
BROWN UNIVERSITY

Department of Computer Science

Mastel"s Thesis

CS-90-M7

Optimal Disk I/O with Parallel Block Transfer

by

Elizabeth A. Shriver

Optimall Disk I/O with Parallel Block Transfer

Master's Thesis

Elizabeth A. Shriver

Department of Computer Science

Brown University

May 14, 1990

Submitted in partial fulfillment of the requirements for the degree of

Master of Science in the Department of Computer Science at Brown University

Optimal Disk 1/0

with Parallel Block Transfer

Elizabeth A. M. Shriver

Department of Computer Science

Brown University

Providence, R. 1. 02912-1910

May 14,1990

Preface

I wish to thank a number of people without whose help and support this work would never
have been finished: Jin Joo Lee, for all her help with the math analysis; Tom Swartz, for his
patience; and most of all, my advisor Jeff Vitter.

This research was done in partial fulfillment of the requirements for my Master's degree
at Brown University. It is joint work with Jeff Vitter.

Abstract

We provide the first optimal algorithms in terms of the number of input/outputs (1/0s)
required between internal memory and multiple disk drives for sorting, FFT, matrix trans­
position, standard matrix multiplication, and related problems. Our two-level memory model
is new and gives a realistic treatment of parallel block transfer, in which during a single I/O
each of the P disks can simultaneously transfer a contiguous block of B records. We also in­
troduce parallel variants of the hierarchical memory models of [AAC, ACS] and give optimal
algorithms. In our parallel models, there are P hierarchies operating in parallel; communi­
cation among the hierarchies takes place at a base memory level.

The difficulty in developing optimal algorithms in our two-level and hierarchical models
is to cope with the partitioning of memory into P separate physical devices. The popular
technique of ((disk striping" handles this easily, but it can be nonoptimal by a logarithmic
factor in terms of the number of 1/0s. Our optimal sorting algorithms are randomized, but
practical; the probability of using more than an optimal number of 1/0s falls off exponen­
tially.

11

Contents

Preface

Abstract 11

1 Introduction 1

2 Problem Definitions 2

3 The Two-Level Memory Model 4

4 Hierarchical Memory Models 6

5 Shuffle-Merge and its Applications 8

6 Disk Sorting and Permuting 10
6.1 Phase 1 . 12
6.2 Phase 2 . 18
6.3 Finding the Partitioning Elements. 26

7 Disk Standard Matrix Multiplication 27

8 Algorithms for the Hierarchical Memory Models 28
8.1 Sorting in P HMM 29

8.2 Standard Matrix Multiplication in PHMM 32
8.3 Sorting in PBT 34

8.4 Standard Matrix Multiplication in PBT . 37

9 Conclusions 38

References 38

III

1

1 Introduction

Sorting is the canonical information-processing application. It accounts for roughly 20-25
percent of the compnting resources on large-scale computers [Knu, LiV]. In applications
where the file of records cannot fit into internal memory, the records must be stored on
(external) secondary storage, usually in the form of disks. Sorting in this framework is
called external sorting. The bottleneck in external sorting and many other applications is
the time for the input/output (I/O) between internal memory and the disks. This bottleneck
is accentuated as processors get faster and parallel computers are used. One remedy is to
use secondary storage systems with parallel capabilities.

Previous work on I/O efficiency has concentrated on two-level and multilevel models.
(Further references can be found in the papers mentioned below.) Aggarwal and Vitter [AgV]
present optimal upper and lower bounds for sorting-related problems using a two-level mem­
ory model in which P physical blocks, each consisting of B contiguous records, can be
transferred simultaneously in a single I/O. Their model is somewhat unrealistic, however,
because secondary storage is usually partitioned into separate physical devices, each capable
of transferring only one block per I/O.

Two multilevel hierarchical memory models are introduced in [AAC, ACS], the latter one
taking into account block transfer. Access to a location x takes time f(x), and in the blocking
version, access to successive locations takes one unit of time per location. Optimal bounds
are obtained for several problems. Parallel transfer using several hierarchies simultaneously
was not considered in [AAC, ACS].

We are interested in optimal algorithms for two-level and hierarchical memory models
that allow P simultaneous transfers of data. To be realistic, we require that each block
transfer must be associated with a separate secondary storage device.

The problems we solve, which include sorting, permuting, matrix transposition, FFT,
permutation networks, and standard matrix multiplication, are defined in Section 2. In
Section 3 we define a realistic two-level memory model with parallel block transfer, and we
state our main results, which give tight upper and lower bounds on the number of I/Os
needed to solve the above important problems. The two-level model corresponds to having
an internal memory and P disks, each disk capable of simultaneously transferring one block
of B records. Our measure of performance is the number of parallel I/Os required; this
ignores internal computation time, but the internal processing done by our algorithms is
simple enough so that in practice it can be overlapped with the I/O time. Our algorithms
can be significantly faster than those obtained by the well-known technique of disk striping.

The restriction that only one block can be accessed per disk during an I/O is what
distinguishes our model from the less realistic model of [AgV]. This distinction is akin to
the difference in parallel computation between the more realistic 1\ [l' I' (Ill' ,rill Ie pa.rallel
computer) model and the less realistic PRAM model. However, gener;,l I'li \f\l simulation
techniques use logarithmic time per step; if they were applied to the a.lgr:'lillllW; in lAg'll, the
resulting algorithms would not be optimal in terms of I/O. The algorithms we develop on
our more realistic model use the same number of I/Os as those in [AgV] for the less realistic
model.

In Section 4 we define two uniform memory models, each consisting of P hierarchical
memories connected together at their base levels. The P hierarchical memories are of the

2 2 PROBLEM DEFINITIONS

type discussed in [AAC, ACS]. We give optimal time bounds for the problems in each model.
Sections 5-7 are devoted to the algorithms and analysis for the two-level model. In

Section 5 we develop optimal algorithms for matrix transposition, FFT, and permutation
networks, by making use of the shuffle-merge primitive. Even though these problems are
sorting-related, it is much easier to develop optimal algorithms for them than it is for sorting,
since their I/O schedules are nonadaptive.

Our main result is the optimal randomized algorithm for sorting (and permuting) and
its probabilistic analysis in Section 6. The probability that it uses more than f times the
optimal number of I/Os is exponentially small in i(log i) 10g(M/ B), where M is the internal
memory size.! The sorting algorithm is a variant of a distribution sort; a combination of two
randomized techniques is used to do the partitioning so as to take full advantage of parallel
block transfer. In Section 7 we cover standard matrix multiplication.

In Section 8 we show how to apply the algorithms developed for the two-level model to
get optimal algorithms for the hierarchical models. The hierarchical algorithms are opti­
mal because the internal processing in the corresponding two-level algorithms is efficient.
Conclusions and open problems are given in Section 9.

2 Problem Definitions

Most of the following problems have been well described in the literature. The following
definitions are those from [AgV], with suitable modifications.

Sorting
Problem Instance: The internal memory is empty, and the N records are stored in the first

N locations of secondary storage.
Goal: The internal memory is empty, and the N records are stored in sorted non-decreasing

order in the first N locations of secondary storage.

Permuting
The Problem Instance and Goal are the same as for the Sorting problem, except that the
key values of the N records are required to form a permutation of {l, 2, ... , N}.

The following problem is a special case of permuting in which the permutation to be
realized corresponds to matrix transposition, in which the matrix is converted from row­
major order to column-major order.

Matrix Transposition
Problem Instance: The internal memory is empty, and a p . q mati;· (.~ .), ·f· N =

pq records is stored in the first N locations of secondary stora.gr:.
Goal: The internal memory is empty, and the transposed matrix AT is s(.nrerl in the first N

locations of secondary storage. (The q x p matrix AT is called the transpose of A iC
Alj = Aj,i' for all 1 S; i S; q and 1 S; j S; p.)

. I.] - .

1 For simplicity of notation, we use log:ll, where :Il 2: 1, to denote the quantity max{l, log2:Z:}'

3

Fast Fourier Transform (FFT)
Problem Instance: Let N be a power of 2. The internal memory is empty, and the N records

are stored in the first N locations of secondary storage.
Goal: The N output nodes of the FFT digraph are "pebbled" (as explainf'd below), and the

N records are stored in the first N locations of secondary storage.

The FFT digraph consists of log N + 1 columns each containing N nodes; column 0
contains the N input nodes, and column log N contains the N output nodes. Each non­
input node has indegree 2, and each non-output node has outdegree 2. We shall denote the
ith node (0 :S i :S N - 1) in column j (0 :S j :S log N) in the FFT digraph by ni,j' For
j 2: 1 the two predecessors to node ni,j are nodes ni,j-l and niEJ)2j-1,j-l, where (t) denotes
the exclusive-or operation on the binary representations. (Note that nodes ni,j and niEJ)2j-1,j

each have the same two predecessors).
The ith node in each column corresponds to record~. We are allowed to pebble node ni,j

if its two predecessors ni,j-l and niEJ)2j-1,j-l have already been pebbled and if the records Ri

and RiEJ)2j-1 corresponding to the two predecessors both reside in internal memory. Intu­
itively, the FFT problem can be phrased as the problem of pumping the records into and
out of internal memory in a way that permits the computation implied by the FFT digraph.

Permutation Networks
The problem instance and goal are the same as for the FFT problem, except that the
permutation network digraph (see below) is pebbled instead of the FFT digraph.

A permutation network is a sorting network [Knu] consisting of comparator modules or
switches that can be set by external controls so that any desired permutation of the inputs
can be realized at the output level of the network. It consists of J + 1 columns, for some
J 2: log N, each containing N nodes. Column 0 contains the N input nodes, and column J
contains the N output nodes. All edges are directed between adjacent columns, in the
direction of increasing index. For 0 :S i :S N - 1 and 0 :S j :S J, we denote the ith node in
column j as ni,j. For each j 2: 1 there is an edge from ni,j-l to ni,j. In addition, ni,j can
have one other predecessor, call it ni',j-l, but in that case there is also an edge from ni,j-l

to nil,j; that is, nodes ni,j and ni',j have the same two predecessors. We can think of there
being a "switch" between nodes ni,j and nil,j that can be set either to allow the data from
the previous column to pass through unaltered (that is, the data in node ni,j-l goes to ni,j

and the data in ni',j-l goes to ni/,j) or else to swap the data (so that the data in ni,j-l goes
to nil,j and the data in ni',j-l goes to ni,j)'

A digraph like this is called a permutation network if for each of the N! permutations PI,
P2, ... , PN we can set the switches in such a way to realize the permutahnn: that is, data a.t
each input node ni,a is routed to output node npi,J. The ith n0de in ("''1,1, ,,,1""111 c()rrespc1ncls
to the current contents of record R i , and we can pebble nc,de n,,] if il· 1'1·,I(,~cessors have
already been pebbled and if the records corresponding to those predecess' 'r~: rpsicle in interna.l
memory.

There is an important difference between permutation networks and general permuting.

In the latter case, the I/Os and memory accesses may depend upon the desired permutation,

"--~ whereas with permutation networks all N! permutations can be generated by the same

sequence of I/Os or memory accesses.

4

3

3 THE TWO-LEVEL MEMORY MODEL

Tracks

Disks D B records

Figure 1: The disks are represented by horizontal lines and the tracks by vertical lines.

