
BROWN UNIVERSITY
 
Department of Computer Science 

Master's Thesis
 
CS-90-M14
 

Integrating Observer and Intennedia:
 
A Case Study
 

by 
Mala Anand 



BROWN UNIVERSITY
 
Department of Computer Science
 

Masters Project
 

Integrating Observer and Intermedia: 
A Case Study 

by 

Mala Anand 

\ 
I 



Integrating Observer and Intermedia:
 
A Case Study
 

by 

Mala Anand
 
Brown University, 1990
 

Sc.M. Project 

Submitted in partial fulfillment of the requirements for the
 
Degree of Master of Science in the Department of
 

Computer Science at Brown University
 

August, 1990 

__S'<;;;;~ 6.3.~/lR.. 
Dr. Stanley. B. £Jonik 

Advisor 



1. INTRODUCTION 

Observer is the persistant object store and transaction manager for an object oriented database 

system. The goal of this project was to enhance the efficiency and performance of the system by 

reimplementing and performing optimizations on the existing version, such that an efficient interface 

could be designed to integrate Intermedia to Observer. Some of the techniques used are described 

below. 

Some of the improvements in the system came about from, remodelling the segment interface 

module and structuring the segments to be dynamic, the uids of replicated objects were made unique, 

the priority lock queue for receiving and releasing locks was reimplemented. In the cache, the problem 

of insertion of a key with one hash value seemed to drastically increase the hash times, so this was 

eliminated by restructuring the hash table. The segment module was altered in order to enable the 

compaction of segments on the disk in order to minimize the external fragmentation. 

There were also some code optimization techniques we applied like loop optimizations, dead code 

elimination and live variable analysis. 

All these techniques that were used seemed to provide more functionality and efficiency for the 

object level server. 

All these efficiency improvements, seemed to aid in the design for the integration with Observer and 

Intermedia. Currently Intermedia uses Ctree, a relational database, where the document objects, 

anchor objects, link objects and the web objects are flattened into hierarchichal tables and stored. 

Observer is designed to prOVide the tools to give any application efficient disk access. All the related 

observer objects are clustered together forming segments. The clustering of these objects within the 

segments are such , that they adapt a graph formation. Hence observer provides flexible facilities for 

clustering and prefetching which is useful for optimizing the performance for efficient graph traversal. 

It contains a transaction mechanism that allows applications to define their own policies regarding how 

sharing should be controlled. 

The interface designed to link Intermedia with Observer gives us an opportunity to test the 

applicability of the storage system as a platform for hypermedia applications. Object-oriented 

database technology is well suited for this style of access. Hypermedia systems are based on the 

ability to naVigate complex webs for effcient traversal. Object-oriented database technology has 



focused on providing the ability to do efficient graph traversal. Many people have theorized that the 

these two technologies would form a good match. This integration gives us an opportunity to compare 

the performance of intermedia with a relational backend and with an object oriented backend. This will 

give insight to the relative strengths and weaknesses of these storage techniques, for an 

object-oriented frontend application. 

2.	 ARCHITECTURAL OVERVIEW OF THE INTEGRATION OF INTERMEDIA WITH OBSERVER 

Three segments were designed to store the hypermedia information. 

1) Document Segment 

2) Web Anchor Segment 

3) Web Link Segment 

There is only one document segment in the database. There are m + n objects in this segment where 

m is the number of object documents and n is the number of object webs. This segment contains 

document identifiers for each document, and a list of segment table identifiers of web, that the 

document belongs. The document objects also contain their own properties, Le. docid, docType, 

allRights, addTime, modTime, addPerson, docName, docpath. The document segment also contains web 

identifiers and their corresponding properties, Le. docid, doctype, aliRights, addTime, modTime, 

addPerson, modPerson, docName, docpath. It also contains a list of all the documents in the web. Each 

document can be in more than one web and each web can consist of any number of documents. A web 

itself is a special type of document. 

