bayes network. If a starting vector is 
not specified, the entire set of general prior probabilities for an 
arbitrary time point can be calculated by summing the columns of 
the transition table and normalizing by the number of initial states. 
The temporal Bayes network stores a subset of these prior 
probabilities at the nodes, specified by the combinations of 
dependent variables. 

The algorithm for determining the dependencies and the 
conditional probabilities for each variable is described below. A 

16
 



detailed example is gIven in the next subsection. 

The first step is to determine the probability of each variable 

being TRUE, given each of the 2n initial states, p(Vj I Sj) j =1, 2, ..., n; 

i = 0, 1, . . . , 2n -1. For each variable, we can then divide these 2n 

probabilities into equivalence classes, where membership in an 
equivalence class is determined via the probability of the variable. 

By examining which initial states are grouped into the same 
equivalence class, we can determine the dependencies for each 
variable. Then we need only locate each combination of values for 
the dependent variables among the equivalence classes to determine 
the appropriate conditional probabilities. 

5.2 Example 

Suppose we are given the Markov Random Process transition 
table specified in Figure 4. Each transition probability Pij in the table 

represents the probability of moving from state i to state j in one 

time step. Since there are 2n = 16 states in the table, the appropriate 
temporal Bayes network involves 4 variables. The algorithm 
described in the previous subsection can be applied to determine the 
remaining information to completely define the corresponding 
temporal Bayes network. 

Since a starting vector IS not specified, the set of prior 

probabilities can be calculated by summing the 2n = 16 entries in 
each column of the matrix and dividing by 16 to normalize the 
probability. For example, 

15 

PPO = 1/16	 L Pio 
i=O 

= 1/16 (0.508725 + 0 + 0.5355 + ... + 0.37485 + 0)
 
= 0.148936
 

17 



In a similar manner, the prior probabilities for the remaImng 
15 states can be calculated. The interested reader can refer to 
Appendix C for a complete listing of the actual values. 

To determine the probability of a particular variable Vk being 
TRUE at time t + A, given an initial state Si at t, we must sum the 
transition probabilities for all states Sj in which the variable is TRUE. 
For instance, the variable VIis TRUE for the eight states S8 through 
S 15 , the variable V2 is TRUE for the four states S4 through S7 and the 
four states S12 through S15 , the variable V3 is TRUE for the eight 
states S2, S3, S6, S7, SlO, Sl1, S14 and S15 , and the variable V4 is TRUE 
for the eight states Sj where j is an odd number. Using this method, 

we can calculate 

p(V 1 I So) = 0.089775 + 0.038475 + + 0.000225 = 0.15 
p(V2 I So) = 0.026775 + 0.011475 + + 0.000225 = 0.05 
p(V3 I So) = 0.056525 + 0.024225 + + 0.000225 = 0.1 

p(V4 I S15) = 0.0 + 0.0 + ... +0.0 = 0.0 

Grouping these probabilities into equivalence classes where 
each member of an equivalence class has the same probability, we 
observe the following: 

•	 V 1 has 1 equivalence class 
the probability of VI being TRUE is 0.15 for all 16 initial states 

•	 V2 has 6 equivalence classes 
the probability of V2 being TRUE is 0.05 for 2 initial states 
the probability of V2 being TRUE is 0.0 for 4 initial states 
the probability of V2 being TRUE is 0.8 for 2 initial states 
the probability of V2 being TRUE is 1.0 for 4 initial states 
the probability of V2 being TRUE is 0.4 for 2 initial states 
the probability of V2 being TRUE is 0.3 for 2 initial states 

1 8
 



•	 V3 has 2 equivalence classes 
the probability of V3 being TRUE is 0.1 for 8 initial states 
the probability of V3 being TRUE is 1.0 for 8 initial states 

•	 V4 has 2 equivalence classes 
the probability of V4 being TRUE is 0.3 for 8 initial states 
the probability of V4 being TRUE is 0.0 for 8 initial states 

We can determine the dependencies for each variable by 
examining which initial states are grouped into the same equivalence 
class. There is only one equivalence class for VI that contains all the 
initial states. Therefore, the probability of VI being TRUE at a given 
time t + !J. is independent of the state of all variables at t. Thus, V1 is 

dependent on 0 variables and no conditional probabilities are needed 
for VI' 

The remammg variables each have more than one equivalence 
class, which indicates that they are each dependent on at least one 
variable. Although some heuristics can ,be applied to improve the 
speed of determining the number of dependent variables, the 
algorithm described in this paper does not make use of them. The 
algorithm simply looks at which initial states are in each equivalence 
class, and repeatedly applies a combination rule until it is no longer 
applicable. This combination rule combines two initial states if they 
differ in the value of at most one variable, indicates that the value of 
that particular variable does not matter, and reduces the number of 
states in the equivalence class by one. 

For example, the first equivalence class for V2 contains the two 
initial states So and Sl' These two initial states differ only in the 

value of the fourth variable, so they are combined into one state that 
indicates that V4 does not matter, and that VIis FALSE, V2 is FALSE 
and V3 is FALSE. Since there is now only one state in the 

equivalence class, the combination rule can no longer be applied. 

19
 



Applying this logic to the second equivalence class for V2, 

which contains the initial states S2, S3' S6' and S7' we have the 
following: 

1) Initial states S2 and S3 differ only in the value of the fourth 
variable, so they are combined into one state that indicates that V4 

does not matter, and that VI is FALSE, V2 is FALSE and V3 is TRUE. 

2) Initial states S6 and S7 differ only in the value of the fourth 
variable, so they are combined into one state that indicates that V4 

does not matter, and that VI is FALSE, V2 is TRUE and V3 is TRUE. 

3) The two states produced by steps 1 and 2 differ only in the 
value of the second variable, so they are combined into one state that 
indicates that V2 and V4 do not matter, and that V1 is FALSE and V3 

is TRUE. 

At this point there is only one state in the equivalence class, so the 
combination rule can no longer be applied. 

Continuing this process for the remaining four equivalence 
classes for V2, we find that V4 can be reduced from all of them, and 
although V2 can be reduced from some of them, it can not be reduced 
from all of them. Therefore V2 is dependent on the 3 variables VI, 
V2 and V3. 

Following a similar reduction process for V3 and V4, we find 
that in both cases~ VI, V2 and V3 can be reduced from both 
equivalence classes, but V4 can not. Therefore, both V3 and V4 are 
dependent on the state of V4. 

To determine the appropriate conditional probabilities for each 
combination of the dependent variables, we need only look at the 
probabilities associated with the equivalence classes. For each 
combination of the dependent variables, we must look at the 

20
 



6 

equivalence classes to find the one that contains the appropriate 
combination. For example, the conditional probability 

since that combination of dependent variables is found in the first 
equivalence class for V2, the one with probability 0.05. Similarly, the 

conditional probability 

p(V2 at t + /!! I -,V 1 1\ -,V2 1\ V3 at t) = 0.0 

since that combination of dependent variables is found In the second 
equivalence class for V2, the one with probability 0.0. 

Thus, we have obtained all of the necessary information to 
define a temporal Bayes network. In fact, the temporal Bayes 
network we have defined is precisely the one depicted in Figure' 3, if 
we name V1 as maid_comes, V2 as room_clean, V3 as kids_come and 
V4 as kids_invited. 

Summary 

I have defined the concepts of a temporal Bayes network and a 
Markov Random Process transition table, and have shown that they 
encode equivalent· information. The algorithms I detailed in sections 
four and five can be used to convert from one representation to the 
other without loss of information. 

Therefore, given a description of a problem in either format, 
one can easily transform the model to the other format. Temporal 
Bayes networks, being graphical by nature, make it easy to 
determine the completeness and accuracy of a model. They also 
provide an encoding that, in most cases, is considerably more 
compact than the· Markov Random Process transition table. Both 
methods can be used to predict the state of variables in the future, 
given knowledge of their current values. 

21 



Related Work 

Although the theory of Markov chains is relatively well­
established and well-known, temporal Bayes networks are a subject 
of current research. An initial motivation for their study was the 
desire to combine decision theory techniques under conditions of 
uncertainty with symbolic problem-solving techniques predominant 
in artificial intelligence (Feldman and Yakimovsky 1974; Feldman 
and Sproull 1977; Hanks 1987). 

Judea Pearl has established a basis for the theory and shown 
that the centuries-old Bayes formula, the likelihood-ratio updating 
rule, can be used to propagate the impacts of new beliefs and/or new 
evidence in large multi-hypotheses inference systems (Pearl 1982). 
He describes a method of passing new information through the 

. networks in such a way that, when equilibrium is reached, each 
proposition's belief is consistent with the axioms of proba1:>ility 
theory (Pearl 1986). 

However, while Kim and Pearl (1983) have described an 
efficient method for computing the joint distribution for singly­
connected networks by local propagation of Bayes factor (the 
likelihood ratios p(x) / p(--,x)), the general problem of probabilistic 
inference in multiply-connected networks has been shown to be NP­
hard (Cooper 1987). Several researchers have proposed algorithms 
that consider trade-offs in terms of efficiency, soundness or 
completeness. 

Pearl (1985) presents an algorithm that exploits the topology of 
the network by instantiating a set of nodes corresponding to a cutset 
of the underlying graph, thereby making a multiply-connected graph 
singly-connected. The algorithm involves conditioning on all value 
combinations of the variables in the cutset and computing a weighted 
average of the joint conditional probability distributions for all 
possible instantiations. 

22
 



The Lauritzen-Spiegelhalter algorithm also exploits the 
topology of the network, rendering a multiply-connected network 
singly-connected. It alters the connectivity of the network by adding 
a set of subsidiary arcs, so that there are no cycles of length 4 or 
more without a chord or shortcut. Then the joint distribution can be 
efficiently computed in terms of the cliques of the original graph 
(Lauritzen and Spiegelhalter 1988). 

Several researchers have explored the usefulness of bounding 
or approximation algorithms, since they can have significant 
advantage in situations where the time spent in computing is 
important (Cooper 1984; Dean and Boddy 1988; Horvitz 1988). 
Bounding algorithms look at the constraints and bound the 
distribution, typically by supplying an upper and lower bound that 
are successively refined such that they approach the correct 
distribution in the limit (Horvitz 1988; Henrion 1988b). 

Approximation algorithms, typically known as Monte Carlo 
simulation algorithms, simulate the states that a network is likely to 
go through, given a set of constraints. The aim is to develop an 
algorithm that comes close to the correct answer, by iteratively 
refining the algorithm at each time step. Unfortunately, the Monte 
Carlo algorithms developed to date for probability networks (Henrion 
1988a; Pearl 1987) have been somewhat less than ideal and exhibit 
pathological behavior in the case of certain network topologies 
involving strong dependence between nodes (Chin and Cooper 1987). 

Several other researchers have focused on the case of an 
incomplete causal model, in which only a subset of the conditional 
probabilities are known. Cheeseman (1983) proposes a method for 
calculating the conditional probability of any multi-valued predicate, 
given particular information about the individual case. This method 
is known as maximum entropy, since the maximum entropy 
distribution is the one that assumes the least information. Goldman 
and Rivest (1986) augment this method by integrating it with the 
planning of data collection and tabulation, since their procedure 

23
 



requires tabulating additional constraints. Geman and Geman (1984) 
and Lippman (1986) describe a maximum entropy method based on 
stochastic relaxation. 

Wellman (1988) explores the case of an incomplete causal 
model from the aspect of the conditional probabilities. In his model, 
the constraints on the joint probability distribution over the 
variables are encoded only as qualitative relationships, instead of the 
usual numeric representations. 

Along the lines of ease of construction, Henrion (?) proposes 
some techniques that can facilitate the process of structuring and 
quantifying uncertain relationships in a diagram of moderate size. 
He also discusses general issues of analyzing the sensitivity of 
conclusions to errors and approximations in assessed probabilities. 

Once a problem has been defined, Shachter (1987) proposes 
that a solution can be computed by manipulating the influence 
diagram through a series of transformations to the model that 
preserve the solution value, all of which can be accomplished on a 
personal computer (Shachter 1988). Shachter and Heckerman (1987) 
suggest that a reasonable approach would be to construct a model 
with the emphasis on the arcs in one direction, and then to reverse 
the direction of the arcs. 

Shachter and Kenley (1988) discuss the relationships between 
linear-quadratic Gaussian models and covariance matrix 
representations for the multivariate normal distributions. Shachter, 
Eddy and Hasselblad (1988) discuss the use of these networks in the 
health field in general and give details of its use in one particular 
example. 

References 

S. R. Adke and S. M. Manjunath. 1984. An Introduction to Finite 
Markov Processes, John Wiley & Sons, New York. 

24 



Peter Cheeseman. 1983. A Method of computing generalized Bayesian 
probability values for expert systems. In Proceedings of IJCAI 8, 
Karlsruhe, West Germany, pp. 198-202. 

Homer L. Chin and Gregory F. Cooper. 1987. Stochastic simulation of 
causal Bayesian models. Stanford University Knowledge Systems 
Laboratory, Memo KSL-87-22. 

Gregory F. Cooper. 1984. NESTOR: A computer-based medical 
diagnostic aid that integrates causal and probabilistic knowledge. PhD 
thesis, Stanford University. 

Gregory F. Cooper. 1987. Probabilistic inference using belief networks 
is np-hard. Stanford University Knowledge Systems Laboratory, 
Memo KSL-87-27. 

Thomas Dean and Mark Boddy. 1988. An analysis of time-dependent 
planning. In Proceedings AAAI-88, St. Paul, Minnesota, pp. 49-54. 

Thomas Dean and Keiji Kanazawa. 1987. Persistence and probabilistic 
inference. Brown University Department of Computer Science, 
Technical Report CS-87-23. 

Thomas Dean and Keiji Kanazawa. 1988. Probabilistic temporal 
reasoning. In Proceedings AAAI-88, St. Paul, Minnesota, pp. 524-528. 

Thomas Dean and Keiji Kanazawa. 1989. A Model for reasoning about 
persistence and causation. Brown University Department of Computer 
Science, Technical Report CS-89-04. 

R. O. Duda, P. E. Hart and N. J. Nilsson. 1981. Subjective Bayesian 
methods for rule-based inference systems. In B. W. Webber and N. J. 
Nilsson, editors, Readings in Artificial Intelligence. Tioga, Palo Alto, 
California. 

25
 



Jerome A. Feldman and Robert F. Sproull. 1977. Decision theory and 
artificial intelligence: II. The hungry monkey. Cognitive Science 1, 
pp. 158-192. 