Standard Matrix Multiplication
Problem Instance: The internal memory is empty. The elements of two k x k matrices, A

and B, where 2k2 = N, are each stored in the first N locations of secondary storage.
~oal: The internal memory is empty, and the product C = A x B, formed by the standard

matrix multiplication algorithm that uses O(P) arithmetic operations, is stored in the
first N locations of secondary storage.

The Two-Level Memory Model

First we define the parameters for our two-level memory model (or disk model) with parallel
block transfer:

Definition 1 The parameters are defined by

N # records in the file;

M # records that can fit in internal memory;

B # records per block;

P # disk drives;

where 1 ~ B ~ M/2, M < N, and 1 ~ p ~ lM/ B J. The parameters \', ;1r, B, and P a.re
referred to as the file size, memory size, block size, and number or ,/,.,;,. ""'r"'r:tivf"lv \;Ve
denote the P disks by VI, '02 , ... , D p . Each disk is partitioned in!" "W~"(lltive tra.cks.

each capable of storing one block of B records, as pictured in Figure 1 II II" disk is specified
when we refer to the <Ckth track," we mean the kth track of all P disks r.:,Jledively,

For purposes of making the problem definitions given in Section 2 more concrete, the
locations on disk are numbered track-by-track in the following cyclical fashion. Track 1
contains the first P B locations:

5

track 1 of V l contains locations 1, 2, ... , Bj
track 1 of V 2 contains locations B + 1, B + 2, ... , 2B;

track 1 of V p contains locations (P -1)B + 1, (P -1)B + 2, ... , PB.

Track 2 contains the next P B locations:

track 2 of V l contains locations P B + 1, P B + 2, ... , (P + I)B;
track 2 of'V2 contains locations (P + I)B + 1, (P + I)B + 2, ... , (P + 2)B;

track 2 of V p contains locations (2P - I)B + 1, (2P - I)B + 2, ... , 2PB.

The numbering continues in this fashion for tracks 3, 4,
Parallelism appears in our model in two basic ways. First, records are transferred concur­

rently in blocks of B contiguous records. This reflects the fact that seek time is a dominant
factor in I/O. It takes roughly the same amount of time to access and transfer one block as
it does one record. The second type of parallelism arises because P blocks can be transferred
in a single I/O. We make the realistic restriction that the P blocks must be associated with
tracks from P different disks. That is, only one track per disk can be accessed, but there is
no constraint on which track is accessed on each disk.

Our results for the two-level memory model are given below in Theorems 1-4. We give
optimal algorithms in terms of the number of I/Os for the problems defined in the previous
section. The lower bounds for Theorems 1-3 follow from the lower bounds proved in [AgV]
for the less realistic model in which P tracks can be accessed on the same disk in a single I/O.
Since any algorithm in our model automatically applies to the model in [AgV], the same lower
bounds apply.

Theorem 1 The number of l/Os required for sorting N records and for computing the N­
input FFT digraph is

e(~IOg(N/B))
PB 10g(M/B) .

The upper bound for sorting is given by a randomized algorithm; the probability of using
more than an optimal number of l/Os falls off exponentially. The lower bounds apply to
both the average case and the worst case. The sorting lower bound does not require the use
of the comparison model of computation, except for the case when .!vI and B are extremely
small with respect to N, namely, when Blog(M/B) = o(1og(N/B)). The average-case and
worst-case number of l/Os required for computing any N -input permutahnn network is

n (N log(N / B)) .
P B 10g(AI/ B) l

furthermore, there are permutation networks such that the number of l/U", needed to compute
them is

o (~log(N/B))
PB log(M / B) ,

6

4

4 HIERARCHICAhMEMORY MODELS

Theorem 2 The number of l/Os required to permute N records is

. {N N 10g(N/B)})
e (mm p' PBlog(M/B) .

The lower bound applies to both the average case and the worst case. The second term in the
upper bound corresponds to the randomized algorithm of Theorem 1.

Theorem 3 The number of l/Os required to transpose a p X q matrix of N = pq elements
lS

e (N (10gmin{M,p,q,N/B}))
PB 1 + 10g(M/B) .

We get the following lower bound for standard matrix multiplication by taking the bound
for the case P = 1 in [SaV] and dividing by P:

Theorem 4 The number of l/Os required to multiply two k x k matrices using the standard
matrix multiplication algorithm is

Hierarchical Memory Models

A hierarchical memory model is a uniform model consisting of memory whose locations take
different amounts of time to access. The basic unit of transfer in the hierarchical memory
model HMM [AAC] is the record; access to location x takes time f(x). The BT model [ACS]
represents a notion of block transfer applied to HMMj in the BT model, access to the f + 1
records at locations x - f, x - f + 1, ... , x takes time f(x) + f. Typical access cost functions
are f{x) = log x and f{x) = xcx

, for some a > O.
Both of these hierarchical memory models can be augmented to allow parallel data trans­

fer. One possibility is to have a discretized hierarchy, in which each memory component is
connected to P larger but slower memory components at the next level. A cleaner extension
is to consider P separate memories connected together at the base level of each hierarchy.
We shall adopt this extension, since it is simpler to realize than the previous one, and it
allows the same time performance for our algorithms.

More specifically, we assume that the P hierarchies can each function independently.
Communication between hierarchies takes place at the base memory level, which consists of
location 1 from each of the P hierarchies. We assume that the P base mem0["V level locations
are interconnected via a network such as a hypercube or cube-conneetul '\'rlp~ S(, t.hat the P

records in the base memory level can be sorted in O(log P) time (perll<-II";I;I '\ ranck,mizeu
algorithm [ReV]) and so that two vP/2 x vP/2 matrices can be multiplied in O(v'P) time
using the standard algorithm. We denote by PHMM and PBT the P-hjerarchy variants of
the hierarchical memory models HMM and BT, as described above.

The fundamental problem that arises in trying to take full advantage of parallel transfer
in these models is how to distribute records among the P memories so that each memory is
kept "busy." We shall show later in Section 8 how the randomized distribution sort algorithm

7

of Section 6 for the two-level memory model can be used as a basic building block to get
optimal algorithms for the hierarchical models. The lower bounds for PHMM and PBT
follow from the approach used in [AAC] and [ACS].

Theorem 5 In the PHMM model, the time for sorting and the FFT is

N (logN)) if f(x) = log x;e (p log N log log P

N)O:+1 N)e ((P + P logN if f(x) = xO:, Ct> O.

The upper bound for sorting is given by a randomized algorithm; the probability of using
more than an optimal number of l/Os falls off exponentially. In the lower bound for the
f(x) = xO: case, the (N j P) log N term requires the comparison model of computation. The
time for multiplying two k x k matrices together using the standard algorithm is

e(~) if f (x) = log x;

e(~) if f (x) = xO:, 0 < Ct < ~;

e (~~2 log k + ~)
k2) 0:+1 k3)e - +- if f (x) = xO:, 1

((Ct> 2'P P

Theorem 6 In the PBT model, the time for sorting and the FFT is

e (; logN) if f(x) = logx;

e (; logN) if f (x) = xO:, 0 < a < 1:

e (; log N log ~) if f(x) = xO:, a =1,'

e ((;) + ; log ; log P) iff(x) = xO:, a> J0:

The upper bounds for sorting are given by a randomized algorithm; the probability of using
more than an optimal number of l/Os falls off exponentially. The (Nj P) log N terms in the
lower bounds require the comparison model of computation. The time for multiplying two

8

5

5 SHUFFLE-MERGE AND ITS APPLICATIONS

k x k matrices together using the standard algorithm is

if f(x) = log x;e(~)
P\

e (p)

P k
3

)e -logk+­(p3/2 P

3a> 2'

These techniques can be extended to get optimal algorithms for other problems considered
in [AAC, ACS], such as the "touch" problem and other "simple" problems, searching, and
generating rational permutations.

Shuffle-Merge and its Applications

In this section we restrict ourselves to the two-level memory model, in which there are P ::;
M / B disk drives communicating with internal memory. We define a useful merging operation
called shuffle-merge that can be used to achieve the optimal I/O bounds mentioned in
Theorems 1 and 3 for the problems of FFT, permutation networks, and matrix transposition.
The algorithms, which consist of a series of shuffle-merges, are the ones described in [AgV],
except that the disk placement of the blocks of the merged runs must be done in a staggered
way so that the merging in the next pass can be done using full parallelism.

For simplicity of exposition, we assume that N, M, P, and B are powers of 2. The
operation of shuffle-merge consists of performing a perfect shuffle [Sto] of the elements of
M / B ordered equally-sized runs of records, a;, ... , ai, for 1 ::; i ::; M / B, to get the final

1 I 1 22 2 r r r suehffld run aI' a2, ... , aM/B, aI' a2, ... , aM/B, ... , aI' a2, ... , aM/B'

Output Runs Input Runs

I 2 r aM/B aM/B .. , aM/B

It is easy to do shuffle-merges and take full advantage of parallel block transfer, if the
input runs are blocked and the blocks are staggered with respect to one another on the disk,
so that in a single I/O we can read the next track from each of the next P f1ms. For example,
it suffices if the kth block of records a~k-I)B;+~ .. , a~B from the ith nil' j.; ~;tnred on track
(i -l)rr/PBl + rk/Pl of disk 'Dl+((k+i-2)modP)' (If T' <" ~PB, then Ihl I'!;l("ment ca.n Iw
modified so that more than one run is packed per track,) The algorithm (·'.lnsists of a series
of parallel block transfers. On reads (k -l)/I;f/PB +1,,"., kM/PB, lNP bring into interna.l
memory the kth block from each of the M/ B runs, The records are shuffled appropriately
in internal memory and then written to the disks. The total number of I/Os for the entire
shuffle-merge is O(rM / PB), which is best possible, since each record is read once from disk
and written once to disk, making full use of parallelism and blocking.

9
.riIk-

Permutation Networks and FFT

Every permutation of N elements can be realized by three passes through an FFT network,
by an appropriate setting of the switches in the FFT network that depends on the permu­
tation [WuF]. So we can get optimal I/O strategies for an FFT-based permutation network
by getting optimal I/O strategies for FFT digraphs.

The FFT digraph is defined in Section 2. For simplicity, we assume that log M divides
log N evenly. We divide the N records into N / AI groups of M contiguous records. Each
group corresponds to a set of rows of the FFT digraph whose nodes have links to only each
other in the next log M columns of the FFT digraph. For each of N / M l/Os, we input
the M records in a group, pebble forward in the FFT digraph log M columns, and then
write the group back to the disks, in a staggered way. Afterwards, a series of shuffle-merges
are done to realign the records into new groups of size M so that pebbling of each group
can proceed for the next log!'v[columns. This continues until the entire FFT digraph is
pebbled. The above algorithm stops and performs a series of shuffle-merges log N flog M
times. Each series consists of max{1,logM/Bmin{M,N/M}} shuffle-merges, each requiring
O(N/ P B) l/Os. Thus the total number of l/Os used is

N log N (. { N }))e (PBlogM 1 +logM/Bmm M, M

l/Os, which can be shown by some algebraic manipulation to equal the bound given in
Theorem 1.

Matrix Transposition

Let us denote the B records that end up in the same block in the transposed matrix as a
"target group." Initially, in the original untransposed matrix, several members of a given
target group may be in the same block. We call these members a "target subgroup." Each
target subgroup initially has size

1 if B < min{p, q};

x=
B

min{p, q}
if min{p, q} :S B :S max{p, q}; (1)

N

B 2

if max{p, q} < B.

