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1 Introduction 

ObServer is an object server created to oversee the efficient transfer of arbitrarily sized objects from 
the secondary storage of a centralized server to the memory of a database or other object-oriented 
application[MFF88][FZE90]. Since ObServer's initial conception, a number of people have worked 
on it, adding to and modifying various aspects of its functionality. Until recently, however, neither 
real-time performance nor maintainability was considered a priority, despite the fact that room for 
improvement in both these areas definitely existed. 

The initial and most important goal of this project was to significantly improve ObServer's 
performance. However, in the process of making these improvements, it became clear that in order 
to facilitate present and future efforts, a number of items of a software engineering nature needed 
to be taken care of first. Of primary importance here was understanding and documenting how 
ObServer works, including how modules were interrelated, what algorithms and structures were 
used and also what code was unnecessary or unused. 

In this paper, I first discuss the tools I used to analyze ObServer's performance. Next, I 
show how changes other than the ones I made improved ObServer's performance and what the 
actual effects of these improvements were. Then, after presenting some background information, 
I give descriptions of the changes I made-first those pertaining to performance, then those for 
maintainability. Next, I document the effects of the changes I made as well as and the cumulative 
effects of all the changes since the original benchmark data was generated. Finally, I present my 
suggestions for possible directions offuture research or implementation work along with information 
on further documentation. 

2 Analysis Tools 

Analyzing ObServer's performance involved using a profiling tool in conjunction with a set of 
benchmarking programs. The profiler was used to determine where inordinate amounts of time were 
being spent while the benchmarks were used to help evaluate the end effects of various changes. It 
should be noted, however, that data from both the benchmark and the profiler are approximations. 
Running ObServer involves network communication, and, in some cases, networked file servers. 
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Both of these services yield variable performance and as a result, there appears to be as much as 
a 5% time variation in identical tests on very similarly loaded systems. 

2.1 The Benchmark 

To test the performance of ObServer as changes were being made, I used a set of benchmarking 
routines devised by Alan Ewald [FZE90]. Of the three benchmarks Ewald described, I chose the 
one that most closely approximated expected real applications. This set was designed to simulate 
a computer aided design (CAD) application. 

[The] benchmarks were carried out by creating databases for the application being simu­
lated, then running programs to simulate accesses and updates ofthe stored objects. Ob­
jects were stored in the databases according to the semantics of the application.... Each 
benchmark did very little computation other than operating on the database. Compute 
time between database operations was simulated by inserting wait loops executed a 
random number of times within an upper bound.[FZE90, p. 13] 

A number of different parameters were varied to exercise the server. These were: 

• Size of the server's segment cache: 1 or 2 MB. 

•	 Number of objects per clustered segment: groups of 100 or 250. "Half of the [3000] objects 
were clustered into groups of 50 to simulate composite objects.... The remaining 1500 objects 
were placed sequentially in segments of 100 or 250 objects." [FZE90, p. 17] 

•	 Client's access method: Random or Clustered. Clustered access meant that if the object that 
was just accessed was part of a composite object, there was a 2/31 chance that the next object 
referenced would be part of the same object (and therefore in the same segment). 

•	 Client-side caching: On or Off. With client side caching on, the client would accept whole 
segments as the result of individual object requests and would keep all the objects in the 
segment in its cache. 

For more details, see Section 5 of [FZE90]. 

Unfortunately, the data presented in [FZE90] is not as complete as might be desired. First, while 
an operation-by-operation analysis of time and other resource uses is given for the program that 
creates the sample database, this information is missing from the description of the programs that 
access the data. Only average times to actually access the data are given: timing for supplemental 
operations, including storing updated data, is lacking. Since typically much more time tends to be 
spent in accessing and updating data than in generating it, this gives a lopsided view. I suggest 
what I feel is a more comprehensive benchmark in Section 3.2 below. 

Furthermore, it was impossible to fully recreate Ewald's original tests to "fill in the holes". 
Since the original tests were done, the machines used for running ObServer have been significantly 
upgraded. Most notable among the changes are much faster NFS™2 servers (Sun 4/490s in place 
of 4/280s) and greatly increased RAM on the workstations (16 MB in place of 8). 