Jerome A. Feldman and Yoram Yakimovsky. 1974. Decision theory 
and artificial intelligence: I. A semantics-based region analyzer. 
Artificial Intelligence 5, pp. 349-371. 

Stuart Geman and Donald Geman. 1984. Stochastic relaxation, gibbs 
distributions, and the Bayesian restoration of images. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 6, pp. 
721-741. 

Sally A. Goldman and Ronald L. Rivest. 1986. Making maximum 
entropy computations easier by adding extra constraints. In 
Proceedings of the Sixth Annual Workshop on Maximum Entropy and 
Bayesian Methods in Applied Statistics. " 

Ulf Grenander and Murray Rosenblatt. 1957. Statistical Analysis of 
Stationary Time Series, John Wiley & Sons, Canada. 

Steve Hanks. 1987. Temporal reasoning about uncertain worlds. pp. 
114-122. 

Max Henrion. ? Practical issues in constructing a Bayes' belief 
network. 

Max Henrion. 1988. Propagating uncertainty by logic sampling in 
Bayes' networks. In John F. Lemmer and Laveen F. Kanal, editors, 
Uncertainty in Artificial Intelligence Vol II. Elsevier Science 
Publishers B. V., North-Holland, pp. 149-163. 

Max Henrion. 1988. Towards efficient probabilistic diagnosis in 
multiply connected belief networks. In Proceedings of the Conference 
on Influence Diagrams. 

26
 



Eric J. Horvitz. 1988. Reasoning under varying and uncertain resource 
constraints. In Proceedings AAAI-88, St. Paul, Minnesota, pp. 111­
116. 

Dean L. Isaacson and Richard W. Madson. 1976. Markov Chains: 
Theory and Applications, John Wiley & Sons, New York. 

Jin H. Kim and Judea Pearl. 1983. A Computational model for causal 
and diagnostic reasoning in influence systems. In Proceedings of 
IJCAI 8, Karlsruhe, West Germany. 

Stephen L. Lauritzen and David J. Spiegelhalter. 1988. Local 
computations with probabilities on graphical structures and their 
application to expert systems. Journal of the Royal Statistical Society 
Series B, 50, pp. 157-194. 

Alan F. Lippman. 1986. A Maximum entropy method for expert 
system construction. PhD thesis, Brown University. 

Judea Pearl. 1982. Reverend Bayes on inference engines: a 
distributed hierarchical approach. In Proceedings of AAAI-82, 
Pittsburgh, Pennsylvania, pp. 133-136. 

Judea Pearl. 1985. A Constraint-propagation approach to probabilistic 
reasoning. In Proceedings of the Workshop on Uncertainty and 
Probability in AI, Los Angeles, California, pp. 31-42. 

Judea Pearl. 1986. Fusion, propagation, and structuring in belief 
networks. Artificial Intelligence 29, pp. 241-288. 

Judea Pearl. 1987. Evidential reasoning using stochastic simulation of 
causal models. Artificial Intelligence 32, pp. 245-257. 

Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: 
Networks of Plausible Inference, Morgan-Kaufman, Los Altos, 
California. 

27 



D. Revuz. 1975. Markov Chains, North Holland Publishing Company, 
Amsterdam. 

Murray Rosenblatt. 1962. Random Processes, Oxford University Press, 
New York. 

Ross D. Shachter. 1986. Evaluating influence diagrams. Operations 
Research, 34, pp. 871-882. 

Ross D. Shachter. 1987. Probabilistic inference and influence 
diagrams. Operations Research. 

Ross D. Shachter. 1988. DAVID: Influence diagram processing system 
for the Macintosh.· In J. F. Lemmer and L. N. Kanal, editors, 
Uncertainty in Artificial Intelligence Vol II. Elsevier Science 
Publishers B. V., North-Holland, pp. 191-196. " 

Ross D. Shachter, David M. Eddy, and Victor Hasselblad. 1988. An 
Influence diagram approach to the confidence profile method for 
health technologies assessment. 

Ross D. Shachter and David E. Heckerman. 1987. Thinking backward 
for knowledge acquisition. AI Magazine 8, Fall 1987, pp. 55-61. 

Ross D. Shachter and C. Robert Kenley. 1988. Gaussian influence 
diagrams. Center for Health Policy Research and Education, Duke 
University. 

Michael P. Wellman. 1988. Foundations of qualitative probabilistic 
networks. 

28
 



" 

Appendix A
 

Structures
 



!.~:':..­

~ 

"·'0" 

CONVERT.H Thursday, March 16, 1989 8: 52 pm Page 1 

File: c:\CONVERT\convert.h Creation Date: March 16, 1989 

/* convert.h 
*************************************************************************** * Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*********************~***************************************************** 
*/ 

/* 
Define the basic types and defines needed for conversion between a 
temporal Bayes network and a Markov Random Process transition table. 

*/ 

/*********************************/
/* some basic types and defines */ 
/*******************************/ 
/* null pointer */
 
#ifndef NULL
 
#define NULL «char *) 0)
 
#endif
 

/* a boolean type */

typedef short BOOLEAN;
 

/* a false boolean value */

#define FALSE 0
 

/* a true boolean value */
 
#define TRUE 1
 

/* error code type */

typedef enum { ,. 

no_errors, /* no errors */
bad_initial_state, /* improper input or bad parameter 

*/ 
close_error, /* error closing file */
 
end_of_file, /* end of file */
 
malloc_error, /* a memory allocation. error */
 
open_error, /* an opening file error */
 
read_error, /* a disk read error */
 
seek_error, /* a seek file error */
 
write_error /* a disk write error */
 

/**************************************************************/
/* some basic defines specific to converting from tBn to MRP */ 
/************************************************************/ 
/* maximum number of characters for a variable name *./ 



CONVERT.H Thursday, March 16, 1989 8:52 pm Page 2 

1* maximum number of variables in a system *1 
#define MAX_N_VARIABLES 7 

/* the possible values for the pos_or_neg_state vector entries *1 
#define DOESNT_MATTER -1 
#define MUST_BE_NEG o 
#define MUST_BE_POS 1 

.... ~.-



Thursday, March 16, 1989 8:52 pm Page 1 

File: c:\CONVERT\draw_tbn.h Creation Date: March 16, 1989 

1* draw_tbn.h 
*************************************************************************** 
* Thesis work * * (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*1 

1* 
Define the types and defines needed for drawing the temporal Bayes 
network on a high resolution PC screen. 

*1 

1* the number of columns in the temporal Bayes network *1
 
#define N_COLUMNS 4
 

1* the offset from the edge of the area allocated *1
 
#define COL_OFFSET 20
 

1* the space occupied by the temporal Bayes network (in the x direction) *1 
#define NETWORK_WIDTH 340 

1* the starting column for the temporal Bayes network *1
 
#define NETWORK_COL_START 200
 

1* the space occupied by the temporal Bayes network (in the y direction) *1 
. , ~' #define NETWORK_HEIGHT 250 

1* the starting row for the temporal Bayes network *1
 
#define NETWORK_ROW_START 50
 



Thursday, March 16, 1989 8:52 pm Page 1 

File: c:\CONVERT\equiv_cl.h Creation Date: March 16, 1989 

/* equiv_cl.h 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/* 
Define the types and defines needed for the equivalence class 
structure used in the conversion between a temporal Bayes network 
and a Markov Random Process transition table. 

*/ 

typedef struct state_info 
{
 

short initial_state;
 
short pos_or_ne9_state[MAX_N_VARIABLES];
 
struct state_info *previous;
 
struct state_info *next;
 

} STATE_INFO; 

typedef struct equivalence_class 
{
 

float probability;
 
short n_states;
 

. _.. : STATE_INFO *state_info_list_p;
.~.,.' 

} EQUIVALENCE_CLASS; 

typedef struct eq_class_info 
{
 

short n_equiv_classes;
 
EQUIVALENCE_CLASS *equiv~class;
 

} EO_CLASS_INFO; 



Thursday, March 16, 1989 8:52 pm Page 1 

·File: c:\CONVERT\tbn_info.h Creation Date: March 16, 1989 

/* tbn_info.h 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/* 
Define the types and defines needed for the temporal Bayes network 

,..; . variable information structure used in the conversion between a 
temporal Bayes network and a Markov Random Process transition table. 

*/ 

:...-~~ .... typedef struct cond_prob_info 
{ 

short pos_or_neg_state[MAX_N_VARIABLES]; 
float probability; 

} COND_PROB_INFO; 

typedef struct tbn_var_info 
{ 

short n_dependent;
 
short dependent_vars[MAX_N_VARIABLES];
 
short n_combinations;
 
COND_PROB_INFO *conditional_probs;
 

".•" •. :.... l' .•.•.~ } TBN_VAR_INFO; 

.: .-".- . 
...... 



Appendix B
 

Source Code
 



. . .. , 

o .• 

".. ~':"'."' ~'. 

MAIN.C Thursday, March 16, 1989 7:29 pm Page 1 

File: c:\CONVERT\main.c Creation Date: March 16, 1989 

./* main.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/

/* 

Functionality: 
This file contains a program which will start with a temporal Bayes 
network and convert it into a Markov Random Process transition table. 
It will then convert the MRP transition table back into a temporal 
Bayes network. 

*/
/*=======================================================================*/
 
#include <stdio.h> 
#include <string.h> 

#include "convert.h" 
#include "equiv_cl.h" 
#include "tbn_info.h" 

/*=======================================================================*/

/* A convenient macro for detecting an error, printing a message, and 

* exiting the program.
 
*/
 

#define TESTABORT(routine)\
 
if (stat != (ERROR_CODE) no_errors)\
 
{\ 

fprintf(stderr,"(appl) Error in function: '%s' error code: %hd!\n",\ 
routine, (short) stat);\ 

exit(O);\ 
} 

/*=======================================================================*/
 
void main() 
{ 

EQ_CLASS_INFO equiv_classes[MAX_N_VARIABLES]; 
float **mrp_table; 
short n_states; 
short n_variables; 
BOOLEAN request_stop; 
ERROR_CODE stat; 
char variable_name[MAX_N_VARIABLES][MAX_VAR_NAME_LEN]; 
float **var_probs;
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES]: 



MAIN.C Thursday, March 16, 1989 7:29 pm Page 2 

ERROR_CODE calculate_cond_probs();
 
ERROR_CODE calculate_MRP_table();
 
ERROR_CODE calculate_prior_probs();
 
ERROR_CODE confirm_and_continue();
 
ERROR_CODE determine_dependencies();
 
ERROR_CODE draw_temporal_Bayes_network();
 
void exit();
 
ERROR_CODE free_equiv_classes();
 
ERROR_CODE free_MRP_table();
 
void free_summed_probs();
 
ERROR_CODE free_tbn_info();
 
ERROR_CODE get_conditional_probabilities();
 
ERROR_CODE get_dependent_variables();
 
ERROR_CODE get_variables_info();
 
ERROR_CODE group_equiv_classes();
 
ERROR_CODE sum_probs();
 

/***********************************************/
/* get number and names of variables involved */
 
/*********************************************/

stat = get_variables_info(&n_variables, variable_name);
 
TESTABORT( "get_variables_info");
 

/**********************************************/
/* get information about dependent variables */
 
/********************************************/

stat = get_dependent_variables(n_variables, variable_name, tbn_info); 
TESTABORT( "get_dependent_vari abl es" ) ; 

/********************************/
/* draw temporal Bayes network */
 
/******************************/

stat = draw_temporal_Bayes_network(n_variables, variable_name, tbn_info) 

TESTABORT("draw_temporal_Bayes_network"); 

/**********************************/
/* get conditional probabilities */
 
/********************************/

stat = get_conditional_probabilities(n_variables, variable_name, tbn_inf 

0) ; 
TESTABORT("get_conditional_probabilities"); 

/************************************/
/* calculate MRP transition matrix */
 
/**********************************/

stat = calculate_MRP_table(n_variables, tbn_info, &n_states, &mrp_table) 

TESTABORT("calculate_MRP_table"); 

/***********************************************/
/* free temporal Bayes network info structure */
 
/*********************************************/

stat = free_tbn_info(n_variables, tbn_info); 



..... : .. '; 

MAIN.C Thursday, March 16, 1989 7:29 pm Page 3 

1********************************************************************1
1* confirm MRP table and conversion back to temporal Bayes network *1 
1******************************************************************1 
stat = confirm_and_continueC&request_stop); 
TESTABORTC"confirm_and_continue"); 

if Crequest_stop) 
{ 

stat = free_MRP_tableCn_states, &mrp_table);
 
TESTABORTC"free_MRP_table");
 
exitCO) ;
 

} 

1* now go from the MRP table back to the temporal Bayes. network *1 

1**************************************1
1* calculate the prior probabilities *1
 
1************************************1
 
stat = cal cul ate_prior_probsCn_states , mrp_table); 
TESTABORTC"calculate_prior_probs"); 

1********************************************1
1* sum the probabilities for each variable *1
 
1******************************************1
 
stat = sum_probsCn_variables, n_states, mrp_table, &var_probs); 
TESTABORTC "sum_probs"); 

1************************************************1
1* free Markov Random Process transition table *1
 
1**********************************************1
 
stat = free_MRP_tableCn_states, &mrp_table); 
TESTABORTC"free_MRP_table"); 

1*************************************************1
1* group probabilities into equivalence classes *1
 
1***********************************************1
 
stat = group_equiv_classesCn_variables, n_states, var_probs, equiv_class 

es) ; 
TESTABORT( "group_equiv_classes"); 

1************************************************1
1* free summed probabilities for each variable *1
 
1**********************************************1
 
free_summed_probsCn_variables, &var_probs); 

1**********************************1
1* determine dependent variables *1
 
1********************************1
 
stat = determine_dependenciesCn_variables, variable_name, n_states, 

equiv_classes, tbn_info); 
TESTABORTC"determine_dependencies"); 

1****************************************1 



MAIN.C Thursday, March 16, 1989 7:29 pm Page 4 

/* calculate conditional probabilities */ 
/**************************************/
stat = calculate_cond_probsCn_variables, variable_name, n_states, 

equiv_classes, tbn_info); 
TESTABORTC"calculate_cond_probs"); 

. :.~ 

/***************************************/
/* free equivalence classes structure */
 
/*************************************/

stat = free_equiv_classesCn_variables, equiv_classes); 
TESTABORTC"free_equiv_classes"); 

/********************************/
/* draw temporal Bayes network */
 
/******************************/


- , 
; stat = draw_temporal_Bayes_networkCn_variables, variable_name, tbn_info) 

.-, 

.j 

TESTABORTC"draw_temporal_Bayes_network2"); 

/***********************************************/
/* free temporal Bayes network info structure */
 