Each document in each web, is its own segment, called a Web anchor segment. The Web anchor segment 

includes all the anchor objects for that document. The anchor objects contains a list of all the links 

connected to the anchor as well as its own properties. There are m x n web anchor segments. Each 

web anchor segment can have any number of objects. 

The web link segment contains identifiers for each link. Each link objects has properties such as linkid, 

webid, IinkType, addTime, modTime, addPerson, modPerson, linkExpl. It also contains a source and a 

destination anchor identifier for each link. There could be any number of web link segments. Each web 

link segment, can have any number of link objects. 



The binder will manage the observer database. When the application needs to connect to a server, it 

first contacts the binder, which determines whether the appropriate server is already running or 

whether it needs to be started up. Once the binder establishes that the server is active, the client is 

notified, and the connection between the server and the client is complete, and the observer database 

is initialized. 

At the time of initialization the document segment is created. When the documents and/or webs are 

created in the application, a corresponding entry is added to the document segment table. 

When an anchor is first created in a document, the system first checks to see if a web anchor 

segment exists. if the web anchor segment does exist then the appropriate anchor identifiers along 

with their properties are inserted into the web anchor segment table. if the web anchor segment does 

not exist, then the segment is created and then the appropriate anchor identifiers along with their 

properties are inserted into the web anchor table. 

When a link is created in a document, the system first checks to see if a web links egment exists. If 

a web link segment does exist, then the appropriate link identifiers and their corresponding properties 

are inserted into the web link segment table. If the web link segment table does not exist, then the 

segment is created after which the link identifiers and their properties are inserted into the web link 

segment table. 

For the deletion of an anchor in adocument, the web anchor segment is scanned for the particular 

anchor identifier, and the coresponding entry is then removed from the web anchor segment table. 

Similarly, for the deletion of a link, the web link segment is scanned for the particular link identifier, 

and the corresponding entry is removed from the web link segment table. 

3. SEGMENT M:>OULE INTERFACE 

The interface to the segment module was remodelled in order to be able to efficiently read and write 

segments, given segment unique identifiers. It was reimplemented such that only new and unique 

segment identifiers could be explicitly requested and the old ones must be finally removed. 

Segments are uniquely identified by segment identifiers. Thus there exists a segment identifier to 

each segment mapping. Since the size of the segments vary, the method to access them is through a 

pointer table. This segment pointer table was put in an extendible hashing data structure. Here the 



structure we built consisted of a directory of 2 raise to the power of d words, (one for each debit 

pattern) and a set of leaf pages which contain all records with keys beginning with a specific bit 

pattern. The search entailed the strategy of using the leading d bits of the key to index into the 

directory, which consisted of pointers to the leaf pages. Then the referenced leaf page is accessed and 

searched for the proper record. A leaf page could be pointed to by more than one directory entry. If a 

leaf page contains all the records with the keys beginning with specific k bits, then it would have 2 

raise to the power of (d-k) directory enteries pointing to it. This structure proved to be more efficient 

as the extra pointers in the directory allowed the structure to accomodate dynamic growth. 

The directory, contains only pointers to pages. These are likely to be smaller than keys or records, so 

more directory enteries will fit on each page. We can assume that we can fit twice as many directory 

enteries as records on a page. When the directory spans more than one page we keep a "root node" in 

memory which keeps track of where the directory pages are, using the same idexing scheme. Insertion 

into an extendible hashing structure involves one of three operations, after the leaf page which could 

contain the search key is accessed. If there is room in the leaf page, the new record is simply inserted 

there; otherwise the leaf page is split in two (half the records are moved to a new page), If the 

directory has more than one entry pointing to that leaf page, then the directory enteries are split as 

the page is, if not then the size of the directory is doubled. 

The enteries in the Segment Pointer Table are forced to be as small as possible to minimize the size 

of the table, however containing enough information to access segments. The minimum amount of 

information needed is a pointer to the segment with the coresponding segment UID. The first block 

would be read into main memory, and if the size is larger than a block, another disk access is 

neccessary to read in the remainder of the segment. 

