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Introduction
 

The LOP system for Huey 

The system this paper describes runs on a mobile robot named Huey. 
Huey consists of a mobile base, PC AT, vision processing board, 
sonar ring and controlling hardware, and a camera mounted on a pan­
tilt head. Presently the LDP system for Huey uses the sonar ring as 
its sole sensing device. Two rings of eight transducers placed one 
on top of the other combine to form a ring of 16 transducers. There 
are 22.5 degrees between transducers, giving Huey a 360 0 view. 
Each transducer has a maximum range of 25.5 feet. Huey's mobile 
base is 12 inches in diameter. One motor controls translation of the 
three wheels of the base, and another controls base rotation. This 
second motor rotates the top platform of the base along with the 
wheels, allowing Huey to turn in place. Shaft encoders for the two 
motors allow the base to keep track of how far it has translated and 
how much it has rotated. 

The Locally Distinctive Place (LDP) system for Huey classifies 
interesting places Huey encounters as it moves through the corridors 
on a floor of a building. A Locally Distinctive Place is any juncture 
of corridors. For example, an LDP can be an intersection, T junction, 
or L junction of corridors. When Huey encounters an LDP, the system 
attempts to classify it as an intersection, T junction, L junction, or 
doorway. To do this, the LDP system looks for features that form 
the LDP. For example, convex corners and concave corners are 
features of intersections and L junctions. An intersection consists 
of four convex corners, and an L junction consists of a convex corner 
and a concave corner. 

The LDP system for Huey is a base for a robot geographer. A robot 
geographer builds maps as it wanders through its surroundings. The 
geographer could request the LDP system to classify any locally 
distinctive place it has not encountered before. Once the LDP is 
classified, the geographer adds the junction to its map. This system 
is particularly useful in an environment that often changes, such as 
an office building with cubicles. The robot geographer eliminates 
the need to supply the robot with a new map each time the 
configuration of cubicles changes. 
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Related Work 

The LOP system for Huey shares several ideas with [6] and [7]. In [7], 
Kuipers and Byun apply concepts from the TOUR model of [6] to 
introduce a spatial representation that does not rely on metrical 
information. Their topological representation of distinctive places 
connected by travel edges includes procedural knowledge to guide 
the robot in a local area. To identify an area as one already 
encountered, the system performs rough matching of metrical 
information. If there is more than one possible match, the system 
formulates routes to adjacent distinctive places and tests its 
hypotheses. This system does not deal directly with sensor error, or 
with unexpected obstacles in the environment. 

In [3] and [9], Moravec and Elfes propose a grid-based spatial 
representation. Each cell of the grid contains a value marking it as 
probably occupied, probably empty, or unknown. To obtain the grid, 
Moravec and Elfes integrate many range readings taken at different 
points on the grid. The system deals directly with sonar error by 
estimating the probability that a given point in the sonar cone is 
empty or occupied. Consistent evidence reinforces a cell's 
probability, while conflicting evidence weakens it. In [3], Elfes 
proposes a navigation system based on the occupancy grid maps. He 
defines three axes of representation for sonar maps; the 
abstraction, geographical, and resolution. 

Crowley introduces a spatial representation based on line segments 
in [2]. He converts range data to a global coordinate system and uses 
recursive line fitting to produce a set of line segments from the 
data. These line segments form a sensor map that he integrates 
with a composite local map. A previously learned global map also 
contributes to the evolution of the composite local map. Similar to 
[9], Crowley reinforces confidence in a line segment when there is 
consistent data, and weakens confidence when there is conflicting 
data. Navigation in this model is based on convex regions cut from 
the global map. A local path planning module attempts to 
circumvent unexpected obstacles. 

In [8], Miller proposes a model for spatial representation based on 
polygonal regions. He defines a j-F region as a region eliminating j 
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degrees of freedom from the positioning of the robot. If a position 
consists of x and y coordinates and an orientation theta, a 3-F region 
allows positioning of the robot with respect to all three 
components. Path planning involves identifying the regions to 
traverse, calculating the Voronoi diagram of the resulting polygon, 
and searching the graph of the diagram for the shortest path. This 
system assumes the existence of an accurate global map, and makes 
no provision for unexpected obstacles in the robot's environment. 
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Overview of the System
 

There are eight processes in the LOP system for Huey. Figure 1 on 
the next page illustrates their interconnection. The Sonar Controller 
(SC) and Low-Level Controller (LLC) are the only two processes that 
have direct access to the robot's hardware. Any other process 
wanting to gain access to the sonars or the robot base must send a 
request to the Sonar Controller or the Low-Level Controller 
respectively. The Where-Am-I (WAI) process maintains a sense of 
position for the robot. The Low-Level-Controller sends messages to 
the WAI informing it of changes in the robot's motion. The Master 
Control (MC) process controls the action of the Locally Oistinctive 
Place (LOP) process, the Corridor Following Module (CFM) process, 
and the Move-To-Port utility. The LOP process directs exploration 
of an LOP by requesting the Feature Recognition Module (FRM) 
process to invoke feature detectors that look for features forming 
the LOP. The CFM moves the robot down a corridor to the next LOP. 
The Move-To-Port utility positions the robot for the CFM by moving 
the robot into one of the corridors of the LOP. The final process of 
the system, the Avoidance Module (AM) process, prevents collisions 
of the robot with obstacles in its environment. 

fPC and Name Server Modules 

The eight processes of the system communicate via a message 
passing scheme provided by the Interprocess Communication Module 
(IPC) and the Name Server Module. The Name Server Module 
associates a unique name, or client 10, with each process in the 
system. The IPC module uses the unique client 10 to deliver 
messages between the processes. 

Before a process can receive messages from other processes in the 
system, it must first register itself with the name server module. 
At registration, the process supplies a name for itself and a process 
priority. The name server issues a client 10 for the process and 
associates the process name and priority with the new 10. Other 
processes will use the name to get the client 10 of the process in 
order to send messages to it. Some processes will use the priority 
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to arbitrate between processes when more than one requests service 
at a time. 

To s.end a request for service to another process, the sending 
process needs to know the client ID of the process it wants to send 
the request to. A request to the name server provides the sending 
process with this information. The sending process can then call the 
IPC module to send its request. The IPC module has an address for 
each client ID. It delivers the message to the address of the 
specified client. Once delivered, tl,e message waits until the 
receiving process requests to see its messages. 

When a process is ready to receive a message, it calls the IPC 
module, specifying a timeout value. If there are any messages 
pending, the IPC module delivers the oldest one to the receiving 
process. If there are no messages, the IPC module will suspend the 
receiving process. The process wakes up again when a message 
comes in for it or the timeout expires, whichever happens first. 

Low-Level Controller 

The Low-Level Controller (LLC) process manages access to the robot 
base. Any process wishing to move the robot must send a request to 
the LLC. Of utmost concern to the Low-Level controller is 
arbitration between processes wanting to control the base at the 
same time. For example, the Feature Recognition Module (FRM) may 
have control of the base and request the LLC to move the robot 
forward one meter. Someone is walking down the corridor in the 
direction of the robot. The Avoidance module senses this and 
requests the LLC to move the robot to one side. The LLC must 
override the FRM's request because the Avoidance module has a 
higher priority. 

To gain control of the base, a process has to request a transaction 
with the LLC. Once the transaction is granted, the process has 
control of the base until it closes the transaction, or a higher 
priority process request control. When a higher priority process 
interrupts a transaction, the LLC notifies the original process of the 
override. The original process has two courses or action at this 
point. It can surrender by closing its transaction, or it can hang on 
and listen to warning messages issued by the LLC. As long as the 
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original process does not close its transaction, the LLC will send 
warning messages to it, keeping it up to date with requests the 
overriding process makes. When the overriding process yields 
control of the base, the original process can try to recover and pick 
up whatever it was doing before the override. 

Sonar Controller 

The Sonar Controller (SC) process handles access to sonar data 
collected by the Denning sonar system. Any process wishing to read 
the sonar data must issue a request to the SC. The primary purpose 
of the SC is to avoid collision of messages on the serial line to the 
Denning sonar system. This could happen if two processes try to 
read the sonar data directly from the Denning system at the same 
time. 

The Sonar Controller periodically requests data from the Denning 
sonar system and stores the data in a buffer. When a process 
requests sonar data, the SC copies the current sonar readings into a 
response message and sends the message off. The Sonar Controller 
services requests on a FIFO basis. 

W here-Am-I-M od uIe 

The Where-Am-I (WAI) Module is a process that maintains a sense of 
where the robot is by keeping track of the robot's motion. The Low­
Level Controller notifies the WAI Module of changes in the robot's 
rotational and translational velocities. The WAI module uses this 
information to monitor the robot's position via dead reckoning. 

At any time, a process can request the WAI module to record the 
robot's current position. The position includes the cartesian 
coordinates of the robot, its orientation, and a 3 by 3 covariance 
matrix for the estimated position. The WAI Module returns a handle 
to the position it just recorded. This is use'ful when a module wants 
to move the robot to gather data and then return the robot to its 
starting position. The module can record the starting position, 
gather its data, and call the library routine "Move-To-Point" to 
return the robot to its initial position. 
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Move-To-Point takes a position that the WAI module recorded, and 
returns the robot to that position. In order to do this, 
Move-To-Point needs to know the coordinates and orientation of the 
new position with respect to the robot's current position. A request 
to the WAI module supplies Move-To-Point with this information. 

Avoidance Module 

The Avoidance Module is a process tl,at constantly monitors the 
existence of obstacles in the robot's environment and attempts to 
move the robot if necessary to avoid collision. The Avoidance 
Module has a higher priority than any other process in the system. 
This is to ensure that the Avoidance Module can always override 
another process' transaction with the LLC to avert a collision. 

To avoid collision, the Avoidance Module keeps track of obstacles 
that appear to be moving closer to the robot. If the robot itself is 
moving, the Avoidance module may simply request the LLC to reduce 
the robot's translational velocity when it gets too close to an 
object. If the robot is not moving, Avoidance may issue a series of 
requests to the LLC to move the robot out of the way. 

Corridor Following Module 

The Corridor Following Module (CFM) moves the robot from one 
Locally Distinctive Place (LOP) to another. The Master Control 
process (MC) requests the CFM to follow a corridor after the LOP 
process classifies the current LOP. The Corridor Following Module 
moves the robot down the corridor until the sonar data indicates the 
presence of open space to the left or right side of the robot. 

When the CFM receives a request to follow a corridor, it assumes the 
robot is already at the start of the corridor, facing in the right 
direction. The CFM module attempts to position the robot in the 
middle of the corridor. As the robot makes its way down the 
corridor, the CFM periodically adjusts the robot's orientation to keep 
it moving in a path parallel to the corridor's walls. Also 
periodically, the CFM checks the sonar data for evidence of open 
space to one side of the robot. 
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The CFM halts the robot when it detects open space to the left or 
right of the robot. Presumably, the open space indicates that the 
robot is in the vicinity of an LOP. The CFM positions the robot at the 
end of the corridor (see figure 2), and sends a response message to 
the MC process. The position the CFM leaves the robot in is the 
starting position during exploration of the LOP. The LOP process 
will return the robot to the starting position after invocation of 
each feature detector. 

RimOfrObO~ 

(back) ;,.". ~ 112 cm 
Sonar ring 

r 

Figure 2 

Feature Recognition Module 

The Locally Distinctive Place process (LOP) directs exploration of an 
LOP by requesting the Feature Recognition Module (FRM) to look for 
corners, walls, and edges in the vicinity of the LOP. Each LOP 
consists of several features. A feature can be a wall, convex corner, 
concave corner, or wall edge. A wall edge is a section of wall that 
ends without meeting another wall to form a corner. For each 
feature, the FRM has a detector that attempts to find the feature 
within an area specified by the LOP process. 

To look for a feature, the LOP process requests the FRM process to 
execute one of the feature detectors. The request contains an 
expected position for the feature with respect to the robot's 
starting position. The feature detector attempts to move the robot 
to the expected position. If this attempt fails, the detector aborts 
and the FRM sends a response message to the LOP process. 
Otherwise, the detector tries to find the feature by tracking the 
existence of walls forming it. If at any time the detector fails to 
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detect a wall that should exist, or detects a wall that should not 
exist, the FRM sends a response message to the LOP process 
indicating failure. 

Locally Distinctive Place Process 

The LOP process utilizes an influence diagram to decide which 
feature detector to request next in order to classify the current LOP. 
Behind the LOP's decisions is a set of hypotheses, or possible 
classifications. Initially all of the hypotheses are equally likely. 
The LOP process chooses a feature detector that will rule out as 
many hypotheses as possible. Also behind the LOP process' decision 
is the cost of each feature detector. At the start, the LOP process 
can glean as much information from the execution of a less 
expensive detector as from an expensive one. 

As the LOP process receives results from the feature detectors, it 
prunes the hypothesis space. With each result, the LOP process 
reevaluates the influence diagram to arrive at a new probability 
distribution for the hypotheses. A result of success or failure from 
a detector contributes to the influence diagram. Eventually the LOP 
process rules out all but one hypothesis. At this point, the LOP 
process has classified the current LOP. 

Master Control Module 

The Master Control (MC) process is the driver of the whole system. 
This process decides what the robot's next action will be in its 
quest to find and classify the locally distinctive places on a floor of 
a building. At the start, the Master Control Module assumes the 
robot is in a corridor. The MC requests the Corridor Following 
Module (CFM) process to move the robot to the 'first LOP. Once the 
robot is at an LOP, the MC can request the LOP process to classify 
the locally distinctive place. 

After the LOP process classifies the current LOP, the Master Control 
Module invokes the Move-To-Port utility to position the robot in one 
of the ports of the LOP. A port is an exit point for the robot from 
the current LOP. Often an LOP has more than one port from which to 
exit. It is up to the MC to decide in which direction the robot should 
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go. Once the robot is in a port, the Master Control process can 
request the CFM to follow the corridor to the next LDP. 

Margaret J. Randazza Master's Thesis Friday, October 27, 1989 

10
 



Feature Recognition Module
 

Features 

Each locally distinctive place consists of several features. The 
number of features, type of each feature, and location of each 
feature determine what the LOP is. There are four distinct features: 
convex corner, concave corner, wall, and wall edge. 

Convex Corner Concave Corner 

Wall Wall Edge 
Figure 3 

A wall edge is a section of wall that ends without meeting another 
wall, or a section of wall cut open by a doorway. 

The decision to break locally distinctive places into the four 
features above was not an easy one. Another approach is to consider 
only wall segments and angles between them. In this scheme, 
scripts can describe each LOP. For example, the script for the LOP ilL 
junction to right" might look as follows: 

Margaret J. Randazza Master's Thesis Friday, October 27, 1989 

1 1
 



1 Look for wall segment to 
to left. 

2 Look for wall segment 
ahead. 

3 Get angle between wall 
segments. 

4 If angle is not 90 degrees 
ELIMINATE Right L 

robot (back) 5 etc ... 

Right L Junction 
Script 

Figure 4 

The LOP process would have one script for each hypothesis it is 
considering for the current locally distinctive place. If a step of a 
script fails, the LOP process would eliminate its corresponding 
hypothesis. When only one script remains, or when a script 
success'fully completes, its hypothesis becomes valid and the LOP 
process has classified the current locally distinctive place. 

Scripts allow a higher granularity of decision making on the part of 
the LOP process than features do. The commitment the LOP process 
makes at each step is lower, and the total amount of information it 
receives is greater. For example, suppose the first step of the 
script for "L junction to the right" succeeds, but the second fails. 
As a result, the LOP process knows there is a wall segment to the 
left of the robot and no wall segment to the front. If instead the 
LOP process requests the FRM to execute the feature detector for the 
concave corner, it would simply receive an indication of failure for 
the whole feature. The LOP process would lose the information that 
there is a wall to the left. 