The transposition algorithm consists of a series of shuffle-merges. ReC0rds in the same
target subgroup remain together throughout the course of the algori t h I n Tn each pass we
merge together sets of M/B target subgroups, thus increasing the siz'·"/ ! II' '''sIIlting target
subgroups by a factor of M / B. The number of passes is

(2)

each requiring O(N/ P B) l/Os. The upper bound in Theorem 3 follows by substituting the
three cases of (1) into (2).

10	 6 DmKSORTIN~ANDPERMUTING

6 Disk Sorting and Permuting

In this section we present and analyze the optimal algorithm for sorting and permuting on
the two-level memory model. For simplicity of exposition, we assume that N~ l'vI, P, and B
are powers of 2.

Permuting records is a special case of sorting. The bounds for sorting and permuting
given in Theorems 1 and 2 are the same, except when the internal memory size M and block
size B are extremely small with respect to the file size N. In the latter case, permuting can
be done trivially, record by record, in O(N / P) I/Os. So we shall restrict our attention to
the sorting problem.

The FFT and matrix transposition algorithms described in the previous section were easy
to implement using an optimal number of I/Os, because the merging pattern in each pass
was predetermined; it consisted of a series of shuffle-merges. This made it easy to distribute
the records onto the disks so that the merges in the next pass accessed the records in a
balanced fashion among all the disks. However, this does not seem applicable to sorting.
When merge sort is used for external sorting, the merges in each pass are not in general
perfect shuffles. And when the merges are not perfect shuffles, it is very difficult to know
how to distribute the records onto the disks so as to guarantee balanced access to the disks in
the next merge pass. An interesting open problem is whether merge sort can be implemented
using the optimal number of I/Os. (See the Addendum.)

A well-known alternative approach is disk striping, in which the read/write heads of the
P disks are synchronized, so that during each I/O all the disk drives access the same track
number on their respective disks. This effectively reduces our model to having only one disk,
but with larger block size B' = P B. However, if we plug these values into Theorem 1, we
find that the number of l/Os used is not optimal when P B is large. The number of l/Os
can be nonoptimal by a relative factor of 10g(M/B), which can be significant in large-scale
applications. For small values of P B, striping will work fine.

In this paper we are interested in solving the general problem of sorting for high perfor­
mance systems in which P B is large. In order to get an optimal sorting algorithm we use
the following practical randomized approach, which is a recursive distribution sort:

1.	 If N ::; M, we sort the file internally. Otherwise we do the following steps:

2.	 [Find partitioning elements.] We deterministically find S - 1 partitioning elements bl ,

b2 , ... , bS - 1 that break the file into S roughly equal-sized buckets. The parameter S
will be defined shortly; it is always small enough so that the partitioning elements can
be stored easily in internal memory. For convenience, we define the dummy partitioning
elements bo = -00 and bs = +00. The jth bucket consists of all t hf" [Pcords R in the
file whose key values are in the range

bj - 1 ::; key(R) < bj .

3.	 [Partition into buckets.] We partition the file into buckets based 'JD the partitioning
elements and distribute the records in each bucket evenly among the P disks.

4.	 [Recurse.] We sort each bucket by applying the sorting algorithm recursively. (With
high probability, the records in each bucket are distributed evenly among the P disks,

11

and thus they can be read into internal memory with 0(N/5PB) l/Os.) The output
of the sorting algorithm is the concatenation of the sorted buckets.

The partitioning in Step 3 is done in one of two ways, which we call Phase 1 and Phase 2.
Phase 1 is used for the partitioning when N 2: y'MBP/ In(M/ B). It uses a hashing approach
to distribute the blocks of each bucket among the disks. It works effectively when the "hash
function" distributes the records evenly, and by analogy to the maximum bucket occupancy
in hashing [ViF], this happens intuitively when the expected number of blocks per disk for
each bucket is at least a logarithmic amount. However, if N is not much larger than M,
the distribution using the hashing approach can be quite uneven, resulting in nonoptimal
performance. In the latter case, when N < y'MBP/ln(M/B), Phase 2 is used for one
partitioning phase, after which each bucket will have at most M records and can be sorted
internally. Phase 2 uses a partitioning technique motivated by routing on the FFT and works
with overwhelming probability.

Definition 2 We denote the 5 buckets by 51, 52, ... , 5 s. The number of records in the
file that belong to bucket 5j is denoted Nj . In our memory model, we can look at only M
records at a time, so partitioning will be done one memoryload at a time. We denote the ith
memoryload by }vk A write cycle is defined as the collection of P blocks that we write to
the disks concurrently in a single I/O. We denote write cycles by)I\t\,)I\t'2, Read cycles
are defined analogously.

For the time being, let us assume that we can deterministically compute the approximate
partitioning elements bI , b2 , .•. , bs- 1 , using O(N/ P B) l/Os. (The algorithm and the analysis
for computing the partitioning elements are given in Section 6.3.) For Phase 1 we set
5 = J M / B / In2(M/ B); we show later in Lemma 3 that

N 3N
-<N·< ­ (3)25 - J - 25'

For Phase 2 we set 5 = 8N/7M; we show later in Lemma 4 that

3M
-<N·<M. (4)4 - J-

The upper bound for sorting in Theorem 1 follows from the following bound, which is
the main result of this paper:

Theorem 7 The number of I/Os used by the above distribution sad n.lqnrithm to sort N
records is

o (N log(Ni B))
P B log(AII B)

with overwhelming probability. In particular} the probability that the nnm!J('i' flI [/(]s used Is

more than 1 + l times the average is exponentially small in f(log f) IQg(M / B).

Proof: We define T(N) to be the number of 110s used to sort N records and T1(N) to be
the number of l/Os used for all the calls to Phase 1. We shall see from Theorem 8 that

12 6 DISK SORTING AND PERM-UTING

with high probability Phase 1 uses O(NIPB) 1/0s to partition N records and to store each
bucket evenly across the disks. The above construction gives us

(5)

In Phase 1 we set S = ..}MIB/ln2 (AfIB); hence, Nj = e(NIS) = e(Nln2 (MIB)IJMIB).
Substituting this into (5) and using the fact that Phase 1 certainly ends if N :'S M, we get

T (N) = 0 (~log(NIB))
1 PBlog(MIB) .

In Theorem 9, we show that with high probability Phase 2 uses O(NIPB) 1/0s in order
to perform the last level of partitioning. The remaining buckets each contain at most !vI
records and can be sorted internally. This gives us

N 10g(NIB))
T(N) = 0 (PB log (MIB) .

The probability bounds follow from Theorems 8 and 9. o

6.1 Phase 1

We use Phase 1 to partition the records of a file of N records when N 2: JMBPI In(MIB).
The number of partitions is set to S = JMIB/ln 2(MI B). In order to read a file into
internal memory using full parallelism, the records of the file must be evenly distributed
over the disks, as a result of the previous pass of Phase 1. This is crux of the problem. We
shall show in Theorem 8 that Phase 1 does the partitioning using O(NIPB) 1/0s.

We read the records of the file into internal memory, one memoryload at a time. We
assign the records to buckets based on the partitioning elements and organize the records
so that records in the each bucket are contiguous in internal memory. We then write the
records in each bucket of the memoryload to the disks, using full parallelism. We use a
randomized approach to distribute the records so that the records of a bucket (among all
the memoryloads) will be spread out evenly among the disks.

For each bucket, we need to remember the last track on each disk where a block belonging
to that bucket was written; we store these pointers in internal memory. In <Jrder to reduce
the number of pointers so that they can be kept in internal memory. ',"" ",I'dpr" the disks
into C logical clusters, as pictured in Figure 2. We set C = min{P." i

Definition 3 A cluster is a logical grouping of consecutive disks. The C' ,Iust.ers are denr:.tecl
C1 , C2 , ... , Cc . The PIC disks in the kth cluster Ck are denoted 'Dk,l, 'Du , ' .. , 'Dk,P/c, TIl"
ith track of a cluster refers collectively to the ith tracks of all the disks that comprise the
cluster. Records are written to the disks in cluster-size units of PIC blocks, which we call a
group.

--~- 136.1 Phase 1

VII,

c, {
VI,P/C

V 2,I
C2 {

V 2,P/C

Figure 2: Decomposition of the P disks into C clusters.

Algorithm-Phase 1

Let lasLdiskj,k and lasLtrackj,k represent the last disk and the last track, respectively, writ­
ten to in cluster Ck by bucket 5 j . Let nexLtrackk represent the first track on Ck that
has not been assigned to a bucket. We initialize lasLdisk j,1c := lasLtrackj,k := 0 and
nexLtrackk := l.

The file is processed memoryload by memoryload. For each 1 :S i :S NIM, the ith
memoryload is brought into internal memory. The records are partitioned into buckets,
based on the partitioning elements. The records in each bucket are formed into blocks,
and the blocks within a bucket are formed into groups of size PIC, except possibly the
last group which might be only partially filled. We choose C groups to be written during
this write cycle, and we assign these groups to clusters by choosing a random permutation
of {I, 2, ... ,C}. This is repeated C groups at a time until the memoryload is written. (This
is the only place where randomness is used in Phase 1.)

What remains is to assign the blocks in a group to the disks in a cluster. In each group
we have a maximum of PIC blocks. We do not want to have empty tracks on the disks,
so we cycle through the disks in the cluster. Let us assume that a group belonging to
bucket 5 j is assigned to cluster Ck. We assign the first PIC - lasLdiskj,k blocks to disks
lasLdiskj,k + 1, ... , PIC on track lasLtrackk; we assign the remaining blocks, if any, to
disks 1,2, ... on track nexLtrackk. We then update the value of lasLdiskj,k' and when the
current track gets filled, we set lasLtrackj,k to nexLtrackk and increment nexLtrackk.

For each memoryload we retain partially-filled blocks in internal r:W-'111"r\- until they are
completely filled, but groups are written to the disks even if they "'I II "I" f,.;'-er than P / C
blocks. Each time a group from bucket 53 is written to cluster C\, 'v',,-P filJ l.1p the last track
written on that cluster for 5 j before we start a new track; that is, once;.] bucket writes to it

particular track of a given cluster, it will not write to another track of that cluster until the
current track is completely filled. This has the effect of making each track of each cluster
completely filled, except possibly for the last track of the cluster for each bucket.

In order for the recursion to work, we must link together the records of each bucket. This

14 6 DISK SORTINO-AND PERMUTING

will be done with pointers being made part of the blocks when they are written to disk.
Since records from a bucket are written as a group, we only have to save pointers for the
groups. Also, since an entire track in a cluster is written to by only one bucket, the linking
can be done by pointers in the block on the first disk of each track in the cluster. To do
this, we have one "previous group" pointer for each track of each cluster, which we call pg.