The list of free blocks is maintained in a free block bitmap with one bit per block. In order to be able 

to efficiently find free chunks of memory large enough to fit new segments we implemented a dynamic 

string searching algorithm. In the previous existing brute force approach to string searching it did not 

examine the effect of exploiting large memory by treating each possible M character section of the text 

as a key in the standard hash table. But it is not neccessary to keep the entire hash table, since only a 

single key is sought at a time. We need to compute the hash function for each of the possible M 

character sections of the text and check if it equals the hash function of the pattern. The method used 

for computation here is based on computing the hash function for position i in the text given its value 



for position i-1. The code assumes a consistent index and d=32 is used for efficiency. (As 

multiplcations are implemented as shifts.) 

function search:integer; 

const q=xxx; d=32; 

var hash1, hash2, dM, i :integer; 

begin 

dM :=1; for i:=1 to M-1 do dM:=(d*dM)mod q; 

hash1 :=0; for i :=1 to M do hash1 := (hash1 * d + index(p[i])) mod q; 

hash2 :=0; for i :=1 to M do hash2 :=(hash2 * d +index (a[i])) mod q; 

I := 1; 

while (hash1 <> hash2) and (i <=N-M) do 

begin 

hash2:= (hash2 + d*q-index(a[i])*dM)mod q; 

hash2:=(hash2*d+index(a[i+M)))mod q; 

i := i + 1; 

end; 

search := i; 

end; 

It first computes a hash value say hash1 for the pattern, then a hash value say hash2 for the first M 

characters of the text. It then processes the text string and computes the hash function for the M 

characters starting at position i for each i and comparing each new hash value to hash1. The prime q is 

chosen to be as large as possible but small enough that (d + 1) * q doesn't cause an overflow. This 

would require fewer mod operations than using the larges possible prime. This proved to be quite 

efficient as it took time proportional to N + M. This first fit approach used to find free chunks 

minimizes searches and reduces the amount of compaction that occurs. Blocks of a segment are freed 

upon that particular segments removal or when the segment is moved. This involves setting the 

appropriate bits in the free block bitmap where the contents of the block is unchanged. 



4. DYNAMIC SEGMENTATION 

All objects are stored in segments, therefore when an object is created and installed, the 

transaction indicates in which segment the object will be stored. This is achieved by calling 

SVRregister_obj or SVRcommiLobj. After creation, the segment identifier is not needed to update or 

retrieve an object. The purpose of segments is thus to physically cluster related objects. When an 

object is requested from the server, the server sends the entire segment to the client, in anticipation 

that the client will soon request other objects from the same segment. Since the segments were not 

dynamic, it posed a problem of the number of objects that could fit in a particular segment, in order to 

be able to prevent overwriting of objects. Thus the structure of the segments was redesigned to make 

them dynamic, such that the segment size could vary, and thus overwriting of objects was prevented. 

In creating this dynamic segment we assumed the combination of most varying object sizes say up to M. 

We performed this calculation appropriately by efficiently doing things in an appropriate order of the 

objects received. 

For j := 1 to N do 

begin 

for = 1 to M do 

if i-size Dl > = 0 then 

if cost [i] < [cost [i - sizeDll + valDJ) then 

begin 

cost[i] := cost [i - sizeUll + valDl; 

best[i] := j; 

end; 

end; 

cost[i] is the highest value that can be achieved with an object size of capacity i and best[i] is the 

last item that was added to achieve that maximum. First we calculate the best fit we can achieve in a 

segment for all object sizes, when only items of one type say, A are taken, then we calculate the best 

we can do when only type A's and another type 8's are taken. The dynamic solution, thus reduced to a 



simple calculation for cost[i]. Suppose an object j, is chosen for the segment, then the best value that 

could be achieved for the total would be (valUl (for the object) + cost [i - sizeUm to fill up the rest of 

the segment. If this value exceeds the best value, that can be achieved without an object j, then we can 

update cost[i] and best[i], 

otherwise they are left alone. 