There are several disadvantages to the script scheme. The script 
steps are not independent of one another. It makes no sense to 
measure the angle between two wall segments before establishing 
their existence. This makes it difficult to mix and match steps from 
several scripts in order to reduce the number of hypotheses as 
quickly as possible. It also makes it difficult to recognize when two 
scripts overlap, to avoid repetition of identical script steps. 
Repetition is also a factor when measuring the angle between two 
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wall segments. The robot has to track the two walls once to 
establish their existence, and again to measure the angle between 
them. 

Breaking locally distinctive places up into features leads to a 
cleaner and more flexible design. The features in each hypothesis 
are independent of each other. The LOP process is free to mix and 
match features from several hypotheses in order to prune the 
hypothesis space quickly. Identical features in different hypotheses 
are easy to single out. Perhaps most importantly, the LOP process 
does not orchestrate the movement of the robot around the LOP. The 
FRM controls the movement of the robot, leaving the LOP process to 
concentrate on which feature to look for next. 

Hypotheses 

Ouring exploration of an LOP, the LOP process has a collection of 
hypotheses it is considering for the current locally distinctive 
place. A hypothesis is a collection of features together with 
information about where each feature should be and how it should be 
oriented. Hypotheses also include information about exit points for 
the robot called ports. The hypothesis for the LOP "L junction to the 
right" is below. 
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Figure 5 

This hypothesis has two features; a convex corner to the right, and a 
concave corner to the left. There is also a port in the upper rlght­
hand corner of the L junction (marked with the grey circle P1). If 
the LDP process classifies the current LDP as "L junction to the 
right", the robot will leave the L junction via port P1. 

Start Position 

The position of the robot in the diagram above is the start position 
for the hypothesis. The robot will return to the start position after 
execution of each feature detector. All other points in the 
hypothesis are relative to the start position. As the diagram 
indicates, points are cartesian coordinates with the positive X axis 
directly to the right of the robot, and the positive Y axis directly 
ahead of the robot. Orientations in the hypothesis are also relative 
to the start position. Orientations to the right of the robot are 
positive, and orientations to the left are negative. 
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Expected Position and Orientation 

When the LDP process requests the feature recognition module to 
execute one of the feature detectors, it passes along all of the 
information it has about the feature. The first action the detector 
will take is move the robot to the expected position of the feature. 
This is the field "position" of the features in the hypothesis above. 
The expected position of a feature is a point in the vicinity of the 
feature, giving the robot an idea of where the feature should be. In 
order to get the robot to the expected position, the feature detector 
calls the library routine "Move-To-Point". 

The routine "Move-To-Point" takes a parameter telling it the best 
way to get the robot to the desired position. This "strategy" 
parameter can take on one of three values: 'straight', 'V first', or 'X 
first'. The "strategy" field of a feature in a hypothesis lets the 
feature detector know the best way to get the robot to the expected 
position of the feature. Sometimes the expected position is around 
the corner from the start position. In this case, it is best to move 
the robot the distance along the V axis first, followed by the 
distance along the X axis. At other times the expected position is 
directly ahead or directly behind the robot. Moving the robot 
straig ht to the position is more efficient. 

Once the robot is at the expected position, the feature detector 
turns the robot to the orientation specified in the "orientation" field 
of the feature. At this point, the robot should be facing a wall that 
makes up part of the feature. If there is no wall, the FRM will return 
an indication of failure to the LDP process. Otherwise, the feature 
detector will continue its endeavor to confirm or disconfirm the 
existence of the feature by attempting to move along the walls 
forming it. 

Side Field 

Suppose the robot is at the expected position of the convex corner in 
the hypothesis for "L junction to the right" (the grey circle labelled 
1 in the diagram). The robot is facing the wall and has already 
detected it. The next step is to move along the walls forming the 
corner. How does the robot know which way to turn? The corner 
could be to the left or to the right. The "side" field of the feature 

Margaret J. Randazza Master's Thesis Friday, October 27, 1989 

15
 



provides the robot with the information it needs. The value of the 
side field for the convex corner in the hypothesis above is 'Right'. 
This means the feature is to the right of the starting position in the 
hypothesis. Concave corners and wall edges also take a side field. 
Walls stretch to both sides of their expected position, rendering the 
side 'field unnecessary. 

Error Field 

The "error" field of a feature allows for error in the start position 
of the robot. If the robot is not exactly at the start position, it will 
not get to the exact location of the expected position. As the robot 
follows the wall forming part of a corner, it may reach the corner 
sooner or later than it expects. If the robot does not reach the 
corner within a distance bounded by the error field, the detector 
will fail and the FRM will relay the failure to the LOP process. 

Ports 

After the LOP process has classified the current LOP, the MC process 
will invoke the Move-To-Port utility to move the robot to one of the 
ports in the hypothesis corresponding to the LOP. Each port in a 
hypothesis has a position and a strategy for getting to the position. 
The Move-To-Port utility calls Move-To-Point to get the robot to the 
port position. Move-To-Port orients the robot so that it is heading 
down the corridor of the port, and moves the robot far enough down 
the corridor for the corridor following module to take over. 

Calculation of Expected Positions 

To calculate the expected positions for features in a hypothesis, 
there have to be some assumptions about the size of the robot and 
the width of the average corridor. The FRM module makes the 
following assumptions: 

1.	 The stabilizing ring around the robot is 60 centimeters in 
diameter. 

2.	 The sonar ring has a diameter of 16 centimeters. 
3.	 Corridors are roughly 112 centimeters wide. 
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If the robot is in the middle of a corridor, the measurements are as 
follows: 

112 em 

22 em ~ 

\ 16 em 

Figure 6 

The coordinates of the expected position for a feature in a 
hypothesis depend on the feature type and the placement of the 
expected position with respect to the start position. Convex corners 
and wall edges have their expected positions so that the sonar at the 
front of the robot is 50 centimeters away from the corner. The 
expected position along concave corners is 100 centimeters between 
the front sonar and the corner. The expected position along a wall is 
48 centimeters from the midpoint of the wall. The midpoint of a 
wall is the point directly opposite the midpoint of the corridor 
opposite the wall. The two LDPs below diagram the expected 
positions for each feature. 
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Start Position 

(0,0) 

(0, -50) 

Figure 7 

As an example, consider the convex corner of the L junction. At the 
start position, the sonar at the front of the robot should line up with 
the corner. In order for the front sonar to be 50 centimeters from 
the corner, the robot has to move -50 units along the Y axis. The 
left perpendicular sonar is already 48 centimeters from the wall to 
the left. No translation along the X axis is necessary. The 
coordinates of the expected position for the corner are (0, -50). 

Feature Detectors 

The feature detectors of the feature recognition module can either 
succeed, fail, or abort in an attempt to detect a feature. A detector 
fails when it cannot detect a wall that should form part of the 
feature, or when it detects a wall that should not form part of the 
feature. A detector aborts when there is an avoidance override. An 
abort neither confirms nor disconfirms the existence of a feature. 
When a detector succeeds, it returns points along the walls of the 
feature. Higher level processes can use the points to orient the 
feature with respect to other features of the current LOP. 
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Wall Detector 

The wall detector attempts to track a wall as the detector guides 
the robot first to the right of the expected position and then to the 
left. If at any time the robot ceases to detect a wall, the wall 
detector will return with a failure. When it succeeds, the wall 
detector returns three points along the wall; the point at the 
expected position, and one point to either side, equidistant from the 
fi rs t. 

Convex Corner Detector 

The detector for convex corners starts at the expected position and 
attempts to move the robot around the corner. The detector 
calculates the maximum allowable distance between the expected 
position and the edge of the corner using the "position error" field of 
the corner. If the robot does not reach the corner edge within this 
distance, the detector will fail. Otherwise the detector turns the 
robot 90 degrees and attempts to follow the wall at the far side of 
the corner. If at any time the sonars fail to detect the walls that 
should make up the corner, the detector will fail. When it succeeds, 
the convex corner detector returns three points along the corner to 
the LOP process. One point is at the corner itself and the other two 
are to either side of the corner, equidistant from it. 

Concave Corner Detector 

The concave corner detector is similar to the detector for convex 
corners. The detector attempts to move the robot around the corner, 
tracking the walls forming it. The detector calculates the maximum 
allowable distance the robot should travel before coming within a 
certain distance of the opposite wall of the concave corner. If the 
robot exceeds this distance as it moves from the expected position 
towards the corner, the detector will fail. Otherwise the detector 
turns the robot 90 degrees and attempts to follow the opposite wall. 
If the sonars fail to detect the walls the robot tracks as it moves 
around the corner, the detector will fail. When the detector 
succeeds, it returns three points along the corner; the first at the 
corner itself, and the other two to either side, equidistant from the 
fi rs t. 
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Wall Edge Detector 

The detector for wall edges is similar to the detectors for convex 
and concave corners. It calculates the maximum allowable distance 
between the expected position and the edge, and it attempts to move 
the robot around the edge as it tracks the walls forming it. This 
detector also returns three points along the wall edge when it 
succeeds. The challenge is lining the robot up with the midpoint of 
the edge. As wall edges usually form part of a doorway, the detector 
has to take extra caution in moving the robot around the edge. 
Attempting to line the robot up with the midpoint of the edge allows 
the detector to position the robot more accurately with respect to 
the edge. To position the robot at the midpoint of an edge, the 
detector slowly translates the robot forward until the sonar 
perpendicular to the edge detects it. The robot continues to move 
forward until the perpendicular sonar exceeds a threshold. The 
detector then translates the robot backwards a fixed distance, 
positioning it roughly at the center of the wall edge. 

Calculation of Feature Costs 

When deciding which feature of which hypothesis to look for next, 
the locally distinctive place process takes into account the cost of 
executing each feature detector. The LDP process calculates this 
cost 'from the distance between the expected position of the feature 
and the start position, and the cost of executing the detector for the 
feature. The cost of each feature detector is the average number of 
centimeters the robot would travel, added to the average number of 
degrees the robot would turn if the detector were successful. 

As it turns out, the wall detector is the least costly. It does not 
have to turn any corners, reducing the number of degrees rotated by 
180. The fact that there are no corners also reduces the amount of 
translation. The detector for concave corners is second in cost, 
followed closely by the detector for convex corners. The robot 
moves around the inside of a concave corner, slightly reducing the 
number of centimeters to travel. The detector for wall edges is by 
far the most costly. Lining the robot up with the midpoint of the 
edge itself accounts for the extra cost. 
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Experience With Sonar
 

Important Algorithms 

There are several algorithms of great importance to the feature 
recognition module. Two of tl1e algorithms detect walls. The first 
is for short range wall detection. The FRM uses this algorithm to 
track walls as the robot moves roughly parallel to them. The second 
algorithm is for longer range wall detection. The FRM uses this 
algorithm when the robot is at the expected position of a feature and 
is looking for a wall ahead of it. The third algorithm of note 
attempts to orient the robot parallel with a wall. The FRM uses this 
algorithm before following a wall to keep the robot from veering 
into the wall as it follows it. 

Wall-Exist 

The Wall-Exist algorithm is for short range wall detection. It needs 
to be fast because it is often called in a loop that should exit as 
soon as the algorithm fails to detect a wall. Wall-Exist takes one 
argument; the side of the robot on which to look. This reduces the 
number of sonar readings Wall-Exist has to consider. Wall-Exist 
only considers the five sonars most closely perpendicular to the side 
of the robot on which to look. If the side to look on is the left side, 
and the perpendicular sonar to the left of the robot is number 12, 
Wall-Exist will look at sonars 10 through 14. 

Wall-Exist looks for a sequence of sonars that decrease in value and 
then increase. It does this by looping through the 'five sonar values, 
looking for the sonar with the smallest value. Wall-Exist then 
counts the number of increasing sonars to either side of the 
smallest value. If there are three or more sonars in the 
decreasing/increasing sequence, Wall-Exist succeeds. 

Wall-In-Sight 

Wall-In-Sight is for longer-range wall detection. This algorithm 
can take its time in deciding whether there is a wall or not. 
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Wall-In-Sight takes no arguments; it always looks for a wall to the 
front of the robot. The algorithm takes advantage of the time it has 
by rotating the robot to obtain a ring of sonar data with twice as 
many readings as transducers. This helps to reduce the effect of 
spurious readings and helps to make more evident the sonar 
signature of a wall when one exists. 

Of the 32 sonar values available, Wall-In-Sight considers the 11 
values that are closest to the front of the robot. If there is a 
sequence of four or more sonar values that fall within a fixed range 
of each other, and if the front sonar falls within a fixed range of the 
smallest sonar in the sequence, Wall-In-Sight succeeds. The fixed 
range allows for the increase in value of the sonars as they deviate 
from the perpendicular, and allows for small errors in the sonar 
readings. The stipulation that the front sonar be close in value to 
the smallest sonar in the sequence ensures that the wall stretches 
in front of the robot. 

Orient-Parallel 

Orient-Parallel attempts to align the robot parallel to a wall. The 
routine takes one argument; the side of the robot the wall is on. 
Orient-Parallel considers only those sonars to the given side of the 
robot. Accuracy is of primary concern to this routine. The more 
closely parallel the robot is to a wall, the less the chance is that 
the robot will veer into the wall when following it. 

Orient-Parallel adjusts the robot's orientation in two phases. In the 
first phase, Orient-Parallel attempts to make the sonar 
perpendicular to the robot at the given side the sonar with the 
smallest value. It does tl,is by first identifying the sonar with the 
smallest value. If the smallest sonar is more towards the back of 
the robot than the front, Orient-Parallel turns the front of the robot 
towards the wall five degrees. If the smallest sonar is more 
towards the front of the robot than the back, Orient-Parallel turns 
the front of the robot away from the wall five degrees. The routine 
continues turning the robot by five degrees until the sonar 
perpendicular to the robot at the given side has the smallest value. 

In the second phase, Orient-Parallel attempts to balance the values 
of the sonars to either side of the smallest sonar. If the sonar 
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closer to the back of the robot is smaller than the one closer to the 
front, the front of the robot turns toward the wall one degree. If the 
sonar closer to the front of the robot is smaller, the front of the 
robot turns away from the wall one degree. This continues until the 
sonars to either side of the smallest sonar are equal in value, or 
until the robot has changed its direction of turn five times. The last 
stipulation keeps the robot from thrashing. 

Using Sonar Data 

The first step in coping with sonar error is to expect error by 
building into the system error-minimizing procedures. Taking the 
average or mode of several sonar readings before working with the 
data helps reduce the effect of spurious errors. The feature 
recognition module always works with data averaged over twelve 
readings. For further error 'filtering, a routine can work with 
several averaged rings of data before reaching a conclusion. As an 
example, both Wall-Exist and Wall-In-Sight try three times before 
concluding there is no wall. In the FRM it is usually better to 
conclude there is a wall when there is not than to conclude there is 
no wall when there is. Testing has shown Wall-Exist to fail on the 
first try but succeed (correctly) on the second. 

Another approach in coping with sonar error is to leave room for 
error when working with sonar data. Often it is not important 
whether an object is 10 centimeters away or twenty centimeters 
away, but tl,at it is around 15 centimeters away. For example, 
Wall-In-Sight looks for a sequence of four sonars that have roughly 
the same value. It does this by making sure that contiguous sonars 
fall within a certain range of each other. A constant, "ERR_THRESH", 
defines the range to be plus or minus 20 centimeters. 

Sonar error is sometimes easy to avoid. The most reliable readings 
come from sonars perpendicular to the object to detect. There are 
times when an algorithm can count on certain sonars as being the 
most closely perpendicular ones. For example, when a feature 
detector wants to follow a wall, it will 'first call Orient-Parallel to 
orient the robot parallel to the wall it wants to follow. While the 
robot follows the wall, Wall-Exist monitors its presence. As the 
distance the robot travels is small, Wall-Exist can rely on certain 
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sonars as being the most closely perpendicular, and takes advantage 
of it by only considering the values of those sonars. 