1 [FZE90, p. 18] BayB "50 percent" but this is wrong.
 
2NFS is a trademark of Sun MicrOByBtemB
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Fina.lly, the original benchmarks were run with a different random number seed for each test. 
This unfortunately tends to generate data with an even higher expected margin of error than the 
5% mentioned above. 

2.2 The Profiler 

In order to determine which areas of the server were taking up too much time I used the gprof 
profiler[GKM82]. gprof is a statistical profiler which lists, among other things, the approximate 
amount of time spent in each routine in a program. This tool was critical both in discovering which 
paths in the server got the heaviest use and in evaluating the specific impact of individual changes 
as soon as they were made. 

However, some unfortunate anomalies do result from using a statistical profiler. As gprof's man 
file mentions: "It is assumed that the time for each execution of a function can be expressed by the 
total time for the function divided by the number of times the function is ca.lled." Unfortunately, 
this is not always a valid assumption. One example in which this was particularly true was the 
case of the write system ca.ll. 

Throughout the course of the changes listed below, the number of invocations of write was 
significantly decreased. A large part of this decrease came from clustering what had previously 
been groups of write calls into single ones to save both write and other processing time. As 
expected, this provided a speedup but it also had a side-effect of increasing the average write time. 
As a result, the routines that decreased the number of times they ca.lled write appeared to run 
much faster but routines that had not changed their number of writes actua.lly appeared to take 
up more time than they originally had. This was not only a source of confusion, it also made it 
difficult to accurately assess the effect of certain changes. 

Also, gprofwas unable to correctly monitor a.ll of the server's time. According to the profiler's 
output, mainO and its descendants only accounted for approximately 85% of the server's total 
time. The other 15% of the time was taken up by such routines as "zword" and "w4cp" which 
gprof claimed were ca.lled spontaneously. The fact that these routines sound like they implement 
zeroing memory and copying data and that bzero and bcopy, which are used extensively, appear to 
take no time at a.llieads one to think that gprof was unable to correctly trace these system ca.lls. 

Fina.lly, gprof only monitors time spent in user mode. This is unfortunate since a large per­
centage of ObServer's time is spent in system mode, reading from and writing to disks and ports. 
Thus the profiler showed only a minimal decrease in run time when the file system was switched 
from NFS to a local disk. For example, in one test, gprof claimed that the time the server spent 
running decreased from 92 to 85 seconds when the files were moved from NFS to a local disk. In 
fact, the amount of time the client spent waiting for the server decreased from 2120 seconds to 614. 
Thus, even taking into account the fact that the server does spend some time doing things when 
the client is not waiting for it, is it still quite possible that as much as 4/5 of a.ll the server's time is 
not being profiled when using a local disk. Though this is not as bad as the 19/20 that it is missing 
when using NFS, it is still very significant and hints that the importance of read and write ca.lls is 
vastly understated. 
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3 Initial Performance 

As was mentioned above, the initial set of ObServer performance benchmarks was done by Ewald 
in [FZE90]. However, since these benchmarks were taken, ObServer's performance has been signif­
icantly improved by changes to the the conditions under which ObServer is run. Therefore, before 
attempting to evaluate the effects of the changes I made, it is first necessary to account for the 
performance improvements for which I am not responsible. 

3.1 System Environment Changes 

The first significant improvement to the performance of ObServer came, easily enough, from changes 
to the environment in which it was run. These changes, which involved both hardware and software, 
are shown in Table 1 below. 

Tabl : C e . and P resentB chm kin19 EnVll'onmentse 1 ompanson 0 fth O'rlgmal en ar 
Item Original Environment Present Environment 

NFS Servers 4 Sun 4/280s 2 Sun 4/490s 
Local Machine RAM 8 MB 16 MB 

Swap Space 32 MB 140MB 
Block Size 1024 Bytes 8192 Bytes 
Page Size 1024 Bytes 4096 Bytes 

Operating Systems SunOS 4.0 SunOS 4.1 
Compiler Optimization NONE Level 2 

It should be noted that the new NFS servers are significantly faster than the old ones. In 
addition, with the new operating system came a new version of the compiler. Since enough other 
factors were being changed, and direct comparison would be impossible anyway, it was decided that 
there was no reason not to turn compiler optimization on. 