/*********************************************/

stat = free_tbn_infoCn_variables, tbn_info);
 
TESTABORTC"free_tbn_info2");
 

} 



Thursday, March 16, 1989 7:31 pm Page 1 

File: c:\CONVERT\add_equi.c Creation Date: March 14, 1989 

1* add_equi.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/
/* 

Functionality: 
• "'1 

. , This file contains a routine which will add an equivalence class to 
the specified variable's list of equivalence classes~ 

*/ .
/*=======================================================================*/ 

..
• ~. #include <stdio.h> 

#include "convert.h"
 
#include "equiv_cl.h"
 

/*=======================================================================*/ 
ERROR_CODE add_equiv_class(var_i, input_probability, equiv_classes) 

short var_ i ; 
float input_probability; 
EQ_CLASS_INFO equiv_classes[MAX_N_VARIABLES]; 

~ .. { 
char *malloc(); 
char *realloc(); 

/*****************************************************/
/* add an equivalence class to this variable's list */ 
/***************************************************/ 

if (equiv_classes[var_i].n_equiv_classes == 0) 
{ 

/* malloc the first one */
if «equiv_classes[var_i].equiv_class = (EQUIVALENCE_CLASS *) 

malloc(sizeof(EQUIVALENCE_CLASS») == (EQUIVALENCE_CLASS *) NUL 
L)
 

{
 
fprintf(stderr, "Ran out of space - Aborting program.\n"); 
return«ERROR_CODE) malloc_error); 

} 
} 
else 
{ 

/* realloc additional ones */ 
if «equiv_classes[var_i].equiv_class = (EQUIVALENCE_CLASS *) 

realloc(equiv_classes[var_i].equiv_class, 



Thursday, March 16, 1989 7:31 pm Page 2 

(equiv_classes[var_i].n_equiv_classes + 1) * 
sizeof(EQUIVALENCE_CLASS))) == (EQUIVALENCE_CLASS *) NULL) 

, { 
fprintf(stderr, "Ran out of space - Abort;ng program.\n"); 
return«ERROR_CODE) malloc_error); 

} 
} 
equ;v_classes[var_;].equ;v_class[equiv_classes[var_i].n_equiv_classes]. 

probability = (float) input_probability; 

/* denote successful return */
return«ERROR_CODE) no_errors); 

} 

.1. -:.- ..... 

":'...: i 



Thursday, March 16, 1989 7:31 pm Page 1 

File: c:\CONVERT\calc_con.c Creation Date: March 14, 1989 

1* calc_con.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/
/* 

Functionality: 
·This file .containsa routine which will calculate the conditional 
. probabilities for the temporal Bayes network. 

*/
/*=======================================================================*/ 

.:>.., #include <stdio.h> 

#include "convert.h"
 
#include "equiv_cl.h"
 
#include "tbn_info.h"
 

/*=======================================================================*/ 
ERROR_CODE calculate_cond_probs(n_variables, variable_name, n_states, 

. equiv_classes, tbn_info) 
short n_variables; 
char variable_name[MAX_N_VARIABLES] [MAX_VAR_NAME_LEN]; 
short n_states; 
EQ_CLASS_INFO equiv_classes[MAX_N_VARIABLES]; 
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES]; 

{
 
short and_value;
 
short bit_map;

short combo_i ; .. ­
short d_var_i;
 
short n_combinations;
 
short pos_or_neg;
 
short var_ i ;
 

void init_pos_or_neg_states();
 
void locate_pos_or_neg_states();
 
char *ma11oc ( ) ;
 

/****************************************/
/* calculate conditional probabilities */
 
/**************************************/

for (var_i = 0; var_i < n_variables; var_i++) 
{ 

/* now must determine how many combinations there are and what each 
* one's probability is */ 



Thursday, March 16, 1989 7:31 pm Page 2 

n_combinations = 1; 

1* determine the number of combinations of dependent variables *1 
for (d_var_i = 0; d_var_i < tbn_info[var_i].n_dependent; d_var_i++) 
{ 

n_combinations = n_combinations * 2; 
} 

printf("\nNow locating %hd (conditional) probabilities for variable % 
hd (%s)\n", 

n_combinations, var_i·+ 1, variable_name[var_i]); 

tbn_info[var_i].n_combinations = n_combinations;
1* allocate space for the conditional probabilities *1 
if ((tbn_info[var_i].conditional_probs = (COND_PROB_INFO *) 

malloc(n_combinations * sizeof(COND_PROB_INFO») == 
(COND_PROB_INFO *) NULL) . 

{ 
fprintf(stderr, "Ran out of space Aborting program.\n"); 
return((ERROR_CODE) malloc_error); 

} 

1* initialize the pos_or_neg_state vectors to indicate doesn't matter 
*1 

for (combo_i = 0; combo_i < n_combinations; combo_i++) 
{ 

init_pos_or_neg_states(tbn_info[var_i].conditional_probs[combo_i]. 
pos_or_neg_state); 

} 

for (combo_i = 0; combo_i < n_combinations; combo_i++) 
{ 

.. 
"...... . ".. , bit_map = (n_combinations - combo_i) - 1; 

1* determine whether the next dependent variable is negated or not 
*1 

for (and_value = n_combinations I 2, d_var_i = 0; 
and_value> 0; 

and_va1U'E~ = and_value I 2, d_var_ i ++) 
{ 

pos_or_neg = bit_map & and_value; 
if (pos_or_neg > 0) 
{ 

tbn_info[var_i].conditional_probs[combo_i]. 
pos_or_neg_state[tbn_info[var_i].dependent_vars[d_var_i]]

= MUST_BE_POS; 
} 
else 
{ 

tbn_info[var_i].conditional_probs[combo_i]. 
pos_or_neg_state[tbn_info[var_i].dependent_vars[d_var_i]] 

= MUST_BE_NEG;
 
}
 

}
 



Thursday, March 16, 1989 7:31 pm Page 3 

/* locate this pos_or_neg_state vector among the equivalence class 
es */ 

ses, 

}
 
}
 

/* denote successful return */
 
return((ERROR_CODE) no_errors);
 

}
 

:~: .." .. 



Thursday, March 16, 1989 7:32 pm Page 1 

.' .. .; 

..~.~ 

File: c:\CONVERT\calc_mrp.c Creation Date: March 14, 1989 

1* calc_mrp.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/

/* 

Functionality: 
This file contains a routine which will start with a temporal Bayes 
network and calculate the values in a corresponding Markov random 
process transition table. 

*/
/*=======================================================================*/
 
#include <stdio.h> 

#include "convert.h" 
#include "tbn_info.h" 

/*=======================================================================*/
 
ERROR_CODE calculate_MRP_table(n_variables, tbn_info, n_states_p, mrp_table 
-p) 

short n_variables;
 
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES];
 
short *n_states_p;
 
float ***mrp_table_p;
 

{ 
short n_states; 
float **mrp_table;
float probabilities[MAX_N_VARIABLES];
short row_state_i; ~~ 

short var_i; 

void calculate_probability();
 
char *malloc();

void select_probabilities();
 

/************************************/
/* calculate MRP transition matrix */
 
/**********************************/

n_states = 1; 
for (var_i = 0; var_i < n_variables; var_i++)
 
{
 

}
printf("\n\nThe MRP trarisition table has %hd possible states.\n\n" , n_st 

ates); 



Thursday, March 16, 1989 7:32 pm Page 2 

/* record the number of states in the MRP transition table */
 
*n_states_p = n_states;
 

/* allocate space for the n_states possible rows */ 
if «mrp_table = (float **) malloc(n_states * sizeof(float *))) - ­

(float **) NULL) 
{
 

fprintf(stderr, "Ran out of space - Aborting program.\n");
 
return«ERROR_CODE) malloc_error);
 

} 

/* record the pointer to the MRP transition table */
 
*mrp_table_p = mrp_table;
 

/* for each row in the MRP transition table */
 
for (row~state_i = O;row_state_i < n_states; row_state_i++)
 
{
 

printf("\nRow %hd of the MRP transition table is for input state %hd\ 
nit J 

/* select the appropriate set of probabilities for this initial state 
*/ 

select_probabilities(n_variables, n_states, tbn_info, row_state_i, 
probabilities); 

/* allocate space to hold the entries in one row of the transition ta 
ble */

if «mrp_table[row_state_i] = (float *) 
malloc(n_states * s;zeof(float))) == (float *) NULL) 

{ 
fprintf(stderr, "Ran out of space - Aborting ~rogram.\n"); 
return«ERROR_CODE) malloc_error); 

} 

/* calculate the probability of each of the output states */ 
calculate_probability(n_variables, n_states, probabilities, row_state 

} 

/* denote successful return */ 
return«ERROR_CODE) no_errors); 

} 



Thursday, March 16, 1989 7:34 pm Page 1 

File: c:\CONVERT\calc_pri.c Creation Date: March 15, 1989 

'/* cal c_pri . c 
*************************************************************************** 
*' Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/
/* 

Functionality: 
This file contains a routine which will calculate the prior 
probabilities for each state. 

*/ 
/*========================~==============================================*/ 

,., ..:,-, #include <stdio.h> 

#include "convert.h" 

/*=======================================================================*1 
ERROR_CODE calculate_prior_probs(n_states, mrp_table)


short n_states; .
 
float **mrp_table;
 

{
 
short input_state_i;
 
short output_state_i;
 
float prior_prob;
 

printf("\n\n");
 
for (output_state_i = 0; output_state_i < n_states; output_state_i++)
 
{
 

/* initialize the probabilitiy to zero */
 
prior_prob = (floatJ-O~O;
 

/* sum the entries in each row */

for (input_state_i = 0; input_state_i < n_states; input_state_i++)
 
{ 

} 
prior_prob = prior_prob / (float) n_states; 

"... :' .,. printf("The prior probability for state %3hd is %f\n", output_state_i 

prior_prob); 
} 

/* denote successful return */

return«ERROR_CODE) no_errors);
 

}
 



Thursday, March 16, 1989 7:34 pm Page 1 

File: c:\CONVERT\calc_pro.c Creation Date: March 14, 1989 

/* calc_pro.c 
*************************************************************************** 
* Thesi s work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
*- This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

..• i /*=======================================================================*/
/* 

Functionality: 
This file contains a routine which will calculate the probability 
of each of the output states for a given input state. 

*/
/*=======================================================================*/ 

,~. 'include <stdio.h> 

'include "convert.h" 

/*=======================================================================*/ 
void calculate_probability(n_variables, n_states, probabilities, row_state_ 
i , 

mrp_table)
 
short n_variables;
 
short n_states;
 
float probabilities[MAX_N_VARIABLES];
 
short row_state_i;
 
float **mrp_table;
 

{ 
short output_pos_or_neg_state[MAX_N_VARIABLES];
 
short output_state_i;
 
short var_ i ;
 

void det_pos_or_neg_states(); 

/* calculate the probability of each of the output states */ 
for (output_state_i = 0; output_state_i < n_states; output_state_i++) 
{ 

/* determine the pos_or_neg_states for the output state */ 
det_pos_or_neg_states(output_state_i, n_states, output_pos_or_neg_sta 

te) ; 

for (var_i = 0; var_i < n_variables; var_i++) 
{ 

if (output_pos_or_neg_state[var_i] == MUST_BE_POS) 
{ 

mrp_table[row_state_i][output_state_i] = 



Thursday, March 16, 1989 7:34 pm Page 2 

rnrp_table[row_state_i][output_state_i] * 
probabilities[var_i]; 

} 
else 
{ 

mrp_table[row_state_i][output_state_i] = 
rnrp_table[row_state_i][output_state_i] * 

«(float) 1.0) - probabilities[var_i]); 
} 

} 
printf("The table value for input state %3hd, output state %3hd is %f 

\n" , 
row_state_i, output_state_i, 
mrp_table[row_state_i][output_state_i]); 

} 
} 

' .. ' 

, .. .' 
_a .~....... i,\:. -'.~-



CONFIRM_.C Thursday, March 16, 1989 8:16 pm Page 1 

·File: c:\CONVERT\confirm_.c Creation Date: March 16, 1989 

/* confirm .c 
*************************************************************************** * Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/
/* 

Functionality:
. "", 

This file contains a routine which will confirm that the user is 
satisfied with the Markov Random Process transition table which was 
generated, and that the user desires to convert it back to a 

. ..... ~ temporal Bayes network.
 
*/

/*=======================================================================*/ 

#include <stdio.h>
 
#include <string.h>
 

#include "convert.h" 

/*=======================================================================*/ 
ERROR_CODE confirm_and_continue(request_stop_p)
 

BOOLEAN *request_stop_p;
 
{
 

char verify[2];
 

1********************************************************************/
1* confirm MRP table and conversi6n back to temporal Bayes network *1 
I*********************~******************************* *************/ 
printf("\nPlease confirm this Markov Random Process transition table and 

\n"); 
printf("the desire to convert it back to a temporal Bayes network\n"); 
printf("by pressing y now (anything else will terminate processing)\n"); 
scanf("%s", verify); 

if (strcmp(verify, Ny") != 0) 
, { 

*request_stop_p = TRUE; 
printf("Acknowledging desire to exit program.\n"); 

} 
else 

*request_stop_p = FALSE; 

/* denote successful return */
 
return«ERROR_CODE) no_errors);
 

}
 



DET_DEPE.C Thursday, March 16, 1989 7:36 pm Page 1 

File: c:\CONVERT\det_depe.c Creation Date: March 14, 1989 

1* det_depe.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/

/* 

Functionality: 
This file contains a routine which will determine the dependent 
variables for each variable. 

