
1

A Query Processor For An Object-Oriented

Database

Wayne Dexter Wong

October 10, 1989

Introduction

Since the late 1960's, computer science has seen a steady growth
of interest in databases and database management systems. It is
only within the last decade, however, that much of this interest has
focused on a particular new perspective on the topic - namely, the
object-oriented model. This model, with its notion of grouping as­
sociated pieces of information into "objects" and allowing access to
said information only via operations dedicated to the containing ob­
jects, is considered a remarkable tool for representing applications at
a more "conceptual" level as well as promoting software reusability
and maintainability.

However, attempts to provide a suitable framework for queries
on the object-oriented model have met with mixed notices. It ap­
pears that the amorphous nature of a generalized entity, or "object",
containing both properties and algorithms - which are themselves
objects - does not lend itself easily to a straightforward and yet com­
prehensive syntax for accessing and manipulating such objects. This
is often the main criticism of proponents of the relational model,
whose tabular formats are easily translated into familiar-looking 2­
dimensional array accesses.

This document describes the design and implementation of a
"processor" (indeed, a "compiler" of sorts) for queries on an object­
oriented database. Specifically, the query format is that proposed
in [Sha89] and the database in question is based on the ENCORE
data model described in [Zdo86]. The query processor translates

1

2

queries expressed in a high-level algebra into invocations of lower­
level database methods on objects within the type system (described
in a subsequent section). The query processor itself is part of a spe­
cial preprocessor allowing queries to be embedded within programs
written in a database programming language.

Section 2 gives a brief outline of similar efforts in this particular
area, followed in section 3 by an informal description of'the EN­
CORE data model. (The author assumes, however, that the reader
is already familiar with standard object-oriented concepts.) Section
4 then describes the query algebra forming the input for the query
processor (henceforth QP), after which section 5 discusses the phases
of the processor in a manner similar to the principle stages of a con­
ventional programming-language compiler. Section 6 demonstrates
these stages via analysis of a small example; and Section 7 places
the QP within the context of the ENCORE front-end as a whole.
Finally, Section 8 mentions some as yet unresolved implementation
Issues.

Related Endeavors

In his paper on the INGRES relational database system, [Sto76]
presents the first major instance of what has, for better or worse,
become the most widely accepted methodology for translation of
database queries. In this technique, a special preprocessor is used
to accept a database programming language with embedded queries,
which are denoted by a special enclosing syntax. Queries thus rec­
ognized are passed to a query parser (usually based on yacc) which,
after syntax and type checking, generates parse trees containing
enough information about their origin for a query optimizer to re­
structure said trees according to a given set of optimization criteria.
Finally, compilable code is generated which makes calls on existing
database library routines to perform the query.

An interesting variation on this approach was given by [Ban87], in
which a query interpreter allows the user to interactively construct,
run, and peruse the intermediate results of complex queries. This is
accomplished by allowing interactive access to the unique identifier
associated with a given object.

2

3

The "code generation" theme was taken a major step farther in
[Gra87]. Although the initial query parser ([Car86]) is much in the
standard vein of such translators, the query optimizer is one that
has been automatically generated from a predefined input. This
input consists of a description of the query operators and their cor­
responding database functions (with a cost formula for each) and a
set of optimization rules. The same authors have also developed a
QUEL Interface (using the Cornell Program Synthesizer Generator
[Rep84]) which actually guides the user in building queries.

The ENCORE Data Model

This section, based on material in [Zd086]' is not a full description
of the ENCORE model but rather one which provides the basic
understanding necessary to comprehend subsequent sections.

The ENCORE model is commonly (and appropriately) referred
to as a type system - that is, all objects are typed and all types are
objects. In fact, the supertype of all objects is type Object. Objects
may be comprised of several attributes which are themselves objects.
These attributes may be properties, analogous to tuple-attributes in
the relational model, or operations, which are, in effect, types which
have "invocation images" as instances. These operations define the
object-oriented methods which are an application's only means of
access to the information within the object. Objects also may be
grouped into sets, which may in turn be grouped with other sets
into sets. Syntactically speaking, if an object is of type T (which in
turn is of type Type), all objects of this type may be included in a
collection of type Set[T]. (Note that there may be many instances
of this particular set type.)

In addition, a group of objects of different types may be com­
bined into a single object of type Tuple. This type - a nod in
the direction of the relational model - is represented as Tuple[<
(AI, T1), ... , (An, Tn) >], where Am is the name of the tuple attribute
that contains the object of type Tm .

Regarding the actual representation of objects, each object is
known by a unique identifier, henceforth called a UID. If two ob jects
have the same UID, they are the same object. This particular form

3

of object equality, which is the form used in the QP, is known as
O-equality. A complete treatment of the various means by which two
ob jects can be construed as ((equal" is given in [Kho86] and [Sha89].

4 The Query Algebra

The following subsections, describing the basic queries that can be
input to the processor, are extracted largely from [Sha89].

4.1 Select

The Select operation creates a collection of database objects which
satisfy a selection predicate:

Select(S,p) = {sl(s in S) Ap(s)}

where S is a collection and p is a predicate defined over the type of
the members of S. For example:

S elect(Cats, $c c@name == "P hydeaux");

returns a collection of objects of type Cat whose name attribute
contains the string-object corresponding to the string "Phydeaux".
the $c notation indicates that c is a lambda variable which ranges
over all values in Cats.

4.2 Image

The Image operation returns components of objects in a collection:

Image(S,j: T) = {j(s)ls in S}

where S is collection and 1, when invoked upon an object in S, returns
an object of type T. For example:

Image(Employees, $e e@age)j

returns a set of objects containing the ages of the members of the
collection Employees.

4

4.3 Project

The Project operation is an extension of Image which returns a col­
lection of tuples, one for each member of the collection queried upon.
Each tuple contains a list of components of a member:

Project(5,{(A1,fl), ... ,(An,fn)}) ={< A 1 : fl(S), ... ,An :

fn(s) > Is in 5}

where 5 is a collection and Ai is the attribute name for the tuple
field containing h(s), where s is a member of 5. For example:

Project(Cars, $c {(Who, c@Owner), (What, c@Make), (HowMuch, c@Price)})

returns a collection of tuples (triples, in this case) giving the owner,
make, and price of each car in the Cars collection.