Aside from the factors listed above, no changes were made in the environment. The benchmarks 
were still performed on Sun SPARCstation lsTM3 and the database files were still stored via NFS. 
The NFS servers had 32 MB of RAM. Additionally, the benchmark tests were again run on lightly 
loaded systems and client and server applications resided on the same machine. 

As shown in Tables 2 and 3, the effects of these changes to ObServer's environment were 
quite significant. Table 2 shows statistics gathered during the creation of sample databases. The 
"Objects" entries in the column headings refer to the number of objects in each segment with 
clustered objects. The "Time" row gives the total time (in seconds) the client spent waiting for 
the server. Though this should include time spent waiting for all the routines, it perforce omits 
a few minor ones that were not listed in [FZE90]. The data in the other four rows is also taken 
over all the previously mentioned server routines; for the exact definitions of what they measure, 
see getrusage(2). The server-side segment cache was 1 MB in all cases. As can be seen, the 
improvement in the machine configuration resulted in drastically decreased quantities of page faults 
and file-system reads. These and other other factors account for an average overall speedup of 22%. 

3SPARCstation is a trademark of Sun Microsystems 

4
 



Table 2: Database Creation Statistics-Effects of Environment Changes 
Original EntJironment Present EntJironment AverageItem 

100Objects 250Objects 100Objects 250Objects Improvement 

162Time 177 245 169 22% 
Minor Page Faults 270 286413 408 32% 
Major Page Faults 928 925 208 211 77% 
File System Reads 5190 65 52 34% 
File System Writes 627 606 602653 6% 

Table 3 lists even more telling statistics: the average amounts of time the client was idle while 
waiting for the server to return a requested object. The times given (again, in seconds) are only 
for the case where there is no client-side segment cache and accesses to the database are clustered. 
This particular case was picked more-or-Iess randomly but it should provide a fair idea as to how 
access time increased in general. The "Cache Size" is the size of the server-side segment cache; 
"Objects" is again the number of objects in each segment with clustered objects. It should be noted 
that the numbers given for the "Original Environment" are approximate: they had to be read off 
a bar graph in [FZE90]. Overall, the object access times were two to three times faster than in 
[FZE90]. 

T' Efii t f E .Table 3: Average	 

63%
68%
51%
53%

Ob'Ject Access unes- ec so nVlronment Changes 
Cache Size 

2MB 

1 MB	 

Present EntJironment ImprovementObjects Original EntJironment 

0.66 
250 
100 1.80 

0.60 
100 

1.90 
1.80 0.88 

250 2.15 1.02 

3.2 NFS vs. A Local Disk 

Even more significant was the speedup obtained by using a local disk for database files in place of 
NFS. Considering the ObServer is, after all, a database program, the fact that a (fast) local disk 
made a tremendous difference in its run time is not at all surprising. In Table 4 below, a number 
of different operations are compared. They are as follows: 

•	 Create Database: The total time necessary to create a database as described for Table 2 
above. Here, all the routines are accounted for so the times are slightly higher than shown in 
Table 2. 

•	 Create & Access: The total time spent running the database creation program and then three 
concurrent access programs. 

•	 Average Access: The average amount of time spent to access an object. The data were 
calculated over a set of 3003 total requests. 
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• Average Commit:	 The average amount of time spent to commit an object. The data were 
calculated over a set of about 1000 total requests. 

The first two items above should give good general ideas as to overall performance for a task. The 
latter two are critical tasks for the server that happen very frequently. Together, these four items 
provide a good benchmark for the performance of the server. 