*/
/*=======================================================================*/
 
#include <stdio.h> 

#include "convert.h" 
#include "equiv_cl.h" 
#include "tbn_info.h" 

/*=======================================================================*/­
ERROR_CODE determine_dependencies(n_variables, variable_name, n_states, 

equiv_classes, tbn_info) 
short n_variables; 
char variable_name[MAX_N_VARIABLES][MAX_VAR_NAME_LEN]; 
short n_states; 
EO_CLASS_INFO equiv_classes[MAX_N_VARIABLES]; 
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES]; 

{ 
short class_i; 
short d_var_i; 
STATE_INFO *next_state_p; 
short pos_or_neg_state[MAX_N_VARIABLES]; 
short var_i; 
short var_ i i ; 

void init_pos_or_neg_states(); 
void reduce_equiv_class_states(); 

/**********************************/
/* determine dependent variables */ 
/********************************/
for (var_i = 0; var_i < n_variables; var_i++) 
{ 

/* reduce number of states for each equiv class by combining if possi 
ble */

reduce_equiv_class_states(var_i, equiv_classes); 



DET_DEPE.C Thursday, March 16, 1989 7:36 pm Page 2 

/* now determine what these reduced lists tell us */ 
/* initialize the pos_or_neg_state vectors to indicate doesn't matter 

*/ 

/* look at each equivalence class */ 
for (class_i = 0; class_i < equ;v_classes[var_i].n_equiv_classes; cla 

ss_;++) 
{ 

/* look at each state */ 
for (next_state_p = equiv_classes[var_;].equiv_class[class_i].stat 

e_info_list_p; 
next_state_p != (STATE_INFO *) NULL; 

next_state_p = next_state_p->next) 
{ 

1* determine whether each variable matters for this state */ 
for (var_ii = 0; var_ii < MAX_N_VARIABLES; var_ii++) 
{ 

if (next_state_p->pos_or_neg_state[var_ii] != DOESNT_MATTER) 
{ 

pos_or_neg_state[var_ii] = 
next_state_p->pos_or_neg_state[var_i;]; 

} 
}
 

}
 
}
 
tbn_info[var_i].n_dependent = 0;
 
for (var_;i = 0; var_;; < MAX_N_VARIABLES; var_ii++)
 
{
 

if (pos_or_neg_state[var_ii] != DOESNT_MATTER)
 
{
 

tbn_info[var_i].dependent_vars[tbn_info[var_i].n_dependent] = v 
ar_i;; 

tbn_info[var_;].n_dependent++; 
} 

} 
printf("Variable %d (known as %s) ;s dependent on %hd variables:\n", 

var_i + 1, variable_name[var_i], tbn_info[var_;].n_dependent 
) ; 

for (d_var_i = 0; d_var_i < tbn_info[var_i].n_dependent; d_var_i++) 
{ 

printf(" variable %d, known as %s\n" , 
tbn_info[var_i].dependent_vars[d_var_i] + 1, 
variable_name[tbn_info[var_i].dependent_vars[d_var_i]]); 

} 
} 

/* denote successful return */
 
return«ERROR_CODE) no_errors);
 

} 



DRAW_TBN.C Thursday, March 16, 1989 7:37 pm	 Page 1 

File: c:\CONVERT\draw_tbn.c Creation Date: March 13, 1989 

/* draw_tbn.c 
*************************************************************************** * Thesis work * * (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/ 
/* 

Functionality: 
This file contains a routine which will draw a temporal Bayes 
network on a high resolution PC screen. . 

*/
/*=======================================================================*/ 

"".,	 #include <stdio.h> 
#include <string.h> 

#include "convert.h"
 
#include "draw_tbn.h"
 
#include "tbn_info.h"
 

/*=======================================================================*/ 
ERROR~CODE draw_temporal_Bayes_network(n_variables, variable_name, tbn_info 
)
 

short n_variables;
 
char variable_name[MAX_N_VARIABLES][MAX_VAR_NAME_LEN];
 
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES];
 

{
 
short col_i;
 
short col_pos[N_COLUMNS];
 
short col_spacing;
 
short d_var_i;
 
short row_spacing;
 
short var_ i ;
 
short var_row[MAX_N_VARIABLES];
 
char verify[2];
 

void circle();
 
voi d fhatsay ( ) ;
 
int fontinit();
 
int fontld();
 
int fontunld();
 
int grline();
 
int initgraf();
 
void setega();
 

/********************************/
/* draw temporal Bayes network */ 



DRAW_TBN.C Thursday, March 16, 1989 7:37 pm Page 2 

/******************************/
setega( ) ;
 
initgraf(16, 0, 1); /* initialize EGA high resolution graphics */
 
fontinit(O);
 
font 1d (0, " I BMROM" ) ;
 

/* calculate column positions */
 
col_spacing = (NETWORK_WIDTH - (2 * COL_OFFSET» / (N_COLUMNS - 1);
 
for (col_i = 0; col_i < N_COLUMNS; col_i++)
 
{
 

ET;
 
}
 
fhatsay(O, "t-1", 15, col_pos[O] , 20);
 
fhatsay(O, "t", 15, col_pos[1], 20);
 
fhatsay(O, "t+1", "15,col_pos[2], 20);
 
fhatsay(O, "t+2" , 15, col_pos[3], 20);
 

/* calculate row positions */
 
row_spacing = NETWORK_HEIGHT / (n_variables + 1);
 
for (var_i = 0; var_i < n_variables; var_i++)
 
{
 

var_row[var_i] = «var_i + 1) * row_spacing) + NETWORK_ROW_START; 
fhatsay(O, variable_name[var_i], 15, 50, var_row[var_i]); 
grline(NETWORK_COL_START, var_row[var_i], 

NETWORK_COL_START + NETWORK_WIDTH, var_row[var_i], 3); 
} 

/*draw the nodes and remaining lines between them */
 
for "(col_i = 0; col_i < N_COLUMNS; col_i++)
 
{
 

". .: grline(col_pos[col_i], NETWORK_ROW_START, 
col_pos[col_i], NETWORK_ROW_START + NETWORK_HEIGHT, 3) ; 

for (var_i = 0; var_i < n_variables; var_i++) 
{ 

}
 
}
 

/* draw the arrows between the dependent variables */
 
for (var_i = 0; var_i < n_variables; var_i++)
 
{
 

for (d_var_i = 0; d_var_i < tbn_info[var_i].n_dependent; d_var_i++) 
{ 

for (col_i = 1; col_i < N_COLUMNS; col_i++) 
{ 

grline(col_pos[col_i], var_row[var_i], col_pos[col_i - 1], 
var_row[tbn_info[var_i].dependent_vars[d_var_i]], 15); 

} 
} 

} 

fhatsay(O, "Please confirm this drawing of the Temporal Bayes Network", 
15, 100, 330); " 

fhatsay(O, "by pressing y now (anything else will terminate proces~ing)" 



DRAW_TBN.C Thursday, March 16, 1989 7:37 pm Page 3 

15, 100, 340);
 
scanf("%s", verify);
 

fontunld(O);

initgraf(3, 0, 0); 1* reset text mode *1
 

if (strcmp(verify, "y") != 0) 
{ 

printf("Acknowledging error. Please start again.\n"); 
return«ERROR_CODE) bad_initial_state); 

} 

1* denote successful return *1 
return«ERROR_CODE) no_errors); 

} 

...- . 
.. 

...........
 
:... '-".:~ 

..... -.,".: 

_. 



Thursday, March 16, 1989 7:38 pm Page 1 

. ..' . 

.,~ 

:.-:: ... 

File: c:\CONVERT\find_sta.c Creation Date: March 14, 1989 

1* find_sta.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/

/* 

Functionality: 
This file contains a routine which will determine the states for 
which each variable is positive. 

*/
/*=======================================================================*/
 
#include <stdio.h> 

#include "convert.h" 

/*=======================================================================*/
 
ERROR_CODE find_states_to_sum(n_variables, n_states, use_states_p) 

short n_variables; 
short n_states; 
short ***use_states_p; 

{ 
short and_value; 
short next_state; 
short n_states_used; 
short pos_or_neg; 
short state_i; 
short **use_states; 
short var_i; 

char *malloc(); 

/*****************************************/
/* find states to sum for each variable */
 
/***************************************/
 

/* allocate space for the n_variables possible variables */ 
if «use_states = (short **) malloc(n_variables * sizeof("short *))) - ­

(short **) NULL) 
{
 

fprintf(stderr, "Ran out of space - Aborting program.\n");
 
return«ERROR_CODE) malloc_error)i
 

} 

/* record the pointer tbthe use_states matrix */

*use_states_p = use_states;
 



Thursday, March 16, 1989 7:38 pm Page 2 

and_value = n_states;
 
n_states_used = n_states / 2;
 

for (var_i = 0; var_i < n_variables; var_i++)
 
{
 

and_value = and_value / 2;
 

..- . 

/* allocate space to hold the states to use for one variable */ 
if «use_states[var_i] = (short *) 

malloc(n_states_used * sizeof(short))) == (short *) NULL)­
',";. { 

fprintf(stderr, "Ran out of space - Aborting program.\n"); 
return«ERROR_CODE) malloc_error); 

} 

next_state = 0;
 
/* determine which entries in each row would be summed */
 
for (state_i = 0; state_i < n_states; state_i++)
 
{


: .,;.... ~.~ /* if the variable is positive in this state, include it in the su 
"0;" .: m */ 

pos_or_neg = state_i & and_value;
 
if (pos_or_neg)
 
{
 

use_states[var_i][next_state] = state_i;
 
next_state++;
 

}
 
.)
 

""." 
}
 

/* denote successful return */

return«ERROR_CODE) no_errors);
 

}
 

. .' ~ ~ 



Thursday, March 16, 1989 7:40 pm Page 1 

File: c:\CONVERT\free_equ.c Creation Date: March 13, 1989 

"/* free_equ.c 
*************************************************************************** 
* Thesi s work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*//* "" " 
Functionality: 

This file contains a routine which will free the equivalence classes 
structu re. . ­

*/
/*=======================================================================*/ 

.. ~ , ..•., #include "convert.h" 
#include "equiv_cl.h" 

/*=======================================================================*/ 
ERROR_CODE free_equiv_classes(n_variables, equiv_classes)
 

short n_variables;
 
EQ_CLASS_INFO equiv_classes[MAX_N_VARIABLES];
 

{
 
short c 1ass_ i ;
 
STATE_INFO *current_state_p;
 
STATE_INFO *next_state_p;
 
short var_ i ;
 

void free(); 

/***************************************/
/* free equivalence classes structure */ 
/*************************************/ 

for (class_i = 0; class_i < equiv_classes[var_i].n_equiv_classes; cla 
ss_i++) 

{ 
/* free each of the STATE_INFO structures in the linked list */
for (current_state_p = equiv_classes[var_i].equiv_class[class_i].s 

tate_info_list_p; 
current_state_p != (STATE_INFO *) NULL; 

current_state_p = next_state_p) 
{ 

next_state_p = current_state_p->next; 
free(current_state_p); 

} 
equiv_classes[var_i].equiv_class[class_i].state_info_'ist_p = 



Thursday, March 16, 1989 7:40 pm Page 2 

(STATE_INFO *) NULL; 
equ;v_classes[var_;].equ;v_class[class_;].n_states = 0; 

}
/* free the array of equivalence class structures */
free(equ;v_classes[var_;].equ;v_class); 
equ;v_classes[var_;].equ;v_class = (EQUIVALENCE_CLASS *) NULL; 
equ;v_classes[var_;].n_equ;v_classes = 0; 

} 

/* denote successful return */
return«ERROR_CODE) no_errors); 

} 



-.:'; 
, . ~ - '. 

~".': ";.1 

c, .. ~ , •• 

.. ' 

'::,::: 

.:.;', 

Thursday, March 16, 1989 8:16 pm Page 1 

File: c:\CONVERT\free_mrp.c Creation Date: March 16, 1989 

/* free_mrp.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/

/* 

Functionality: 
This file contains a routine which will free th~ Markov Random 
Process transition table, a matrix of probabilities of an output 
state, given an input state. 

*/
/*=======================================================:===============*/
 
#include "convert.h" 

/*=======================================================================*/
 
ERROR_CODE free_MRP_table(n_states, mrp_table_p) 

short n_states; 
float ***mrp_table_p; 

{ 
float **mrp_table; 
short state_i ; 

void free(); 

/************************************************/
/* free Markov Random Process transition table */
 
/**********************************************/

mrp_table = *mrp_table_p; 

for (state_i = 0; state_i < n_states; state_i++) 
{ 

/* free space allocated for output probabilities for one input state 
*/ 

} 

/* free space allocated for the n_states initial states */
 
free(mrp_table);
 

/* reset the pointer to the mrp_table matrix */
 
*mrp_table_p = (float ***) NULL;
 

/* denote successful return */ 
return«ERROR_CODE) no_errors); 

} 



Thursday, March 16, 1989 7:40 pm Page 1 

File: c:\CONVERT\free_sta.c Creation Date: March 13, 1989 

"1* f ree_sta. c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/
/* 

Functionality: 
This file contains a routine which will free the array which was 

._::~..... allocated to hold the list of states for which each variable is 
positive. 

*/
/*=======================================================================*/ 
#include "convert.h" 

/*=======================================================================*/ 
ERROR_CODE free_states_to_sum(n_variables, use_states_p)
 

short n_variables;
 
short ***use_states_p;
 

{ 
short **use_states; 
short var_ i ; 

......-.: 

void free(); 

/**************************************************/
/* free array of states to sum for each variable */ 
/************************************************/ 

for (var_i = 0; var_i < n_variables; var_i++) 
{ 

/* free space allocated to hold the states to use for one variable */
free(use_states[var_i]); 

} 

/* free space allocated for the n_variables possible variables */ 
free(use_states); 

/* reset the pointer to the use_states matrix */ 
*use_states_p = (short ***) NULL; 

/* denote successful return */

return«ERROR_CODE) no_errors);
 

} 



Thursday, March 16, 1989 7:42 pm	 Page 1 

File:	 c:\CONVERT\free_sum.c Creation Date: March 13, 1989 

"1* free_sum. c 
*************************************************************************** 

. .	 * Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/
/* 

Functionality: 
This file contains a routine which will free the matrix which was 
allocated to hold the probabilities for each initial state for each 
variable. 

*/
/*=======================================================================*/ 
#include "convert.h" 

/*=======================================================================*/ 
void free_summed_probs(n_variables, var_probs_p)
 

short n_variables;
 
float ***var_probs_p;
 

{ 
float	 **var_probs;
short	 var_ i ; 

voi d free(); 

/************************************************/
/* free summed probabilities for each variable */ 
/**********************************************/ 

for (var_i = 0; var_i < n_variables; var_i++) 
{ 

/* free space allocated to hold the probabilities for one variable */
free(var_probs[var_i]); 

} 

/* free space allocated for the n_variables possible variables */ 
free(var_probs); 

/* reset the pointer to the var_probs matrix */
 
*var_probs_p = (float ***) NULL;
 

} 



Thursday, March 16, 1989 7:43 pm Page 1 

File: c:\CONVERT\free_tbn.c Creation Date: March 13, 1989 

"1* free_tbn.c 
*************************************************************************** * Thesis work * * (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*1 

1*=======================================================================*1
 
1* 

Functionality: 
This file contains a rou~ine which will free the temporal Bayes 
network information structure. 