4.4 Ojoin

The Ojoin operation, like Project, returns a collection of tuples.
However, Ojoin operates over two collections, and each of the tuples
in the resultant collection has two attributes containing a pair of
objects - one from each of the collections being queried on - which
are related via a specified predicate:

Ojoin(5,R,A1 ,A2 ,p) = {< A1 : s,A2 : r > Is in 5 A
r in R Ap(s,r) = TRUE}

where 5 and R are collections, A1 and A2 are the names to be given
to the two attributes of the result, and p is a predicate defined over
objects from 5 and R. For example:

Oj~n(50ldiers,Civilians, 5, 0, $s $c s@age == c@age)

returns a list of pairs consisting of a soldier and a civilian who are
of the same age.

4.5 others

The remaining queries in [Sha89] are discussed mainly for complete­
ness here, since the QP need only translate them directly into their
corresponding ENCORE query methods.

5

5

Flatten(S) takes S, which is a set of sets, and returns a set of
non-set objects - that is, it eliminates the nesting of sets by bringing
all member objects to the same level.

N est(C, Ai) takes 0, a collection of tuples, and Ai, an attribute
of the tuple type, and collapses into a single tuple all those tuples
which have matching values in all their attributes except (possibly)
Ai. In this case, Ai becomes a set of all the values it held when the
other attribute values were "held constant".

UnNest(C, Ai) takes C and transforms any tuple with an at­
tribute containing a set of objects into a collection of tuples, one for
each member of the set contained in the original attribute. In effect,
this is a Flatten operation for tuples.

DupEliminate(S, i) takes collection S and invokes the test for
i-equality (as discussed in [Kho86] and [Sha89]) on its members.
It then replaces all members which are i-equal with a single such
member.

'Coalesce(S, A k , i) takes S, which is a collection of tuples, invokes
the i-equality test on the values of attribute Ak in each tuple. Then
all i-equal values of Ak are replaced by one of the values.

Design Overview

As was alluded to in the Introduction, the QP resembles, in function
and form, a compiler for a small programming language; its design
and surroundings are similar to those of the INGRES QP [Sto76].
Statements in the source language (query algebra) are in turn em­
bedded (as in EQUEL [A1l76]) in programs written in a "database
programming language" (DPL), which is C extended with object­
oriented types and functions via additional syntactic analysis. The
QP is a part of the larger ENCORE DPL preprocessor and is called
whenever a query is encountered in the source code.

The QP translates algebraic statements into method invocations
on collection objects; one such method exists for each query operator
in the algebra. Part of this process involves creating ENCORE
operation objects which capt~re the algebraic expressions appearing
in the query.

The query translation process follows a fairly conventional path.

6

Query statements are tokenized and then parsed, via a set of pre­
defined linguistic rules. As the parsing proceeds, type checking
(and the "derivation" of types for certain objects) is performed and,
gradually, operations in the ENCORE DPL are generated which
call other pre-existing ENCORE methods. Finally, a code fragment
which invokes these operations is generated, and replaces the origi­
nal query embedded in the source code. The DPL preprocessor then
sends this newly generated code, along with the DPL code in which
the original query was embedded, to the standard C preprocessor
and compiler. When the code is executed, the aforementioned EN­
CORE methods are executed over the ENCORE type system, which
retrieves desired objects from the object-oriented database server
OBSERVER [Ska86].

5.1 Syntactic Analysis

The QP receives, as input, strings (i.e. char *) containing complete
queries. It then tokenizes these strings (using a lexical analyzer pro­
duced by the standard generation tool lex) and parses them (using
a parser generated by the equally standard generation tool yacc). It
is in the semantic actions associated with each grammar rule that
the computing and checking of types, and the generation of actual C
code to perform queries, occurs. The complete grammar and actions
are included at the end of this document, but a few major grammar
rules bear explaining:

- query is a query statement (i.e. a string commencing

with SELECT, IMAGE, PROJECT, OJOIN, FLATTEN,

NEST, UNNEST, COALESCE, or DUPELIM), including

its arguments (some of which may themselves be queries).

- variable is a lambda variable followed by 0 or more prop­
erties, each of which is to be retrieved from the object re­
sulting from the previous properties being retrieved from
the lambda variable. Properties are separated from the
lambda variable and from each other by "@" , as in "j@address@city".
This refers to the city property of the address property of
j. A number of varial;>les (and possibly queries) combined
via arithmetic operator-methods forms an expression.

7

- pred is a predicate, comprised of a boolean-valued expres­

sion or combination thereof. The standard logical opera­

tors (and, or, not, etc.) are permitted, plus the operators

MemberOf(testing for membership of an object in a set)

and SubsetOf (testing for containment of a set within an­

other set).

5.2 Type "Derivation" and Type Checking

In order to type check a query and generate properly typed opera­
tions, the QP must deduce and keep track of the types of any queries,
collections, variables, or lambda variables. In order to accomplish
this, the types of certain query arguments must be derived, since
these arguments may not be declared symbols but variables com­
posed of expressions involving symbols. For example, deriving the
type of j@NumCats + j@NumDogs involves deriving the types of
the NumDogs and NumCats properties of j and then the type of the
result when the two values are added. The matter is further compli­
cated since some arguments may themselves be queries. Eventually,
it eventually becomes necessary to access the symbol table created
by the preprocessor in order to terminate this "recursion". A dis­
cussion of the motivations behind determining the types of variables
is given in [Nix87].

Only in the case of collections directly specified by name, as in
"Dogs", is the preprocessor symbol table accessed. Once the entry
for the collection has been located and the string variable describing
its type has been retrieved from the entry, the operation Get Type­
Object (called with the type-string) returns the corresponding type
object. Retrieving the memType property of this type object yields
the type of any lambda variable associated with that collection ­
that is, it represents the type of members of that collection.