Thus changing it to this dynamic structure of segments prevented alot of the observer objects from 

being overwritten. Hence it was seen using dynamic segmentation, it implemented a dynamic structure 

in order to enable locality of reference, so that any number of objects that were routinely used 

together could be more efficiently retrieved into an applications work space at the same time. 

5. SEGMENT UIOS 

In the current version of observer it was found that the UIO's of replicated objects are not unique, 

and take on already assigned UIO's. This did not prove to be efficient. Hence the simplest open 

addressing method of -linear probing- was implemented. 

If the number of objects with their UIO's to be put in the hash table can be estimated in a maximum 

sense and enough contiguous memory is available to hold all the keys with some room to spare, then it 

doesn't seem efficient to use any links at all in the hash table. Thus using linear probing, when there 

existed a collision, (Le. when hashed to a place in the table, which is already occupied and whose key is 

not the same as the search key.) then we just probe to the next position in the table, that is compare 

the key in the record, against the search key. There exist three possible strategies: 

1) If the keys match then the search terminates. 

2) If there is no record, then the search terminates unsuccessfully, otherwise probe the next position, 

continuing until either the search key or an empty table position is found. 

3) If a record containing a search key is to be inserted following an unsuccessful search, then it can 

simply be put into the empty table space which terminated the search. 

proc HASHinit; 

var i: integer; 

begin 

for i := 0 to M do a[i].key := maxint; 



end; 

function Hashinsert (v: integer): integer; 

var x : integer; 

begin; 

x:= h(v); 

while a[x].key <> maxint do x := (x + 1) mod M; 

a[x].key := v; 

Hashinsert := x; 

end; 

This method of linear probing seemed to be more efficient than separate chaining that was used. Since 

the table size for linear probing is greater than for separate chaining, but the total amount of memory 

space used is less, since no links were used. It improved performance as linear probing uses less than 

5 probes, on the average, for a hash table which is less than 213r'd's full [1]. 

6. LOCKS 

The lock types supported by observer are implemented with an object level granularity and provides 

a concurrency control scheme that can be tailored by an application to its own requirements for data 

consistency and resiliency. Clients use the objects by copying them from the server process into the 

virtual memory space of their own process via IPC prtocols. The objects are manipulated locally and 

saved when a client writes them back to the server IPC. A new version of the object is visible to all 

clients only when that version is the product of a committed transaction. The system provides a 

two-phase locking protocol with standard read and write locks for applications requiring serializable 

execution of concurrent transactions. An application may opt for the cached model of concurrency 

control in which objects are transferred between processes only when they have been modified by one 

client and are needed by another. The cached model is implemented by the addtition of two lock-types 

notify and writekeep. 



The cached model of concurrency control, supports an environment optimized for data sharing and 

perfomance through the co-operative use of notify and writekeep locks. When locks are requested they 

get inserted into a priority queue. The structure of this priority queue, was remodelled, such that it 

would perform a heapsort, when all the locks on a particular object were requested. The idea was 

simply to build a heap structure based on the priority of the locks and then to remove and release them 

from the heap in order of their request. If N is the size of the entire heap and M is the number of 

objects to be sorted. It was implemented using M insert operations and M remove operations, putting 

the element removed into place variated by the shrinking heap. 

N := 0;
 

for k:=1 to M do insert (a[k]);
 

for k:= M downto 1 do a[k]:=remove;
 

This assumes a particular representation for the priority queue. In each loop the priority queue resides
 

in a[1 ..k-1]. Using this structure of heapsort for representing a priority while enabling locks improved
 

efficiency as heapsort uses fewer than 2MlgM comparisons to sort M elements [1].
 

7. CACHE 

The hash table that was implemented in the cache proved to be a little inefficient. The insertion of a 

key with one hash value drastically increased the search times for keys with other hash values. There 

seemed to be an easy way to eliminate this problem and improve performance, by using the technique of 

double hashing. The basic strategy is the same, the only difference being that instead of examining each 

successive entry following a collided position, we use a second hash function to get a fixed increment to 

use for the "probe" sequence. This was implemented by inserting u = h2(v) at the beginning of the 

procedure and changing x := (x + 1)mod M to x := (x + u) mod M within the while loop. This seemed to 

be more efficient as, double hashing uses fewer. probes, on the average than linear probing[1]. 