Each pg pointer links together the groups of a given bucket that are on a given cluster, in
reverse order. If a block in a group from 5 j is written to the first disk of a cluster Ck , the
pg pointer of that block is set to lasLtrack j,k . Once the assigning is done, we can write the
chosen C groups to their assigned disk locations. When we finish processing the file we save
on the disks the pointers lasLdisk j,k and lasLtrack j,k, so that we can locate the records for
each bucket during the next level of recursion.

lasLdisk j,k := 0 for all j, kj
nexLtrackk := 1 for all k;
lasLtrack j,k := 0 for all j, k;
for each memoryload of records J'\It; (1 ~ i ~ NIM) do

begin
read .!\Ii i into internal memory;
partition the records into buckets based on the partitioning elements;
for each bucket 5 j (1 ~ j ~ S) do

begin
form the records into blocks of size Bj
form the blocks to groups of blocks of size PIC
endj

for each write cycle W t do
begin
choose C groups of blocks to be written in Wtj

assign the groups to clusters via a random permutation of {1, 2, ... ,C};
{ assign the blocks in each group to the disks in a cluster}
for each cluster Ck (1 ~ k ~ C) do

begin
let 5 j be the bucket whose group is assigned to Ck ;

for each disk V k,d such that PIC - lasLdisk j,k ~ d ~ PIC do
schedule the next block to be assigned to lasLtrackj,k on Dk,d;

if still more blocks to be assigned then
begin
temp_pg := lasLtrackj,k;
lasLtrackj,k := nexLtrackk;
nexLtrackk := nexLtrackk + 1;
for each disk Dk,d such that 1 ~ d ~ PIC - lasLdz.:;:k ,k d"

begin
schedule the next block to be assigned to lasLtrackj,k ,)n 'Dk,di
if d = 1 then set the pg pointer of block to temp _pg

end
end;

6.1 Phase 1 15

update lasLdiskj,k

end;

wri te the blocks in W t to the desired disks

end

end;

write pointers lasLdiskj,k and lasLtrackj,k' for all j, k

Analysis of Phase 1

Theorem 8 With overwhelming probability} each pass of Phase 1 uses O(NIPB) l/Os to
partition a file of N records. In particular} the probability that the number of l/Os used is
more than 1+£ times the average is exponentially small in £(1og £) ·max{log(M I B), NIP B 5}.

Proof: The file is read into internal memory one memoryload at a time. The actual number
of records read in each time might be less than a memoryload since the pointers (lasLdisk,
lasLtrack, and nexLtrack) and partially-filled blocks are retained in memory during the
partitioning process. There are 0(25 + 1) pointers needed; assuming each pointer does not
exceed a record, the pointers take up 0(25 + 1) records. Since each of the 5 buckets might
have a partially-filled block of B-1 records, the partially-filled blocks can take up at most
5(B-1) records. And we need space for the 5 - 1 partitioning elements. Therefore, at
least M - 0(25 + 1) - 5B + 1 records can be read in. For convenience, we redefine M to
be M - 0(25 + 1) - 5 B + 1, so that a full memoryload can be read into or written from
internal memory. This changes the value of M by at most a small constant factor.

Let Z be the number of I/0s required during the next pass of Phase 1 or Phase 2 to read
in all the subfiles corresponding to the buckets formed from the current file by Phase 1. We
want to show that

We do that by showing that

Pr { Z ~ (1 +£) ~ }

is exponentially small in £(log £) . max{log(MIB), NI P B5}.
The number of inputs needed in th~ next pass of Phase 1 or Phase 2 in order to read

into internal memory the subfile corresponding to some bucket formed by the current pass
.£ Phase 1 is the maximum number of tracks devoted to that bucket among all the clusters.

Let Xj,k represent the number of tracks of cluster Ck that have been assigned to bucket 5 j .
We have

This gives us

(6)

The max term in (6) is the difficult expression to analyze. We shall use the fact that
N ~ JMBPjln(MIB) in Phase 1 to show that the Xj,k are very evenly distributed with

16 6 DISK SORTING AND PERMUTING

respect to k. We have

(l+f)N}
Pr L max {Xj,d 2:: P B < pr{:3j , max {Xjk } > (1 +f)Nj

}
{ l~r.:<C ' - P B l~j~S l~1c~C

< se Pr {x > (1 + f)Nl
} . (7)1,1 - PB

To bound (7), we use Chernoff's bound [Kle]:

Lemma 1 If X is a nonnegative random variable and r 2:: 0 we have

E(erX)
Pr{X ~ u} :S ru'

e

Before we use Chernoff's bound, we must define more terminology. We let gt denote the
number of clusters written to from bucket 51 during write W t , for 1 :S t :S R, where R is
the total number of write cycles used in Phase 1. We have

"'" Nl NIG (8)L.J gt:S P BIG + e = P B + e.
l<t<R

~'he extra e term appears because the last track on each cluster might be only partially
filled. We define Gt to be the number of groups belonging to bucket 51 in write W t that
are assigned to cluster Cl . Because only one group can be written to anyone cluster in
a write cycle, Gt is restricted to the values 0 and 1. We have Pr{Gt = 1} = gtle and
Pr{Gt = O} = 1 - gtiG. Let YGt(z) be the probability generating function for Gt :

(9)

Let gXl,l(Z) be the probability generating function for Xl,l' We can bound Xl,l by the sum
of independent random variables: Xl,l :S Gl + G2 + ... + GR. For purposes of bounding (7),
let us consider that Xl,l = Gl + G2 + ... + GR. Using (9), we have

YX1,1 (z) = gG1 +G2 +.,,+GR(Z) = gG1(z) X gG2 (z) x··· X gGR(Z) = II (1 - ~ + ~z) . (10)
l<t<R

By Lemma 1, we have

" (1 + f)Nl } E(exp(rXl,l))
(11)Pr { X l,l2:: PB :S ("rOH1N l \ '

e:-:p . PB)

for each r ~ O. Using the above definitions and (10), we have

rE(exp(rXl,l)) = YX1,1(e) = II (1 + ~(er - 1)) " (1L)
l<t<R

By convexity arguments, we have the following lemma:

~. __ .- 176.1 Phase 1

Lemma 2 If L:1<i<R ai = Q and ai ~ 0, for 1 :S i :S R, then ITl<i<R ai is maximized when
a1 = a2 = ... = a~ ~ Q/ R. - ­

By (8) and Lemma 2, we can maximize (12) by setting gt = J{~~ + ~ for each t. Thus

Substituting this into (11), we get

Pr {x > (1 + f)N1} < (1 + (Nl+~~~e~-ll)R
1,1 - P B - (T(1+l)N1)exp PB

Hence, by (6) and (7)

(13)

By Lemma 3 in Section 6.3 and the fact that N ~ VNIBP/ln(M/B) in Phase 1, we
nave

PB) (2PBS)N1 +PB=N1 (1+ N :SN1 1+ N = N1(1 +(3),
1

where f3 = 2PBS/N :S 2/ln(M/B). Using (13), we have

(1+ f)N} (1 + N1 (1+t3lV- 1l)R
Pr z> < se RPB (14){ - P B - (T(1+l lN 1)exp PB

Using the bound (1 + a)b :S eab , for a > -1, we can approximate the numerator in (14) and
get

T

P {z (1 +f)N} < se exp (N1(1 + (3)(e ~~ - N1r(1 + f))
r > PB

Tse exp (((1 + (3)(e - 1) - r(1 + f)) ;~) . (15)

Picking l' = In ((1 + f)/(1 + (3)), we get

For small f, plugging into (16) the inequality In(1 + x) 2: x - x 2/2, for IJ '::..: :r ::; 1, we get

Pr {z > (1 + f)N} < se ex ((_ (f - (3)2 + (f - (3)3) N1).

PB - p 2(1 +(3) 2(1 +(3)2 PB

18 6 DISK SORTING- AND PERMUTING

Logical Track
1 2 I

Figure 3: The shaded tracks below represent a logical track.

For example, when l :::; 1/2, we get the exponentially small bound

P {z (1 +l)N} < SCex (_ (l-f3)2 ~)
r > PB - P 4(1 + (3) P B .

For larger l, the probability bound is proportional to exp(-l(log i)Nt/ P B). Note that by
Lemma 3 we always have Nt/PB ~ ~NIPBS ~ pn(MIB); this causes the SC term
to be quickly dwarfed. And in the early passes of Phase 1, Nt! P B can be substantially
larger. 0

6.2 Phase 2

In Phase 2 we want to sort N < J M B P jln(MI B) records in one pass of distribution sort
using O(NI P B) I/0s, which is optimal. We use S = 8N17M partitions. This is the case
that cannot be handled by Phase 1, since when N is relatively small the records in each
bucket would not be distributed evenly among the clusters. We want to guarantee that each
bucket will consist of at most AI records so that no further partitioning is needed, and we
want to distribute the blocks of each of the S buckets evenly over the disks.

Before we give the algorithm, we first define the notions of "logical track" and "diagonal":

Definition 4 A logical track is defined as I = M I P B consecutive tracks that are accessed
as a group in I consecutive I/0s. When accessing the ith logical trClck. ',':e ;jduaUy access
tracks I(i - 1) + 1, ... , Ii. This is pictured in Figure 3.

Definition 5 The ith diagonal, for 1 ::; i ::; NIlvf, is defined as til", memoryload of
M I B blocks in which the first set of M 2 IBN blocks consists of the ,. th logical track of
VI, ... , V MP/ N , the second set of M 21BN blocks consists of the (i + l)st logical track of
V MP/ N +ll ... , V 2MP/ N , and so on, wrapping back to i = 1 when i exceeds NIlvI.

Diagonal 1 is illustrated in Figure 4. It follows from the condition N < .JMBPjln(MIB)

19 6.2 Phase 2

DM' /N records

Figure 4: The shaded areas collectively represent diagonal 1.

of Phase 2 that 1 :S At! P / N :S P, and hence each diagonal is well-defined. Every block in the
file is a part of a unique diagonal, and every diagonal contains the same number of blocks
from each logical track.

Our algorithm consists of two passes:

1.	 Scramble the records, memoryload by memoryload, and write them back to the disks.
(This is where we use randomness in Phase 2.) This step can be done concurrently
with the choosing of the partitioning elements.

2.	 Read in the file, one diagonal (memoryload) at a time. For each memoryload, partition
the records into buckets, based on the partitioning elements. (The number of records
in each bucket of a memoryload will be very evenly distributed with high probability.)
Write one block to disk from each bucket; repeat this process until all the records of
the memoryload are written.

Each bucket will contain at most 111 records; the sorting can then conclu,lf'> \",'ith a final series
of internal sorts.

It is convenient to think of the process of distributing the buckets '11..1'- -11 1 I liP disks a.s the-'

problem of routing on the FFT digraph. The N / B nodes in each levpl ,,f U-w FFT digraph
can be divided up into groups of size /1.1/ B each. Each group of AI/ B node's is associated with
the M/B blocks of a memoryload. The routing internal to one memoryload is represented
by moving forward log M stages in the network. Theorem 9 shows that the fact that each
memoryload was randomly scrambled dramatically reduces the probability of "hot spots"
during the routing.

20 6 DISK SORTING AND PERMUTING

Algorithm-Pass 1 of Phase 2

For simplicity of exposition, we assume that the file resides in packed format across the disks,
track by track. In reality, the file formed by Phase 1 is not packed, but it can be read into
internal memory using full parallelism, so our assumption is valid.

We read in all the records, processing them one logical track (memoryload) at a time.
For each memoryload, we randomly permute the records in internal memory. Next we form
blocks, based on the permuted ordering, and we write the blocks back to a logical track.

for each memoryload of records A1i (1 S; i S; N jM) do

begin

read Mi from the ith logical track into internal memory;

randomly permute the M records;

write A1i to the ith logical track

end

Algorithm-Pass 2 of Phase 2

We read in all of the records, one diagonal (memoryload) at a time. The records for each
memoryload are partitioned into buckets based on the partitioning elements and then written
to the disks as follows: The records within each bucket are formed into blocks. We then
write the blocks to the disks, including partially-filled blocks, in the following order:

block 1 of 51,

block 1 of 52,

block 1 of 58,

block 2 of 51,

block 2 of 52,

block 2 of 58,

and so on...