For queries, types are derived by first retrieving the Operation Type
object (for the query) associated with the collection type on which
the query is to operate. We then invoke the TypeCheck method
on that OperationType object along with a list of the types of the
arguments to the query method.

For variables, type derivation means (recursively speaking) start ­
ing by deriving the type of a variable, then deriving the type of a

8

property of the variable. The ((basis" in this case is represented
by a lambda variable, whose type is derived by first retrieving the
type-string of the variable from the lambda variable stack (to be
discussed later), then passing it as an argument to the ENCORE
function Get Type Object. This function returns the type object as­
sociated with the type-string.

The type of a property of a variable is then derived by first re­
trieving the PropertyType object associated with the property in
question. Then the valueClass property of the PropertyType object
is retrieved, which gives us the result type of the property of the
variable. If there are further properties used in the variable, then
this result type assumes the role of the variable, and so on. Note
how the yacc input structure lends itself to this sort of approach.

Regarding the actual checking of types, the primary responsibility
for this lies with the preprocessor containing calls to the QP. How­
ever, there are instances where it is advantageous for type checking
to be performed at the query-translation level. This also is treated
in [Nix87].

As defined by [Sha89], all queries operate on sets (which may
themselves contain sets). In the ENCORE model, these groupings
are known as collections. Hence having first parsed a query into its
highest-level components (i.e. its name and its arguments), the QP
checks the type of the query's first argument, which must be of a
collection type. In addition, variables (as in j@address@city) may
be checked upon retrieval of each successive property - if a retrieval
produces a null object, then either the property or its ((target" object
is of an inappropriate type.

In addition, before generating a call to an arithmetic or logical
operator-method, the QP may examine the type of the would-be
parameters to said operator. For instance, the second argument to
the MemberOj operator must be of a collection type, as must both
the arguments to the SubsetOj operator.

The preceding discussion has concerned itself with type checking
at compile-time. This, of course, assumes that the type objects
from which objects are generated already exist in the type system.
Although this is predominantly the case, there may be occasions
where new types, and objects of these types, are created at run­

9

time and queries executed which involve them. In these instances,
a certain amount of type-checking may be executed at run-time.'

Determining if a variable's type exists at compile-time is rela­
tively straightforward. If a type does not currently exist within the
type system, a call to GetTypeObject will return a type object re­
served especially for as yet undefined types. This sets a flag instruct­
ing the QP to allow type-checking to be performed at run-time.

As regards type derivation at run-time, the QP's current recourse
is to assign all expressions to be of type ENObjeet, ENCORE's "ul­
timate default". Another possible approach would be to actually
derive types at run-time (by which time all necessary types would
exist), hence dividing the code-generation duties between run-time
and compile-time. This method, however, appeared to offer few
benefits in return for the required effort and was rejected.

5.3 Code Generation

As mentioned previously, code generation is performed concurrently
with query parsing. Hence code is generated in a "bottom-up" fash­
ion, with source for the lowest-level constructs (in this case, vari­
abIes) being generated first, then used in the generation of code for
higher-level forms (such as predicates), and so forth all the way up
to the final "main program", a call to which replaces the original
query statement embedded in the host code.

This approach ,discussed in [Ant77] as "the translation method",
differs from other efforts ([St076], [Gra87]) in that the output of the
query parser is in the form of actual program text rather than trees
of database operators. The reasons for choosing this meth9dology
are twofold. First, the nature of the algebra as described in [Sha89]
does not lend itself to deep nesting of queries from a user standpoint.
Since the usual purpose of generating "execution trees" from queries
is optimization, which is effective and worthwhile primarily in cases
of nested queries, it was decided that generating trees from which
code is then generated would not recoup its investment. The second
reason is somewhat more pragmatic: the focus of the author's work
is query processing rather than optimization, and time constraints
did not allow for the implementation of what would essentially be
another, separate "compilation". However, this is not to imply that

10

query optimization is a closed matter as far as implementation goes.
For expressions, once the component variables have been trans­

formed into C variables (which is usually a direct translation), their
relationship to one another is represented in code by generating invo­
cations of ENCORE's binary-operator methods. Thus a+b becomes
Add(a, b). Naturally, a and b may themselves be comprised of such
method calls.

Code for predicates, which are comprised of expressions and/or
other predicates, is also generated as method invocations. Hence
a < b becomes LessThan(a, b). This code in turn becomes the
return-value of a boolean operation which is generated.

This brings us to the issue of parameters for generated operations.
More specifically, how are operation arguments and local variables
generated, or even determined? To address this, the QP uses two
stacks; one for lambda variables and one for collections. (Two stacks
are maintained because references to lambda variables and to collec­
tions are needed at different points in the code generation process.)
For the lambda variable stack, entries are grouped into frames cor­
responding to the level of scoping at which entries appear in the
query. Variables occurring at the current level are generated as ar­
guments to the operation being generatedj those from lower levels
become local variables to the operation, and are initialized by being
extracted from an "arglist" passed in by the operation. (This list
also contains all collections used in the query.) Hence when the code
at a given scoping level has been generated, the stack entries for the
corresponding frame are popped. The QP detects a new scoping
level whenever a new set of lambda variables is specified, at which
point a special "first-in-frame" marker is passed along with the first
variable of the set to be pushed. The collection stack, however,
does not use frames since collections are actually defined completely
outside the query (in the surrounding C code) and are referenced
throughout same.

Given this, we can generate code for complete queries. Each
query is "compiled" into a typed operation which invokes the EN­
CORE method for the query on the «target collection" and returns
the result of the query. Methods for queries involving predicates
(such as Select and Ojoin) have, as arguments, the collection(s)

11

6

upon which the query is to operate, the boolean operation object
that checks the predicate, and a list args. This list contains all the
arguments to the predicate-operation except the first, which is as­
sumed by the operation to be a member of the collection argument.
In ENCORE's parlance, such an initial argument is known as self­
a method is said to operate on self The actual ENCORE method
for Select invokes the predicate operation on successive elements
(selves) of the target collection and inserts those producing TRUE
into the resultant collection. The Ojoin method is similar, except
that it submits every possible pairing of an element from the first
collection and one from the second to the predicate, and combines
"successful combinations" into tuples which are inserted into the
return value.