Trial and error is perhaps the best way to deal with sonar 
peculiarities. It is impossible to know what sonar data to expect 
from a particular environment. The Wall-Exist algorithm changed 
several times as testing revealed inadequacies in earlier versions. 
Testing also prompted change to the Wall-In-Sight algorithm. When 
the robot was standing in front of a corridor, slightly to the left of 
it, Wall-In-Sight picked up a convex corner to the left and concluded 
that there was a wall in front of the robot. This led to the 
stipulation that the front sonar have roughly the same value as the 
smallest sonar in the sequence of values Wall-In-Sight finds. 
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Enhancements 

System-Wide Enhancements 

There are several enhancements that would increase the 
performance of the LOP system for Huey as a whole. One rather 
simple enhancement is to form an initial list of hypotheses for the 
LOP process. In the present system, the LOP process considers all of 
the hypotheses to be equally likely at the start of LOP exploration. 
The CFM module could return an indication of where it detected open 
space at the end of a corridor; to the left of the robot, to the right, 
or to the left and right. If the LOP process had this information, it 
could cut its hypothesis space by two-thirds. 

Another simple extension of the current system is elimination of the 
starting position from LOP exploration. Rather than returning to a 
starting position after execution of a feature detector, the robot 
could move directly to the expected position of the next feature to 
detect. This would involve some changes to the LOP module to 
calculate the position to move the robot to given the robot's current 
position and the expected position of the next feature. 

Incorporation of partial results from the feature detectors is a more 
complex enhancement. This involves significant modification of the 
FRM and LOP processes. The FRM process could return partial results 
from a failed detector. For example, if the convex corner detector 
found the first wall of the alleged corner, but could not find the 
adjoining perpendicular wall, it could return the partial success. 
The LOP process would know that the first wall exists and could use 
this information in selecting the next detector. 

A final system-wide enhancement is the addition of a heat sensor 
for detecting warm bodies. The avoidance module could distinguish 
between animate and inanimate obstacles. This would allow the FRM 
module to return a failure rather than an abort in some situations. 
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Enhancements to the FRM Module 

If collection of points along features is not a priority, it is possible 
to significantly reduce the number of translations and rotations in 
the convex corner, concave corner, and wall edge detectors. At 
present, the detectors move the robot around the corner or edge 
twice. This allows the robot to position itself at a known point 
along the wall of the expected position in order to collect a point. If 
the points are not necessary, the detectors can simply move the 
robot around the corner or edge once. Another possibility is reducing 
the distance the robot travels around the corners and wall edges. 

Recovery from an avoidance override is another possible 
enhancement to the FRM module. This requires the addition of a heat 
sensor to the robot so the FRM can distinguish between temporary 
and permanent obstacles. As an example, the expected position of a 
feature may be blocked by a wall because the feature does not exist. 
The FRM relies on the avoidance process to flag these situations. At 
present, the feature detector will return an indication of abort 
rather than failure because there is no way to tell whether the 
obstacle is temporary or permanent. If the detector knew an 
obstacle was temporary, it could attempt to recover from the 
avoidance override. The detector could return the robot to a known 
position along the feature and resume its activity from that point. 
If there is another avoidance override, the detector could give up and 
return an abort to the LDP process. 

The addition of simultaneous translation and rotation to the feature 
detectors would reduce the cost of the detectors and make the robot 
appear more lifelike. This enhancement is not a simple one. In order 
for the robot to make the turn around a corner, the convex corner 
detector would have to detect the corridor formed by the corner 
sooner than it does as present. The concave corner detector would 
be the easiest to modify. The robot could detect and estimate the 
distance to the opposite wall of the corner in plenty of time to turn 
the robot. 

Another possible enhancement is the addition of certainty measures 
to the results of the feature detectors. Instead of returning success 
or failure, a detector would return a number representing how 
certain it is that the feature exists. A low number would indicate 
that the feature most likely does not exist, and a high number would 
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indicate the opposite. The reliability of the wall detection 
algorithms could be measured through testing. When a detector fails 
because it could not detect a wall, it could take into account the 
reliability of the wall detection algorithm it used. When a detector 
fails because of an avoidance override due to a "permanent" obstacle, 
the detector could account for the probability that the obstacle was 
permanent. 

In the current system the probability that a detector is wrong when 
it reports success is negligible. This is due to the fact that the 
robot moves around the perimeter of each feature, and the fact that 
the characteristics of each feature are entirely different. The 
probability of a false positive would increase, however, with a 
reduction in the number of translations and rotations in the 
detectors. For example, if the distance the robot travels around 
corners and edges is small enough, the robot could mistake a wall 
edge for a convex corner. The convex corner detector could account 
for this possibility in the measure of certainty it returns. 
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Appendices 

Appendix A: Hypotheses 

Appendix B: Code for the Feature Recognition Module 

feature.c - the feature detectors. 
frm.c - main loop for the FRM process. 
frm_utils.c - routines interfacing with the LLC and WAJ. 
sonar.c - sonar data interpretation routines. 
sonar_utils.c - code to preprocess sonar data. 
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 fnn.h LL 
/* 
* 
* frm.h 
* 
* All of the files of the feature recognition module include this 
* file. 
*/ 

'define uinta unsigned char 
fdefine uintl6 unsigned short 

'define TRUE 1 
'define FALSE 0 

'define min(a,b) ( (a) (b) ? (a) : (b»<
( (a) -1) : 0)'define sign(a) « (a) >= 0) ? :I?

'define FRM_ERROR -1 /* Return code for error */ 
'define FRM_OK 1 /* Return code for success */ 

'define MY PRIORITY 5 /* Priority of the FRM process */ 

/*
*
*
*
*
*
*
*
*
* 

USE LDP 

Conditional compile flag for inclusion of code to interface with 
the LDP module. The LDP (Locally Distinctive Place) module chooses 
which feature detector to invoke next in order to identify the 
current location as a T junction, L junction, intersection etc. 

To make the Menu program (Make_menu) the line below should be 
commented out. 

*/
 

'define USE LDP 1
 

/*** Timeouts for communication via the IPC module ***/ 

'define HALF_SECOND 10 
'define ONE SECOND 20 
'define TEN SECONDS 200 
'define ONE_MINUTE 1200 
'define FOREVER 12000000 

/*** Flags for debugging code ***/ 

'define DEBUG_FRM 1 /* Code in frm.c and feature.c */
 
'define DEBUG_MSGS 0 /* Code interfacing with other processes via messages */
 
'define DEBUG SONAP. 1 /* Sonar routines */
 

'define DISPLAY SONAR 0 /* Flag for displaying Sonar values graphically */ 
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/*
*
*
*
*
*
*
*
*
* 
*
*
*
*
*
* 

FRMinterface.h 

This file defines the interface to the Feature Recognition 
Module (FRM). The format of request messages is the same 
for the different features with one exception. Requests 
to find corners and edges require a parameter to specify 
whether the feature should be to the left or right of the 
robot's starting position. 

The format of response messages is uniform for corners, 
walls, and edges. The module returns three points located 
along the feature. The points are ordered so that the robot 
would encounter each in turn as it moved along the feature, 
keeping it to its right. 

*/ 

/* 

*
 Request and Response Message Types 
*/ 

Idefine FRM WALL 64 
'define FRM CONVEX CORNER- - 65 
'define FRM_CONCAVE_CORNER 66 
'define FRM_EDGE 67 
Idefine FRM PORT 68 

/* 

*
 Request Message Format 
*/ 

typedef struct FRM POINT 
{ 

int x, 
y; 

FRM_POINT; 

typedef struct FRM_REQUEST 
{ 

int type; /* Feature to look for */ 
FRM POINT pos, /* Expected coordinates of the feature */ 

pos_error; /* Error bounds for feature coordinates */ 
int theta, /* Expected orientation of the feature */ 

side, /* Side of the robot where the feature */ 
strategy; /* Strategy for Move_To_Point: */ 

FRM_REQUEST; /* STRAIGHT, Y_FIRST, X FIRST */ 

1* 
*
 Valid values for the 'side' field of FRM_POSITION. 
*/ 
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'define FRM LEFT 1 
idefine FRM-RIGHT 2 

/* 
* Response Message Format 
*/ 

typedef struct FRM RESPONSE 
( 

int	 type, /* Feature looked for */ 
result, /* FRM FEATURE FOUND, FRM FEATURE NOT FOUND, or FRM ABORT */ 
pt_a, /* Dat~ points-along the feature - - */ 
pt_b, /* Points band c not returned for ports */ 
pt_c, 
theta, /* Orientation - returned for ports only */ 
theta_error; /* Orientation error - returned for ports only */ 

FRM_RESPONSE; 

/*
* Valid values for the 'result' field of response messages. 
*/ 

'define FFM FEATURE FOUND 1 /* Feature was detected */ 
'define FRM-FEATORE-NOT FOUND 2 /* Feature was not detected */ 
idefine FRM-ABORT - - 3 /* Detector abort due to avoidance override */ 
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/*
* feature.h 

* 
* The feature detectors in feature.c use the constants below. 

* 
*/ 

Hdefine MIN CLEARANCE 40	 /* Min distance between sonars and any obstacle */ 
/* (in centimeters) */ 

tdefine WALL_LEN 100 /* A wall must be at least 2 meters long */ 
tdefine RALF WALL LEN 50 

Hdefine MAX DIST TO CORNER 80 /* Maximum distance from robot to corner */ 

tdefine RING DIAMETER 16 /* Diameter of the sonar ring */ 
Hdefine RING-RADIUS RING_DIAMETER/2 /* Radius of the sonar ring */ 
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1* 
* 
* sonar.h
 

*
 
* Include file for code using sonar data. (Sonar.c, Sonar_utils.c)
 

*
 
*1 

#define NOM READINGS 12	 1* Number of readings to take to get average *1 

#define FIRST VALID SONAR 8	 1* Denning controllers return 24 values, but *1 
1* only 16 are valid. *1 

#define NOM SONARS 24	 1* Number of values returned by Denning *1 
1* controllers. *1 

#define NUM VALID SONARS 16	 1* Number of valid sonar values (number of *1 
1* transducers we have) . *1 

#define LEFT 1	 1* Left side of robot *1 
#define RIGHT 2	 1* Right side of robot *1 
#define FRONT 3	 1* Front of robot *1 
#define BACK 4	 1* Back of robot *1 

#define FRONT SONAR 0 1* Sonar directly at the front of the robot *1 
#define RIGHT-SONAR 4 1* Sonar directly to the right of the robot *1 
#define LEFT SONAR 12 1* Sonar directly to the left of the robot *1 
#define BACK-SONAR 8 1* Sonar directly to the back of the robot *1 

#define SONAR RANGE 777 1* Max sonar reading in centimeters *1 
#define HALF SONAR ANGLE 11 1* Half the angular distance between sonars *1 

#define SLOW SPEED 8 1* A slow speed for translation *1 
#define EXTRA SLOW SPEED 2 1* An even slower speed for translation *1 

#define EXTRA SLOW TURN SPEED 4 1* For rotations of 5 degrees or less *1 
#define SLOW TURN SPEED- 8 1* For rotations between 5 and 90 degrees *1 
#define MEDIUM TURN SPEED 16 1* For rotations of 90 degrees or more *1 

#define TRANSLATION ACCEL 218 

#define ERR THRESH 20 1* Allowance for sonar error, in centimeters *1 
idefine NOM-TRIES 2 1* Number of times to try to find a wall *1 

#define MAX 5 DEG TURNS 12 1* Max # of 5 deg turns in Orient-parallel *1 
#define MAX-I-DEG-TURNS 25 1* Max # of 1 deg turns in Orient-parallel *1 
#define MAX-5-CM TRANS 6 1* Max # of 5 cm translations in *1 

1* Orient_between_doorposts *1 

#define MAX DIST TO WALL 80	 1* The sonars should be within approx. 80 cms *1 
1* of the wall the robot is following *1 

#define DOORWAY WIDTH 88 1* Width of a doorway *1 
#define DOORJAM=WIDTH 14 1* Width of a doorjam *1 

1*** Constants used by Orient_between_doorposts *1 
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jdefine HALF DOORJAM WIDTH DOORJAM WIDTH/2 
jdefine DIST-TO DOORJAM 31 ­
jdefine DOORJAM-THRESH 38 

jdefine WALL SONAR COUNT 4 /* Number of contiguous sonars with same value */ 
- - /* needed to flag presence of a wall */ 

jdefine WALL OVERSHOOT 14 /* Distance the sonars move beyond a wall before */ 
/* ceasing to detect it (in centimeters). */ 

jdefine TOF TO CMS 3.048 /* Multiply to convert tenths of a foot to cms */ 

jdefine P_ERROR(err_msg) (fprintf(stderr, err_msg)i return FRM_ERRORj) 
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#include <stdio.h> 
tinclude <setjmp.h> 
tinclude "/pro/ai/robot/software/huey/utils/src/utils.h" 
#include "frm.h" 
#include "sonar.h" 
#include "feature.h" 
#include "frm interface.h" 

/* 
* feature.c 

*
*
*
* 
* 
* 
*
* 
* 
* 
* 
* 
* 
* 
*
*
 

Feature.c contains the feature detectors of the Feature Recognition 
Module (FRM). There is a feature detector for walls, convex corners, 
concave corners, edges, and ports. An edge is a section of wall that 
ends without meeting another wall. A port is a section of corridor 
leading out of an intersection, T junction, or L junction of corridors. 

Each feature detector takes as arguments an expected position for 
a particular point along the feature, an error range for the expected 
position, an orientation for the feature with respect to the robot's 
starting position, and a strategy for dead reckoning to the expected 
position. The expected position marks a starting point for the robot. 
Each detector uses dead reckoning to move to the expected position. 
If the detector cannot find the feature within the given range allowed 
for error, it returns an indication of failure. 