All the numbers reflect the amount of time the clients were idle while waiting for the server 
to respond. For "Create Database", times are given for both 100- and 250-object segments. For 
the other three tests, average times are given. To generate the data in the "No Cache, Clustered 
Access" rows, clients had no segment cache and made clustered accesses. The results presented 
are averages of times taken for servers that stored both 100- and 250-object segments using both 1 
and 2 MB segment caches. To generate the data in the "250 Objects, 2 MB" rows, servers stored 
250-object segments using 2 MB segment caches. The results presented are averages of times taken 
for clients both with and without caches making both clustered and random accesses. This provides 
a cross-section of results over the four variable parameters. 

Table 4: NFS vs. Local Disk Tim=es=::-----=-""='"'--::-.....-:: _ 
Test	 Parameter(s) ~ NFS I Local Disk I Improvement I 

Create Database 100 Objects 165.2 52.2 68% 
250 Objects 172.9 49.4 71% 

Create & Access No Cache, Clustered Access 3178.1 575.9 82% 
250 Objects, 2 MB 2576.5 607.5 76% 

Average Access No Cache, Clustered Access 0.573 0.102 82% 
250 Objects, 2 MB 0.658 0.091 86% 

Average Commit No Cache, Clustered Access 0.787 0.201 75% 
250 Objects, 2 MB 0.540 0.219 59% 

Note that all of the above results are between three and seven times faster than when NFS was 
used. This is a tremendous improvement and clearly shows that ObServer should always be run 
on a local disk. Also note that without this change, any other improvement that did not directly 
involve disk accesses would have a negligible effect since it would have been overshadowed by disk 
access time. 

Background Information 

In order to appreciate a number of the changes presented below, it is important first to have a 
fairly detailed understanding of three significant aspects of ObServer. These aspects are: 

1) ObServer's overall structure. 
2) The server's checkpointing and recovery system. 
3) How object mapping is done. 
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4.1 ObServer Structure Overview 

ObServer source code is divided into four major groups. Each group has a three letter prefix and 
the names of all the files in that group begin with that prefix. The groups are: 

BINDER ("BND") Code and information specific to the Binder and Daemon. 
COMMON (UCMN") Code and information common to all the groups. 
CLIENT ("CNT") Code and information specific to the Client. 
SERVER ("SVR") Code and information specific to the Server. 

Within each group are a number of modules, each with its own specific domain. Almost none 
of the work in this project was done on modules in either the BINDER or CLIENT groups and 
they are for the most part not mentioned again in this paper. Only a few of the COMMON group 
modules were significantly modified and where these modules are mentioned below, it is made 
explicit that they are part of the COMMON group. Otherwise, modules mentioned below can be 
assumed to be part of the SERVER group. For a complete list of the SERVER group modules, see 
Appendix A below. 

4.2 Checkpointing and Recovery 

ObServer's crash recovery system is a simple but effective one. Each request that comes into the 
server is logged in a recovery log. Periodically (or when requested to by a client), all the server's 
files ezcept the database file itself are checkpointed and the log is emptied. Thus, if the server 
crashes or is killed, it can easily be recovered to the state it was in just before the crash. To do this, 
the supplementary files have to be restored to their checkpointed versions and then the requests 
are "replayed" from the log. 

Checkpointing of supplementary files is done in one of two ways. For some modules (CF, DOT, 
OLT, SMF and SVR), a "backup" style of checkpointing is done. At checkpoint time, the entire 
contents of that module's files are copied to files that begin with the same name but have".bak" 
appended. For the other file-using modules (CAT, DEAD, LOCK, NUM, SGM and TRANS), 
a "shadow" naming convention is used. In their case, when it is time to do a checkpoint, they 
write out all their data to files with either a ".0" or U.1" extension, depending on the state of a 
master switch. This is possible since they keep all their data in main memory. The "File Memory 
Management" item in Section 8.2 below suggests a way to improve the efficiency of this process. 

The database file itself, on the other hand, is never really checkpointed at all. Rather, it is always 
kept in a state such that restoring the supplementary files automatically causes the database to 
appear to revert to its state as of the last checkpoint. To understand how this works, it is necessary 
first to understand how segments are created and maintained. 