Translation of Image queries is also similar to that of Selects.
However, in this case instead of a boolean operation being gener­
ated, a typed operation is constructed which computes the operation
designated by the original query to act upon successive members of
the target collection. As expected, each of these members takes a
turn at being selffor an invocation of the operation, and each return­
value of the operation is inserted into the resultant collection.

Processing of Project queries requires a somewhat different ap­
proach. Typed operations are generated for each of the operations
appearing in the tuple argument of the query. These operations are
then assigned, as an identifier, the name of the attribute which they
will compute, and inserted into a list which is passed to the Project
method. The remaining method arguments are, as previously, the
target collection and args. The generated operations will extract
any necessary arguments from args.

Anatomy Of A Query (an example)

To better illustrate the query translation process, we present a step­
by-step treatment of one of the previous examples (assuming, for
the sake of simplicity, that the types involved are predefined):

Select(Cats,$cc@name == "Phydeaux");

12

The first part of the query subject to semantic processing by
the QP is Cats. By its position within the query, it should be a
collection; in fact, it is type-checked (if possible) to see that it is
a collection and, if not, an error is generated. If it is indeed a
collection, the QP locates it in the symbol table (maintained by the
preprocessor) and retrieves its type, which it stores within the yacc
rule for this collection argument.

Upon encountering the lambda variable c the QP pushes it onto
the lambda variable stack (along with a flag indicating a new scope
has begun), and also derives its type by retrieving the memType
property of the type of Cats.

Having just processed a lambda variable declaration and knowing
that the current query is a Select, the QP expects a predicate to be
upcoming. As part of processing the predicate, the left side of the
predicate (c@name) is parsed and its type derived by first getting
the type of c from the lambda variable stack, then applying the
GetPropertyType operator to the type with the property name (and
type-checking to ensure the validity of name for c), then getting the
type of the retrieved property object. In addition, the text for this
expression is transformed into an ENCORE operation invocation,
GET_PROP_ VALUE(c/'name",{long)O). (The final argument is a
flag which is not used by generated code.)

The right side of the predicate (" Phydeaux") is easily handled,
being recognized as a string by its enclosing double-quotes. No type­
derivation is needed, and the text generated is ENFromString("Phydeaux"),
which takes the string argument and produces a corresponding string
object.

With code generated for both halves of the predicate, the QP now
generates a call to the ENCORE boolean operation for equality, with
the two expressions as arguments:

!EnUidCmp(GET--PROP_VALUE(c,"name" ,(long)O), EN­
FromString(" Phydeaux"))

This predicate-code comprises part of a boolean operation which is
then generated. This operation consists primarily of an if-clause,
with the predicate-code as the clause, which returns EN_TRUE or
EN-FALSE, the ENCORE boolean value-objects.

13

Arguments for this operation (which is given a unique name)
consist of all symbols on the lambda variable stack corresponding
to the current scope (the "selves" of the routine), and a variable
args, which contains any pre-existing collections (like Cats) involved
in the query. Args also contains any lambda variables from scopes
previous to the current one, as in the case of nested queries. These
values are extracted from args via the ENGetArg operation, and are
assigned to local variables in the generated code.

The only other local variables in the generated operation are
those corresponding to any other generated operation. The code
for declaration and initialization of these operation objects is main­
tained by generating a declaration for each operation as it is gener­
ated, and also an initialization consisting of a call to the function
GetObjFromUID. The argument to this function is the UID assigned
to the operation object for the operation when it was generated. (In
this particular example, no other operations have been generated.)

Finally, code is generated which adds the "selves" of the gener­
ated operation to args in the event that they are needed in subse­
quent scopes. Returning to our example, this results in:

ENObject
CaLPredOp113527590(c, args)
ENObject c;
ENObject args;
{

ENObject Cats;

Cats = EN GetArg(args, "Cats");

ENAddArgs(&args, 1, "c", &c);

if (!EnUidCmp(GET-PROP _VALUE(c,"name" ,(long)O),(ENFromString("Phydeaux

{

return(EN _TRUE);
}
else

{

return(EN _FALSE);

}

}

14

7

(Notice how the name of the operation is prefixed with the name
of the type of the self argument.)

This operation, once completely generated, is then automatically
compiled, made into an object of type Operation Type, and installed
in the database. This assigns the operation a DID, which can be
used to retrieve and re-use the operation object subsequently.

The final step taken by the QP is to generate a "main function"
that invokes the query method:

ENObject
Query37741575(Cats)
ENObject Cats;
{

ENObject args;
ENObject PredOp113527590;
args = ENBuildArgList(1," Cats," &Cats);
PredOp113527590 = GetObjFromUID(1685,2963);
return(INVOKE(Cats, "Select", 2L, OL, (long)O, (long)O, Pre­

dOp113527590, args));
}

A string containing this function definition is passed back to the
preprocessor.

Interaction With Pre-Processor

As discussed in the Design Overview, the QP receives its input from
a specialized preprocessor which accepts programs written in C "ex­
tended" by support of ENCORE types and functions. Queries may
be embedded in such programs by encasing the query text within
%{ and %}, similar to the enclosing ii's used by INGRES [Sto76].
This enables the preprocessor to recognize the beginning and end of
a "query string" , which is passed in its entirety to the QP.

Upon receiving the query-function definition from the QP as de­
scribed in the previous section, the preprocessor can then simply
place this function text in the code after the function in which the

15

query is embedded. The "header line" of the function is then used
to replace the original query call. This is done in order to preserve
line numbering within the source.

This special preprocessor's primary duties (in addition to invok­
ing the QP) are to convert object-oriented "casts" of variables to
calls on ENCORE casting functions, and to do type-checking of ex­
pressions when possible. The converted code is then compiled and
executed in typical fashion.