* The routines for external use are: 

* 
* 
* 
*
*
*
 

FRM RESPONSE *FEATUREfind wall (pos, pos error, theta)
 
FRM=RESPONSE *FEATUREfind=convex_corner(pos, pos_error, theta, side)
 
FRM RESPONSE *FEATUREfind concave corner(pos, pos error, theta, side)
 
FRM=RESPONSE *FEATUREfind=edge(po;, pos_error, th;ta, side)
 
FRM_RESPONSE *FEATUREfind-port(pos, theta)
 

*/
 

jmp_buf errorHandler; /* Context for exception handling */
 

static FRM RESPONSE response;
 

/*
 
* FEATUREnot found 

*
*
*
*
*
 

This routine returns an indication of failure to whichever routine 
or module invoked the current detector. If the LDP module is 
driving this module, FEATUREnot_found returns a message. ~therwise, 

FEATUREnot found returns the constant FRM FEATURE NOT FOUND. 
*/ 

Hfdef USE LDP /* Locally Distinctive Place module is active */ 

static FRM_RESPONSE *FEATUREnot_found(feature_type) 
int feature_type; 

response. type = feature type;
 
response. result = FRM_FEATURE_NOT_FOUND;
 
return &response;
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ilelse /* LDP module NOT active */ 

static int FEATUREnot_found(feature_type) 
int feature_type; 

return FRM FEATURE_NOT_FOUND; 

!tendif /* End ifdef LDP */ 

/* 
* FEATUREabort 

*
 
* If an avoidance behavior overrides the current detector 
* and takes control of the robot, the detector aborts. 
* FEATUREabort returns an indication of the abort to whichever 
* module or routine invoked the detector. 
*/ 

!tifdef USE LDP /* Locally Distinctive Place module is active */ 

static FRM_RESPONSE *FEATUFEabort(feature_type) 
int feature_type; 

response. type = feature_type; /* return a message */
 
response.result = FRM_ABORT;
 
return &response;
 

!telse /* LDP module NOT active */ 

static int FEATUREabort(feature_type) 
int feature_type; 

return FRM_ABORT; /* return a constant */ 

!tendif /* End ifdef LDP */ 

/*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 

FEATUREfind wall 

FEATUREfind wall looks for a wall centered at the given expected 
position. The wall must be at least WALL_LEN centimeters long, and 
stretch out a distance of at least HALF WALL LEN centimeters to 
either side of the expected position "P;s". ­

The routine uses dead reckoning to position the robot at the expected 
position and then orients the robot theta degrees from its initial 
orientation. If there is no wall in sight at this point, the detector 
returns indicating a failure. If FEATUREfind wall detects the presence 
of a wall, it attempts to moVe the robot along the wall, tracking its 
presence. If at any time the robot ceases to detect the wall, 
FEATUREfind wall returns with indication of error. 
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* Pararnters: pos - expected midpoint of the wall 

*
*
* 

pos error - error bounds for expected position 
theta - orientation of wall to look for 

* Returns: FRM ABORT - if avoidance took control of the base 

*
* 

FRM FEATURE NOT FOUND - if unable to find wall 
FRM-FEATURE-FOuND - if successfully found wall 

*/ 

tifdef USE LDP 
FRM RESPONSE *FEATUREfind wall(pos, pos error, theta, strategy) 

FRM POINT pos, /* expected position */ 
- pos_error; /* error bounds for expected position */ 

int theta, /* expected orientation */ 
strategy; /* strategy for move to point: STRAIGHT, or Y FIRST */ 

telse 
int FEATUREfind_wall() 
tendif 
( 

int pt1, pt2, pt3;
 
int newyos;
 

if (setjmp(errorHandler) > 0) 
return FEATUFEabort(FRM_WALL); 

else { 
if (DEBUG FRM) 
printf(~FEATUREfind_wall: Request to find a wall.\n"); 

Hfdef USE_LDP 
SONARorientyarallel(RIGHT); 
newyos = recordyoint(pos.x, pos.y, theta); 
Move_To_Point(newyos, strategy); 

tendif 

if (!SONARwall_in_sight(»)
 
return FEATUREnot_found(FRM_WALL);
 

SONARorientyerpendicular(FRONT); 
SONARadjust_dist_to_object(MIN_CLEARANCE, SLOW_SPEED); 

/*** Record point on wall (PT. 2) ***/
 
pt2 = recordyoint(O, MIN_CLEARANCE, 0);
 

rotate robot(90, MEDIUM TURN SPEED);
 
SONARorientyarallel(LEFT); ­
if (SONARfollow wall(LEFT, HALF WALL LEN) < HALF WALL LEN)
 

return FEATUREnot_found(FRM_WALL);- - ­

/*** Record point on wall (PT. 1) ***/
 
pt1 = recordyoint(-MIN_CLEARANCE, 0, 0);
 

rotate robot(180, MEDIUM TURN SPEED);
 
SONARorientyarallel(RIGHT); ­
if (SONARfollow wall(RIGHT, WALL LEN) < WALL LEN)
 

return FEATUREnot_found(FRM_WALL); ­

/*** Record point on wall (PT. 3) ***/ 
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pt3 = record-Foint(MIN_CLEARANCE, 0, 0); 

rotate robot(180, MEDIUM TURN SPEED);
 
SONARorient-Farallel(LEFT); ­

translate_robot (HALF_WALL_LEN, SLOW_SPEED);
 

fifdef USE_LDP /*** Return pts. (1, 2, 3) to LDP module ***/ 
response.type = FRM_WALL; 
response. result = FRM_FEATORE_FOUND; 
response.pt_a = ptl; 
response.pt_b = pt2; 
response.pt_c = pt3; 
return &response; 

felse 
return FRM FEATURE FOOND; 

fendif - ­
} 

/*
*
*
*
*
*
*
*
*
*
*
*
* 

FEATUREfind convex 

This routine looks for a convex corner at the expected position 
·pos". The corner must consist of two perpendicular sections 
of wall at least HALF_WALL_LEN in length. 

FEATUREfind convex corner attempts to position the robot in the 
vacinity of-the corner by dead reckoning to the expected position. 
The expected position is the position the robot would have if it 
were to one side of the corner, a HALF WALL LEN distance away: 

convex 

- corner -

* corner -> 1******** 
* 1******* 
* 1****** 
* x 1**** 

\*
*
* 

expected position 

Once at the expected position, the robot looks for the wall forming 
one side of the corner. If the robot fails to detect a wall, the 
routine returns FRM FEATURE NOT FOUND. Otherwise, the robot attempts 
to move around the ~orner, ~hecking for the existance of the walls 
making up the convex corner. If the robot is unable to make the 90 
degrees turn around the alleged corner, or fails to detect the walls 
forming the alleged corner, the routine returns indicating failure. 

Parameters: pos expected position of the corner 
pos error error bound for the expected position 
theta orientation of alleged wall 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 

Returns: FRM ABORT - if avoidance overrides the detector 
FRM-FEATURE NOT FOUND - if unable to find the corner-
FRM_FEATURE_FOOND - if successfully found corner 

*/ 

hfdef USE LDP 



feature.c D 
FRM_RESPONSE *FEATUREfind_convex_corner(pos, pos_error, theta, side, strategy)
 

FRM_POINT pos, /* expected position */
 
pos error; /* error bounds for expected position */
 

int	 theta, - /* expected orientation */ 
side, /* side of robot feature is on */ 
strategy; /* strategy for move to point: STRAIGHT, or Y FIRST */ 

lIelse 
int FEATUREfind_convex_corner(side) 

int side; 
lIendif 
{ 

int	 direction, 
opposite side;
 

int ptl, pt2~ pt3;
 
int max dist to corner;
 
int	 newyos,- ­

midpoint;
 

if (setjmp(errorHandler) > 0)
 
return FEATOREabort(FRM_CONVEX_CORNER);
 

else
 

if (DEBOG_FRM) 
printf("FEATOF£find_convex_corner: Request to find a convex corner.\n"); 

if (side == LEFT)
 
direction = 1;
 
opposite_side = RIGHT;
 

) 
else {
 

direction = -1;
 
opposite_side = LEFT;
 

hfdef OSE LDP 
SONARo~ient-Farallel(RIGHT); 
new-F0s = record-Foint(pos.x, pos.y, theta); 
Move_To_Point(new-F0s, strategy); 

lIendif 

if (ISONARwall in sight(»
 
return FEAToREn;t_found(FRM_CONVEX CORNER);
 

SONARorient-Ferpendicular(FRONT);
 
SONARadjust dist to object (MIN CLEARANCE, SLOW SPEED);
 
rotate_robot(dir~ctlon*90, MEDIUM_TORN_SPEED);
 

hfdef OSE LDP 
max di;t to corner HALF_WALL_LEN+RING_DIAMETER+WALL_OVERSHooT+pos_error.y; 

lIelse - - ­
max dist to corner MAX_DIST_TO_CORNER; 

lIendif - ­

if (SONARfollow_wall(side, max_dist_to_corner) >= max_dist_to_corner) 
return FEATOREnot_found(FRM_CONVEX_CORNER); 

translate robot((MIN CLEARANCE-WALL OVERSHOOT), SLOW SPEED); 
midpoint ~ record-Folnt(O, 0, direction*90); ­
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rotate robot(-direction*90, MEDIUM TURN SPEED);
 
transl;te_robot((MIN_CLEARANCE+RING_DIAMETER), SLOW_SPEED);
 
SONARorient-parallel(side);
 
if (SONARfollow wall (side, HALF WALL LEN) < HALF WALL LEN)
 

return FEATUREnot_found(FRM_CONVEX=CORNER); - ­

/*** RECORD POINT ON WALL (PT 1) ***/
 
ptl = record-point«-direction*MIN_CLEARANCE), 0, 0);
 

rotate_robot(direction*lBO, MEDIUM_TURN_SPEED);
 
SONARorient-parallel(opposite_side);
 
translate_robot (HALF_WALL_LEN, SLOW_SPEED);
 

/*** RECORD POINT AT CORNER (PT 2) ***/
 
pt2 = record-point«direction*MIN_CLEARANCE), RING_RADIUS, 0);
 

Move To Point (midpoint, STRAIGHT);
 
rotate ;obot(direction*90, MEDIUM TURN SPEED);
 
transl;te robot«MIN CLEARANCE+RING DIAMETER), SLOW SPEED);
 
SONARorie;t-parallel(opposite_side); ­
if (SONARfollow wall (opposite side, HALF WALL LEN) < HALF WALL LEN)
 

return FEATUREnot_foundIFRM=CONVEX_CORNER);- - ­

/*** RECORD POINT ON WALL (PT 3) ***/
 
pt3 = record-point«direction*MIN_CLEARANCE), 0, O)i
 

rotate_robot (-direction*lBO, MEDIUM_TURN_SPEED); 

#if	 USE LDP 
response. type = FRM_CONVEX_CORNER; 
response. result = FRM FEATURE FOUND; 
if (side = LEFT) {- /*** Return pts. (1, 2, 3) ***/ 

response.pt a = ptl; 
response.pt=b
response.pt_c

=
=

pt2; 
pt3; 

} 

else { /*** Return pts. 13, 2, 1) ***/ 
response.pt_a pt3; 
response.pt_b pt2; 
response.pt_c ptl; 

} 

return &response; 
!telse 

return FRM_FEATURE_FOUND; 
#endif 

} 

/* 
* FEATUREfind concave corner 

* 
*	
*
* 
*
*
*
 

FEATUREfind concave corner looks for a concave corner in the vacinity 
of the expe~ted position "pos". The concave corner must consist of 
two sections of wall, each at least WALL LEN centimeters long, 
meeting at a 90 degree angle. ­

The	 routine uses dead reckoning to move the robot to the expected 
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* 
*	
*
*
* 
* 
*
* 
* 
*
* 
* 
*
*
*
* 
* 
*
* 
* 
* 
*
* 

position of the wall. The expected position is the position the 
robot would have if it were to one side of the corner, WALL LEN 
centimeters away: 

******** 
************
 

****----------­
*****1
 
*****1
 

****1 <- concave corner
 
***1 x
 

\
 
expected position
 

Once at the expected position, the robot looks for the wall forming 
one side of the corner. If the robot fails to detect a wall, the 
routine returns FRM FEATURE NOT FOUND. Otherwise, the robot attempts 
to move around the ~orner, ~hecking for the existance of the walls 
making up the concave corner. If the robot is unable to detect the 
wall opposite the one it is following, as it approaches the alleged 
corner, the routine returns indicating failure. 

* Parameters: pos - expected position of the corner 

*
*	 
*
 

pos error - error bounds for the expected position 
theta - orientation of the alleged corner 

* Returns: FRM ABORT - if avoidance overrides the detector 

*
*
 

FRM FEATURE NOT FOUND - if unable to find corner 
FRM=FEATURE=FOuND - if successfully found corner 

*/ 

tifdef USE LDP 
FRM RESPONSE *FEATUREfind concave corner(pos, pos error, theta, side, strategy) 

FRM POINT pos, /* expect~d position */ ­
- pos error; /* error bounds for expected position */ 

int	 theta, - /* expected orientation */ 
side, /* side of robot feature is on */ 
strategy; /* strategy for move to point: STRAIGHT, or Y FIRST */ 

telse 
int FEATUREfind_concave_corner(side) 

int side; 
hndif 
( 

int	 direction, 
opposite_side; 

int ptl, pt2, pt3; 
int max_dist_to_corner; 
int dist to follow = WALL LEN - MIN CLEARANCE; 
int new-pos; - ­

if (setjmp(errorHandler) > 0) 
return FEATUREabort(FRM_CONCAVE_CORNER); 

else { 
if (DEBUG FRM) 
printf(~FEATUREfind_concave_corner: Request to find a concave corner\n"); 

if (side == LEFT) 
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direction = 1;
 
opposite_side = RIGHT;
 

)
 

else (
 
direction = -1;
 
opposite_side = LEFT;
 

Ufdef USE LDP 
SONARo~ient-para11e1{RIGHT); 
new-pos = record-point(pos.x, pos.y, theta); 
Move_To_Point(new-pos, strategy); 

iendif 

if (!SONARwa11 in sight(»
 
return FEATaREn;t_found(FRM_CONCAVE CORNER);
 

SONARorient-perpendicular(FRONT);
 
SONARadjust dist to object(MIN CLEARANCE, SLOW SPEED);
 
rotate_robot (dir;ction*90, MEDIOM_TORN_SPEED);
 

iifdef USE_LDP 
max dist to corner dist_to_follow + pos_error.y; 

ielse - - ­

m~~ dist to corner MAX_DIST_TO_CORNER; 
iendif - - ­

if (SONARfollow_to_corner(side, max_dist_to_corner, MIN_CLEARANCE) FRM_ERROR) 
return FEATUREnot_found(FRM_CONCAVE_CORNER); 

rotate robot(direction*90, MEDIOM TORN SPEED);
 
SONARo~ient-parallel(side); - ­
if (SONARfollow wall (side, dist to follow) < dist to follow)
 

return FEAToREnot_found(FRM_CONCAVE_CORNER); - ­

1*** RECORD POINT ON WALL (PT 1) ***1
 
pt1 = record-point«-direction*MIN_CLEARANCE), 0, 0);
 

rotate_robot (direction*180, MEDIOM_TORN_SPEED);
 
SONARorient-parallel(opposite_side);
 
translate_robot (dist_to_follow, SLOW_SPEED);
 

1*** RECORD POINT AT CORNER (PT 2) ***1 

pt2 = record-point«direction*MIN_CLEARANCE), MIN_CLEARANCE, 0); 

rotate robot(-direction*90, MEDIOM TORN SPEED);
 
SONARo~ient-parallel(opposite_side); ­
if (SONARfollow wall (opposite side, dist to follow) < dist to follow)
 

return FEATUREnot_found(FRM=CONCAVE_CORNER); - ­

1*** RECORD POINT ON WALL (PT 3) ***1 

pt3 = record-point«direction*MIN_CLEARANCE), 0, 0); 

rotate_robot (-direction*180, MEDIOM_TURN_SPEED);
 
SONARorient-parallel(side);
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translate robot (dist to follow, SLOW SPEED); 
rotate_robot (directi;n*90, MEDIUM_TURN_SPEED); 

-

iif	 USE_LDP 

response.type = FRM CONCAVE CORNER; 
response. result = FRM FEATURE FOUND; 
if (side == LEFT) {- /*** Return pts. (1, 2, 3) ***/ 

response.pt_a = ptl;
 
response.pt_b = pt2;
 
response.pt_c = pt3;
 

} 

else { /*** Return pts. (3, 2, 1) ***/ 
response.pt a pt3; 
response.pt::::b pt2; 
response.pt_c pt1; 

return &response; 
ielse 

return FRM FEATURE FOUND; 
tendif - ­

) 

/* 

*
*	
*
*
* 
*
* 
*
* 
*
*
*
* 
*
*
*
*
*
* 
*
*
*
* 
*
*
*
* 
*
* 
*
* 

FEATUREfind_edge 

FEATUREfind_edge looks for an edge in the vacinity of the expected 
position ·pos". The edge must consist of a section of wall at 
least HALF_WALL_LEN centimeters long, and roughly DOORJAM WIDTH 
centimeters thick. 

The	 routine uses dead reckoning to move the robot to the expected 
position. The expected position is the position the robot would 
have if it were on one side of the section of wall, and HALF WALL LEN 
centimeters away from the edge (the end of the wall) : 

----------------1 
****************1 <- edge 
----------------1 

x
 
\
 

expected position
 

Once at the expected position, the robot looks for the wall forming 
the edge. If the robot fails to detect a wall, the routine returns 
FRM_FEATURE_NOT_FOUND. Otherwise the robot attempts to move around 
the edge, checking for the existance of the wall forming it. If the 
robot is unable to move around the alleged edge, Or if the robot fails 
to detect the wall forming the edge as it moves around it, the routine 
returns FRM FEATURE NOT FOUND. 