If one of the buckets runs out of blocks before the others, dummy blocks for that bucket are
written. The disks are written to, track by track, in the cyclical order 1,2, ... , P. Let d be
the least common multiple of P and 5, divided by P. After d write cycles, the order that
the disks are written to is cyclically shifted by one.

d := lcm(P, 5)j P;

k:= 1;

num_cycles := 0;

for each diagonal (1 S; i S; NjM) do

begin

read the ith diagonal into internal memory;

partition the records into buckets based on the partitioning elements;

form the records into blocks of size B;

---- 216.2 Phase 2

while a nonempty bucket remains do
begin
for j := 1 to S do

begin
schedule next block from 5 j to be written on next available track of V k ,

assigning a dummy block if 5 j is empty;
k := (k mod P) + 1
end;

num_cycles := num_cycles + 1;

if num_cycles = d then

begin num_cycles := 0; k := (k mod P) + 1 end

end

write the memoryload to the desired disks
end

Analysis of Phase 2

Theorem 9 With overwhelming probability, Phase 2 of the distribution sort algorithm uses
O(N/ P B) J/Os to complete the sort of N records. The probability that the number of J/Os
used is more than ~ + f times the average is exponentially small in f(log f) log2(M / B).

Proof: The actual number of records read in each memoryload might be less than M records,
since in Pass 2 the S - 1 partitioning elements are retained in memory. The maximum size
of each bucket formed must be less than M in order for the sorting to be completed by a
series of internal sorts in the next pass, as described in Section 6.2, since the final sorting
pass requires that a track/disk pointer and partially-filled block be retained in memory. At
most M - S - 1 records can be read per memoryload in during Pass 2 and it is possible
that only M - 1 - (B - 1) = M - B records can be read per memoryload during the next
pass, assuming that the disk/track pointer does not exceed one record. For convenience, we
redefine M to be M - B - S so that a full memoryload can be read into or written from
internal memory in Pass 2. This changes the value of M by at most a small constant factor.

The reading of the records in Pass 2, the reading and writing of the records in Pass 1,
and the writing of the records in the final pass described in Section 6.2 use O(N/ P B) l/Os.
We can restrict our attention to the remaining set of l/Os we have to consider, namely, the
write operations in Pass 2 and the read operations in the final pass. These two quantities
are equal. Let Z be the number of l/Os needed to write all the records, one bucket at a
time, in Pass 2. We want to show that

8N
(17)Z:::::: 7PB

Let a be the number of times a set of S blocks is written in Pass 2. c1llcl]pt, }~.j represent
the number of records found in memoryload .;Vi i belonging to bucket 51' We have

a= L max ~'1} . (18){ry
l'S.i'S.NjM l'S.j'S.S B

22 6 DISK SORTING-AND PERMUTING

Since the last write for each bucket may be partial we get the bound

(19)

To show that (17) is true, we shall show that

Pr { Z2 (~ ; iN} (20)

is exponentially small in l(log l) log2(l\tf/B).
Note that Z is expressed in (19) in terms of 0:, which by (18) is the sum over i of

max1~j~SU~,j/ Bn· The hard part of the analysis is showing that max19~sUYi,j/Bn is
with very high probability asymptotically equal to the average value of each i1'i,j/Bl. We
have

pr{ I: max {f~,jl} 2 (~+£)N - (P -1)}

l<i<N/M l~J~S B BS

<	 N pr{ max {fYi,jl} > (~+£)1I1 _ (P -1)M}
M l~j~S B - BS N

<	 SN pr{fY1 ,11 > (~+£)M _ (P-l)NI}
M B - BS N

SNp {v (~+£)M (P-l)MB ()}< - r L'll> -	 - B-1M ,- S N	 .

Let us define £' so that

(~ + i')111 (~ + i)1I1 (P - 1)111E-'--'----> -	 -IE-II
5 - 5 N

It is easy to see that l' 2 i-8/7(P B /111 +N B / /I,{2). Since N <: .JIllB F' II) 1M/ B), it follows
that i' is at most a small constant amount less than l. We have l' 2 jJ - 8 . I(I + 1/ In(111 / B)).

Substituting this value of i' we get

pr{z>(~+l)N} < SNpr{y >(~+l')M}.	 (21)- PB - M 1,1 - S

6.2 Phase 2 23

Let Y'i",k represent the number of records found in memoryload A1 i belonging to bucket 5j

read from kth logical track. In particular we have 'E1'S.k'SN/M Yi,1,k = Yi,1' Let J.Lk represent
the expected value of Yi,1,k' Note that

8M M2L J.Lk = E(Yl,1) ~ -- = -.
1'S.k'S.N/M 7 S N

Let Tj,k be the number of records belonging to bucket 5, on the kth logical track. We have
J.Lk = T1,kM/N. We want to bound Pr{Yi,l ~ (8/7 + l')M/S}. We do that by considering
two cases: 1) small J.Lk and 2) large J.Lk. The two cases are determined by comparing J.Lk
with the average size that Yi,1,k would be if all the T"k terms were equal to M 2

/ N. Let
7D= 1/,' - !. We have

(~+l')M}
Pr { Yi.1 ~ S <

+ L Pr {Yi,1,k ~ J.Lk + DJ.Lk} . (22)
1<k<N/M
J.L;:~M3 /N 2

The above bound (22) holds since

The probability term in (21) is expressed in (22) as a sum of tails of distributions of Y1,1,k,
where the starting point of each tail is sufficiently far from the mean J.Lk so that the result
is exponentially small, as we shall see. Intuitively, in order to get a small bound on the
probability term, when J.Lk is small the tail should start at some absolute distance from J.Lk,
and when J.Lk is larger the tail should start at some rhultiple of J.Lk.

We want to get tight upper bounds for the tails of the probability distribution of Y1,1,k
listed in the summations in (22). Both summands have the form Pr{X ~ J.L + v}, where
X = Yl,l,k, J.L = J.Lk is the mean of X, and v is a positive value. Let L = M 2 /N be the number
of records read from ith logical track by any memoryload. The random variable X = Yi,l,k
has the hypergeometric probability distribution

(T1 Ie) (M-T1 k)
Pr{X = I} = ,. (,;;r' (23)

with mean

(24)

We define R(t) to be the ratio
Pr{X = t + 1}

Pr{X = t}

24 6 DISK SORTING AND PERMUTING

We have

Pr{ X 2: J-L + v} = Pr{ X = J-L +v} + Pr{ X = J-L + v + 1} +...
= Pr{X = J-L} Pr{X = J-L + v}

Pr{X = J-L}
Pr{X=J-L+v+1}

+Pr{X=J-L+1} P{X } +.... (25)
r =J-L+1

Using (23), it is easy to see that R(J-L + v) is monotone decreasing in v, and hence we have
Pr{X = J-L + v}/Pr{X = J-L} > Pr{X = J-L + v + l}/Pr{X = J-L + 1}. Substituting this
into (25), we get

Pr{X=J-L+v}
Pr{X 2: J-L +v} < Pr{X = J-L} (Pr{X = J-L} + Pr{X = J-L + 1} +...)

< Pr{X = J-L + v}
(26)Pr{X = J-L} .

Note that we can write Pr{ X = J-L +v} in the following form:

= P {X= }Pr{X=J-L+1}Pr{X=J-L+2} Pr{X = J-L+v}Pr{X = J-L +v}
r J-L Pr{X = J-L} Pr{X = J-L + 1} ... Pr{X = J-L + v - 1}

= Pr{X = J-L} II R(J-L + t). (27)
O<t<u-l

Using (27) and (26), we get

Pr{X2:J-L+v}:S II R(J-L+t). (28)
O<t<u-l

Using (23), (24), the definition of R(t), and the bounds 0 :S t :S T :S M, we find after some
algebraic manipulation that '

Thus, by (28)

Pr{ X 2: J-L +v}:S II (1 t) .
09~u-l 1 + J.L+1

Taking the logarithm of both sides and bounding the sum by an integral, we get

In Pr{X 2: J-L + v} < L In (1 t)

09~u-l 1 + J.L+l

< - - (
U 1

in.1 +--Y) dyfao J-L+1

= - (J-L +v) in (J-L +v) + v - 1
J-L+1

< - (J-L +v) in (J-L : v) + v - 1 - (J-L + v) In (1 - J-L: 1)' (30)

6.2 Phase 2 ---- 25

Taking the exponential of both sides, we get

Pr {X 2: !' +v} :s (!':V) -(.+"j e"-I-(.+") 1n(1-1!(.+t». (31)

Let us start with the summand of the second sum in (22). By applying (31) and the
bound In(l-l/(IL + 1)) 2: -l/IL, we get

(32)

Since ILk 2: M 3
/ N 2

, we get by some analysis that (32) is maximized when ILk = M 3 / N 2 , and
we get

3 OM3 /N
2Pr{Y;l,l,k > _ r-kII. + 5II.} < _ (1 + 5)-(l+o)M /N2 e +O. (33)r-k

Note that in Phase 2 we always have M 3
/ N2 > ln2(M/ B). The bound in (33) is exponentially

small in 52Iog2(M/B) when 5 is small and exponentially small in 5(log 5) log2(M/B) when
5 is large. For example, if 5 < 1/2, we can use the bound In(1 + x) 2: x - x 2 /2 to get

ln2Pr{1!;.,l,k 2: ILk + 5ILd < exp ((-(1 + 5) In2 ~) (5 - 52/2)) eo (M/B)+o

_ exp (5 _ 5
2
(12- 5) In2 ~)

< exp (5 _ 52 in2 M)
4 B'

Similarly, by (31) and the bound In(1 - 1/(IL + 1)) 2: -1/ IL, the summand of the first
sum in (22) for ILk 2: 1/2 is

M3} (M 3/N2)-(ILIe+OM
3
/N

2
)

Pr { 1!;.,l,k 2: ILk + 5 N2 < 1 + 5 ILk e(oM3/N 2)(l+1/1-£1c), (34)

which can be bounded by an expression similar to the right-hand side of (33). For smaller ILk,
we have from (31)

Pr { 1!;.,l,k 2: ILk + 5~:}
M3/N2)-(I-£Ie+OM3/N2)

::; 1 + 5 ILk eoM3/N2_1-(I-£Ie+OM3/N2) In(IJ.f2) , (35)(

which is exponentially decreasing in a similar way.
In conclusion, by (33), (34), (35), and (22), we can bound the Jl"I." 1,j 1j I'," (21) t.o be

exponentially small in f(log f) log2(1Vf/ B):

3 2

Pr { Z2: (~ ; iN} ::; ~~: ((1 + 5f(l+o)M /N eOM3 IN') "

The 16N3 /7M 3 term is very quickly dwarfed by the exponentially small term, since N <
v'MBP/ln(M/B) in Phase 2. 0

26 6 DISK SORTING7tND PERMUTING

Completing the Sort

After Phase 2 is completed, we can read the blocks belonging to Sj using an optimal number
of I/Osj the disk and track location of every block (including the dummy blocks) belonging
to each partition can be easily computed because the piacement was deterministic. We
can guarantee that the records are packed on disk by retaining in internal memory the last
partially-filled block and the disk location of the last block written to disk.