8 Selected Open Problems

8.1 query optimization

As stated in the Design Overview, although the QP's current im­
plementation does not include query optimization, for reasons of
expediency and efficiency. However, the implementation of a query
optimizer based on models discussed in [Zdo89] would be of consid­
erable use in examining the feasibility of such models.

8.2 improved error checking

Currently, the QP handles errors in query syntax, and well as un­
resolved references, duplicate definitions and type inconsistencies.
Obviously there exists room and need for further and more compre­
hensive error checking - for instance, collections involved together
in Ojoin operations could be examined for possible incompatibility.

8.3 removal of extraneous variables

Because of the nature of the lambda variable and collection stacks,
the QP will, in some cases, generate definition and initialization code
for local variables that are unused in the function currently being
constructed. Although this has no effect on the output of the query,
it would be desirable to generate only those symbols referenced by
the current function or those at deeper levels of scoping.

16

8.4 duplicate collection references

Currently, due to the nature of the ENCORE methods for iterating
through collection members, the QP does not allow a collection to
be referenced more than once in a query.

9 References

[A1l76] E. Allman et al., "Embedding A Data Manipulation Lan­
guage In A General Purpose Programming Language", Proc. 1976
SIGPLAN-SIGMOD Conf. On Data Abstraction, Salt Lake City,
UT, March 1976.
[Ant77] F. Antonacci et al., "Structure And Implementation of A
Relational Query Language For The Problem Solver" , Proc. VLDB
Conf., Tokyo, Japan, 1977.
[Ban87] F. Bancilhon, "FAD, A Powerful And Simple Database Lan­
guage", Proc. 13th VLDB Conf., Brighton, 1987.
[Car86] M. Carey et al., "The Architecture Of The EXODUS Exten­
sible DBMS", Proc. International Workshop On Object-Oriented
Database Systems, Pacific Grove, CA, September 1986.
[Gra87] G. Graefe, "The EXODUS Optimizer Generator", Proc.
SIGMOD Conf., San Francisco, CA, May 1987.
[Kho86] S. Khoshafian, "Object Identity", Proc. 1st International
OOSPLA Conf., Portland, OR, October 1986.
[Nix87] B. Nixon, "Implementation Of A Compiler For A Semantic
Data Model: Experiences With TAXIS", Proc. SIGMOD Conf.,
San Francisco, CA, 1987.
[Rep84] T. Reps et al., "The Synthesizer Generator", Proc. ACM
SIGPLAN-SIGSOFT Sofware Engineering Symposium On Practical
Software Engineering Developments", Pittsburgh, PA, April 1984.
[Sha89] G. Shaw et al., "A Query Algebra For Object-Oriented
Databases", Brown University Technical Report CS-89-19, March
1989.
[Ska86] A. Skarra et al., "An Object Server For An Object-Oriented
System" ,Proc. International Workshop On Database Systems, Septem­
ber 1986.
[Sto76] M. Stonebraker et al., "The Design And Implementation Of

17

67 parser.y Wed Oct 25 13:52:32 1989

fprintf(debug, "OUTPUT: '%s'\n", $$->text);

fflush (debug);

.endif DEBUG

)

TRUE TOKEN
- {

'ifdef DEBUG

fpri nt f (debug, "f -> TRUE\ n") ;

ffl ush (debug) ;

.endH DEBUG

$$ Alloe Var();

$$->text -maUoe("EN TRUE");

strepy($$->text, "EN fRUE");

$$->type =

'ifdef DEBUG

fprintf(debug, "OUTPUT: '%s'\n", $$->text);

fflush (debug) ;

.endif DEBUG

)

FALSE TOKEN
(

.ifdef DEBUG
fprintf (debug, "f -> FALSE TOKEN\n");
fflush (debug); ­
'endif DEBUG

$$ = Alloe Var();
$$->text - -maUoe ("EN FALSE");
strepy($$->text, "EN_fALSE");
$$->type - TYPEBoolean;

'ifdef DEBUG
fprintf(debug, "OUTPUT: 'is' \n", $$->text);
fflush (debug);
'endif DEBUG

sym_l_parn exp sym_r_parn

Ii fdef DEBUG

fprintf(debug, "f -> (exp)\n");

fflush (debug);

'endif DEBUG

$$ = Alloe Var();
$$->text --malloe (strlen (" (") + strlen ($2) +

strlen(")") + 1);
strepy ($$->text, "(");
streat ($$->text, $2);
streat ($$->text, ")");
$$->type = $2->type;

.ifdef DEBUG

fprintf(debug, "OUTPUT: '%s'\n", $$->text);

fflush (debug);

.endif DEBUG

sym_l_parn pred sym_r_parn

'ifdef DEBUG

fprint f (debug, "f -> (pred) \n");

fflush (debug) ;

'endif DEBUG

$$ = Alloe Var();
$$->text - -malloe (strlen (" (U) + strlen ($2) +

strlen (") ") + 1);
strepy ($$->text, "(");
streat ($$->text, $2);
streat($$->text, ")");
$$->type = TYPEBoolean;

parser.y Wed Oct 25 13:52:32 1989 68

'ifdef DEBUG
fprintf (debug,
fflush (debug);
'endif DEBUG

"OUTPUT: '%s' \n", $$->text);

funcname: sym identifier /. Should probably assign $$->type (check Symbol Table) ./- (­
'ifdef DEBUG

fprintf(debug, "funcname -> sym_identifier\n");

fflush (debug);

.endif DEBUG

$$ - Alloc Var();

$$->text =-malloc(strlen($l) + 1);

strcpy($$->text, $1);

Ii fdef DEBUG

fprintf (debug, "OUTPUT: '%s' \n", $$->text);

fflush (debug);

'endif DEBUG

func: funcname sym_l_parn explist sym_r_parn
{

'ifdef DEBUG

fpri nt f (debug, "func -> explist)\n");

fflush(debug);