Parameters:	 pos - expected position of the edge 
pos_error - error bounds for the expected position 
theta - orientation of the alleged edge 

* Returns: FRM ABORT - if avoidance overrides the detector 

*
 FRM-FEATURE_NOT_FOUND - if unable to find edge 
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*/ 

'ifdef OSE LDP
 
FRM RESPONSE *FEATOREfind edge(pos, pos error, theta, side, strategy)
 

FRM POINT pos, /* expected position */
 
- pos_error; /* error bounds for expected position */
 

int	 theta, /* expected orientation */ 
side, /* side of robot feature is on */ 
strategy; /* strategy for move to point: STRAIGHT, or Y FIRST */ 

'else
 
int FEATOREfind_edge(side)
 

int side;
 
'endif
 
{ 

int	 direction, 
opposite_side;
 

int ptl, pt2, pt3;
 
int max_dist_to_corner;
 
int newyos,
 

midpoint; 

if (setjmp(errorHandler) > 0)
 
return FEATOREabort(FRM EDGE);
 

else { ­
if (DEBOG FRM)
 
printf(~FEATOREfin~edge: Request to find an edge.\nn);
 

if (side == LEFT)
 
direction = 1;
 
opposite_side = RIGHT;
 

} 
else (
 

direction = -1;
 
opposite_side = LEFT;
 

Ufdef USE LDP 
SONARoiientyarallel(RIGHT); 
newyos = recordyoint(pos.x, pos.y, theta); 
Move_To_Point(newyos, strategy); 

'endif 

if (!SONARwall in sight(»)
 
return FEATOREnot_found(FRM_EDGE);
 

SONARorientyerpendicular(FRONT);
 
SONARadjust dist to object(MIN CLEARANCE, SLOW SPEED);
 
rotate_robot (dir;ctIon*90, MEDIUM_TURN_SPEED);
 

Ufdef OSE_LDP 
max dist to corner HALF_WALL_LEN+RING_DIAMETER+WALL_OVERSHOOT+pos_error.y; 

'else - - ­
max dist to corner M&~_DIST_TO_CORNER; 

#endif - - ­

if (SONARfollow_wall(side, max_dist_to_corner) >= max_dist_to_corner) 
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translate robot«MIN CLEARANCE-WALL OVERSHOOT), SLOW SPEED);
 
rotate_robot (-directlon*90, MEDIUM_TORN_SPEED); ­
translate robot ( (MIN CLEARANCE+WALL OVERSHOOT), EXTRA SLOW SPEED);
 
if (SONAR;all exist(~ide» 1* Make-sure we are not l;oking at a corner *1
 

return FEATUREnot found(FRM EDGE);
 
translate robot (-WALL OVERSHOOT, EXTRA SLOW SPEED);
 
SONARorie~t_between_d;orposts(side); - ­

translate robot«MIN CLEARANCE+DooRJAM WIDTH), EXTRA SLOW SPEED);
 
midpoint =record-rolnt(O, 0, direction*90);
 
rotate robot(-direction*90, MEDIUM TORN SPEED);
 
translate_robot (DIST_TO_DooRJAM+RING_DIAMETER, SLOW_SPEED);
 
SONARorient-rarallel(side);
 
if {SONARfollow_wall(side, HALF_WALL_LEN) < HALF_WALL_LEN)
 

return FEATUREnot_found(FRM_EDGE); 

1*** RECORD POINT ON WALL (PT 1) ***1
 
ptl = record-roint«-direction*MIN_CLEARANCE), 0, 0);
 

rotate_robot (direction*180, MEDIUM_TORN_SPEED);
 
SONARorient-rarallel(opposite_side);
 
Move_To_Point(midpoint, STRAIGHT);
 
rotate robot(direction*90, MEDIUM TURN SPEED);
 
translate_robot (MIN_CLEARANCE, EXTRA_SLOW_SPEED);
 
SONARorient_between_doorposts(opposite_side);
 

1*** RECORD POINT AT EDGE (PT 2) ***1
 
pt2 = record-roint«direction*DIST_TO_DOORJAM), 0, 0);
 

translate_robot«MIN_CLEARANCE+DooRJAM_WIDTH), EXTRA_SLOW_SPEED);
 
rotate robot(direction*90, MEDIUM TORN SPEED);
 
translate robot (DIST TO DOORJAM+RING DIAMETER, SLOW SPEED);
 
SONARorie~t-rarallel(oppo~ite_side);- ­
if (SONARfollow_wall(opposite_side, HALF_WALL_LEN) < HALF_WALL_LEN)
 

return FEATUREnot_found(FRM_EDGE); 

1*** RECORD POINT ON WALL (PT 3) ***1
 
pt3 = record-roint«direction*MIN_CLEARANCE), 0, 0);
 

rotate_robot (-direction*180, MEDIUM_TORN_SPEED); 

lif	 aSE_LDP 
response.type = FRM_EDGE; 
response.result = FRM FEATURE FOUND; 
if (side == LEFT) (- 1*** Return pts. (1, 2, 3) ***1 

response.pt_a = ptl;
 
response.pt_b = pt2;
 
response.pt_c = pt3;
 

} 

else { 1*** Return pts. (3, 2, I} ***1
 
response.pt a pt3;
 
response.pt=:b pt2;
 
response.pt_c ptl;
 

return &response; 
lIelse 
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~endif - ­

}
 

/*
 
FEATUREfind-rort
*
 

*
 
*	 FEATUREfind-rort starts the robot on its way out of the 

*	 current LDP. At this point, the Locally Distinctive Place 
Module should have correctly identified the current junction* 
as	 a T, L, intersection, etc.* 

* 
* A port is simply a way to exit the current LDP: 

* 
* 
* 
* 
* <- ports -> 

* 
x* 

*	 / 
robot* 

* 
All this routine has to do is use dead reckoning to move the* 
robot far enough through one of the ports so that the Corridor* 
Following Module (CFM) can take over.* 

* 
*	 Parameters: pos - position to move to 

* theta - orientation for heading out through port 

* 
* Returns: FRM_FEATURE_FOUND - this routine should never fail! 
*/ 

FRM_RESPONSE *FEATUREfind-rort(pos, theta, strategy) 
FRM POINT pos; /* position of port */ 
int-theta, /* orientation for moving out of LDP via port */ 

strategy; /* strategy for Move_To_Point: STRAIGHT or Y FIRST */ 

int new-r0s; 

if (DEBUG_MSGS) printf(nFEATUREfind-rort: Request to find a port.\nn); 

SONARorient-rarallel(RIGHT);
 
new-r0s = record-roint(pos.x, pos.y, theta);
 
Move_To_Point(new-r0s, strategy);
 
translate_robot (RING_DIAMETER, SLOW_SPEED);
 
SONARorient-rarallel(LEFT);
 
response.type = FRM_PORT;
 
response. result = FRM_FEATURE_FOUND;
 
return &response;
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iinclude <stdio.h>
 
iinclude "/pro/ai/robot/software/ipc/src/ipc.h"
 
iinclude "frm.h"
 
'include "sonar.h"
 
iinclude "frm interface.h"
 

1* 
* 
* frm.c 

* 
* Frm.c contains the main routine for the feature recognition 
* module. Main communicates with the locally distinctive place 
* process (LOP) via message passing. 
*1 

1* Client IDs of other processes in the system *1 

clientld my_id; 
clientld LDP_id; 
clientld WAI_id; 
clientld LLC id; 
clientld SCJ~·d; 

static FRM_REQUEST req; 1* Request to FRM from LOP *1 

1* Feature Detectors *1 

extern FRM RESPONSE *FEATUREfind wall(); 
extern FRM-RESPONSE *FEATUREfind-convex corner(); 
extern FRM-RESPONSE *FEATUREfind-concav; corner(); 
extern FRM=RESPONSE *FEATUREfind=edge(); ­
extern FRM RESPONSE *FEATUREfind-Fort(); 

1* 
* FRMinit 

* 
FRMinit registers the FRM process with the name server.* 
It then requests the client IDs of the other processes* 

* in the system. 
*1 

FRMinit () 
{ 

my_id = NSregisterSelf("FRM", MY_PRIORITY);
 
while «LOP id = NSgetClient("LDP"») == NULL) sleep(l);
 
if (DEBUG_FRM) printf("FRMinit: Got LOP id.\n");
 
while «WAI_id = NSgetClient("WAI"») == NULL) sleep(l);
 
if (DEBUG_FRM) printf("FRMinit: Got WAI id.\n");
 
while «LLC id = NSgetClient("LLC"») == NULL) sleep(l);
 
if (DEBUG_FRM) printf("FRMinit: Got LLC id.\n");
 
while «SC id = NSgetClient( "SC" ») == NULL) sleep(l);
 
if (DEBUG_FRM) printf("FRMinit: Got SC id.\n");
 

if (DISPLAY_SONAR)
 
init_sd(l6, 255, 5.0, NULL);
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/* 
* main 

*
*
*
*
*
*
*
*
 

Main calls FRMinit and then enters an infinite loop to 
wait for and process requests from the LDP process. 
If there are no errors in a received request, main calls 
the appropriate feature detector to carry out the request. 
The feature detector forms the response message. Main just 
has to send it back to the LDP process with a call to 
IPCsendMessage. 

*/ 

main () 
( 

int re~len = sizeof{FRM REQUEST);
 
clientld client;
 
FRM_RESPONSE *response;
 

FRMinit ();
 
while ( 1 ) { 

if (DEBUG FRM) printf("main: Calling IPCrecvMessage ... \n"); 
client = IPCrecvMessage(&req, &re~len, FOREVER); 
if (DEBUG_FRM) printf("main: Returned from IPCrecvMessage.\n"); 
if «client == LDP_id) && (re~len == sizeof(FRM_REQUEST))) { 
if (DEBUG FRM) 
printf(~main: Message received from LDPcontrol with type %d.\n", 

req. type) ; 
switch (req.type) 

case FRM WALL: 
respon;e = FEATUREfind_wall(req.pos, req.pos_error, req.theta, 

req.strategy) ; 
break; 

case FRM_CONVEX CORNER: 
response FEATUREfind_convex_corner(req.pos, req.pos_error, 

req.theta, req.side, req.strategy); 
break; 

case FRM CONCAVE CORNER: 
response FEATUREfind concave corner(req.pos, req.pos error, 

- ;eq.theta, req.side, req~strategy); 
break; 

case FRM EDGE: 
response = FEATUREfind edge(req.pos, req.pos error, req.theta, 

- req.side, req.strategy); 
break; 

case FRM PORT: 
respon;e = FEATUREfind-port(req.pos, req.theta, req.strategy); 
break; 

default: 
fprintf(stderr, "FRM: Unknown feature type: %d.\n", req.type); 
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}
 
IPCsendMessage(response, sizeof(FRM_PESPONSE), LDP_id);
 
if (DEBUG FRM) {
 

if (response->result == FRM FEATURE NOT FOUND) 
printf("main: FEATURE_NOT=FOUND.\;"); ­

else if (response->result == FRM ABORT) 
printf("main: FEATURE ABORT.\n~); 

else if (response->result == FRM_FEATURE_FOUND) 
printf("main: FEATURE FOUND.\n"); 

else 
printf("main: UNKNOWN RESULT FROM FEATURE DETECTOR.\n"); 

} 
else if (client != LDP_id) 

fprintf(stderr, "FRM: Message from unknown client %s.\n", 
NSgetName(client); 

else ( 
fprintf(stderr, "FRM: Invalid message size of %d.\n", re~len); 

re~len = sizeof(FRM_PEQUEST); 
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'include <stdio.h>
 
#include <setjmp.h>
 
tinclude "frm.h"
 
'include "sonar.h"
 
tinclude "/pro/ai/robot/software/ipc/src/ipc.h"
 
tinclude "/pro/ai/robot/software/huey/llc/src/llc.h"
 
'include "/u/ssh/research/ControIArchitecture/whereami/src/WAIinterface.h"
 

extern jmp_buf errorHandler;
 

/*
*
*
*
*
*
*
*
*
*
*
* 

*
*
* 

*
*
*
*
*
*
*
* 

Frm utils.c 

This file contains routines that communicate via message passing 
with the Low Level Controller (LLC). The LLC module provides access 
to the robot base. Anytime the FRM wants control of the base, it 
has to open a transaction with the LLC. 

There is one other routine in this file that communicates via 
message passing with the WAI module. This routine requests the 
WAI module to record the current position of the robot. The 
caller receives a handle to the newly recorded postion. 

The routines defined are: 

translate robot(distance, speed)
 
rotate_robot (degrees, speed)
 
get current distance()
 
get=current=angle()
 
get current voltage()
 
get=current=current()
 
start robot translation (speed)
 
stop_;obot_translation()
 
record-point(delta_x, delta-y, delta_theta)
 

*/ 

extern clientId LLC_id; /* Client ID for the Low Level Control module */ 

LLCmessage request llc; /* Request message for the LLC module */ 
LLCmessage respons;_llc; /* Response message from the LLC module */ 

static int in transaction FALSE; /* TRUE during transaction with LLC */ 

/* 
*
*
*
* 
*
*
*
* 
*
*
 

translate robot 

Translate robot issues a request to move the robot a fixed distance 
at a fixed speed. To do this, the FRM has to gain control of the base 
by opening a transaction with the LLC. Translate_robot sends four 
messages to the LLC. The first sets the translational velocity of the 
base to the specified speed. The remaining messages open a transaction, 
request the translation, and close the transaction. If anyone of 
these requests fail, wait for LLC response will return control to 
the feature detector which called-translate_robot. 



*
*
*
*
*
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Parameters: distance - distance in centimeters to translate. 

speed - velocity at which to translate. 

Returns: FRM OK - if requests to LLC are successful. 
*/ 

int translate robot(distance, speed) 
int distanc~; /* distance, in centimeters, 
unsigned speed; /* speed at which to move */ 

to move */ 

int direction; /* direction to translate (backwards or forwards) */ 

direction = sign(distance); /* less than zero is backwards */ 
speed = speed*direction; 

if (DEBUG MSGS) 
printf(~Translate_robot: request to translate robot %d cms.\n", distance); 

request_Ilc.type
request_lIe. data

=
=

LLCsetTranslationVel; 
speed; 

IPCsendMessage(&request lIe, sizeof(LLCmessage), LLC id); 
wait for LLC response(LLCsetTranslationVel, ONE SECOND); 
if (DEBUG MSGS) ­
printf(~Translate_robot: Received ack of LLCsetTranslationVel.\n"); 

request_Ilc.type = LLCbeginTransaction;
 
IPCsendMessage(&request_Ilc, sizeof(LLCmessage), LLC_id);
 
wait for LLC response(LLCbeginTransaction, ONE SECOND);
 
in_t~ans~cti;n = TRUE; ­
if (DEBUG MSGS)
 
printf(~Translate_robot: Received ack of LLCbeginTransaction.\n"); 

request llc.type = LLCtranslateRelative;
 
request=llc.data = distance;
 
IPCsendMessage(&request lIe, sizeof(LLCmessage), LLC id);
 
wait for LLC response(LLCtranslateRelative, ONE MINUTE);
 
if (DEBUG MSGS) ­

printf(~Translate_robot: Received ack of LLCtranslateRelative.\n"); 

request_lIe. type = LLCendTransaction; 
IPCsendMessage(&request lIe, sizeof(LLCmessage), LLC id);
 
wait_for_LLC_response(LLCendTransaction, ONE_SECOND);
 
in transaction = FALSE;
 
if-(DEBUG MSGS)
 
printf(~Translate_robot: Received ack of LLCendTransaction.\n"); 

return FRM_OK; 

/* 
* rotate robot 

*
*
*
* 
*
* 

Rotate_robot issues a request to rotate the robot a fixed amount 
at a fixed speed. To do this, the FRM has to gain control of the base 
by opening a transaction with the LLC. Rotate robot sends four 
messages to the LLC. The first sets the rotational velocity of the 
base to the specified speed. The remaining messages open a transaction, 
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*	 these requests fail, wait for LLC response will return control to 

the feature detector which called-rotate_robot.* 
* 
*	 Parameters: degrees - number of degrees to rotate. 

* speed - velocity at which to rotate. 