The actual formula for the average number of probes made for double hashing with an "independant" 

double hashing function is 1/(1 - alpha) for unsuccessful search and • In(1 - alpha)/alpha for a 



successful search [1]. It is more efficient as a smaller table can be used to get the same search times 

with double hashing as with linear probing for a given application. 

8. COMPACTION 

The segment module was altered in order to enable the compaction of segments on the disk in order to 

minimize external fragmentation. The database is compacted until contiguous chunk of memory is large 

enough to hold the given segment that is created. The total amount of free space that is available is 

kept track of, so that the WRITE call will not block while the entire database is compacted and to 

discover that upon completion that there does not exist enough free space in the partition. 

After altering the functionality of compaction, it now migrates all the free space to the end of the 

disk partition. In order to be able to compact the entire database, it seemed to be more advantageous 

to process the segments by their offsets rather than their segment identifiers. The segments being 

contiguous guarantees that any used block immediately following a free one will be the first block in a 

segment and thus will contain its header and will contain the segment size and the segment identifier. 

The free block bitmap is searched for the first chunk of available segment at the end of this chunk, is 

moved into that free space. The first block of the segment is read into main memory, the header is 

examined, and if it is larger than one block, the remaining blocks are read in as well. The segment is 

then written out to disk updating both the free block bitmap and the segment pointer table. This 

protocol is repeated until the entire database has been compacted. 

9. OPTIMIZATIONS 

a) Dead code elimination
 

A variable seems to be alive at a point in a system if its value can be used, otherwise it is
 

non-existant. Eliminating such variable's contributed to the general efficieny of the system.
 

b) Loop Optimizations
 

Three techniques were used to speed up performance.
 

1) Code motion: This moves the code outside the loop.
 

2) Induction Variable Elimination: This eliminates the induction variables from the inner loops.
 

3) Reduction in strength: This replaces an expensive operation with a cheaper one.
 



c) Local Reaching Definations: 

Space for data flow information can be traded for time by saving information only at certain points and, 

as needed recomputing information at interevening points. 

d) Live Variable Analysis: 

A number of code efficiency techniques depend on information computed in the direction opposite to the 

flow of control in a program. In live variable analysis we wish to know say for variable x and a point p 

whether the value of x at p could be used along some path in the flow graph starting at p. 

e) Eliminating of global common sub expressions 

f) Ensuring symbolic debugging of optimized code 

We ensured a way to associate an object identifier with the location it represented, such that the 

position of the symbol table that assigns to each variable location. A place in the global data area or in 

an activation record for some procedure, must be recorded by the compiler and preserved for the 

debugger to use. 

g) Ensure scope information so references can be disambiguated to an identifier that is declared more 

than once. 

h) Deducing values of variables in basic blocks 

One solution here was to run the unoptimized version of the block along with the optimized version, to 

make the correct value of each variable available at all times. 

The solution that was adopted to improve performance was to provide enough information about each 

block to the debugger. The structure used to embody the information is the dag of the basic block 

annotated with information about which variable holds the value corresponding to a node in the dag, at 

what times in both source and optimized programs. 



· ,
 
References 

[1]	 Sedgewick, Robert, Algorithms, Addison-Wesley Publishing Co., 
Reading, MA, 1983. 

[2]	 Fernandez, M, Zdonik, S, Ewald, A, "Observer: A storage system for 
Object oriented applications". 

[3]	 Skarra, A, Zdonik, S, Reiss, S, "Observer: An object server for an 
object oriented database system". 

[4]	 Hornick, Mark, Zdonik, S, "A shared segmented memory system for 
an object oriented database ". 

[5]	 Kogut, Richard, "Report on implementing caching for Observer 
clients" . 

[6]	 Aha, Ullman, "Principles of Compiler Design", Addison-Wesley 
Publishing Co., Reading, MA. 