'endif DEBUG

$$ - Alloc Var();

$$->text =-malloc(strlen($l->text) + str1en("(") +

strlen($3) + strlen(")")+ 1);
strcpy($$->text, $l->text);
strcat($$->text, "(");
strcat($$->text, $3);
strcat ($$->text, ") ");
$$->type = $l->type;

exp1ist : exp

lifdef DEBUG

fprintf(debug, "exp1ist -> exp\n");

fflush(debug);

.endif DEBUG

$$ = ma1loc(str1en($1->text) + 1);
strcpy($$, $l->text);)

explist sym_comma exp
(

'ifdef DEBUG

fprintf(debug, "exp1ist -> exp1ist, exp\n");

fflush (debug);

'endif DEBUG

$$ - malloc(str1en($1) + strlen(",") +
strlen($3->text) + 1);

strcpy ($$, $1);
strcat (SS, h,");
strcat($$, $3->text);

variable: sym_identifier
(

Ii fdef DEBUG
fprintf (debug, "variable -> sym_identifier\n");

parser.y Wed Oct 25 13:52:32 1989 69

fflush (debug);
fendif DEBUG

1* This is a reference to a lambda variable; *1

1* check if it's been declared *1

if (check_param($l) -= 0)
{

fprintf(debug,"ERROR - symbol %s undeclared\n",$l);
fflush (debug);
exit (1);

}

$$ = Alloc Yare);

$$->text =-malloc(strlen($l) + 1);

strcpy($$->text,$l);

1* Get its type *1

1*

if (!runtime_check)

(

$$->type - Find_Type($l);

)

else
*1

(
$$->type TYPEObject;

t1 fdef DEBUG

fprintf(debug, "OUTPUT: '%s'\n", $$->text);

fflush (debug);

fendif DEBUG

I
variable sym_at sym identifier

{

ENPropertyType prop_type;

ENString enString;

fifdef DEBUG
fprintf (debug, "variable -> variable @ sym identif1er\n");
fflush(debug); ­
fendif DEBUG

$$ = Alloc Var();
$$->text - -ma11oc (strlen ("GET PROP VALUE (") +

strlen($l->text) + 2*stilen(;,") +
strlen ($3) + strlen("OL) ") + 11);

1*
strcpy ($$, $1);

strcat ($$, "@");

strcat ($$, $3);

*1
strcpy ($$->text, "GET PROP ");

strcat ($$->text, "VALUE (N);

strcat ($$->text, $l->text);

strcat($$->text, ",\1111);
strcat($$->text, $3);

strcat($$->text, "\",");

strcat ($$->text, "OL");

strcat($$->text, ")");

1** type-check here

if (!runtime_check)

{

enString - ENFromString($3);

prop type - PROPTYPE(INVOKE($l->type, "GetPropertyType", lL,OL,OL,OL,enString));

$$->type - TYPE(GET_PROP_VALUE(prop_type, "valueClass", OL»;

parser.y Wed Oct 25 13:52:32 1989 70

'ifdef DEBUG
fprintf(debug, "Type of the value of this property: %s\n", ENToString(STRING(GET PROP VALUE (SS->type, "name", OL))));
fflush (debug); - ­
'endif DEBUG

)

else

*/

{

$$->type TYPEObject;

'ifdef DEBUG

fprintf (debug, "OUTPUT: '%s' \n", $$->text);

fflush (debug);

'endif DEBUG

tuple: sym 1 brace pairlist sym r brace
- - (- ­

.ifdef DEBUG

fprintfldebug,"tuple -> (pairlist}\n"l;

fflush (debug);

'endif DEBUG

$$ - malloc(strlen("EnBuildArgList (") +
strlen(itoa($2->numpairs» + strlen(",") +
strlen($2->text) + strlen(")")+ 1);

strcpy($$, "ENBuildArgList I");

strcat ($$, itoa ($2->numpairs»;

strcat ($$, ", U);

strcat($$, $2->text);
strcat($$, ")11);

pairlist: pair

'ifdef DEBUG

fprintf(debug, "pairlist -> pair\n");

fflush (debug);

'endif DEBUG

$$ = Alloc Duple ();

$$->text .-malloc(strlen($l) + 1);

strcpy($$->text, $1);

$$->numpairs - 1;

}

pairlist sym_comma pair

(
'ifdef DEBUG
fprintf(debug, "pairlist -> pairlist, pair\n"l;
fflush(debug);
'endif DEBUG

$$ ~ Alloc_Duple();
$$->text - malloc(strlen($l->text) + strlen(",") +

strlen($3) + 1);
strcpy($$->text, $l->text);
strcat ($$->text, '1, ");
strcat($$->text, $3);

$$->numpairs = $l->numpairs + 1;

pair sym 1 parn funcname sym comma obj syrn r parn
-- { - - ­

'ifdef DEBUG

parser.y Wed Oct 25 13:52:32 1989 71

fprintf(debug, "pair -> (attrname, obj)\n");

fflush (debug);

fendif DEBUG

arg_list [OJ - "\"";

arg 1ist[0) ~ $2->text;

arg-list(O] = "\"",

arg-list (0] = ", ",

if "((strncmp($4->text, "Select (", 7) == 0) II

(strncmp($4->text, "Project (", 8) -- 0) I I
(strncmp($4->text, "Ojoin(", 6) =- 0) I I
(strncmp($4->text, "Image (", 6) == 0) II
(strncmp ($4->text, "Flatten (", 8) -- 0) I'
(strncmp($4->text, "DupEl1minate(", 13) -- 0) II
(strncmp($4->text, "Coalesce (", 9) -- 0) II
(strncmp($4->text, "Nest (", 5) -= 0) II
(strncmp($4->text, "Unnest (", 7) -= 0) II