*1
1*=======================================================================*1
 
linclude "convert.h" 
linclude "tbn_info.h" 

1*=======================================================================*1
 
ERROR_CODE free_tbn_info(n_variables, tbn_info) 

short n_variables; 
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES]; 

{ 

void free(); 

1***********************************************11* free temporal Bayes network info structure *1
 
1*********************************************1
 
for (var_i = 0; var_i < n_variables; var_i++) 
{
 

tbn_info[var_i].n_dependent = 0;
 
tbn_info[var_i].n_combinations = 0;
 
free(tbn_info[var_i].conditional_probs);
 
tbn_info[var_i].conditional_probs = (COND_PROB_INFO *) NULL;
 

} 

1* denote successful return *1 
return((ERROR_CODE) no_errors); 

} 



GET_COND.C Thursday, March 16, 1989 7:43 pm	 Page 1 

File: c:\CONVERT\get_cond.c Creation Date: March 16, 1989 

'1* get_cond.c 
*************************************************************************** 
* Thesis work * * (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*1 

1*=======================================================================*1 
1* 

Functionality: 
This file contains a routine which will obtain the conditional 
probabilities for the temporal Bayes network. 

*1 
I*=====~=================================================================*1 

-., ',. .	 # i nc 1ude <std i 0 • h> 
#include <string.h> 

#include "convert.h"
 
#include "tbn_info.h"
 

1*=====================================================================-==*1 . 
ERROR_CODE get_conditional_probabilities(n_variables, variable_name, tbn_in 
fo) .
 

short n_variables;
 
char variable_name[MAX_N_VARIABLES][MAX_VAR_NAME_LEN];
 
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES];
 

{ 
short and_value;
 
short bit_map;
 
short combo_i;
 
short d_var_ i ;
 
short n_combinations;
 
short pos_or_neg;
 
short var_i;
 

void init_pos_or_neg_states();
 
char *ma 11 oc ( ) ;
 

1**********************************11* get conditional probabilities *1
 
1********************************1

for (var_i = 0; var_i < n_variables; var_i++) 
{ 

n_combinations = 1; 

1* determine the number of combinations of dependent variables *1 
for (d_var_i = 0; d~var_i < tbn_info[var_i].n_dependent; d_var_i++) 
{ 



GET_COND.C Thursday, March 16, 1989 7:43 pm Page 2 

n_combinations = n_combinations * 2;
 
}
 

printf("\nNow accepting %hd (conditional) probabilities for variable 
%hd (%s)\n", 

n_combinations, var_i + 1, var;able_name[var_i]); 

tbn_info[var_i].n_combinat;ons = n_combinations; 
/* allocate space for the conditional probabilities */ 
if «tbn_info[var_i].conditional_probs = (COND_PROB_INFO *) 

malloc(n_combinations * sizeof(COND_PROB_INFO») == 
(COND_PROB_INFO *) NULL) 

{ 
fpr;ntf(stderr, "Ran out of space - Aborting program.\n"); 
return«ERROR_CODE) ma'loc_error); 

} 

/* initialize the pos_or_neg_state vectors to indicate doesn't matter 
*/ 

for (combo_i = 0; combo_i < n_comb;nations; combo_i++) 
{ 

init_pos_or_neg_states(tbn_info[var_;].conditional_probs[combo_i]. 
pos_or_neg_state); 

... :... } 

for (combo_i = 0; combo_i < n_combinations; combo_i++) 
{ 

bit_map = (n_combinations - combo_i) - 1; 

printf("Please enter the probability P\(%S at t", variable_name[va 

if (n_combinations > 1)
 
{
 

printf(" \: H);
 
}
 

/* determine whether the next dependent variable is negated or not 
*/ 

for (and_value = n_combinations / 2, d_var_i = 0; 
and_value> 0; 

and_value = and_value / 2, d_var_i++) 
{ 

pos_or_neg = bit_map & and_value;
 
if (pos_or_neg > 0)
 
{
 

printf("%s", variable_name[tbn_info[var_i].dependent_vars[d_ 
var_ i ]] ) ; 

tbn_info[var_i].conditional_probs[combo_i].
pos_or_neg_state[tbn_info[var_;].dependent_vars[d_var_ 

i]] 

} 
else 
{ 



Thursday, March 16, 1989 7:43 pm Page 3 

tbn_info[var_i].conditional_probs[combo_i]. 
pos_or_neg_state[tbn_info[var_i].dependent_vars[d_var_ 

i]] 

} 
if (d_var_i < (tbn_info[var_i].n_dependent - 1)) 
{ 

printf(" AND "); 
} 
else 
{ 

printf(" at t-1");
 
· '.: .. : }
 

} 
printf ("\)\n"); 
scanf("%f", &(tbn_info[var_i].conditional_probs[combo_i].probabili 

ty) ); 

"'.: .•.~ "~-' .;....:. ~., if «tbn_info[var_i].conditional_probs[combo_i].probability < (flo 
at) 0) :: 

(tbn_info[var_i].conditional_probs[combo_i].probability > (f 
loat) 1») 

{ 
fprintf(stderr, "The probability was out of acceptable range. 

Please start again.\n"); 
return«ERROR_CODE) bad_initial_state); 

} 

printf("The probability stored was %f\n", 
tbn_info[var_i].conditional_probs[combo_i].probability);

.. ' . ', .. ' 

.. ':':_' .. '., } 
} 

/* denote successful return */

return«ERROR_CODE) no_errors);
 

}
 
.... :_'" 

.. : :: .. ; ...... 



GET_DEPE.C Thursday, March 16, 1989 7:45 pm Page 1 

. \:' ':._. 

....;.....'- ..~ .. 

File: c:\CONVERT\get_depe.c Creation Date: March 16, 1989 

i* get_depe.c 
*************************************************************************** * Thesis work * * (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*============================================================~~=~=======*/ 
/* 

Functionality: 
This file contains a routine which will obtain information about the 
dependent variables in a temporal Bayes network. 

*/
/*=======================================================================*/ 
#include <stdio.h> 
#include <string.h> 

#include "convert.h" 
#include "tbn_info.h" 

/*=======================================================================*/ 
ERROR_CODE get_dependent_variables(n_variables, variable_name, tbn_info) 

short n_variables; 
char variable_name[MAX_N_VARIABLES][MAX_VAR_NAME_LEN]; 
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES]; 

{ 
short d_var_ i ; 
short var_ i ; 
short var_n; 

/**********************************************/
/* get information about dependent variables */ 
/********************************************/
printf("\n"); 
for (var_i = 0; var_i < n_variables; var_i++) 
{ 

printf("How many variables is variable %d (known as %s) dependent on? 
\n", 

var_i + 1, variable_name[var_iJ);
scanf( "%d", &tbn_info[var_ i]. n_dependent); 

if «(tbn_info[var_;J.n_dependent < 0) :: 
(tbn_info[var_i].n_dependent > n_variables)) 

{ 
fprintf(stderr, "The number was out of acceptable range. Please s 

tart again.\n");
return«ERROR_CODE) bad_initial_state); 

} 



GET_DEPE.C Thursday, March 16, 1989 7:45 pm Page 2 

for Cd_var_i = 0; d_var_i < tbn_info[var_i].n_dependent; d_var_i++) 
{ 

printfC"Please enter the number of dependent variable number %hd.\ 
n" , 

d_va r_ i + 1); 
scanfC"%hd" , &var_n); 

if CCvar_n < 1) :: Cvar_n > n_variables)) 
{ 

fprintfCstderr, "The variable number was out of acceptable rang 
e. Please start again.\n"); 

returnCCERROR_CODE) bad_initial_state); 
} 
tbn_info[var_i].dependent_vars[d_var_i] = var_n - 1; 

} 
printfC"Variable %d Cknown as %s) is dependent on %hd variables:\n", 

var_i + 1, variable_name[var_i], tbn_info[var_i].n_dependent 
) ; 

for Cd_var_i = 0; d_var_i < tbn_info[var_i].n_dependent; d_var_i++) 
{ 

printfC" variable %d, known as %s\n" , 
tbn_info[var_i].dependent_vars[d_var_i] + 1, 
variable_name[tbn_info[var_i].dependent_vars[d_var_i]]); 

}
 
}
 

/* denote successful return */
returnCCERROR_CODE) no_errors); 

} 



Thursday, March 16, 1989 7:45 pm Page 1 

'. ".', 

-.'.:';. 

File: c:\CONVERT\get_vars.c Creation Date: March 16, 1989 

./* get_vars. c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*1 
/*=======================================================================*1 
/* 

Functionality: 
This file contains a routine which will obtain information about the 
number of variables and their names. 

*/
/*=======================================================================*1
 
#include <stdio.h> 
#include <string.h> 

#include "convert.h" 

1*==================================================== ===================*/
 
ERROR_CODE get_variables_info(n_variables_p, variable_name) 

short *n_variables_p; 
char variable_name[MAX_N_VARIABLES][MAX_VAR_NAME_LEN]; 

{ 
short n_variables; 
short var_ i ; 

/*************************************/1* get number of variables involved */
1***********************************1
printf("How many variables does the temporal Bayes network involve?\n"); 
printf("(The maximum that this program can handle is %d)\n", MAX_N_VARIA 

BLES) ; 
scanf("%d", &n_variables); 

if «n_variables < 0) :: (n_variables > MAX_N_VARIABLES)) 
{ 

fprintf(stderr, "Program cannot handle %d variables. Please start ag 
a in. \n ,. , 

n_variables); 
return«ERROR_CODE) bad_initial_state); 

} 
else 
{ 

*n_variables_p = n_variables; 
printf("This temporal Bayes network involves %hd variables.\n", n_var 

i ab 1es) ; 
} 



Thursday, March 16, 1989 7:45 pm Page 2 

/*********************************/
/* get a name for each variable */
 
/*******************************/

for Cvar_i = 0; var_i < n_variables; var_i++) 
{ 

printfC"Please enter a name of no more than %hd characters for variab 
le %hd\n", 

MAX_VAR_NAME_LEN - 1, var_i + 1); 
scanfC"%s", variable_name[var_i]); 
printfC"The name stored for variable %hd is %s.\n", var_i + 1, 

variable_name[var_i]);
 
}
 

/* denote successful return */ 
returnCCERROR_CODE) no_errors); 

} 



GROUP_EQ.C Thursday, March 16, 1989 7:46 pm	 Page 1 

File: c:\CONVERT\group_eq.c Creation Date: March 14, 1989 

/* group_eq.c 
*************************************************************************** 

'.._- * Thes is work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This ;s an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/.
/* 

Functionality: 
This file contains a routine which will partition the variables' 
probabilities into equivalence classes. . 

*/
/*=======================================================================*/ 

"_-:." .. 

~;~	 #include <stdio.h> 
#include <math.h> 

#include "convert.h"
 
#include "equiv_cl.h"
 

/*=======================================================================*/ 
ERROR_CODE group_equiv_classes(n_variables, n_states, var_probs, equiv_clas
ses) .
 

short n_variables;
 
short n_states;
 
float **var_probs;

EQ_CLASS_INFO equiv_classes[MAX_N_VARIABLES];
 

{
 
short class_i;
 
BOOLEAN found_prob;

STATE_INFO *new_state_p;

ERROR_CODE stat; ,­

short state_i;
 
short var_ i ;
 

ERROR_CODE add_equiv_class();
 
ERROR_CODE locate_equiv_class();
 
ERROR_CODE init_state_entry();
 

/*************************************************/
/* group probabilities into equivalence classes */
 
/***********************************************/
 

/* initialize the equivalence class structures */

for (var_i = 0; var_i < MAX_N_VARIABLES; var_i++)
 
{
 

equiv_classes[var_i].n_equiv_classes = 0; 
equiv_classes[var_i].equiv_class = (EQUIVALENCE_CLASS *) NULL; 



GROUP_EQ.C Thursday, March 16, 1989 7:46 pm Page 2 

} 

/* divide each variable's probabilities into classes */
 
for (var_i = 0; var_i < n_variables; var_i++)
 
{
 

/* decide upon an equivalence class for each input state's probabilit 
y */ 

for (state_i = 0; state_i < n_states; state_i++)
 
{
 

found_prob = FALSE;
 

/* add this state to the equiv class with the appropriate probabil 
ity */ 

stat = locate_equiv_class(n_states, var_i, state_i, equiv_classes, 
var_probs[var_i][state_i], &found_prob); 

if (stat != (ERROR_CODE) no_errors) 
retu rn (stat) ; 

/* if could not find this probability among the existing equiv cla 
sses */ 

if (! found_prob) 
{ 

/* add an equivalence class to this variable's list */ 
stat = add_equiv_class(var_i, var_probs[var_i][state_i], equiv_ 

classes) ; 
if (stat != (ERROR_CODE) no_errors) 

retu rn (stat) ; 

/* get local copy of class index */

class_i = equiv_classes[var_i].n_equiv_classes - 1;
 

/* allocate and initialize a new state entry */
 
stat = init_state_entry(n_states, state_i, &new_state_p);
 
if (stat != (ERROR_CODE) no_errors)
 

return(stat) ; 

/* add it to the beginning of the linked list */ 
new_state_p->previous = (STATE_INFO *) NULL; 
equiv_classes[var_i].equiv_class[class_i].state_info_list_p = n 

}
 
}
 

}
 

/* just a printf to see how many equivalence classes there are */
 
printf("\n\n");
 
for (var_i = 0; var_i < n_variables; var_i++)
 
{
 

printf("variable %hd has %hd equivalence classes.\n", var_i + 1, 
equiv_classes[var_i].n_equiv_classes); 

for (class_; = 0; class_i < equiv_classes[var_i].n_equiv_classes; cla 
ss_;++) 

{ 



Thursday, March 16, 1989 7:46 pm Page 3 

printf("The probability is %f for %hd states.\n", 
equiv_classes[var_i].equiv_class[class_i].probability, 
equiv_classes[var_i].equiv_class[class_i].n_states); 

}
 
}

printf("\n\n");
 

/* denote successful return */ 
return«ERROR_CODE) no_errors); 

} 



Thursday, March 16, 1989 7:48 pm Page 1 

File: c:\CONVERT\init_sta.c Creation Date: March 14, 1989 

1* init_sta.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/

/* . 

Functionality: 
This file contains a routine which will allocate a new state entry 
and initialize it. 