To sort bucket Sj, we first compute the disk and track location of the blocks belonging to
the bucket. Using full parallelism, we read the blocks from the disks. Each bucket contains
at most M records, so it can be sorted internally. We sort the records of the bucket, form
blocks, and write the blocks to the next available track/disk, cycling through the disks. We
retain in internal memory the last block if partially full. The records in the partially-filled
block from Sj can be treated as members of Sj+1 when Sj+1 is processed.

k:= 1;
for each bucket Sj (1 ~ j ~ S) do

begin
determine which tracks/disks to read from;

read Sj into internal memorYj

sort records in internal memory by key values;

form blocks of size Bj

for each full block do

begin
schedule the block to be written to the next available track on 'Dk ;

k:=(kmodP)+l
end;

write Sj

end

6.3 Finding the Partitioning Elements

All that remains is to show how to compute with O(N/ P B) I/Os the S partitioning elements
bl , b2 , ... , bS - 1 that break up the file into S roughly equal-sized buckets. The jth bucket Sj
consists of those records R such that

where bo = -00 and bs = +00. We need to show that conditions (3) and (4) of Section 6 are
satisfied. Inequality (3) is shown in [AgV]. For completeness, we repfl:,r1l1Ce the algorithm
and its analysis.

Our procedure for computing the approximate partitioning elemenl: 11111::1 work for the
recursive step of the algorithm, so we assume that the N records arp sl,:,,-ed in O(N/ B)
blocks of contiguous records, each of size at most B. First we describe n. subroutine tha.t
uses O(n/PB) I/Os to find the record with the kth smallest key (or simply the kth smallest
record) in a set containing n records, in which the records are stored on disk in at most
O(n/B) blocks: We load the n records into memory, one memoryload at a time, and sort each
of the rn/Ml memoryloads internally. We pick the median record from each of these sorted

27

sets and find the median of the medians using the linear-time sequential algorithm developed
in [BFP]. The number ofI/Os required for these operations is O(n/ PB +(n/B)/P +n/M) =
O(n/ PB). We use the key value of this median record to partition the n records into two
sets. It is easy to verify that each set can be partitioned into blocks of size B (except possibly
for the last list) in which each group is stored contiguously on disk. It is also easy to see
that each of the two sets has size bounded by 3n/4. The algorithm is recursively applied to
the appropriate half to find the kth smallest record; the total number of l/Os is O(n/PB).

We now describe how to apply this subroutine to find the S approximate partitioning
elements in a set containing N records. Let p and q denote positive integer parameters to
be specificed later. As above, we start out by sorting N / M memoryloads of records, which
can be done with O(N/PB+(N/B)/P) = O(N/PB) l/Os. Let us denote the ith sorted set
by Mi. We construct a new set M' of size at most N/p consisting of the kpth records (in
sorted order) of .""1 i, for 1 :S k :S M / p and 1 :S i :S N / M. Each memoryload of M records
contributes M/p > B records to M', so these records can be output one block at a time.
The total number of contiguous blocks of records comprising ;\,1' is O(I.M'I /B), so we can
apply the subroutine above to find the record of rank jq in .1\.1' with only O(I.M'I /P B) =
O(N/pP B) l/Os; we call its key value bj . Thus, if p ;::: S, the S - 1 bi's can be found with
a total of O(SN/pPB) = O(N/PB) l/Os.

The above description can be expressed in the following pseudo-code:

for	 each memoryload of records .Mi (1 :S i :S N/M) do
begin
read .Mi into internal memory;
sort records in internal memory by key values;
construct .vt~ so that it consists of every pth record in memory;
write .M~

end;
A A'	 ._ M' + + A A' ..IVI.- 1'VI NIMl

for	 j := 1 to S - 1 do

bj := record of rank qj in M'

Lemma 3 If p = (S -1)/4 and q = 4N/(S - 1)2 in the above algorithm, then condition (3)
of Section 6 is truej that is,

N 3N
-<N·< ­2S - J - 2S'

Lemma 4 If p = M 2 /8N and q 7N / M in the above algorithm, then condition (4) of
Section 6 is truej that is,

3M - < N ' < AI,4	 - J ­

7 Disk Standard Matrix Multiplication

The following is a basic divide and conquer approach for matrix multiplication.

1. If k :S ..1M, we multiply the matrices internally. Otherwise we do the following steps:

8

28 8 ALGORITHMS FOR THE HIERARCHICAL MEMORY MODELS

2. We subdivide A and B into 8 k/2 x k/2 submatrices: A1-A4 and B1-B4 .

We reposition the records so that A1-A4 and B1-B4 are each stored in row-major order.

3. We recursively multiply the 8 pairs of submatrices.

4. We add the 4 pairs of submatrices which resulted from the above multiplications, giving
C1-C4 •

5. We reposition C1-C4 so that C is stored in row-major order.

We partition secondary memory into 4 parts (which span the P disks), one part for each
submatrix. We define T(k) to be the number of I/Os used to add two k x k matrices. Step
2 takes O(k2

/ P B) I/Os since, in the worst case, we can have at most 4 blocks that are
assigned to be written to the same disk. The number of I/Os needed to recursively multiply
the 8 submatrices in Step 3 is 8T(k/2). It is easy to see that Step 4 take O(k2 /PB) I/Os,
since all of the submatrices are packed in blocks. Step 5 takes O(k2

/ P B) I/Os; it is similar
to Step 2. When k > VM, we get the following recurrence

where T(VM) = M / P B. This gives us the desired bound from Theorem 4.

Algorithms for the Hierarchical Memory Models

In this section we prove Theorems 5 and 6 of Section 4. We give optimal algorithms and the
corresponding matching lower bounds for solving the problems of Section 2 in the PHMM
and PBT hierarchical memory models. The sorting and FFT algorithms are applications of
the algorithms of Section 6 for the two-level model, applied to the algorithms given in [AAC,
ACS] for the P = 1 case. The optimality of the resulting PHMM and PBT algorithms
reflects the fact that the two-level algorithms on which they are based are very efficient in
terms of internal computation.

We can think of each of the P memory hierarchies as being organized into discrete levels;
for each k 2: 1, level k contains 2k

-
1 locations. We restrict our attention to well-behaved

access costs f(x), in which there are constants c and Xo such that (I'?y) . cf(x), for all
x 2: XQ. For such f(x), access to any location on level k takes eur "I, I i IlH' The access'I

cost functions f(x) = log x and f(x) = xcx, for some a > Il, are well-I"·I"",,I
We shall refer to the P locations, one per hierarchy, at the same rela t I,-(J p')sition in each

of the P hierarchies as a track, by analogy with the two-level disk model. The base memorv
level is the track at level!. The P memory locations in the base memory level are associated
with P processors connected by a network that allows the P records stored there to be sorted
in O(1og P) time (perhaps via a randomized algorithm) and that allows two VP/2 x VP/2
matrices to be multiplied in O(VP) time using the standard algorithm.

8.1 Sorting in PHMM	 ---- 29

8.1 Sorting in PHMM

Logarithmic Access Cost

Let us first consider the access cost function f(x) = log x. By our definition of level, access
to any location on level k takes time e(k). The following algorithm sorts optimally in the
PHMM model for P ~ 2. It is a modified version of the one-hierarchy algorithm given
in [AAC]. The key component of our algorithm is our partitioning technique of Section 6,
which we use to spread the records in each bucket evenly among the P memory hierarchies
so that the next level of recursion can proceed optimally.

1.	 We assume without loss of generality that the N records are situated in level
pog(NIP)l + l' on the P hierarchies. If N ::; P, we sort the file in the base mem­
ory level. Otherwise we do the following steps:

2.	 We subdivide the file of N records into t = rmin{VN, NIP}1subsets, 91, 92, ... , 9t,
each of size lNitJ or of size lNitJ+ 1. We sort each 9i recursively, after bringing its
records to level pog(NI Pt)l +1 of the hierarchical memory.

3.	 [Find partitioning elements.] We set the number S of partitioning elements as follows:
If N ~ p2, we use S = rVNfln Nl ; if p 3/2 fln P ::; N < p2, we use S = rJPI ln2 Nl ;
otherwise we set S = r2NIPl· We form a set A of rNI log Nl elements by adding
to A the key value of every (llog NJ)th record from each 9i. We sort A using two-way
merge sort with "hierarchy striping," which is analogous to disk striping. We set the
jth partitioning element bj to be the (ljNI(SlogN)J)th smallest element of A. We
move the partitioning elements to level O(1og(SIP) + 1).

4.	 [Phase 1 or Phase 2?] If N ~ p 3 /
2fln P, we do Step 5 corresponding to Phase 1;

otherwise we do Steps 6 and 7, corresponding to Phase 2.

5.	 [Phase 1.] For each 1 ::; i ::; t in sequence, we process 9i in sorted order. We move
P records at a time to the base memory level, and we determine which bucket each

.record belongs to, by merging in	 the partitioning elements. The partitioning ele­
ments can be processed P elements at a time, so that the merging proceeds optimally;
whenever the next track of partitioning elements is needed, it is read into the base
memory level. We then randomly scramble the P records and write the records back
to level rlog(NIP)l + 1. If the record written in the kth hierarchy belongs to the jth
bucket Sj, we update the pointers lasLtrackj,k and nexLtrackk, which are stored in
hierarchy k, so that all the records of each bucket are linked together in the hierarchy,
which is necessary for the next recursive application of the algorithm. (These point­
ers are analogous to the pointers lasLtrack j,k and nexLtrack". i II I IlP hV0-1evel disk
algorithm.) We then proceed to Step 8.

6.	 [Phase 2-Pass 1.] We scramble the N records, P at a time, b,- reading the file to
the base memory level, track by track, randomly permuting the P reu)rds there, and
writing them back to level rlog(NIP)l +1.

7.	 [Phase 2-Pass 2.] We move P records at a time to the base memory level, taking
the records from the memory in a diagonal fashion, as in Figure 4 for parameter

30 8 . ALGORITHMS FOR THE HIERARCHICAL-MEMORY MODELS

value M = P. We partition the records into buckets by sorting the P records and the
partitioning elements. (The number of partitioning elements is 2Nj P ::; P, for P 2': 4.)
We write the P records back to level flog(N j P)l +1, cycling through the buckets; if a
bucket is empty, a dummy record is written. Let d be the least common multiple of P
and 5,j P. After every d cycles, we skip over the next hierarchy before beginning the
next cycle.

8.	 [Sort recursively.] For each 1 ::; j ::; 5 in sequence, we sort the jth bucket 5 j recursively,
after bringing the records of 5 j to level flog(N j 5 P)l + 1 of the hierarchical memory.
(With high probability, the records in each bucket are distributed evenly among the P
hierarchies, and thus each bucket can be accessed in O((Nj5P)log(NjP)) time.) The
sorted list of N records consists of the concatenated sorted buckets.

Theorem 10 The time used by the above algorithm to sort N 2': P records in the PHMM
model with f(x) = log x is

(N (log N))o P log N log log P

with overwhelming probability. In particular, the probability that the number of l/Os used is
more than 1 + l times the average is exponentially small in l(log i) log P.