(strncmp(S4->text, "INVOK", 5) -- 0» j* TEMPORARY *j
{

arg_list[l) - "&",
arg 1ist(2] = gen <uncOp code($4->text),

j* may-also have to pass in-self's type *j

j* (from top of lambda-var stack) *j

)
else
if «strchr(S4->text, '@'» II

(strncmp($4->text, "GET PROP_VALU", 13) 0» j* TEMPORARY *j

arg Ilst[1] - "&",
arg-list[21 - gen <uncOp code(S4->text);

j* may-also have to pass in-self's type *j

j* (from top of lambda-var stack) *j

)
else j* Need to do something different here *j
(

arg list (1) = "&",
arg-list[2] = gen <uncOp code($4->text),

j* may-also have to pass in-self's type *j

j* (from top of lambda-var stack) *j

I
$$ = Concat(3,arg_list),

fifdef DEBUG
fprintf(debug,"Call Generated: %s\n", S$),
fflush (debug),
fendif DEBUG

u

/**/

'include Iiscanner.c li

/***/

VAR *
Alloc_Var ()
(

VAR *new - (VAR *)malloc (sizeof (VAR»;

if (new == 0)

{

printf ("Error-Alloc_Var-malloc returned O\n"),

return 0;

parser.y Wed Oct 25 13:52:32 1989 72

new->text ~ 0;

return(new);

/~.*~~*~~•• ~*~ •• ~***************•• *******.***.**.***** ••••• *********/

DUPLE *

Alloc_Duple ()

{

DUPLE *new (DUPLE *)malloc (sizeof (DUPLE»;

if (new -~ 0)

I

printf ("Error-Alloc_Duple-malloc returned O\n");
return Dj

new->text = 0;
new->numpairs 0;

return(new);

/ •• ***.***.****** ••••••••••• ***********.** ••• *** •••••• ********** •• **/

param descr '"
Alloc=ParamDescr()
{

param_descr "'new (param_descr *)mailoc (sizeof(param_descr»;

if (new ~= 0)

I

printf ("Error-Alloc_ParamDescr-malloc returned O\n");
return 0;

new->name = 0;
new->first in_frame = 0;
new->next = 0;

new->prev = 0;

return(new);

/*- ••• -.- •••• _._--_ •••• -. __ ••••••• -.---------_ ••••••• -**************/

colI descr *
Alloc_CoIIDescr()
{

coli descr "'new (coll_descr *)malloc (sizeof(coll descr»;

if (new == 0)

{

prlntf ("Error-Alloc_CollDescr-malloc returned O\n");
return 0;

new->name 0;:z

new->next = 0;

new->prev = 0;

return(new);

- -

parser.y Wed Oct 25 13:52:32 1989 73

/~~**.*.*~*******.************************************-----------_•• /

f* Find Type() searches through the lambda-variable stack for the *f

f* variable "var str" and returns its type *f

ENType

Find_Type (var_str)

char *var_str;

param descr *param list;

param=list = StackFrame->prev;

if (param_l1stl

do {

if (!strcmp(param list->name, var str»

{ - ­

fifdef DEBUG
fprintf(debug,"Found type of %s -- it's %s\n", var str, ENToString(STRING(GET PROP VALUE (param list->type, "name",OL»));
fendif DEBUG - - ­

return(param_list->type);
)

param list = param list->prev;

} while (param list);

/**********.*** ••• *** ••••••• ****.*********************--------- ••• --/

Power(x, n)
lnt X, n;
{

int i, p;

p = 1;

for (i = 1; i <= n; ++i)

p = pax;

)

return (p);

f*	 This is a general purpose routine which converts an integer into its
ASCII-string representation. *f

char *
itoa (number)
int number;
{

lnt i, 0, temp, rn;
char *number_chars = (char *)malloc(32);
sprintf(number chars,"%d",number);

fifdef DEBUG ­
fprintf(debug,"itoa(%d): returning %s\n",number, number_chars);
fflush (stderr) ;
fendif DEBUG

return(number_chars);

1-·*---_·_·_· __ ·-· __ ·_-·_·····_···--···-·------------· -----_.*----*-/
f*	 Assign type to lambda variable on stack *f

assign_type (var_type)
ENType var type;
{ ­

param_descr *param list;

parser.y Wed Oct 25 13:52:32 1989 74

param list = StackFrame->prev;

if (param_list)

(

param_list->type var_type;

/*.****** ••• * ••••••• ****** ••••••••••••••• ***************************/

/* Assign types to lambda variables (used in OJOIN) on stack */

ojoin_assign_type(varl_type, var2 type)

ENType varl_type;

ENType var2 type;

{ ­

param_descr *param_list;

param_list - StackFrame->prev;

if (param_list)

(

param_list->type var2_type;

if (param list->prev)
{ ­

(param_list->prev)->type varl type;

/***** ••• ************ •••• ** •••• ********** •• **** •••••••••••••••••• **./

/* push param () pushes 1ambda-variable "symbol" onto t he lambda-variable */
/* stack. first_in_list is set if it's the 1st variable declared in */
/* the current scope */

push param(symbol, first in list)
char- *symbol; - ­
int first in list;
{ - ­

param_descr *saved_param;

if (! StackFrame)

{

iifdef DEBUG

fprintf (debug, "First entry into StackFrame\n");

fflush (debug);

fendif DEBUG

StackFrame Alloc_ParamDeScr();
}

fifdef DEBUG
fprintf(debug,"push_param: Pushing '%s'\n",symbol);
fflush (debug);
fendif DEBUG

StackFrame->name - malloc(strlen(symbol) + 1);

strcpy(StackFrame->name, symbol);

StackFrame->first in frame ~ first in list;

StackFrame->next ~ Alloc_paramDeSCr():

saved param ~ StackFrame;

StackFrame = StackFrame->next;

StackFrame->prev ~ saved_param;

/** ••••• **.********.******** •••• ***** •• **.***.****.*********** ••• *.*/

75 parser.y Wed Oct 25 13:52:32 1989

/* push_coll () addres collection "coll_name" to the list */

push coll(coll name) /* should also pass in ENType colI_type */

char-*coll name;