* 
* Returns: FRM OK - if requests to LLC are successful. 
*/ 

int rotate robot(degrees, speed) 
int degr;es; /* amount to rotate */ 
unsigned speed; /* velocity at which to rotate */ 

int direction; /* direction to rotate (left or right) */ 

direction = sign(degrees); /* less than zero is left */
 
speed = speed*direction;
 

if	 (DEBOG MSGS) 
printf(~Rotate robot: request to rotate robot by %d degrees.\nn, degrees); 

request_llc.type-= LLCsetRotationVel; 
request llc.data = speed; 
IPCsendMessage(&request_llc, sizeof(LLCmessage), LLC_id); 
wait_for_LLC_response(LLCsetRotationVel, ONE_SECOND); 
if (DEBOG_MSGS) 

printf(nRotate_robot: Received ack of LLCsetRotationVel.\n"); 

request_llcotype = LLCbeginTransaction;
 
IPCsendMessage(&request_llc, sizeof(LLCmessage), LLC_id);
 
wait for LLC response(LLCbeginTransaction, ONE SECOND);
 
in_t~ans~cti;n = TRUE; ­
if (DEBUG MSGS)
 
printf(~Rotate_robot: Received ack of LLCbeginTransaction.\nn); 

request_llc.type = LLCrotateRelative;
 
request_llc.data = degrees;
 
IPCsendMessage(&request_llc, sizeof(LLCmessage), LLC_id);
 
wait for LLC response(LLCrotateRelative, ONE MINUTE);
 
if (DEBOG MSGS) ­
printf(~Rotate_robot: Received ack of LLCrotateRelative.\nn); 

request llc.type = LLCendTransaction;
 
IPCsendMessage(&request_llc, sizeof(LLCmessage), LLC_id);
 
wait_for_LLC_response(LLCendTransaction, ONE_SECOND);
 
in_transaction = FALSE;
 
if (DEBOG MSGS)
 

printf(ftRotate_robot: Received ack of LLCendTransaction.\nn); 

return FRM_OK; 

/* 
* get_current_distance 

* 
* Get current distance requests the LLC to read the robot's 
* odometer. Anegative reading indicates the robot is behind 



*
*
*
*
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its initial position. No transaction with the LLC is necessary 
to read the current distance. 

Returns: Distance in centimeters the robot has traveled. 
*/ 

int get_current_distance() 
{ 

if (DEBUG MSGS) 
printf(~Get_current_distance: sending LLCqueryDistance msg to LLC.\nn);
 

request_llc.type = LLCqueryDistance;
 
IPCsendMessage(&request_llc, sizeof(LLCmessage), LLC_id);
 
wait for LLC response(LLCqueryDistance, ONE SECOND);
 
if (DEBUG MSGS) ­
printf(~Get current distance: Recieved resp to LLCqueryDistance msg, dist= %d\nn, 

- - response_llc.data); 
return response_llc.data; 

/* 

*
* 
* 
* 
* 
*
* 
*
*


get_current_angle 

Get current angle requests the LLC to read the robot's current 
angle. The-angle is the difference in degrees from the initial 
position of the robot. A negative reading indicates the robot is 
to the left of its start position. No transaction with the LLC 
is necessary. 

Returns: Current angle of the robot in degrees. 
*/ 

int get_current_angle() 

if (DEBUG MSGS) 
printf(~Get_current_angle: sending LLCqueryAngle msg to LLC.\n");
 

request llc.type = LLCqueryAngle;
 
IPCsendMessage(&request llc, sizeof(LLCmessage), LLC id);
 
wait for LLC response (LLCqueryAngle, ONE SECOND); ­
if (DEBUG MSGS) ­
printf(~Get_current_angle: Recieved resp to LLCqueryAngle, dist= %d\nn, 

response_llc.data); 
return response_llc.data; 

/* 

* 
*
* 
*
*
*
* 

get_current_voltage 

Get_current_voltage requests the LLC to read the voltage of the 
batteries on the robot base. No transaction with the LLC is 
necessary. 

Returns: Voltage of the batteries on the robot base. 
*/ 
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int get_current_voltage() 

if (DEBUG_MSGS) 
printf("Get current voltage: sending LLCqueryVoltage msg to LLC.\n"); 

request_Ilc.type = LLCqueryVoltage; 
IPCsendMessage(&request llc, sizeof(LLCmessage), LLC id); 
wait_for_LLc_response(LLCqueryVoltage, ONE_SECOND); ­
if (DEBUG MSGS) 
printf(~Get_current_voltage: Recvd resp to LLCqueryVoltage, dist= %d\n", 

response_llc.data); 
return response_llc.data; 

/* 

*
*
*
*
*
*


get_current_current 

Get current current requests the LLC to read the current of the
 
batteries o~ the robot base.
 

Returns: Current of batteries on the base.
 
*/ 

int get_current_current() 

if (DEBUG_MSGS) 
printf("Get_current_current: sending LLCqueryCurrent msg to LLC.\n"); 

request_Ilc.type = LLCqueryCurrent; 
IPCsendMessage(&request llc, sizeof(LLCmessage), LLC id); 
wait_for_LLC_response(LLCquerYCurrent, ONE_SECOND); ­
if (DEBUG MSGS) 
printf(~Get_current_current: Rcvd resp to LLCqueryCurrent, dist= %d\n", 

response_llc.data); 
return response_llc.data; 

/*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

start robot translation 

Start robot translation requests the LLC to start the base 
translating-at a given velocity. The routine sends three 
messages to the LLC. The first sets the translational velocity 
of the base to the specified speed. The next message opens a 
transaction with the LLC, giving the FRM control of the robot 
base. The final message starts the base translating. If any 
of the requests to the LLC fail, the routine wait for LLC reponse 
returns control to the feature detector that called this ~outine. 

Parameters: speed - velocity at which to translate the base. 

Returns: FRM OK - if the requests to the LLC are successful. 
*/ 

int start robot translation (speed) 
int speed; ­
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if (DEBUG MSGS) 
printf(~Start robot translation: sending SetTranslationVel msg to LLC.\n"); 

request llc.typ; = LLCsetTranslationVel; 
request-llc.data = speed; 
IPCsendMessage(&request llc, sizeof(LLCmessage), LLC id); 
wait for LLC response(LLCsetTranslationVel, ONE SECOND); 
if (DEBUG MSGS) ­
printf(~Start_robot_translation: Recvd ack of LLCsetTranslationVel.\n"); 

request llc.type = LLCbeginTransaction;
 
IPCsendMessage(&request llc, sizeof(LLCmessage), LLC id);
 
wait for LLC response(LLCbeginTransaction, ONE SECOND);
 
in_t;ans;cti;n = TRUE; ­
if (DEBUG MSGS)
 
printf(~Start_robot_translation: Recvd ack of LLCbeginTransaction.\n"); 

request llc.type = LLCtranslateStart; 
IPCsendMessage(&request_llc, sizeof(LLCmessage), LLC_id);
 
wait for LLC response(LLCtranslateStart, ONE SECOND);
 
if (DEBUG MSGS) ­
printf(~Start_robot_translation: Recvd ack of LLCtranslateStart.\n"); 

return FRM_OK; 

/* 

*
*
* 
*
*
*
*
*
*
*

stop_robot_translation 

Stop robot translation requests the LLC to stop translating 
the base. -The routine sends two messages to the LLC. 
The first stops translation of the base and the second closes 
the transaction that start robot translation opened. If any of 
the requests to the LLC fail, th; routine wait_for_LLC_reponse 
returns control to the feature detector that called this routine. 

Returns: FRM OK - if the requests to the LLC are successful. 
*/ 

int stop_robot_translation() 
{ 

if (DEBUG MSGS) 
printf(~Stop_robot_translation: Sending LLCtranslateEnd msg to LLC.\n"); 

request_llc.type = LLCtranslateEnd; 
IPCsendMessage(&request llc, sizeof(LLCmessage), LLC id); 
wait for LLC response(LLctranslateEnd, ONE SECOND); ­
if (DEBUG MSGS) ­
printf(~Stop_robot_translation: Received ack of LLCtranslateEnd.\n"); 

request lle.type = LLCendTransaction;
 
IPCsendMessage(&request_lle, sizeof(LLCmessage), LLC_id);
 
wait for LLC response(LLCendTransaction, ONE SECOND);
 
in_t;ans;cti;n = FALSE; ­
if (DEBUG MSGS)
 
printf(~Stop_robot_translation: Received ack of LLCendTransaction.\n"); 
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return FRM_OK; 

/* 
*
*
*
*
*
*
*	
*
*
*
*
*

wait_for_LLC_response 

This routine waits for the response to an LLC request. If 
the specified timeout expires before a reponse comes in, 
or if the reponse is malformed, or if the LLC sends a warning 
of an avoidance override, a call to longjmp() will blast 
control back to the currently active feature detector. 

Parameters:	 message type - type of message to expect 
timeout-- maximum time to wait for a response 

Returns:	 FRM OK - if reponse was OK 
*/ 

static int wait_for_LLC_response(message_type, timeout) 
LLCmessageType message type; /* message type to expect */ 
int timeout; - /* how long to wait for message */ 

int msg length; /* length of request to LLC */ 
int resp len = sizeof(LLCmessage); /* length of reponse message */ 
int still waiting = TRUE; /* TRUE while waiting for response */ 
clientId ;lient; /* client that send response msg */ ,
 
/*** Read messages until we get the response we want, an error, ***/ 
/*** or a transaction override by a higher priority task. ***/ 

do ( 
client = IPCrecvMessage(&response_llc, &resp_len, timeout); 
if (client == NULL) { 

fprintf(stderr, "wait_for_LLC_response: Timed out waiting for resp.\n"); 
still_waiting = FALSE; 

} 
else if (client != LLC id) { 

fprintf(stderr, "wait_for_LLC_response: Msg from unknown client.\n"); 
still_waiting = FALSE; 

} 
else if (resp_len != sizeof(LLCmessage» { 

fprintf(stderr, "wait_for_LLC_response: Response was wrong size: %d\n", 
resp_len); 

still_waiting = FALSE;
 
}
 
else if (response_llc.type != message_type)
 

/*** Override by Avoidance module, so send an abort request to LLC ***/ 

if (response_llc.type == LLCwarningOverride) 
request_llc.type = LLCabortRequest; 
IPCsendMessage(&request llc, sizeof(LLCmessage), LLC id);
 
msg_length = sizeof(LLC;essage); ­
IPCrecvMessage(&response_llc, &msg_length, ONE_SECOND);
 
in transaction = FALSE;
 
if-(DEBUG_MSGS)
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printf("wait for LLC response: Abort due to override.\n"); 
still_waiting ~ FALSE;­

)
 
else if (DEBUG_MSGS)
 

printf("wait	 for LLC response: Unexpected msg from LLC, type = %d\n", 
- - - response_llc.type); 

) 
else 

return FRM OK; /* Got what we wanted! */
 
while (still=waiting);
 

if (in_transaction) /* Error, so end current transaction with LLC */ 
(
 

request_llc.type = LLCendTransaction;
 
1PCsendMessage(&request_llc, sizeof(LLCmessage), LLC_id);
 
msg_Iength = sizeof(LLCmessage);
 
1PCrecvMessage(&response_llc, &msg_length, ONE_SECOND);
 
in_transaction = FALSE;
 
if (DEBUG_MSGS)
 

printf("wait_for_LLC_response: Sent req to end current transaction.\n"); 

/*** ERROR: blast back to feature detector ***/ 

if (DEBUG_MSGS)
 
printf("wait_for_LLC_response: longjmp back to feature detector!.\n");
 

10ngjmp(errorHandler, 1);
 

extern client1d WA1_id;	 /* Client 1D of WA1 process */ 

static WA1requestMsg request wai; /* request message to WA1 */ 
static WA1replyMsg respons;_wai; /* response message from WA1 */ 

/* 

*
*
*
*
*
*
*	
*
*
*
*
*
*
*

recordyoint 

This routine sends a request to the Where-Arn-1 process to save 
the position at the given offsets from the robot's current position. 
If recordyoint times out waiting for the response, or if the 
response is malformed or has the wrong type, a call to longjmp() will 
return control to the currently active feature detector. Otherwise 
recordyoint returns the saved position. 

Parameters:	 delta x - offset along the X axis. 
delta~ - offset along the Y axis. 
delta theta - offset in orientation. 

Returns: New position if successful. 
*/ 

int recordyoint(delta_x, delta-y, delta_theta) 
int delta_x, delta-y, 

delta_theta; 

int resp_Ien = sizeof(WA1replyMsg); 
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request wai.type = typeFHMsavePositionDelta;
 
request-wai.x = delta x;
 
request=wai.y = de1ta~;
 
request_wai.angle = delta_theta;
 
IPCsendMessage(&request_wai, sizeof(WAlrequestMsg), WAI_id);
 

if (DEBUG_MSGS) 
printf("Record-point: Waiting for response from WAI module ... \n"); 

client = IPCrecvMessage(&response_wai, &resp_len, ONE_SECOND); 
if (client == NULL) 

fprintf(stderr, "Record-point: Timed out waiting for resp from WAI.\n"); 
else if (client != WAI id) 

fprintf(stderr, "Rec;rd-point: Received msg from unknown client.\n"); 
else if (resp_len != sizeof(WAIreplyMsg» 

fprintf(stderr, "Record-point: Resp recvd from WAI was wrong size: %d\n", 
resp len); 

else if (response_wai.type != typeFHMsavePositionDelta) ­
fprintf(stderr, "Record-point: Resp recvd from WAI had wrong type: %d\n", 

response_wai.type); 
else ( 

if (DEBUG_MSGS) 
printf("Record-point: Response from WAI module OK. Pos = %d\n", 

response_wai.position); 
return (response_wai.position); 

if (DEBUG_MSGS) 
printf("record-point: longjmp back to feature detector! .\n"); 

longjmp(errorHandler, 1); 
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'include <stdio.h> 
'include <string.h> 
'include "frm.h" 
'include "sonar.h" 

static uintl6 ring[NOM VALID SONARS]; /* ring of sonar data */ 
static uintl6 double_rlngl[2*NOM_VALID_SONARS]; /* double ring of sonar data */ 
static uintl6 double_ring2[2*NOM_VALID_SONARSl; /* double ring of sonar data */ 

/* 
* Sonar.c 

*
*
*
* 
*
*
*
*
*
*
* 
*
*
*
*
 

Sonar.c contains any routines that interpret sonar data.
 
The routines do not use raw sonar data, but data that has
 
been averaged over several sensor readings. The important
 
routines defined here are:
 

SONARorient-parallel(side)
 
SONARorient-perpendicular(side)
 
SONARfollow_wall(side, dist_to_follow)
 
SONARfollow to corner(side, max travel, dist to wall)
 
SONARorient=between_doorposts(side) - ­
SONARwal1 exist (side)
 
SONARwall=in_sight()
 
SONAF.adjust_dist_to_object(dest_dist, speed)
 

*/ 

/* 

*
*
* 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 

Orient-parallel 

Orient-parallel attempts to align the given side of the robot 
parallel with the wall next to it. This routine assumes there 
is a wall (or other flat, vertical object) at the side of the 
robot to align. 

The routine works by repeatedly turning the robot 5 degrees 
until the perpendicular sonar at the given side is closest 
to the wall. Orient-parallel then turns the robot in I degree 
increments until the sonars to either side of the perpendicular 
are balanced in value. A count of change in turn direction prevents 
the robot from thrashing back and forth. 

Note that orienting the front of the robot parallel to a wall 
is a special case because the sonar values are not contiguous 
in the array. SONARorient_front deals with this. 

* Parameter: side - side of the robot to align with the wall. 

*
 
* Returns: FRM_ERROR - if sonar data unreliable. 