Proof: Let T(N) be the time used by this algorithm to sort a file of N records. For N 2': p 2,
the time needed in Step 2 to subdivide the set of N records and sort the subsets gi is
VNT(VN) +O((Nj P) log(Nj P)). The time for the two-way merge sort used in Step 3 to
sort n elements is ((njP) log n(log(njP) + logP))) = ((njP)log2 n). Since n = NjlogN,
the resulting time to find the 5 partitioning elements is O((Nj P) log N). The time needed to
partition the file in Steps 5, 6, and 7 is O((NjP) log(Nj P)+(Nj P) log P) = O((Nj P) log N).
The time for sorting the buckets recursively in Step 8 is with high probability Ll<j<S T(Nj)+
O((NjP)log(NjP), where Nj is the size of thejth bucket, N j ::; 2Nj5 for-eachj, and

2Ll~j~S N j = N. Hence, for N 2': p , with high probability we have

T(N) = VNT(VN) + L T(Nj) + 0 (; logN).
l~j~VN/InN

If N < p 2 , there will be at most one more application of Phase 1 and of Phase 2, each phase
taking O((NjP) log N) time. The remaining subfiles will have size at most P and can be
sorted in the base memory level in time O((Nj P) log P) time. This yields as desired the
time bound

(N (log N))T(N) = e P log Nlog log P .

The probability bounds follow from those in Theorem 7 and its deriv(lti, '1.1.	 o

The algorithm's running time in Theorem 10 matches the followiIJL: I, ·i,·pr bouncL and
thus the algorithm is optimal:

Theorem 11 The time required to sort N 2': P records in the PHAIAl model wdh f(x) =

log x is

N (logN))n (P log N log log P .

31 ··8.1 Sorting in PHMM

Proof: Let A be a sorting algorithm that is optimal in the PHMM model. Let us define
the "sequential time" of A to be the sum of its time costs for each of the P hierarchies; the
sequential time of A is at most P times its running time. By [AgV], the I/O complexity of
sorting N records with one disk, no blocking, and an internal memory of size M is

NIogN)
TM(N) = n (logM - M . (36)

The" - M" term permits M records to reside initially in the internal memory. Following
the approach in [AAC], we can imagine superimposing onto the PHMM-type hierarchical
memory a sequence of two-level memories with internal memory size M, for P ::; M < N.
In each hierarchy, every transfer done by A that corresponds to an I/O with respect to an
internal memory of size M contributes 8f(M/ P) = f((M +1)/P) - f(M/ P) to its sequential
time. In other words, if we let Tf(N) denote the sequential time for A, we have

Tf(N) 2: L 8f(~) TM(N). (37)
P~M<N

For f(x) = log x, we have 8f(M/P) = log((M + l)/M) = e(l/M). Plugging this and (36)
into (37) we get

NlogN)) ((logN))Tf(N) = n (P~t=<N (MlogM -1 = n NlogNlog logP .

Dividing the sequential time Tf(N) by P gives us the desired lower bound. o

Other Access Costs

First we show the lower bound corresponding to case f(x) = xcx, for a > 0:

Theorem 12 The time required to sort N 2: P records in the PHMM model with f(x) = xc:.,
for a> OJ is

n ((;) a+l + ; log N) .
The (N/ P) log N term depends on using the comparison model of computation.

Proof: We apply the same approach as in Theorem 11, except that we use f(x) xa.
Substituting 8f(M/P) = e(Ma-l / pa) and (36) into (37), we get

T N = n ((Ma-INIOgN _ (M)a)) = n (Na+l\.
f() L pa log M P I >n I

P~M<N ...

Dividing the sequential time Tf(N) by P gives us the first term of the r1"~lrp(1](Ivver bound.
The second term follows from the N log N lower bound for sorting in t h'" c')mparison model
of computation. n

The sorting algorithm given earlier for the logarithmic access cost is uniformly optimal
(in the language of [AAC]) in that it is optimal for all well-behaved access costs f(x), as
defined at the beginning of Section 8:

32 8 ALGORITHMS FOR THE HIERARCHICAL MEMORY MODELS

Theorem 13 The algorithm given at the beginning of Section 8.1 is optimal for all well­
behaved access costs f(x). In particular} its running time meets the lower bound given in

x cxTheorem 12 for the case f(x) == } where a > O.

Proof: We use the idea behind the lower bound proofs in Theorems 11 and 12. Let TM,p(N)
be the average number of I/Os done by the sorting algorithm with respect to an internal
memory of size M, where each hierarchy can simultaneously read or write in a single I/O.
From the algorithm, for N 2:: M 2 , we get the recurrence

N
TM,p(N) == VNTM,p(VN) + L TM,p(Nj) + p'

15:.j5:..JN/ log N

with high probability, where Nj :S 2N/ S for each j, and 2:1<j<5 Nj == N. For smaller N we
have TM,p(N) == O(N/P). The solution of this recurrence is- ­

N logN)
TM,p(N) == 0 (P log M ' (38)

which by (36) is within an O(M/P) additive term of optimal. The time used by the algorithm
in base memory level computations is

NIogN) (N)o (P log P log P == 0 P log N . (39)

The extra time used by the algorithm over and above the lower bound resulting from (37)
is thus

o (;IOg N + L ~ 6f(~)) o (N IOgN + N f(N) - f(1) - ~ L f(M))
P5:.M<N P P P P P<M<N P

o (; log N + ; f (;)) . (40)

The first term in (40) corresponds to the lower bound that arises from the comparison model
of computation. The second term in (40) is the time to "touch" all the records in the file (that
is, bring all the records at least once to the base memory level) when the access cost f(x)
is well-behaved, and thus it is dominated by the lower bound resulting from (37). It follows
that the algorithm is optimal. 0

8.2 Standard Matrix Multiplication in PHMM

Upper Bounds

Before we present the optimal standard matrix multiplication algorithm. \'!E' must present a

lemma which is needed to prove that our algorithm is optimal.

Lemma 5 The time used to add two k x k matrices, where k ./ P, }"

2

(k k) if f (x) == log x,.o P log P

iff(x)==x CX
} a>O.

- --- _.~. 338.2 Standard Matrix Multiplication in PHMM

Proof Sketch: Two matrices can be added by touching the corresponding elements of the
matrices simultaneously, using the naive touching algorithm applied to the hierarchiesinde­
pendently. Once two elements are in base memory level together, they can be added. 0

The algorithm presented in Section 7 can be adapted to run on the PHMM model. The
repositioning of the matrices can be done in the same time as the touching problem. We
define T(k) to be the time used by the algorithm to multiply two k x k matrices together.
For f(x) = log x, we get from Lemma 5

T(k) = 8T (~) + 0 (~ log ;) .

Using the stopping condition T(..;p) = ..;p, we get the desired upper bound O(P/P) of
Theorem 5. The upper bounds for the o~her access cost functions follow by using the other
cases of Lemma 5.

Lower Bounds

The standard matrix multiplication algorithm given earlier for the logarithmic access cost
is uniformly optimal, that is, it is optimal for all well-behaved access cost functions. This
can be proved using the same approach as in Theorem 13. By [SaV], the I/O complexity of
multipling two k x k matrices with one disk, no blocking, and an internal memory of size M
IS

TM (k 2
) = n (~ - M). (41)

Let TM,p be the average number of I/Os done by the standard matrix multiplication algo­
rithm with respect to an internal memory size of M, where all P hierarchies can simultane­
ously read or write in a single I/O. From the algorithm, for k 2: M 2

, we get the recurrence

k) k2
TM,P(k) = 8TM,p (2 + p'

For smaller k = VM, we have TM,p(VM) = M / P. The solution of this recurrence is

TM.P(k) = 0 (p~) ,
which by (41) is within an O(M/ P) additive term of optimal. The time used by the algorithm
in base memory level computations is

Therefore, the extra time used by the algorithm over and abc've the, '1'1 """ I :llllOunt is

O(k3

+ L Mof (A1)) = O(k3 +k2

f (k
2

)). (42)
P P~.M<k2 P P P P P / '

The first term in the right-hand side of (42) is bounded by the number of operations per­
formed, and the second term is the time required to access all the elements; thus the running
time is within a constant factor of optimal.

34 8	 ALGORITHMS FOR THE HIERARCHICAL-MEMORY MODELS

8.3 Sorting in PBT

Before we present the optimal sorting algorithm, we must prove a lemma which is needed
to prove that our algorithm is optimal. This lemma is a modified version of a theorem in
[ACS].

Lemma 6 The time used to merge two sorted lists of n ~ P elements in the PET model is

0(; (1og·n+log P)) if f(x) = log Xi

0(; (loglogn +10gP)) if f (x) = xa
, 0 < 0 < 1 j

0(; logn)	 iff(x)=xa
, 0=1;

o ((;) a + ; log p) if f(x) = xa
, 0 > 1.

Proof Sketch: The lists are stored on the P hierarchies in such a manner that they are striped
across the tracks. We merge the two lists one track at a time, accessing all P hierarchies.
To do the merging, we use 3P stacks, three stacks per hierarchy. A stack can be maintained
in each individual hierarchy with an amortized cost per operation of

O(1og· n) if f(x) = logxj

O(1og log n) if f(x) = xa
, 0 < 0 < 1;

iff(x)=xa , 0=1;

if f (x) = xa
, 0 > 1,

where n is the number of operations [ACS]. The cost of merging two lists of P elements in
base memory is log P. [J

Access Cost f(x) = xa
, where 0 < 0 < 1

Let us first consider the access cost function f(x) = xa
, where 0 < 0 < 1. We can access

the levels within our hierarchies optimally if we read and write x a elements when we access
element x. The following algorithm sorts optimally in the PBT model. It is a modified version
of the one-hierarchy algorithm presented in [ACS]. The key component of the algorithm is
our use of the partitioning technique of Section 6 to spread the records in each bucket evenly
among the P hierarchies.

1.	 We assume without loss of generality that the N records (1.1"-' ~;illJa,ted in level
pog(NjP)l + 1 on the P hierarchies. If N ::; P, we sort the file ill the base mem­
ory level. Otherwise we do the following steps:

2.	 We subdivide the file of N records into t = rmin{N1-a, NjP}l subsets 91, 92, ... , 9t,
each of size lNjtJ or of size lNjtJ + 1. We sort each gj recursively, after bringing its
records to level pog(Nj Pt)l + 1 of the hierarchical memory.

8.3 Sorting in PBT	 35

3.	 [Find partitioning elements.] We set the number S of partitioning elements as follows:
If N 2:: p 2 , we use S = fNQ / In Nl j if p 3/

2 jIn P :S N < p 2 , we use S = fJ]5/ In2 Nl ;
otherwise we set S = f2N / Pl. We form a set A which consists of the key value of every
(llog NJ)th record from each ~h We form A by touching and accumulating the desired
key values recursively, with each hierarchy processing up to fN / Pl elements of the
N elements in the file. We sort A using two-way merge sort by recursively applying
the algorithm presented in Lemma 6. We set the jth partitioning element bj to be
the (ljN/(S log N)J)th smallest element of A. We move the partitioning elements to
level flog(S/ P)l + 1.

4.	 [Phase 1 or Phase 2?] If N 2:: p 3/
2

/ In P, we do Step 5 corresponding to Phase 1;
otherwise we do Steps 6 and 7, corresponding to Phase 2.

5.	 [Phase 1.] For each 1 :S i :S t in sequence, we process the ith subset C;h in sorted order.
We move P records at a time to the base memory level, and we determine which bucket
each record belongs to, by merging in the partitioning elements. The partitioning ele­
ments can be processed P elements at a time, so that the merging proceeds optimally;
whenever the next track of partitioning elements is needed, it is read into the base
memory level. We then randomly scramble the P records and write the records back
to level flog(N / P)l + 1. If the group of records written in the kth hierarchy belongs
to the jth bucket 5 j , we update the pointers lasLtrackj,k and nexLtrackk' which are
stored in hierarchy k, so that all the records of each bucket are linked together in the
hierarchy, which is necessary for the next recursive application of the algorithm. (These
pointers are analogous to the pointers lasLtrackj,k and nexLtrackk in the two-level disk
algorithm.) We then proceed to Step 8.