{ ~

call descr *saved call;

coll-descr *colls;

if (!Coll List)
{

'ifdef DEBUG

fprintf(debug, "First entry into Call List\n");

fflush(debug); ­
'endif DEBUG

Call List Alloc_ColIDescr();
I
else
I

calls = Coll_List->prev;

if (colls)

do I

if (! (strcmp (call_name, colls->name»)
I

'ifdef DEBUG

fprintf(debug, "collection ''Os' already in list\n",colls->name);

fflush(debug);

.endif DEBUG

return(O);
I
calls ~ colls->prev;

I while (calls);

'ifdef DEBUG

fprintf(debug, "push coll: Pushing '\s'\n".coll name);

fflush (debug); - ­
'endif DEBUG

Call List->name ~ malloc(strlen(coll name) + 1);
strcpy(Coll List->name. call name);
/* - ­

Call list->type ~ call type;

*/ ­

Call List->next ~ Alloc CoIIDescr();

saved call = ColI List;-

Coll List = CoIl List->next;

Coll=List->prev ~ saved_colI;

/********* ••• *************************** ••• ****** ••• ** •••• **********/

/* pop_params() discards local variables for the current scope */

pop_params ()
{

do
I

StackFrame ~ StackFrame->prev;
'ifdef DEBUG
fprintf(debug, "pop params: Popping \s\n", StackFrame->name);
fflush(debug); ­
'endif DEBUG

) while (! (StackFrame->first in frame»;

/**************.***** •• *********************** •• ***.***--*_.-. __ /

parser.y Wed Oct 25 13:52:32 1989 76

/' check_paramO returns 0 if "symbol" is not on the lambda-variable stack '/

check_param(symbol)

char 'symbol;

{

param descr 'param list;

int f~und it = 0; ­

if (StackFrame)

{

param_list StackFrame->prev;

do I
if (! (strcmp(param_Iist->name,symbol»)
{

'ifdef DEBUG

fprintf(debug, "Found arg 'is' in param list\n",symbol);

fflush (debug); ­
iendif DEBUG

found it ~ 1;

J
else

param_Iist ~ param_Iist->prev;

} while (! (found it» && (param_list));

if (!(found_it»
(

return (0);
)
else

return (l);

I~**/

/' write colI list () writes out all the collections '/
/' used Tn the query in the form of a function arg-list '/

write colI list(startPos,list)
short- *slartPosi
char 'list[l;
{

char *text;
coll descr ·colls;

calls ~ Coll_List->prev;

if (colls)

{

do

list [('startPos) ++ I - colls->name;
if (colls->prev)
(

.. II.list [('startPos) ++1 , ,
}

colIs = colls->prev;
while (calls);

77 parser.y Wed Oct 25 13:52:32 1989

/***/

/* write_coll_decls() writes out declarations for all the collections */
/* used in the query */

write colI decls(startPos,list)
short- *startPos;
char *list[];
{

colI descr *colls;

colIs ~ Coll_List->prev;

if (colls)
do {

if (!runtime check)

{

11 st ((* start Pos) ++] "ENObject
I
else
(

list [(*startPos) ++] = "ENObject ";
)

list [(*startPos) H) colls->name;
II ~ II •list[(*startPos)++] , ,

if (colls->prev)

(

list [(*startPos) J ~ "\n";

I
colIs - colls->prev;

) while (colls);

/***/

/* make BuildArg() writes out a call to ENBuildArgList () putting all */
/* the collections referenced thus far into a list "args" */

make_BuildArg(startpos,list)
short *startPos;
char *list[];
{

coll_descr *colls;

int arg count ~ 0;

int saved_pos;

arg list[(*startPos)++] U\n ll ;

arg-list[(*startPos)++) args = ENBuildArgList (";

saved_pos = *startPos;

arg_Iist[(*startpos)++] itoa (arg_count);

arg_Iist[(*startPos)++] .. .II ,•

colIs = ColI List->prev;

if (colls) ­
do {

arg list[(*startPos)++] "\ .. ";

arg-list[(*startPos)++) - colls->namei

arg=list[(*startPos)++! - "\ IIU;

_ N II •
arg list[(*startPos)++J . .
arg-list[(*startPos)++1 &"i;z N

arg=list[(*startPos)++] colls->name;

if (colls->prev)

(

.. II •arg_Iist[(*startPos)++) . .

parser.y Wed Oct 25 13:52:32 1989 78

arg count++;

colIs = colls->prev;

I
 while (coIls);

arg list[(*startPos)H] ~ ");\n";

arg=list[saved_pos] = itoa(arg_count);

/ •• ** ••• ******.****** ••••••••••• ****** •••••••••••••••• _••••••••••••• /

/* make GetArg() writes out a series of calls to ENGetArg(), which extracts */
/* coll;ctions from the list "args" */

char '"
make_GetArg ()
(

char *list [100);

coll_descr ·colls;

char ·text:

short pas:

pos ~ 0;

colIs ~ ColI List->prev;

if (colI s) ­
do {

list [pos++l - ,
list[pos++] ~ colls->name;
list[pos++] - "~ENGetArg(args,

list[pos++] ~ 11\1111;

list[pos++J = colls->name;
list (pos++l = "\'111:

list [pOSH] ~ "); ";

list [pos++] = "\n";

colIs ~ colls->prev;

) while (coIls);

text ~ Concat(pos,list);

return (text) ;

1****···*******--·*························--········· **************/

/* make AddArgs() writes out a call to ENAddArgs(), which adds the current */
/* scop;'s lambda variables to the list "args" */

char *
make_AddArgs ()
{

char *list [1001;
param descr *param list;
char *code; ­
int arg count 0;

short - pos:

list [OJ - " ENAddArgs(&args, ";
/* leave room for arc count below */
pos = 2;

param_list = Stack Frame;
do (

param_llst - param list->prev;

list [pOSH] ~ , ,

list [pOSH] "\ 1111;

scanner.l Tue Oct 24 20:22:43 1989 7 ".
low ~ mid + 1;

I /* else */

) /* else */

/* while */

return result;