*
 FRM OK - otherwise. 
*/ 

tnt SONARorient-parallel(side) 
int side; /* side of robot to face wall (LEFT, RIGHT, FRONT, BACK) */ 
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int perpen_sonar = 0; 1* Sonar perpendicular to the given side */
 
int thrash_count = 0; 1* Number of times the robot changes direction *1
 
int I_count = 0; /* Number of left turns */
 
int r_count = 0; /* Number of right turns *1
 
int la3t_turn = -1; 1* Direction of last turn */
 

switch (side)
 

case LEFT:
 
perpen sonar LEFT_SONAR;
 
break;­

case RIGHT:
 
perpen_sonar RIGHT_SONAR;
 
break;
 

case BACK:
 
perpen sonar BACK_SONAR;
 
break;­

case FRONT: 1* FRONT is a special case. */
 
SONARorient_front();
 
return;
 

while ((min_sonar != perpen_sonar) && (I_count < MAX_5_DEG_TURNS) && 
(r_count < MAX_5_DEG_TURNS)) 

SONARget average data(ring);
 
min_sona; = SONARside_min(ring, side);
 
if (DEBUG SONAR)
 
printf(~SONARorient-parallel: min sonar is %d with a value of %d.\n", 

min_sonar, ring[min_sonar]); 
if (min_sonar < perpen_sonar) 
{ 

rotate robot(-5, EXTRA SLOW TURN SPEED); /* turn LEFT 5 degrees */ 
l_count++; - - ­

} 
else if (min sonar > perpen sonar)
( - ­

rotate_robot (5, EXTRA_SLOW_TURN_SPEED); /* turn RIGHT 5 degrees */ 
r_count++; 

if ((1 count == MAX 5 DEG TURNS) I I (r count == MAX 5 DEG TURNS)) 
P_ERROR("SONARori;nt-pa;allel: Sonar-data unreliabl;.\n~); 

I_count 0; r count 0; 
do 
{ 

if (ring [perpen_sonar+1] > ring[perpen_sonar-l])
 
{
 

if (last turn == RIGHT)
 
thrash:=count++;
 

else
 
l_count++; 

rotate robot{-l, EXTPA SLOW TUP~ SPEED); 1* turn LEFT one degree *1 
last t~rn = LEFT; - - ­
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}
 

else if (ring[pe~en sonar-I] > ring[pe~en sonar+l])

-( -

-

if (last_turn == LEFT) 

thrash count++; 
else ­

r count++; 
rotate_robot (1, EXTRA SLOW TURN SPEED); /* turn RIGHT one degree */ 
last_turn = RIGHT; 

} 
SONARget_average_data(ring); 

} 
while«ring[pe~en_sonar-ll != ring[pe~en_sonar+l]) && (thrash_count < 5) 

&& (I_count <= MAX_l_DEG_TURNS) && (r_count <= MAX_l_DEG_TURNS)); 

if «1 count> MAX 1 DEG TURNS) I I (r count> MAX 1 DEG TURNS))
 
P_ERROR(·SONARor!e~t-parallel: Sona; data unrel!able.\nn);
 

return FRM_OK; 

/* 
* 
*
* 
*
* 
*
*
*

Orient-pe~endicular 

Calls orient-parallel to orient the front or back 
of the robot parallel to a wall (thus orienting 
the robot itself pe~endicular to the wall) . 
Makes the code in feature.c more readable. 

Parameter: side - side of robot to face the wall. 
*/ 

int SONARorient-pe~endicular(side) 

int side; /* FRONT or BACK */ 

return ( SONARorient-parallel(side)); 

/*
*
*
*
*
*
*
*
*
*
*
*
*

Orient front 

This routine handles the special case of aligning the 
front of the robot parallel with a wall. Orient_front 
assumes there is a wall to the front of the robot. 

This routine works the same way as SONARorient-parallel, 
but accounts for the values not being contiguous in 
the array. 

Returns: FRM ERROR - if the sonar data is unreliable. 
FRM OK - otherwise. 

*/ 

static int SONARorient_front() 

int min_sonar = -1; /* Sonar with smallest value */ 
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int thrash count = 0; /* Number of times the robot changes direction */
 
int I_count = 0; /* Number of left turns */
 
int r count = 0; 1* Number of right turns *1
 
int l~st turn = -1; 1* Direction of last turn *1
 

while (min_sonar != FRONT SONAR) && (1 count < MAX 5 DEG TURNS) &&
 
- -(r_count < MAX_5_DEG_TURNS)
 

SONARget_average_data(ring); 
min sonar = SONARfront min(ring); 
if (DEBUG_SONAR) ­

printf("SONARorient-rara11e1: min sonar at front is %d with a value of %d.\nn, 
min_sonar, ring[min_sonar]); 

if (min sonar > 13)
f -

rotate robot(-5, EXTRA SLOW TURN SPEED); 1* turn LEFT 5 degrees *1
 
l_count++; - - ­

}
 
else if (min_sonar < 3)
 
(
 

rotate_robot (5, EXTRA_SLOW_TURN_SPEED); /* turn RIGHT 5 degrees */
 
r_count++;
 

if ((1 count == MAX 5 DEG TURNS) II (r count == MAX 5 DEG TURNS) 
P_ERROR("SONARori;nt-ra;a11el, Sonar-data unre1iabl;.\n~); 

I_count = 0; r_count = 0; 
do 
( 

if (ring[l] > ring[15]) 
( 

if (last turn == RIGHT)
 
thrash::::count++;
 

else
 
1 count++;
 

rot;te robot(-l, EXTRA SLOW TURN SPEED); /* turn LEFT one degree */
 
last_t~rn = LEFT; - - ­

)
 
else if (ring[15J > ring[l])
 

if (last_turn == LEFT)
 
thrash count++;
 

else ­
r count++;
 

rot~te_robot(l, EXTRA SLOW TURN SPEED); /* turn RIGHT one degree */
 
last_turn = RIGHT;
 

} 
SONARget_average_data(ring); 

} 

while ((ring[l] != ring[15]) && (thrash_count < 5) && 
(l_count <= MAX_1_DEG_TURNS) && (r_count <= MAX_l_DEGTURNS); 

if «(1 count> MAX 1 DEG TUFNS) I I (r count> MAX 1 DEG TURNS)) 
P_ERROR(nSONARorie~t-r~rallel: Sona; data unre11able.\nn}; 
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return FRM_OK; 

/*
*
*
*
*
*
*
*
*
*
**

Side min 

Side_min returns the sonar at the given side with the 
smallest value. The smallest sonar to the front is a 
special case handled by SONARfront_min. 

Parameters: ring - array of sonar data. 
side - side of the ring for which to find 

the min value. 

Returns: The sonar at "side" with the smallest value. 
*/ 

static int SONARside min (ring, side) 
uint16 ring[]; ­
int side; /* side of ring to look at (LEFT, RIGHT, BACK) */ 

int i;
 
int current_min_value; /* Smallest sonar value so far */
 
int current min sonar; /* Sonar with smallest value so far */
 
int lower, ~ppei; /* Bounds for loop */
 
int perpen_sonar; /* Sonar perpendicular to ·side" */
 

3witch(side) 
{ 

case LEFT: 
lower =
perpen_sonar 
break; 

case RIGHT: 

10, upper = 15; 
LEFT_SONAR; 

lower = 2, upper = 7; 
perpen sonar = RIGHT SONAR; 
break;- ­

case BACK: 
lower = 6, upper = 11; 
perpen_sonar = BACK_SONAR; 

current min value = SONAR RANGE+l; 
for (i=Iowei; i<upper; itt) 

if 
{

(current min value> ring[i])
- -

current min value ring[i]; 
current min sonar i; 

if (ring [perpen_sonar] current min value) 
return perpen_sonar; /* Retuin middle sonar if it has min value */ 

else 
return current_min_sonar; 
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/* 
* Front min
 

*
 
* Front min handles the special case of finding the sonar 
* with the smallest value at the front of the robot. 

* 
* Parameter: ring - array of sonar data. 

* * Returns: The sonar at the front with the smallest value. 
*/ 

static int SONARfront min (ring) 
uint16 ring[]; ­

int i;
 
int current_min value = 255; /* Smallest sonar value so far */
 
int current_min_sonar; /* Sonar with the smallest value so far */
 

for (i=14; i<16; i++)
 
if (current_min_value > ring[i])
 
I
 

current min value ring[i] ;
 
current min sonar i;
 

for (i=O; i<3; i++)
 
if (current_min_value > ring[i])
 
(
 

current min value ring [i] ;
 
current min sonar i;
 

if (ring[FRONT SONAR] == current min value)
 
return FRONT=SONAR; /* Return ~iddle sonar if it has min value */
 

else
 
return current_min_sonar;
 

/* 
* Follow wall 

* 
* Follow wall attempts to move along a wall to the given
* side f;r the	 given distance. If the routine fails to 
* detect a wall to "side", it will stop the robot and return. 

* 
*	 Parameters: side side of the robot the wall is on. 

dist to follow - distance, in centimeters, to travel.* 
* 
* Returns: Distance, in centimeters, that the robot travelled. 
*/ 

int SONARfollow wall(side, dist to follow) 
int side, - /* LEFT-or-RIGHT */ 

dist_to_follow; /* how far to follow the wall (in centimeters) */ 

int start_dist, /* distance the robot has travelled until now */ 
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ramp_up_ di s t , 1* distance the robot travels while accelerating *1 
ramp down dist, 1* distance the robot travels while decelerating *1 
dest:=dist-; 1* distance at which to start deceleration *1 
current_dist; 1* distance the robot has currently travelled *1 

if (DEBUG_SONAR) 
( 

printf("SONARfollow_wall: Request to follow wall to ");
 
if (side == LEFT)
 

printf("left ");
 
else
 

printf("right ");
 
printf("for %d centimeters.\n", dist_to_follow);
 

start dist = get current distance();
 
ramp ;p dist = (SLOW SPEED * SLOW SPEED) 1 (2 * TRANSLATION ACCEL);
 
ramp-do;n dist = min( (dist to follow 1 2), ramp up dist);
 
dest:=dist-= start_dist + di~t_to_follow - ramp_d;wn:=dist;
 

if (DEBUG SONAR) 
printf(~SONARfollow_wall: ramp_up_dist = %d, ramp_down_dist = %d, dest_dist %d\n" , 

ramp up dist, ramp down dist, dest dist); 
if (SONARwall_exist(side) && (dist=to=follow > 0) - ­
( 

start_robot_translation(SLOW_SPEED);
 
do
 

current dist = get current distance(); 
while ( «dest_dist =current_dist) > 0) && SONARwall_exist(side) ); 
stop_robot_translation(); 

j 
if (DEBUG SONAR) 
printf(~SONARfollow wall: travelled %d centimeters.\n", 

- (get_current_distance() - start_dist); 

return( get_current_distance() - start_dist); 

1* 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 

Follow to corner 

Follow to corner attempts to move along a wall to the given 
side u~til the robot is within dist_to_wall cms of the perpendicular 
wall. If SONARwall exist fails to detect a wall to the given side, 
or if the robot travels m~~_travel centimeters before coming within 
dist to wall cms of a perpendicular wall, the routine will stop 
the ~ob~t and return FRM ERROR. 

Parameters:	 side side of the robot the wall to follow is on. 
max_travel m~~. distance, in centimeters, to travel. 
dist to wall - distance to leave between robot and wall. 

Returns: FRM_ERROR - if not able to move within dist to wall centimeters 
of the opposite wall. 

FRM OK - otherwise. 
*1 
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int	 SONARfollow to corner(side, max travel, dist to wall) 

int	 side, - - /* LEFT or RIGHT */ - ­
max travel, /* maximum distance the robot should travel */
 
dist_to_wall; /* final dist between robot and opposite wall */
 

int	 start dist, /* distance the robot has travelled until now */
 
ramp_-;:;-p_dist, /* distance the robot travels while accelerating */
 
ramp down dist, /* distance the robot travels while decelerating */
 
des<::dist~ /* distance at which to start deceleration */
 
current_dist; /* distance the robot has currently travelled */
 

if (DEBUG_SONAR) 
(
 

printf("SONARfollow to corner: Request to follow wall to A);
 
if (side == LEFT) - ­

printf("left A);
 
else
 

printf("right A);
 
printf("for %d centimeters max.\n", max_travel);
 

start_dist = get~current_distance();
 

ramp up dist = (SLOW SPEED * SLOW SPEED) / (2 * TRANSLATION ACCEL);
 
ramp-do;n dist = min( (max travel-/ 2), ramp up dist);
 
dest=dist-= start_dist + m~x_travel - ramp_d;wn=dist;
 

if (SONARwall_exist(side) && (max_travel> 0) 
(
 

start_robot_translation(SLOW_SPEED);
 
do
 
(
 

current dist = get current distance();
 
if (!SONARwall_exi;t(side)
 
(
 

stop_robot_translation(); 
if (DEBUG SONAR) 

printf(~SONARfollow_to_corner: wall to given side not found.\n"); 
return FRM_ERROR;
 

}
 
SONARget average data(ring)i
 
if (ring[FRONT_SONARI <= dist_to_wall)
 
(
 

stop_robot_translation();
 
if (DEBUG SONAR)
 

printf(~SONARfollow_to_corner: opposite wall found.\n");
 
return FRM_OK;
 

}
 
} while «dest dist - current dist) > 0);
 
stop_robot_tra~slation(); 

} 

if (DEBUG SONAR) 
printf(~SONARfollow to corner: travelled max dist of %d cms.\n", max travel); 

return FRM_ERROR; 

/* 
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*
*
*
*
*
*
*	
*
*
*
*
*
*
*
*
*
*
*
*
*
* 

Orient_between_doorposts 

This routine attempts to center the robot in a doorway. 
It assumes the robot is standing in front of the doorway, 
and that the doorpost without the door hinges is to the 
given side. 

The routine starts by translating the robot in 5 cm increments 
until the sonar perpendicular to the given side detects 
the doorpost. The routine continues to translate the robot 
until the perpendicular sonar loses track of the doorpost 
and then translates the robot backwards a fixed distance, 
centering it under the doorway. Finally, the routine rotates 
the robot 90 degrees, centers it between the doorposts, and 
rotates back 90 degrees. 

Parameters: side - side of the doorway with the doorpost 
without hinges. 

Returns:	 FRM_ERROR - if no doorpost was detected. 
FRM OK - otherwise. 

*/ 

int SONARorient_between_doorposts(side) 
int side; 

int perpen sonar;
 
int fw~co~nt = 0;
 

if (side == LEFT)
 
perpen sonar = LEFT SONAR;
 

else - ­

perpen_sonar RIGHT_SONAR;
 

do { 
translate_robot (5, EXTRA_SLOW_SPEED); /* move fwd 5 centimeters */ 
SONARget_average_data(ring); 
while«ring(perpen_sonarl > DOORJAM_THRESH) && 

(fwd_count++	 < MAX_5_CM_TRANS»); 

if (fwd count == MAX 5 CM TRANS)
 
P_ERROR("SONARorie;t=between_doorposts: Can't find doorpost.\n");
 

start_robot_translation(EXTRA_SLOW_SPEED);
 
do
 

SONARget_average_data(ring);
 
while ( ring(perpen sonar) <= DOORJAM THRESH);
 
stop_robot_translation(); ­

translate_robot«-(BALF_DOORJAM_WIDTH+WALL_OVERSHOOT», EXTRA_SLOW_SPEED);
 
rotate robot(90, MEDIUM TURN SPEED);
 
SONARadjust_dist_to_obj;ct(DIST_TO_DOORJAM, EXTRA_SLOW_SPEED);
 
rotate_robot (-90, MEDIUM_TURN_SPEED);
 

return FRM_OK; 
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* Wall exist 

* 
*	 Wall_exist attempts to locate a wall to the given side of 
*	 the robot. The wall to detect must be within "MAX_DIST_TO_WALL" 
* centimeters from the robot. 

* 
The	 routine searches for a sequence of sonar values to the* 

*	 given side of the robot that decreases in value and then 
increases. Wall exist finds the sonar with the smallest* 
value first, then counts the number of sonars that form* 
an	 increasing sequence to either side. If there are three* 
or	 more sonars in the sequence as a whole, Wall_exist returns* 
TRUE.* 

* 
* Parameter: side - side of the robot on which to look. 