6.	 [Phase 2-Pass 1.] We scramble the N records, P at a time, by reading the file to
the base memory level, track by track, randomly permuting the P records there, and
writing them back to level pog(N/ P)l + 1.

7.	 [Phase 2-Pass 2.] We move P records at a time to the base memory level, taking
the records from the memory in a diagonal fashion, as in Figure 4 for parameter
value M = P. We partition the records into buckets by sorting the P records and the
partitioning elements. (The number of partitioning elements is 2N/ P :S P, for P 2:: 4.)
We write the P records back to level pog(N/P)l + 1, cycling through the buckets; if a
bucket is empty, a dummy record is written. Let d be the least common multiple of P
and S,/ P. After every d cycles, we skip over the next hierarchy before beginning the
next cycle.

8.	 [Reposition buckets.] For each 1 :S j :S S in sequence, we '-"j".·,i l ,,," IlIF' ",lemenLs
within the jth bucket Sj so that they are stored in contigue>us jrKations in111'-'11)"''' ­

each hierarchy.

9.	 [Sort recursively.] For each 1 :S j :S S in sequence, we sort the jth bucket 5J recursively,
after bringing the records of 5 j to faster memory. (With high probability, the records
in each bucket are distributed evenly among the P hierarchies.) The sorted list of N
records consists of the concatenated sorted buckets.

36 8 ALGORITHMS FOR THE HIERARCHICAL MEMORY MODELS

Theorem 14 The time used by the above algorithm to sort N > P records in the PBT
model with f(x) = xa} for 0 < a < I} is

with overwhelming probability. In particular} the probability that the number of IjOs used is
more than 1 + f times the average is exponentially small in f(log f) log P.

Proof: Let T(N) be the time used by this algorithm to sort a file of N records. For N 2: p 2 ,

the time needed in Step 2 to subdivide the set of N records, move the subsets to faster
memory, and sort the subsets Qi is N 1-aT(Na) + O(Nj pa). The time for the touching
and accumulating of the NjlogN elements of set A in Step 3 is ((NjP)loglog(NjP)).
Using Lemma 6, we see the time for the two-way merge sort used in Step 3 to sort n
elements is ((njP) log n(1og log n + logP)). Since n = NjlogN, the resulting time to find
the S partitioning elements is O((Nj P)(1og log N + log P)). The time needed to partition
the file in Steps 5, 6, and 7 is 0(N1-a(NajP)(1og log Na + logP)) = O((NjP) log logN +
(Nj P) log P), by Lemma 6. The data movement in Step 8 can be done by the same method
used by the one-hierarchy algorithm [ACS], that is, by computing the generalized matrix
transposition for each hierarchy independently. The time needed to reposition the buckets
in Step 8 is thus 0((NjP)(1oglog(NjP))4). The time for sorting the buckets recursively in
Step 9 is with high probability L-1 <j<S T(Nj) + O((N j P) log log N), where Nj is the size of
the j th bucket Sj, L-1 <j<S Nj = N, -and Nj :::; 2Nj S for each j. Hence, for N 2: p 2 , with
high probability we have-

and N j :::; 2N1-a log N for each j. If N < p 2 , there will be at most one more application
of Phase 1 and of Phase 2, each phase taking O((Nj P) log N) time. The remaining subfiles
will have size at most P and can be sorted in the base memory level in time O((Nj P) log P)
time. This yields as desired the time bound

T(N) = e (~ log N) .

The probability bounds follow directly from those in Theorem 7. o

A lower bound of fl((N j P) log P) time for sorting with f (x) = Xl=", for n < a < 1, follows
from the well-known lower bound for sorting in a RAM under the comparison model of
computation.

Other Access Cost Functions

Since the above algorithm is optimal for the access cost function f (:1:)= :r 1/2 , it is als,.'
optimal for f(x) = logx.

Now let us consider the access cost function f(x) = x a
, where a > O. For the case

a 2: 1, we use a simple application of divide-and-conquer merge sort. The upper bound of
Theorem 6 follows by using the algorithm of Lemma 6 for merging two sorted lists.

8.4 Standard Matrix Multiplication in PBT 37

The lower bound in Theorem 6 for the case a: = 1 follows by a modification of the
argument in [ACS] for P = 1. The first term in the lower bound in Theorem 6 for the case
a: > 1 is the time needed to access the farthest elements in memory, and the second term is
dominated by the lower bound for a: = 1.

8.4 Standard Matrix Multiplication in PBT

Before we present the optimal standard matrix multiplication algorithm, we must present
the following lemma, which is needed to prove that our algorithm is optimal.

Lemma 7 The time used to add two k x k matrices, where k > P, zs

if f(x) = logx;

if f(x) = x a
, a < a: < 1;

if f(x) = x a
, a: = 1;

if f (x) = xa
, a: > 1.

Proof Sketch: We apply the same approach as in Lemma 5. Two matrices can be added
by touching the corresponding elements of the matrices simultaneously, using the touching
algorithm of [AAC] applied to the hierarchies independently. Once two elements are in
base memory level together, they can be added. The resultant matrix moves to slower
memory in the same manner as the two matrices being added moved to faster memory, only
backwards. D

Let us consider the access cost function f(x) = xa
, where a < a: < 1. The algorithm

presented in Section 7 can be adapted to run on the PBT model. The repositioning of the
matrices can be done in the same time as the touching problem. We define T(k) to be the
time used by the algorithm to multiply two k x k matrices together. It is easy to see that

T(k) = 8T (~) + 0 (~ loglOgk) .

Using the stopping condition T(VP) = VP, we get the desired upp~r hf\lmd O(P / P) of
Theorem 6 for the access cost function f(x) = xa , vvhere n / 0: -' I TI", I"w~r hound of
n(k3 / P) clearly holds since the number of operations performed is (-)/ k' I

Since the above algorithm is optimal for the access cost function /(.1:) ::::- ;(;1/2, it is also
optimal for f(x) = logx. The upper bounds for the remaining cases c,f Theorem 6 follow
by applying the other cases of Lemma 7. The lower bound for the access cost function
f(x) = xa , where a: = 3/2, for the BT model [ACS] can be modified for the PBT model.
When a: > ~ we get a lower bound of n((P / p)a) since that is the time needed to access the
farthest elements in memory.

38	 - - -9 CONCLUSIONS

9 Conclusions

In this paper we have introduced new and realistic two-level and hierarchical memory models
for parallel block transfer in internal memory and secondary storage. For each model we
present practical algorithms for sorting, permuting, matrix transposition, FFT, permutation
networks, and standard matrix multiplication, that use an optimal number of I/O steps.
The algorithms for sorting and permuting are based on a randomized version of distribution
sort. The partitioning is done by a combination of two interesting probabilistic techniques
in order to guarantee that accesses are spread uniformly over the disks.

A tantalizing open question is whether there is an optimal deterministic sorting algorithm.
Preliminary work suggests that the amount of randomness in our distribution sort algorithm
can be reduced by applying universal hashing [CaW] in an interesting way. But the problem
of removing randomness completely is a fundamental one.

The study of I/O efficiency has many applications besides the ones we studied in this
paper. For example, graphics applications and iterated lattice computations often involve
I/O-bound tasks. We expect that the algorithms and insights we develop in this paper
will have many applications in those domains. Our sorting approach also applies to other
hierarchical memory models, such as the uniform memory hierarchies of [ACF].

Addendum

An optimal deterministic sorting algorithm was recently developed by Nodine and Vit­
ter [NoV], settling the open problem listed above.

References

[AAC]	 A. Aggarwal, B. Alpern, A. K. Chandra & M. Snir, "A Model for Hierarchical Memory,"
IBM Watson Research Center, Technical Report RC 15118, October 1989, also appears
in Proceedings of 19tb Annual ACM Symposium on Tbeory of Computing, New York
(May 1987), 305-314.

[ACS]	 A. Aggarwal, A. Chandra & M. Snir, "Hierarchical Memory with Block Transfer," Pro­
ceedings of 28tb Annual IEEE Symposium on Foundations of Computer Science, Los
Angeles, CA (October 1987).

[AgV]	 A. Aggarwal & J. S. Vitter, "The Input/Output Complexity of Sorting and Related
Problems," Communications of tbe ACM (September 1988), also appears in Proceedings
of 14tb Annual International Colloquium on Automata, Languages. a.nd Programming
(ICALP), Lecture Notes in Computer Science 267, Springer-Verlag. R"'rlin, 1987.

[ACF]	 B. Alpern, L. Carter & E. Feig, "Uniform Mem<:'ry Hierarrh j" r !,,···pmbt:>[1989,
manuscript.

[BFP]	 M. Blum, R. Floyd, V. Pratt, R. Rivest & R. E. Tarjan, "Time B':"Jllds !')r Selection,"
in Complexity of Computer Calculations, Miller & Thatcher, eds .. l'I"'llum, NY, 1970,
105-109.

39

[CaW]	 J. L. Carter & M. N. Wegman, "Universal Classes of Hash Functions," Journal of Com­
puter and System Sciences 18 (April 1979), 143-154, also appears in Proceedings of tbe
9tb Annual ACM Symposium on Tbeory of Computing, (May 1977), 106-112.

[Kle] L. Kleinrock, in Queueing Systems, Volum~ I: Tbeory, Wiley and Sons, New York, 1979.

[Knu] D. Knuth, in Tbe Art of Computer Programming, Volume 3: Sorting and Searcbing,
Addison-Wesley, Reading, MA, 1973.

[LiV] E. E. Lindstrom & J. S. Vitter, "The Design and Analysis of BucketSort for Bubble
Memory Secondary Storage," IEEE Transactions on Computers C-34 (March 1985), 218­
233.

[NoV] M. H. Nodine & J. S. Vitter, "Greed Sort: An Optimal External Sorting Algorithm for
Multiple Disks," Department of Computer Science, Brown University, Technical Report
CS-90-04, February 1990.

[ReV] J. H. Reif & L. G. Valiant, "A Logarithmic Time Sort on Linear Size Networks," Journal
of tbe ACM34 (January 1987), 60-76, also appears in Proceedings of tbe 15tb Annual
ACM Symposium on Tbeory of Computing, Boston (April 1983), 10-16.

[SaV] J. Savage & J. S. Vitter, "Parallelism in Space-Time Tradeoffs," in Advances in Computing
Researcb, Volume 4, F. P. Preparata, ed., JAI Press, 1987, 117-146, also appears in
Proceedings of tbe International Worksbop on Parallel Computing and VLSI, Amalfi,
Italy (May 1984), P. Bertolazzi and F. Luccio, ed., Elsevier Science Press, 1985, 49-58.

[Sto] H. S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE Transactions on Com­
puters C-20 (February 1971), 153-161.

[ViF] J. S. Vitter & Ph. Flajolet, "Average-Case Analysis of Algorithms and Data Structures,"
in Handbook of Tbeoretical Computer Science, Jan van Leeuwen, ed., North-Holland,
1990.

[WuF]	 C. Wu & T. Feng, "The Universality of the Shuffle-Exchange Network," IEEE Transac­
tions on Computers C-30 (May 1981), 324-332.