*/
/*=======================================================================*/
 
#include <stdio.h> 

#include "convert.h" 
#include "equiv_cl.h" 

/*=======================================================================*/
 
, 
) ERROR_CODE init_state_entry(n_states, state_i, new_state_p_p) 

short n_states; 
short state_i; 
STATE_INFO **new_state_p_p; 

{ 

void det_pos_or_neg_states(); 
char *malloc(); 

/**********************************************/
/* allocate and initialize a new state entry */ 
/********************************************/ 

/* allocate space for this state */

if «new_state_p = (STATE_INFO *) malloc(sizeof(STATE_INFO»)


== (STATE_INFO *) NULL)

{
 

fprintf(stderr, "Ran out of space - Aborting program.\n");
 
return«ERROR_CODE) mal1oc_error);
 

} 

/* record the pointer to the new state entry */

*new_state_p_p = new_state_p;
 

/* determine the pos_or_neg_states for this state */ 



Thursday, March 16, 1989 7:48 pm Page 2 

/* denote successful return */ 
'':':1 return((ERROR_CODE) no_errors); 

} 

'~.' 



Thursday, March 16, 1989 7:48 pm Page 1 

File: c:\CONVERT\locate_e.c Creation Date: March 13, 1989 

.1* 1ocate_e. c 
*************************************************************************** 
* Thesi s work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fuijly protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*1 

1*=======================================================================*11* . 
Functionality: 

This file contains a routine which will locate the equivalence class 
with the desired probability and add the specified state to it .. 

*1
1*=======================================================================*1 

~..; .' '.. 
. ;. #include <math.h> 

#include "convert.h"
 
#include "equiv_cl.h"
 

1*=======================================================================*/ 
ERROR_CODE locate_equiv_cl ass(n_states , var_i, state_i, equiv_classes, 

input_probability, found_prob_p)
 
short n_states;
 
short var_ i ;
 
short state_i ;
 . '~ .' ...:.. ". 

EQ_CLASS_INFO equiv_classes[MAX_N_VARIABLES];
 
float input_probability;
 
BOOLEAN *found_prob_p;
 

{ 
short c 1ass_ i ;
 
STATE_INFO *new_state_p;
 
STATE_INFO *next_state~p;
 

ERROR_CODE stat;
 

/*********************************************************************** 
/ 

. :".' .~ : 1* add this state to the equiv class with the appropriate probability */ 
., ':'­ 1*********************************************************************/ 

/* look at each equivalence class to see if it's the right one *1 
for (class_i = 0; class_i < equiv_classes[var_i].n_equiv_classes; class_ 

i++) 
{ 

1* if the probability is within a small tolerance */ 
if «float)(fabs«double) (input_probability ­

equiv_classes[var_i].equiv_class[class_i].probability») < 



Thursday, March 16, 1989 7:48 pm Page 2 

(float) 0.0001) 
{ 

1* found the right probability - just add to list *1 
*found_prob_p = TRUE; 

1* allocate and initialize a new state entry *1 
stat = init_state_entry(n_states, state_i, &new_state_p); 
if (stat != (ERROR_CODE) no_errors) 

return(stat); 

1* add it to the end of the linked list *1 
for (next_state_p = equiv_classes[var_i].equiv_class[class_i].stat 

e_info_list_p; 
next_state_p->next != (STATE_INFO *) NULL; 

next_state_p = next_state_p->next) 
{ 

. ':. 1* just walk down the list (at the end of this for loop, 
* next_state_p will point to the tail of the list) 
*1 

} 

new_state_p->previous = next_state_p; 
next_state_p->next = new_state_p; 

equiv_classes[var_i].equiv_class[class_i].n_states++; 

1* break out of the for loop over equivalence classes *1 
break; 

} 
} 

1* denote successful return *1
 
return«ERROR_CODE) no_errors);
 

}
 



Thursday, March 16, 1989 8:01 pm Page 1 

·File: c:\CONVERT\locate_p.c Creation Date: March 14, 1989 

1* locate_p.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*1 

1*=======================================================================*1 
1* 

Functionality: 
This file contains a routine which will locate the indicated state 
among the equivalence classes, and use the probability for that 
equivalence class. 

". ~.'.:'';: , */
/*=======================================================================*1 
#include <stdio.h> 

#include "convert.h"
 
#include "equiv_cl.h"
 
#include "tbn_info.h"
 

1*==================================================== ===================*/ 
void 1ocate_pos_or_neg_states(variabl e_name , var_i, combo_i, equiv_classes, 

tbn_info) 
char variable_name[MAX_N_VARIABLES][MAX_VAR_NAME_LEN]; 
short var_ i ; 
short combo_i; 
EO_CLASS_INFO equiv_classes[MAX_N_VARIABLES]; 
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES]; 

{ 
short class_i;
 
short d_var_ i ;
 
BOOLEAN found_vector;
 
STATE_INFO *next_state_p;
 
short var_i i;
 

1**********************************************************************1
1* locate this pos_or_neg_state vector among the equivalence classes *1 
1********************************************************************1 
printf("Locating the probability P\(%S at t", variable_name[var_i]); 

if (tbn_info[var_i].n_combinations > 1)
 
{
 

printf(" \: .. ) ;
 
}
 

d_var_i = 0;
 
for (var_ii = 0; var_ii < MAX_N_VARIABLES; var_ii++)
 



Thursday, March 16, 1989 8:01 pm Page 2 

{ 

i] 
'-_pO' 

{ 
printf("%s", variable_name[var_ii]);
 
d_var_i++;
 
if (d_var_i < tbn_info[var_i].n_dependent)
 
{
 

printf(" AND ");
 
}
 

} 
if (tbn_info[var_i].conditional_probs[ccmbo_i].pos_or_neg_state[var_i 

i ] 

{ 
printf("NOT
 
d_var_i++;
 
if (d_var_i
 
{ 

printf(" AND ");
 
}
 

}
 
} 
if (tbn_info[var_i].n_dependent > 0)
 
{
 

printf(" at t-1");
 
} 
printf ("\)\n"); 

for (class_i = 0; class_i < Gq~iv_classes[var_iJ.n_eq~iv_classes; class_ 
i++) 

{ 
for (next_state_p = equiv_classes[var_i].equiv_class[class_i].state_i 

nfo_list_p; 
next_state_p != (STATE_INFO *) NULL; 

next_state~p = next_state_p->next) 
{ 

found_vector = TRUE;
 
for (var_ii = 0; var_ii < MAX_N_VARIABLES; var_ii++)
 
{
 

if «next_state_p->pos_or_neg_state[var_ii] != DOESNT_MATTER) 
&& (next_state_p->pos_or_ne9_state[var_ii] != 

tbn_info[var_i].conditional_probs[combo_i]. 
pos_or_ne9_state[var_ii])) 

{ 
/* this one does not match - break out of compare loop */
 
found_vector = FALSE;
 
break;
 

r 
}
 
/* if we have found the correct vector, use its probability */

if (found_vector) .
 
{ 

tbn_info[var_i].conditional_probs[combo_i].probability = 



Thursday, March 16, 1989 8:01 pm Page 3 

equiv_classes[var_i].equiv_class[class_i].probability; 
/* no need to look at the remaining states in this class */ 
break; 

}
 
}
 
if (found_vector)
 
{
 

/* no need to look at remaining equivalence classes */ 
break; 

}
 
}

printf("The probability stored was %f\n",
 

tbn_info[var_i].conditional_probs[combo_i].probability); 
} 

,..... 



'" '..." 

... , -. 

~ : < •• 

POSORNEG.C Thursday, March 16, 1989 8:03 pm Page 1 

'File: c:\CONVERT\posorneg.c Creation Date: March 13, 1989 

/* posorneg.c 
*************************************************************************** * Thesis work * * (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/
/* 

Functionality: 
This file contains routines which fill in appropriate value in a 
positive or negative state vector. 

*/
/ *=======================================================================*/ 
#include "convert.h" 

/*=======================================================================*/ 

/*************************************************************************** initialize the pos_or_neg_states to indicate either state is OK
 
*/


voidinit_pos_or_neg_states(pos_or_ne9_vector) 
short pos_or_neg_vector[MAX_N_VARIABLES]; 

{ 
short var_ i ; 

for (var_i =
 
{
 

} 
} 

/*************************************************************************** determine the pos_or_ne9_states based on the input number
 
*/


void det_pos_or_neg_states(input_number, max_number, pos_or_ne9_vector) 
short input_number; 
short max_number; 
short pos_or_ne9_vector[MAX_N_VARIABLES]; 

{ 
short and_value; 
short pos_or_neg;
short var_ i ; 

/* initialize the "pos_or_ne9_state" vector to indicate doesn't matter * 
/ 



POSORNEG.C Thursday, March 16, 1989 8:03 pm Page 2 

1* determine whether each variable is negated or not *1 
for (and_value = max_number I 2, var_i = 0; 

and_value> 0; 
and_value = and_value I 2, var_i++) 

{
 
pos_or_neg = input_number &
 
if (pos_or_neg > 0)
 
{ 

} 
else 
{ 

}
 
}
 

} 

".•; ': w.~·. f 

':.' :", 



Thursday, March 16, 1989 8:17 pm	 Page 1 

File: c:\CONVERT\reduce_e.c Creation Date: March 16, 1989 

.-- .. ;	 /* reduce e.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 

. '-.: 
_...-.," * This is an unpublished work fully protected by the copyright laws * 
. "., * and is considered a trade secret by the copyright owner. * ..--, 

· . ,,, ~l *************************************************************************** 
:':";.i */ 

/*=======================================================================*/
/* 

-_: Functional ity:'
..;.. 

This file contains a routine which will reduce the number of states
 
in each equivalence class, by combining two states which differ by
 

· ';'",'., the value of only one variable.
 
· .' ~. :,.~ 

*/
/*=======================================================================*/ 
#include "convert.h"
 
#include "equiv_cl.h"
 

/*=======================================================================*/ 
void reduce_equiv_class_states(var_i, equiv_classes)
 

short var_ i ;
 
EO_CLASS_INFO equiv_classes[MAX_N_VARIABLES];
 

..... { 
• ··~·;'·':'C' BOOLEAN can_combine;
 

short class_i;
 
STATE_INFO *first_combine_ele;
 
short n_diff;
 
STATE_INFO *second_combine_ele;
 
STATE_INFO *temp_p;
 
short var_d i fferent; "
 
short var_ii;
 

-'.' ... ;:: 

,. ;: .. : ~.._. 

void free(); 
.......
 
.'<-;-:-:: /***********************************************************************
... ~:::.: ' .. 
. ~:'. ***/
~- ~- ( . '-~ /* reduce number of states for each equiv class by combining if possible7;:~;~: ~~·i 

*/ 
/*********************************************************************** 

*/ 
for (class_i = 0; class_i < equiv_classes[var_i].n_equiv_classes; class_ 

i++) 
{ 

can_combine = TRUE;
 
while (can_combine)
 
{
 

can_combine = FALSE; 



Thursday, March 16, 1989 8: 17 pm	 Page 2 

/* try to combine each pair of states */
for (first_combine_ele = equiv_classes[var_i].equiv_class[class_i]

.state_info_list_p;
first combine ele != (STATE INFO *) NULL;

first_combTne_ele = firs~_combine_ele->next) 
{ 

for (second_combine_ele = first_combine_ele->next; 
second_combine_ele != (STATE_INFO *) NULL; 

second_combine_ele = second_combine_ele->next) 
{ 

n_diff = 0; 
/* states can be combined if they differ by only one value * 

/ 
for (var_ii = 0; var_ii < MAX_N_VARIABLES; var_ii++) 
{ 

if (first_combine_ele->pos_or_neg_state[var_ii] != 
second_combine_ele->pos_or_neg_state[var_ii]) 

{ 
.... ~:...~	 

n_diff++; 
if (n_d iff > 1) 
{ 

/* break out of for loop over variables */ 
break; 

} 
else 
{ 

/* record which feature was different */ 
var_different = var_ii; 

}
 
}


.'._0"_.'	 } 

/* if these two elements should be combined */
 
if (n_diff == 1)
 
{
 

can_combine = TRUE; 

/* indicate that the feature's value doesn't matter */ 
first_combine_ele->pos_or_neg_state[var_different] = 

DOESNT_MATTER; 

/* now delete the second combine ele from the list */ 
second_combine_ele->previous->next = 

second_combine_ele->next; 
/* if it's the last in the list, there is no next */ 
if (second_combine_ele->next != (STATE_INFO *) NULL) 
{ 

second_combine_ele->next->previous = 
second_combine_ele->previous; 

} 
/* save pointer to previous element for next loop iterati 

on */ 
temp_p = second_combine_ele->previous; 
free(second_combine_ele); 



Thursday, March 16, 1989 8:17 pm Page 3 

/* reset the second_combine_ele pointer */ 
second_combine_ele = temp_p; 
equiv_classes[var_;].equiv_class[class_i].n_states--; 

}
 
}
 

}
 
}
 

}
 
}
 

. ~ : . 



Thursday, March 16, 1989 8:03 pm Page 1 

File: c:\CONVERT\sel_prob.c Creation Date: March 14, 1989 

/* sel_prob.c
 
***************************************************************************
 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/
/* 

Functionality: 
This file contains a routine which will select the appropriate set 
of conditional probabilities for this initial state. 

*/ 
/*===============~====================================~==================*/ 

#include "convert.h" 
#include "tbn_info.h" 

/*=======================================================================*/ 
void select_probabilities(n_variables, n_states, tbn_info, row_state_i, 

probabilities)
 
short n_variables;
 
short n_states;
 
TBN_VAR_INFO tbn_info[MAX_N_VARIABLES];
 
short row_state_i;
 
float probabilities[MAX_N_VARIA'BLES];
 

{ 
short combo_ i ;
 
BOOLEAN found~cond_prob;
 

short input_pos_or_neg_state[MAX_N_VARIABLES];
 
short var_i; ,­
short var_ii;
 

/***********************************************************************
/ 

/* select the appropriate set of probabilities for this initial state */ 
/*********************************************************************/
/* determine the pos_or_neg_states for the initial state */
 
det_pos_or_neg_states(row_state_i, n_states, input_pos_or_neg_state);
 

for (var_i = 0; var_i < n_variables; var_i++) 
{ 

/* for each variable, find the one conditional probability which appl 
ies */

for (combo_i = 0; combo_i < tbn_info[var_i].n_combinations; combo_i++ 
) 

{ 



Thursday, March 16, 1989 8:03 pm Page 2 

for (var_ii = 0; var_ii < n_variables; var_ii++) 
{ 

if «tbn_info[var_i].conditional_probs[combo_i]. 
pos_or_neg_state[var_ii] != DOESNT_MATTER) && 

(tbn_info[var_i].conditional_probs[combo_i]. 
pos_or_neg_state[var_ii] != input_pos_or_neg_state[var 

{ 
/* this conditional probability does not apply, no need
* to check the remaining variables 
*/ . 

found_cond_prob = FALSE; 
break; 

} 
" .,",.- .. } 

if (found_cond_prob) 
... -.:~,," { 

probabilities[var_i] = 
tbn_info[var_i].conditional_probs[combo_i].probability; 

/* found the correct one, no need to check the remaining
* conditional probabilities */


break;
 
}
 

}
 
}
 

}
 

---~ : 



Thursday, March 16, 1989 8:03 pm Page 1 

File: c:\CONVERT\sum_prob.c Creation Date: March 13, 1989 

/* sum_prob.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 

._.... */ 

/*=======================================================================*/
/* 

." -..... Functionality: 
This file contains a routine which will determine the states for 
which each variable is positive. Then these states will be used to 
sum the probability for that variable. 