* *	 Returns: TRUE - if the sonars detect a wall to "side". 
FALSE - otherwise.* 

*/ 

int SONARwall exist(side) 
int side; - /* LEFT or RIGHT */ 

int	 i, j, 
lower, upper, /* lower and upper bounds for the sonar data */ 
smallest, /* sonar with the smallest value */ 
perpen_sonar; /* sonar perpendicular to the given side */ 

int increasing_left, /* I of sonars in increasing seq to left */ 
increasing right; /* I of sonars in increasing seq to right */ 

int small_val;- /* value of the sonar "smallest" */ 

if	 (side == LEFT) 
(
 

lower = 10;
 
upper = 15;
 
perpen_sonar LEFT_SONAR;
 

) 

else 

lower = 2;
 
upper = 7;
 
perpen_sonar RIGHT_SONAR;
 

for	 (i=O; i<NOM_TRIES; i++) 
(
 

SONARget average data(ring);
 
small_val = SONAR_RANGE + 1;
 

for	 (j=lower; j<upper; j++) /* get smallest sonar */ 
{
 

if (ring[jJ < small_val)
 
{
 

small val ring[jJ; 
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smallest = j; 

increasing_left = 0, increasing_right = 0; 

for (j = (smallest-I); j >= lower; j--) /* count increasing seq to left */ 
if (ring[j] >= ring[j+l]) 

increasing_left++; 
else 

break; 

for (j = (smallest+l); j < upper; j++) /* count decreasing seq to right */ 
if (ring[j] >= ring[j-l]) 

increasing_right++; 
else 

break; 

if «(increasing_left + increasing_right + 1) >= 3) && 
(ring [perpen_sonar] < MAX_DIST_TO_WALL») 

if (DEBUG_SONAR) 
(
 

printf(nSONARwall_exist: wall found on n);
 
if (side == LEFT)
 

printf(nleft, n);
 

else
 
printf(nright, ");
 

printf(ncentered at sonar %d\nn, smallest);
 

return TRUE; 
) 
else 

printf(nSONARwall_exist: increasing_left = %d, increasing_right = %d.\nn, 
increasing_left, increasing_right); 

if (DEBUG_SONAR) 
( 

printf("SONARwall_exist: unable to find wall, side %d, ring \nn, side); 
SONARprint_ring(ring); 

return FALSE; 

1* 
*
*
*
* 
*
*
*
* 
*
* 

Wall_in_sight 

Wall in sight searches for a wall to the front of the robot. 
The ;nly restriction is that the wall be within the sonars' 
range. 

The routine collects an array of 32 sonar values and copies 
the first and last five values of the array into another 
array. Once the ten sonar values at the front of the robot 
ar~ in a contiguous array, Wall_in_sight searches for a sequence 
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* such a gequen~e, Wall_in_sight returns TRUE. 

* 
*	 Returns: TRUE ­ if there is a wall within the sonars' range. 

FALSE - otherwise.* 
*/ 

int SONARwall_in_sight() 
( 

int i, j, k,
 
last,
 
count,
 
smallest;
 

for (i=O; i < NUM_TRIES; i++) /* Try more than once */
 
(
 

SONARget_average_data_double(double_ringl);
 

/* Create a contiguous array of the sonar values */
 
/* to the front of the robot. */
 

for (j=O, k=27; k < 32; j++, k++)
 
double_ring2 [j] double_ringl[kJ;
 

for (j=S, k=O; k < 6; j++, k++)
 
double_ ring2 [j 1 double_ringl[k];
 

if (DEBUG_SONAR) 
(
 

printf("SONARwall_in_sight: ");
 
for (j=O; j<ll; j++)
 

printf("%d ", double_ring2[j]);
 
printf("\n\n");
 

/* Search for a sequence of WALL SONAR COUNT sonars */
 
/* that are close in value. */
 

last = -ERR_THRESH;
 
count = 1;
 
smallest = SONAR RANGE + 1;
 
for (j=O; j < 11; j++)
 
( 

if «(double_ring2[j] >= last-ERR_THRESH) &&
 
(double_ring2[j] <= last+ERR_THRESH) &&
 
(last < SONAR_RANGE-ERR_THRESH»
 

count++;
 
if (double_ring2[j] < smallest)
 

smallest = double_ring2[j];
 
}
 
else (
 

count = 1; 
smallest = SONAR_RANGE + 1;
 

}
 
if «(count == WALL SONAR COUNT) &&
 

(double_ringl[FRONT_SONARl >= smallest-ERR_THRESH) && 
(double_ringl[FRONT_SONARl <= smallest+ERR_THRESH» 
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printf(~SONARwall_in_sight: wall found. j = %d front_sonar = %d.\n·,
 

j, double_ringl[FRONT_SONAR]);
 
return TRUE;
 

}
 
last = double_ring2[j];
 

if (DEBUG SONAR)
 
printf(~SONARwall_in_sight: no wall found.\n·);
 

return FALSE;
 

/* 
Adjust_dist_to_object* 

* 
Move the robot ·dest_dist· centimeters away from the object ahead.* 
Adjust_dist_to_object assumes the robot is perpendicular to the object* 
ahead of it.* 

* 
* Parameter: dest dist - distance to achieve between robot and object. 
*/ 

SONARadjust dist to object (dest dist, speed) 
int dest dist,- - /* In c;ntimeters */ 

speed; /* Velocity in em/sec */ 

int start_dist; /* Distance between robot and ~bject at start */ 

SONARget_average_data(ring};
 
start_dist = ring[FRONT_SONAR];
 
if (DEBUG_SONAR)
 

printf('SONARadjust_dist_to_object: request to move %d ems from object ahead. Front sonar %d.\nn, dest_dist, ring[FRONT_SONAR]); 

translate_robot«(start_dist - dest_distl, speed); 
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'include <stdio.h> 
iinclude <math.h> 
'include "frm.h" 
iinclude "sonar.h" 

iinclude "/pro/ai/robot/software/ipc/src/ipc.h"
 
'include "/pro/ai/robot/software/huey/sonar/src/sonar.h"
 

uint16 raw_ring[NUM_SONARS]i /* Ring of raw sonar values */
 
uint16 avg ring[NUM SONARS]i /* Ring of averaged sonar values */
 
uint16 distribution[NUM_SONARS] [256]i /* For collecting mode data */
 
uint16 ordered ring[NUM SONARS]i /* Ordered ring of sonar values */
 
uint16 temp_ring[NUM_VALID_SONARS]i
 

extern clientId SC_idi
 

/*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 

Sonar utils.c
 

Sonar_utils.c contains routines to gather sonar data and order
 
the data into a ring of values. The routines Get_average_data
 
and Get_mode_data use "N~READINGS" of raw sonar data to arrive
 
at the average or mode of the sonar data. Get average data double
 
and Get_mode_data_double rotate the robot by ~BALF_SONAR_ANGLE"
 
degrees to get an array of data with twice as many values
 
as physical sonars. A complete list of available routines
 
follows:
 

SONARget_data(ring)
 
SONARget_average_data(ring)
 
SONARget average data double(double ring)
 
sONARget=mode_data(ring) -

SONARget mode data double(double ring)
 
SONARprint_ring(ring) ­
SONARprint_ring_double(ring)
 

*/ 

/* 
*
*
*
*
* 

Get raw data 

Requests raw sonar data from appropriate underlying module/library. 

Parameter: ring - array to hold the ordered sonar data. 
*/ 

static int get_raw_data(ring) 
uint16 ring[]i 

static SCrequest myReq (= 24, 077777777 }i 
SCresponse response;
 
int length = sizeof(SCresponse);
 

IPCsendMessage(&myReq, sizeof(SCrequest), SC id);
 
if (IPCrecvMessage(&response,&length,ONE_SECOND) != SC_id)
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return -1;
 
else
 

memcpy«char *)ring, (char *)response.data, 
MAX_NOM_SENSORS * sizeof(uint16»; 

return 0; 

/* 
* Get data 

*
*
*
*
* 

Requests raw sonar data and calls SONARorder_ring 
to order the data in a clockwise ring. 

Parameter: ring - array to hold the ordered sonar data. 
*/ 

int SONARget_data(ring) 
uint16 ring [] ; 

int i; 

if (get raw data(raw ring) < 0) 
printf("SONAF.get_d~ta: Request to read sonar failed.\n\n"); 

else 

SONARorder_ring(raw_ring, ring);
 
if (DEBUG_SONAR)
 
(
 

printf("SONARget data: ");
 
for (i=O; i < NoM VALID SONARS; i++)
 

printf("%d ", r'ing[i]);
 
printf("\n\n");
 

/* 

*
* 

Get_average_data 

* Reads in the raw sonar values "NOM READINGS" times 
* and averages the data. 

*
* Parameter: ring - array to hold the averaged sonar data. 
*/ 

int SONARget_ave rage_dat a (ring) 
uint16 ring[]; 

int i, j; 

for (i = FIRST VALID SONAR; i < NOM SONARS; i++) 
avg_ring[i] ~ 0; - ­

for (i=O; i < NOM_READINGS; i++) 
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if (get raw data(raw ring) < 0) 
printf("SONARget a;erage data: Request to read sonar failed.\n"); 

else - ­
for (j = FIRST VALID SONAR; j < NOM SONARS; j++) 

ring[j] ~ avg ring[j]- + rlng[j];avg raw 
} -
 -

for (i FIRST VALID SONAR; i < NOM SONARS; i++)=

avg_ring[i] ~ (avg=ring[il / NOM_READINGS); 

SONARorder_ring(avg_ring, ring); 

if (DEBUG_SONAR) 
( 

printf("SONARget average data: 0); 
SONARprint_ring(ring); ­

if (DISPLAY SONAR)
 
draw_sd(rlng);
 

/* 
*
* 
*
* 
*
* 
*
* 

Get_average_data_double 

This routine rotates the robot to obtain a ring 
with twice as many values as there are physical 
sonars. Get average data double returns the robot 
to its initi~l orientatio~. 

Parameter: double_ring - array to hold the averaged data. 
*/ 

int SONARget average data double(double ring) 
uint16 double_ring[l; - ­

int i; 

SONARget_average_data(temp_ring);
 
for(i=O; i < NOM VALID SONARS; i++)
 

double_ring[i*2] = t;mp_ring[i];
 

rotate_robot (HALF_SONAR_ANGLE, SLOW_TURN_SPEED); 

SONARget_average_data(temp_ring);
 
for(i=O; i < NOM VALID SONARS; i++)
 

double_ring[(i*2)+1]-= temp_ring[i];
 

rotate_robot (-HALF_SONAR_ANGLE, SLOW_TURN_SPEED); 

if (DEBUG_SONAR) 
{
 

printf(OSONARget_average_data_double: 0);
 
SONARprint_ring_double(double_ring);
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/* 
* Get mode data 

* 
* Get mode data reads in the raw sonar data "NOM READINGS" 
* tim;s, a;d returns a ring of the most frequently occurring 
* values. 

* 
* Parameter: ring - array to hold the mode of the sonar data. 
*/ 

int SONARget_mode_data(ring) 
uint16 ring[]; 

int	 i, j, 
peak, /* Number of times the most frequent value appeared */ 
max_value; /* Value that appeared most frequently */ 

for	 (i = FIRST_VALID_SONAR; i < NOM_SONARS; i++) 
{
 

avg_ring[i] = 0;
 
for (j = 0; j < 256; j++)
 

distribution[i][j] = 0; 

for	 (i=O; i < NUM_READINGS; i++) 

if (get raw data(raw ring) < 0)
 
printf("SONARget m;de data: Request to read sonar failed.\n");
 

else - ­

for (j = FIRST VALID SONAR; j < NOM SONARS; j++)
 
distribution[j] [r~w_ring[j] ]++; ­

for (i FIRST_VALID_SONAR; i < NUM_SONARS; i++)
 
(
 

peak = 0;
 
max value 0;
 

for (j = 0; j < 256; j++)
 
if (distribution[i] [j] > peak)
 
{
 

peak = distribution[i] [j];
 
max value = j;
 

}
 
avg_ring[i] = max_value;
 

SONARorder_ring(avg_ring, ring); 

if (DEBUG_SONAR)
 
(
 

printf("SONARget mode data: "); 
SONARprint_ring(~ing); 

if (DISPLAY SONAR)
 
draw_:3d(rlng) ;
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/* 

*
*
*
*
*
*
*
*
 

Get_mode_data_double 

This routine rotates the robot to obtain a ring 
with twice as many values as there are physical 
sonars. Get mode data double returns the robot 
to its initi~l orIentation. 

Parameter: double_ring - array to hold mode data. 
*/ 

int SONARget mode data double(double ring) 
uint16 dOuble_ring[]; ­

int i; 

SONARget_mode_data(temp_ring); 
for (i=O; i<NUM VALID SONARS; i++)
 

double_ring [i*2] = temp_ring!i];
 

rotate_robot (HALF_SONAR_ANGLE, SLOW_TURN_SPEED);
 

SONARget_mode_data(temp_ring);
 
for (i=O; i<NUM_VALID_SONARS; i++)
 

double_ring! (i*2)+1] = temp_ring!i]; 

rotate_robot (-HALF_SONAR_ANGLE, SLOW_TURN_SPEED); 

if (DEBUG_SONAR) 
( 

printf("SONARget_mode_data_double: "); 
SONARprint_ring_double(double_ring); 

/* 

*
*
 

Order_ring 

* Get raw data returns the raw sonar data out of order. 
* Order_ring orders the values returned by get_raw_data 
* into a clockwise ring starting at the front of the robot. 

*
 
* Parameters: unordered - array of unordered sonar data. 
* ordered - array to hold the ordered data. 
*/ 

static int SONARorder_ring(unordered, ordered) 
uint16 unordered!]; 
uint16 ordered!]; 

ordered!O] (uint16) (TOF TO CMS*unordered!18]);
 
ordered!l] (uint16) (TOF=TO=CMS*unordered[14]);
 
ordered!2] (uint16) (TOF TO CMS*unordered!17]);
 
ordered!3] (uint16) (TOF=TO=CMS*unordered!15]);
 



{ 
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ordered[4] 
ordered[5] 
ordered(6] 
ordered[7] 
ordered[8] 
ordered[9] 
ordered[lO] 
ordered [11] 
ordered[12] 
ordered(13] 
ordered [14] 
ordered[15] 

/* 

(uint16) (TOF TO CMS*unordered[16]); 
(uint16) (TOF=TO=CMs*unordered[8); 
(uint16) (TOF TO CMS*unordered[23); 
(uint16) (TOF=TO=CMS*unordered[9]); 
(uint16) (TOF TO CMS*unordered[22]); 
(uint16) (TOF-TO-CMS*unordered[lO]); 
(uint16) (TOF TO CMS*unordered[2l]); 
(uint16) (TOF-TO-CMS*unordered[ll); 
(uint16) (TOF-TO-CMS*unordered[20]); 
Cuint16) (TOF=TO=CMS*unordered[12); 
(uint16) (TOF TO CMS*unordered[19]); 
(uint16) (TOF=TO=CMS*unordered[13]); 

*
*
*
*
*
*
 

Print ring
 

Prints the given ring of sonar data for
 
debugging purposes.
 

Parameter: ring - ring to print.
 
*/ 

int SONARprint_ring(ring) 
uint16 ring [] ; 

int i; 

printf(" "); 
for (i=O; i<NUM VALID SONARS; i++) 

printf("%d ",-ring(i"]); 
printf ("\n") ; 

/* 
*
*
*
*
*
*
 

Print_ring_double
 

Prints a double ring of sonar data for
 
debugging puposes.
 

Parameter: double_ring - ring to print.
 
*/ 

int SONARprint_ring_double(ring) 
uint16 ring[); 

int i; 

printf(" "); 
for (i=O; i < (2*NUM_VALID_SONARS); i++) 

printfC"%d ", ring[i]); 
printf ("\n"); 