*/
/*=======================================================================*/ 
#include "convert.h" 

/*=======================================================================*/ 
ERROR_CODE sum_probs(n_variables, n_states, mrp_table, var_probs_p) 

short n_variables; 
short n_states; 
float **mrp_table; 
float ***var_probs_p; 

{
 
ERROR_CODE stat;
 
short **use_states;
 

ERROR_CODE find_states_to_sum();
 
ERROR_CODE free_states_to_sum();
 
ERROR_CODE sum_states(),; ­

/*****************************************/
/* find states to sum for each variable */
 
/***************************************/

stat = find_states_to_sum(n_variables, n_states, &use_states); 
if (stat != (ERROR_CODE) no_errors) 

return(stat); 

/****************************************/
/* sum these entries for each variable *1
 
/**************************************/

stat = sum_states(n_variables, n_states, mrp_table, use_states, 

var_p robs_p ) ; 
if (stat != (ERROR_CODE) no_errors) 

return(stat) ; 

/**************************************************/
/* free array of states to sum for each variable */ 



Thursday, March 16, 1989 8:03 pm Page 2 

/************************************************/
stat = free_states_to_sum(n_variables, &use_states); 
if (stat != (ERROR_CODE) no_errors) 

return(stat); 

/* denote successful return */
return«ERROR_CODE) no_errors); 

} 



Thursday, March 16, 1989 8:12 pm Page 1 

.. ":. '; 

....~ . 

... ". ',' -~ 

"- .'; 

-File: c:\CONVERT\sum_stat.c Creation Date: March 14, 1989 

/* sum_stat.c 
*************************************************************************** 
* Thesis work * 
* (C) Copyright 1989 Linda Mensinger Nunez. All Rights Reserved. * 
* This is an unpublished work fully protected by the copyright laws * 
* and is considered a trade secret by the copyright owner. * 
*************************************************************************** 
*/ 

/*=======================================================================*/

/* 

Functionality: 
This file contains a routine which will sum the specified states for 
each variable. The resulting sum is the probability for that 
variable (given the initial state). 

*/
/*=======================================================================*/
 
#include <stdio.h> 

#include "convert.h­

/*=======================================================================*/
 
ERROR_CODE sum_states(n_variables, n_states, mrp_table. use_states, var_pro
bs_p)
 

short n_variables;
 
short n_states;
 
float **mrp_table;
 
short **use_states;
 
float ***var_probs_p;
 

{
 
short n_states_used;
 
float prob;
 
short state_i;
 
short used_state_i;
 
float **var_probs;
 
short var_i;
 

char *malloc(); 

/****************************************/
/* sum these entries for each variable */
 
/**************************************/
 

/* allocate space for the n_variables possible variables */ 
if ((var_probs = (float **) malloc(n_var;ables *s;zeof(float *))) - ­

(float **) NULL) 
{
 

fprintf(stderr, "Ran out of space - Aborting program.\n");
 
r~turn((ERROR_CODE) malloc_error);
 

} 



Thursday, March 16, 1989 8:12 pm Page 2 

/* record the pointer to the var_probs matrix */ 
*var_probs_p = var_probs; 

for (var_i = 0; var_i < n_variables; var_i++) 
{ 

. /* allocate space to hold the probabilities for each input state */ 
if «var_probs[var_i] = (float *) 

malloc(n_states * sizeof(float») == (float *) NULL) 
{ 

fprintf(stderr, "Ran out of space - Aborting program.\n"); 
return«ERROR_CODE) malloc_error); 

} 

/* sum the specified entries in each row */
 
for (state_i = 0; state_i < n_states; state_i++)
 
{
 

/* initialize the probabilitiy to zero */
 
prob = (float) 0.0;
 

/* sum each of the specified entries */
for (used_state_i = 0; used_state_i < n_states_used; used_state_i+ 

+) 
{ 

}
var_probs[var_;][state_i] = prob; 

"..... } 
} 

/* denote successful return */
return«ERROR_CODE) no_errors); 

} 



Appendix C
 

Sample Input and Output
 



,

INPUT Wednesday, April 12, 1989 Page 1 

File: c:\CONVERT\input Creation Date: March 16, 1989 

4 
maid_comes 
room_clean 
kids_come 
kids_invited 
a 
3 
1 

,.",C.. 2 

3 
1 

. '..;:. 4 
1 
4 
y 
.15 

. ",. ,-.,-" .3 
1 
.4 
1 
a 
.8 
a 
.05 
1 
• 1 
o 

.-­
: . .3 

..: ," ~ ',':',.,.­ y 
y 

.. ,"-'-.. ': 

• i.. 

~ .-, .- .. -" . 

"," 



OUTPUT Wednesday, Apr i 1 12, 1989	 Page 1 

File: c:\CONVERT\output Creation Date: March 16, 1989 

How many variables does the temporal Bayes network involve?
 
(The maximum that this program can handle is 7)
 
This temporal Bayes network involves 4 variables.
 
Please enter a name of no more than 15 characters for variable
 
The name stored for variable 1 is maid_comes.
 
Please enter a name of no more than 15 characters for variable 2
 
The name stored for variable 2 is room_clean.
 
Please enter a name of no more than 15 characters for variable 3
 
The name stored for variable 3 is kids_come.
 
Please enter a name of no more than 15 characters for variable 4
 
The name stored for variable 4 is kids- invited.
 

How many variables is variable 1 (known as maid_comes) dependent on?
 
Variable 1 (known as maid_comes) is dependent on a variables:
 
How many variables is variable 2 (known as room_clean) dependent on?
 
Please enter the number of dependent variable number 1.
 

....:.:.'.	 Please enter the number of dependent variable number 2 . 
Please enter the number of dependent variable number 3. 
Variable 2 (known as room_clean) is dependent on 3 variables: 

variable 1, known as maid_comes
 
variable 2, known as room_clean
 
variable 3, known as kids_come
 

How many variables is variable 3 (known as kids_come) dependent on?
 
Please enter the number of dependent variable number 1.
 
Variable 3 (known as kids_come) is dependent on 1 variables:
 

- variable 4, known as kids_invited 
How many variables is variable 4 (known as kids_invited) dependent on? 
Please enter the number of dependent variable number 1. 
Variable 4 (known as ~~ids_invited) is dspande~t C~ 1 va~iables: 

variable 4, known as kids_invited 

Now accepting 1 (conditional) probabi lities for variable 1 (maid_comes)
 
Please enter the probability P(maid_comes at t)
 
The probability stored was 0.150000
 

Now accepting 8 (conditional) probabilities for variable 2 (room_clean)
 
Please enter the probability P(room_clean at t : maid_comes AND room_clean
 
AND kids_come at t-1)
 
The probability stored was 0.300000
 
Please enter the probability P(room_clean at t maid_comes AND room_clean
 
AND NOT kids_ceme at t-1)
 
The probability stored was 1.000000
 
Please enter the probability P(room_clean at t maid_comes AND NOT room_cl
 
ean AND kids_come at t-1)
 
The probability stored was 0.400000
 
Please enter the probability P(room_clean at t maid_comes AND NOT room_cl
 
ean AND NOT kids_come at t-1)
 
The probability stored was 1.000000
 
Please enter the probability P(rocm_clean at t NOT maid_comes AND room_cl
 
ean AND kids_come at t-1)
 
The probability stored was 0.000000
 
Please enter the probability P(room_clean at ~ ~JOT maid_comes AND room_cl
 



OUTPUT Wednesday, Apri 1 12, 1989 Page 2 

ean AND NOT kids_come at t-1) 
The probability stored was 0.800000 
Please enter the probability P(room_clean at t NOT maid_cernes AND NOT roo 
m_clean AND kids_come at t-1) 

... , .', The probability stored was 0.000000 
Please enter the probability P(room_clean at t NOT maid_comes AND NOT roo 
m_clean AND NOT kids come at t-1) 
The probability stored was 0.050000 

Now accepting 2 (conditional) probabilities for variable 3 (kids_come) 
Please enter the probability P(kids_come at t : kids_invited at t-1) 
The probability stored was 1.000000 
please enter the probability P(kids_come at t NOT kids_invited at t-1) 
The probability stored was 0.100000 

Now accepting 2 (conditional) probabilities for variable 4 (kids_invited)
 
Please enter the probability P(kids_invited at t kids_invited at t-1)
 
The probability stored was 0.000000
 
Please enter the probability P(kids_invited at t NOT kids_invited at t-1)
 
The probability stored was 0.300000
 

The MRP transition table has 16 possible states.
 

Row 1 ef the MRP transition table is for input state ° 
The table value for input state 0, output state a is 0.508725 
The table value for input state 0, output state 1 is 0.218025 
The table value for input state 0, output state 2 is 0.056525 
The table value for input state 0, output state 3 is 0.024225 
The table value for input state 0, output state 4 is 0.026775 
The table value for input state 0, output state 5 is 0.011475 
The table value for input state 0, output state 6 is 0.002975 
The table value for input state 0, output state 7 is 0.001275 
The table value for input state 0, output state. 8 is 0.089775 
The table value for input state 0, output state 9 is 0.038475 
The table value for input state 0, output state 10 is 0.009975 
The table value for input state 0, output state 11 is 0.004275 
The table value for input state 0, output state 12 is 0.004725 
The table value for input state 0, output state 13 is 0.002025 
The table value for input state 0, output state 14 is 0.000525 
The table value for input state 0, output state 15 is 0.000225 

Row 2 of the MRP transition table is for input state 1 
The table value for input state 1, output state a is 0.000000 
The table value for input state 1, output state 1 is 0.000000 
The table value for input state 1, output state 2 is 0.807500 
The table value for input state 1, output state 3 is 0.000000 
The table value for input state 1, output state 4 is 0.000000 
The table value for input state 1, output state 5 is 0.000000 
The table value for input state 1, output state 6 is 0.042500 
The table·value for input state 1, output state 7 is 0.000000 
The table value for input state 1, output state 8 is 0.000000 
The table value for input state 1, output state 9 is 0.000000 
The table value for input state 1, output state 10 is 0.142500 



- -

OUTPUT	 Wednesday, Apri 1 12, 1989 Page 3 

The table value for input state 1 , output state 11 is 0.000000 
The table value for input state 1 , output state 12 is 0.000000 
The table value for input state 1 , output state 13 is 0.000000 
The table value for input state 1 , output state 14 is 0.007500 

· r.,.:	 The table value for input state 1 , output state 15 is 0.000000 

Row 3 of the MRP transition table is for input state 2 
The table value for input state 2, output state 0 is 0.535500 
The table value for input state 2, output state 1 is 0.229500 
The table value for input state 2, output state 2 is 0.059500 
The table value for input state 2, output state 3 is 0.025500 

.. The table value for input state 2, output state 4 is 0.000000 
The table value for input state 2, output state 5 is 0.000000 
The table value for input state 2, output state 6 is 0.000000 
The table value f.or input state 2, output state 7 is 0.000000 
The table value for input state 2, output state 8 ;s 0.094500 
The table value for input state 2, output state 9 is 0.040500 
The table value for input state 2, output state 10 is 0.010500 
The table value for input state 2, output state 1 1 ;s 0.004500 

.:~ w-_; The table value for input state 2, output state 12 ;s 0.000000 
The table value for input state 2, output state 13 is 0.000000 
The table value for input state 2, output state 14 is 0.000000 
The table value for input state 2, output state 15 is 0.000000 

Row 4 of the MRP transition table is for input state 3 
The table value for input state 3, output state 0 is 0.000000 

?The table value for input state ... , output state 1 is 0.000000 
The... tabl e value for input state 3, output state 2 is 0.850000 
The 'tabl e value for input state 3, output state 3 is 0.000000 
The table value for .i nput state 3, output state 4 is 0.000000 
The table value for input state ...? , output state 5 is 0.000000 
The table value for input stat.e 3, output st.at.e 6 is 0.000000 
The table value for input state 3, output state 7 is 0.000000 
The table value for input state ? output state 8 is 0.000000... , 
The table value for input state 3, output state 9 is 0.000000 
The table value for input state 3, output state 10 is 0.150000 
The	 

,.,
table value for input state .:I, output state 1 1 is 0.000000 

,.,
The table value for inpUt state oJ, output state 12 is 0.000000 
The table value for input state 3, output state 13 is 0.000000 

· ..... The table value for input state ...? , output state 14 is 0.000000 

.-
The table value for input state 3, output state 15 is 0.000000 

Row 5 of the MRP transition table is for input state 4 
The table value for input state 4, output state 0 is 0.107100 
The table value for input state 4, output state 1 is 0.045900 

.:~· :	 The table value for input state 4, output state 2 is 0.011900 
The table value for input state 4, output state 3 is 0.005100 
The table value for input state 4, output state 4 is 0.428400 
The table value for input state 4, output state 5 is 0.183600 
The table value for input state 4, output state 6 is 0.047600 
The table value for input state 4, output state 7 is 0.020400 
The table value for input state 4, output state 8 is 0.018900 
The table value for input state 4, output state 9 is 0.008100 
The table value for input state 4, output state 10 is 0.002100 
The table value for input state 4, output state 11 is 0.000900 



OUTPUT Wednesday, Apri 1 12, 1989 Page 4 

The table value for input state 4, output state 12 is 0.075600 
The table value for input state 4, output state 13 is 0.032400 
The table value for input state 4, output state 14 is 0.008400 
The table value for input state 4, output state 15 is 0.003600 

.. -:1 

Row 6 of the MRP transition table is for input state 5 
The table value for input state 5, output state a is 0.000000 
The table value for input state 5, output state 1 is 0.000000 
The table value for input state 5, output state 2 is 0.170000 
The table value for input state 5, output state 3 is 0.000000 
The table value for input state 5, output state 4 is 0.000000 

; "rhe table value for input state 5, output state 5 is 0.000000 
The table value for input state 5, output state 6 is 0.680000 
The table value for input state 5, output state 7 is 0.000000 

. 

, 
". .') 

: .•.•j 

.;,,', 
','. ' 

'-';:":"~ 

The 
The 
The 
The 
The 
The 
The 
The 

table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 

input state 
input state 
input state 
input state 
input state 
input state 
input state 
input state 

5, 
5, 
5, 
5, 
5, 
5 , 
5 , 
5 , 

output state 
output state 
output state 
output state 
output state 
output state 
output state 
output state 

8 
9 

10 
11 
12 
13 
14 
15 

is 0.000000 
is 0.000000 
is 0.030000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.120000 
is 0.000000 

Row 7 of the MRP transition table is for input state 6 
The 
The 
-rhe 
The 
The 

table value 
table value 
table value 
table value 
table value 

for 
for 
for 
for 
for 

input state 
input state 
input state 
input state 
input state 

6, 
6, 
6, 
6, 
6, 

output state 
output state 
output state 
output state 
output state 

a is 0.535500 
is 0.229500 

2 is 0.059500 
3 is 0.025500 
4 is 0.000000 

The 
The 
The 
The 
The 
The 
The 
The 
The 
The 
The 

table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 

input state 
input state 
input s~ate 

input state 
input state 
input state 
input state 
input state 
inpat state 
input state 
input state 

6, 
6, 
6, 
6, 
6, 
6, 
6, 
6, 
6, 
6, 
6, 

output 
output 
output 
output 
output 
output 
output 
output 
output 
output 
output 

state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 

5 is 0.000000 
6 is 0.000000 
7 is 0.000000 
8 is 0.094500 
9 is 0.040500 

10 is 0.010500 
11 is 0.004500 
12 is 0.000000 
13 is 0.000000 
14­ is 0.000000 
15 is 0.000000 

Row 8 of the MRP transition table is for input state 7 
The 
The 

. The 
The 
The 
The 
The 
The 
The 
The 
The 
The 
The 

table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 
table value for 

input state 
input state 
input state 
input state 
input state 
input state 
input state 
input state 
input state 
input state 
input state 
input state 
input state 

7 , 
7 , 
7 , 
7, 
7 , 
7, 
7, 
7 , 
7 , 
7, 
7, 
7, 
7, 

output 
output 
output 
output 
output 
output 
output 
output 
output 
output 
output 
output 
output 

state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 
state 

a is 0.000000 
1 is 0.000000 
2 is 0.850000 
3 is 0.000000 
4 is 0.000000 
5 is 0.000000 
6 is 0.000000 
7 is 0.000000 
8 is 0.000000 
9 is 0.000000 

10 is 0.150000 
11 is 0.000000 
12 is 0.000000 



--

OUTPUT Wednesday, April 12, 1989 Page 5 

".- . 
- .­

."," 

.....-­

The table value for input state 7, output state 13 is 0.000000 
The table value for input state 7, output state 14 is 0.000000 
The table value for input state 7, output state 15 is 0.000000 

Row 9 of the MRP transition table is for input state 8 
The table value for input state 8, output state a is 0.000000 
The table value for input state 8, output state 1 is 0.000000 
The table value for input state 8, output state 2 is 0.000000 
The table value for input state 8, output state 3 is 0.000000 
The table value for input state 8, output state 4 is 0.535500 
The table value for input state 8, output state 5 is 0.229500 
The table value for input state 8, output state 6 is 0.059500 
The table value for input state 8, output state 7 is 0.025500 
The table value for input state 8, output state 8 is 0.000000 
The table value for input state_ 8, output state 9 is 0.000000 
The table value for -input state 8, output state 10 is 0.000000 
The table value for input state 8, output state 1 1 is 0.000000 
The table value for input state 8, output state 12 is 0.094500 
The table value for input state 8, output state 13 is 0.040500 
The table value for input state 8, output state 14 is 0.010500 
The table value for input state 8, output state 15 is 0.004500 

Row 10 of the MRP transition table is for input state 9 
The table value for input state 9, output state 0 is 0.000000 
The table value for input state 9, output state 1 is 0.000000 
The table value for input state 9, output state 2 is 0.000000 
The table value for input state 9, output state 3 is 0.000000 
The table val ue for input state 9, output state 4 is 0.000000 
The -table value for input state 9, output state 5 is 0.000000 
The table value for input state 9, output state 6 is 0.850000 
The table value for input state 9, output state 7 is 0.000000 
The table value for input state 9, output state 8 is 0.000000 
The table value for input state 9, output state 9 is 0.000000 
The table value for input state 9, output state 10 is 0.000000 
The table value for input state 9, output state 11 is 0.000000 
The table value for input state 9, output state 12 is 0.000000 
The table value for input state 9, output state 13 is 0.000000 
The table value for input state 9, output state 14 is 0.150000 
The table value for input state 9, output state 15 is 0.000000 

Row 11 of the MRP transition table is for input state 10 
The table value for input state 10, output state a is 0.321300 
The table value for input state 10, output state 1 is 0.137700 
The table value for input state 10, output state 2 is 0.035700 
The table value for input state 10, output state .;," is 0.015300 
The table value for input state 10, output state 4 is 0.214200 
The table value for input state 10, output state 5 is 0.091800 
The table value for input state 10, output state 6 is 0.023800 
The table value for input state 10, output state 7 is 0.010200 
The table value for input state 10, output state 8 is 0.056700 
The table value for input state 10, output state 9 is 0.024300 
The table value for input state 10, output state 10 is 0.006300 
The table value for input state 10, output state 11 is 0.002700 
The table value for input state 10, output state 12 is 0.037800 
The table value for input state 10, output state 13 is 0.016200 



OUTPUT Wednesday, Apri 1 12, 1989 Page 6 

The 
The 

table value for 
table value for 

input state 
input state 

10, output state 
10, output state 

14 
15 

is 0.004200 
is 0.001800 

' .. "" ...;. ~., 

.10 • ~., •• " ,':" -__:. 

Row 12 of the MRP transition table is for input state 
The table value for input state 11 , output state a 
The table value for input. state 11 , output state 1 
The table value for input state 11 , output state 2 
The table value for input state 11 , output state 3 
The table value for input state 11 , output state 4 
The table value for input state 1 1 , output state 5 
The table value for input state 11 , output state 6 
The table value for input state 11 , output state 7 
The table value for input state 1 1 , output state 8 
The table value for input state 11 , output state 9 
The table value for. input state 1 1 , output state 10 
The table value for input state 11 , output state 11 
The table value for input state 1 1 , output state 12 
The table value for input state 11 , output state 13 
The table value for input state 11 , output state 14 
The table value for input state 1 1 , output state 15 

11 
is 0.000000 
is 0.000000 
is 0.510000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.340000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.090000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.060000 
is 0.000000 

~ -,.~-" .. _"":.,.. : 

.. 

••"7'-., 

.. 

Row 13 of the MRP transition table is for input state 12 
The table value for input state 12, output state a is 0.000000 
The table value for input state 12, output state 1 is 0.000000 
The table value for input state 12, output state 2 is 0.000000 
The table value for input state 12, output state 3 is 0.000000 
The table value for input state 12, output state 4 is 0.535500 
Tqe table value for input state 12, output state 5 is 0.229500 
The table value for input state 12, output state 6 is 0.059500 
The table value for input state 12, output state 7 is 0.025500 
The table value for input state 12, output state 8 is 0.000000 
The table value for input state 12, output state 9 is O.OOOOOG 
The table value for input state 12, output state 10 is 0.000000 
The table value for input state 12, output state 11 is 0.000000 
The table value for input state 12, output state 12 is 0.094500 
The table value for input state 12, output state 13 is 0.040500 
The table value for input state 12, output state 14 is 0.010500 
The table value for inpUt state 12, output state 15 is 0.004500 

-­

- -

...... 

... 
."' ". 

. ",:.. 

Row 14 of the MRP transition table is for input state 
The table value for input state 13, output state a 
The table value for input state 13, output state 1 
The table value for input state 13, output state 2 
The table value for input state 13, output state " .;, 

The table value for input state 13, output state 4 
The table value for input state 13, output state 5 
The table value for input state 13, output state 6 
The table value for input state 13, output state 7 
The table value for input state 13, output state 8 
The table value for input state 13, output state 9 
The table value for input state 13, output state 10 
The table value for input state 13, output state 11 
The table value for input state 13, output state 12 
The table value for input state 13, output state 13 
The table value for input state 13, output state 14 

13 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.850000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.000000 
is 0.150000 



OUTPUT Wednesday, April 12, 1989 Page 7 

The table value for input state 13, output state 15 is 0.000000 

Row 15 of the MRP transition table is for input state 14 
The table value for input state 14, output state 0 is 0.374350 
The table value for input state 14, output state 1 is 0.160650 
The table value for input state 14, output state 2 is 0.041650 
The table value for input state 14, output state 3 is 0.017850 
The table value for input state 14, output state 4 is 0.160650 
The table value for input state 14, output state 5 is 0.068850 
The table value for input state 14, output state 6 is 0.017850 
The table value for input state 14, output state 7 is 0.007650 
The table value for input state 14, output state 8 is 0.066150 
The table value for input state 14, output state 9 is 0.028350 
The table value for input state 14, output state 10 is 0.007350 
The table value for input state 14, output state 11 is 0.003150 
The table value for input state 14, output state 12 is 0.028350 
The table value for input state 14, output state 13 is 0.012150 
The table value for input state 14, output state 14 is 0.003150 
The table value for input state 14, output state 15 is 0.001350 

..-".. 

Row 16 of the MRP transition table is for input state 15 
The table value for input state 15, output state 0 is 0.000000 
The table value for input state 15, output state 1 is 0.000000 
The table value for input state 15 , output state 2 is 0.595000 
The table value for input state 15, output state 3 is 0.000000 
The table value for input state 15, output state 4 is 0.000000 
The table value for input state 15, output state 5 is 0.000000 
The table value for input state 15, output state 6 is 0.255000 
The table value for input state 15, output state 7 is 0.000000 
The table value for input state 15, output state 8 is 0.000000 
The table value for input state 15, output state 9 is 0.000000 

."." ~ "'; . ' ­

.. "	 The 'table value for input state 15 , output state 10 is 0.105000 
The table value for input state 15, output state 11 is 0.000000 
The table value for input state 15 I output state 12 is 0.000000 
The table value for input state 15, output state 13 is 0.000000 
The table value for input state 15, output state 14 is 0.045000 
The table value for input state 15, output state 15 is 0.000000 

;;,." 

Please confirm this Markov Random Process transition table and 
the desire	 to convert it back to a temporal Bayes network 
by pressing y now (anything else will terminate processing) 

The prior probability for state 0 is 0.148936 
The prior probability for state 1 is 0.063830 
The prior probability for state 2 is 0.252955 
The prior probability for state 3 is 0.007092 
The prior probability for state 4 is 0.118814 
The prior probability for state 5 is 0.050920 
The prior probability for state 6 is 0.201795 
The prior probability for state 7 is 0.005658 
The prior probability for state 8 is 0.026283 
The prior probability for state 9 is 0.011264 
The prior probability for state 10 is 0.044639 
The prior probability for state 11 is 0.001252 



OUTPUT Wednesday, April 12, 1989 Page S 

",-}.... 

.,:-". 

,.' ",,~. ~I''';'~ 

.'.:~ .. "- ." . 

The prior probability for state 12 is 0.020967 
The prior probability for state 13 is 0.008986 
The prior probability for state 14 is 0.035611 
The prior probability for state 15 is 0.000998 

variable 1 has 1 equivalence classes. 
The probability is 0.150000 for 16 states. 
variable 2 has 6 equivalence classes. 
The probability is 0.050000 for 2 states. 
The probability is 0.000000 for 4 states. 
The probability is 0.800000 for 2 states. 
The probability is 1.000000 for 4 states. 
The probability is 0.400000 for 2 states. 
The probability is 0.300000 for 2 states. 
variable 3 has 2 equivalence classes. 
The probability is 0.100000 for 8 states. 
The probability is 1.000000 for 8 states. 
variable 4 has 2 equivalence classes . 
The probability is 0.300000 for 8 states. 
The probability is 0.000000 for 8 states. 

Variable 1 (known as maid_comes) is dependent on 0 variables: 
Variable 2 (known as room_clean) is dependent on 3 variables: 

variable 1, known as maid_comes 
variable 2, known as room_clean 
variable 3, known as kids_come 

Variable 3 (known as kids_come) is dependent on 1 variables: 
variable 4, known as kids_invited 

Variable 4 (known as kids_invited) is dependent on 1 variables: 
variable 4, known as kids_invited 

Now locating 1 (conditional) probabilities for variable 1 (maid_comes)
 
Locating the probability P(maid_comes at t)
 
The probability stored was 0.150000
 

Now locating 8 (conditional) probabilities for variable 2 (room_clean)
 
Locating the probability P(roem_clean at t maid_comes AND reom_clean AND
 
kids_come at t-1)
 
The probability stored was 0.300000
 
Locating the probability P(room_clean at t maid_comes AND room_clean AND
 
NOT kids_come at t-1)
 
The probability stored was 1.000000
 
Locating the probability P(room_clean at t maid_comes AND NOT room_clean
 
AND kids_come att-1)
 
The probability stored was 0.400000
 
Locating the probability P(room_clean at t maid_comes AND NOT room_clean
 
AND NOT kids_come at t-1)
 
The probability stored was 1.000000
 
Locating the probability P(room_clean at t NOT maid_comes AND room_clean
 
AND kids_come at t-1)
 
The probability stored was 0.000000
 
Locating the probability P(room_clean at t NOT maid_comes AND room_clean
 
AND NOT kids_come at t-1)
 



OUTPUT Wednesday, Apri 1 12 I 1989 Page 9 

The probability stored was 0.800000 
Locating the probability P(room_clean at t NOT maid_comes AND NOT room_cl 
ean AND kids_come at t-1) 
The probability stored was 0.000000 

.. I····· ~ Locating the probability P(room_clean at t NOT maid_comes AND NOT room_cl
 
ean AND NOT kids_come at t-1)
 
The probability stored was 0.050000
 

Now locating 2 (conditional) probabilities for variable 3 (kids_come)
 
Locating the probability P(kids_come at t : kids_invited att-1)
 
The probability stored was 1.000000
 . -: .. ,~ 

Locating the probability P(kids_come at t : NOT kids_invited at t-1)
 
The probability stored was 0.100000
 

Now locating 2 (conditional) probabilities for variable 4 (kids_invited)
 
Locating the probability P(kids_invited at t : kids_invited at t-l)
 
The probability stored was 0.000000
 
Locating the probability P(kids_invited at t NOT kids_invited at t-1)
 
The probability stored was 0.300000
 

~ ...... :;:~":.,: ~.; 

':: - . ' 

...... 