When the Segment Create routine (SEGcreateO) creates a segment, it first obtains a new 
Virtual Segment Identifier (Virtual SID) for the segment. This Virtual SID is immutable and is 
thought of as the segment's ID at all levels above the Segment module. Then the Segment Create 
routine calls the Secondary Storage Create routine (SECScreateO) to allocate the new segment 
an actual location in the database and a new Real SID to refer to this location. The Secondary 
Storage Create routine stores this mapping from the Real SID to the database location in the 
Segment Pointer Table (SPT) at the front of the database file. The mapping from the Virtual SID 
to the Real SID is stored in the Segment Mapping Table. 
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When the Segment Write routine (SEGwrite 0) routine is called to write an updated segment 
to the database, it does one of two things. IT the segment has not already been written to the 
database file since the most recent checkpoint, the Segment Write routine calls the Secondary 
Storage Create routine to create a new Real SID and a new location for the modified segment. 
This is done to ensure that the Real SID as of the most recent checkpoint always points to the 
same memory location and that the data at this location is never tampered with. As is the case with 
segment creation, the SPT holds the mapping from the new Real SID to segment's new location 
and the SMT holds the new Virtual to Real SID mapping. The segment is then written to its new 
location and the old Real SID is marked as unused-though it and the database blocks to which 
it points are not available to be reused until after the next checkpoint. Otherwise, if the segment 
has already been written to the database file since the most recent checkpoint, it is written back 
to this location if it fits. IT it does not fit, it is stored somewhere else and the Real SID's entry in 
the SPT is updated. 

At checkpoint time, the Virtual to Real SID mappings in the SMT are transferred to the SMF 
and this file is backed up. Additionally, database file blocks pointed to by deleted Real SIDs are 
then considered free, as are the deleted Real SIDs. IT the server crashes and needs to recover, the 
backed up version of the SMF is restored. This has the Virtual to Real SID mappings as of the 
most recent checkpoint and since both the Real SIDs and the memory to which they point remained 
untouched, these mappings are still valid. The Virtual to Real SID mappings created since the last 
checkpoint will already have been lost with the SMT and any mappings that were in the SPT for 
new Real SIDs are ignored. Thus the database file is thus automatically "restored". 

4.3 Object Mapping 

A significant fraction of the ObServer code is devoted to mapping the External Unique (Object) 
Identifiers (External UIDs) that the client holds to the actual data to which they refer. To appreciate 
the motivation behind some of the major changes and suggestions below, it is first necessary to 
understand the mechanisms of this translation. Note that all forms of UIDs are 64-bit values. 

The Object Mapping process can be divided into three major steps. These are:
 

1) Translating the External UID into (an) Internal UID(s).
 
2) Loading the segment(s) specified by the Internal UID(s) into main memory.
 
3) Locating the desired object(s) within the segment(s).
 

A detailed description of each step follows4 • This mapping is also shown graphically in Figure 1. 

Step 1 - Getting Internal UIDs 

The External UID-which is a {File, Index} pair-is looked up in the Object Location Table 
(OLT). This is a simple matter of reading in the entry at index Index in OLT file File. Based on 
the two high-order bits of the result, this is interpreted as one of three things: 

• A tombstone. This means the object in question has been deleted and the lookup ends here. 

• An Internal UID. This is a {Virtual SID, Object Index} pair whose use is described below. 

'Section 4.2 in [HZ87] also describes thiB process, including a diagram (Figure 3). However, although thiB descrip­
tion gives more detail in some respects, it is not completely accurate in others. 
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• A Duplicate Object Table (DOT) UID. This is used for objects that have been duplicated or 
moved since they were originally created. The structure of a DOT UID is a {File, Index} 
pair which must be looked up in the DOT to produce a set of Internal UIDs. DOT urns are 
looked up in the same matter as External UIDs are, save that they map to fixed-sized groups 
of Internal urns, with optional pointers to additional groups, if needed. 

Assuming the desired object had not been deleted, this process thus yields an Internal urn or 
possibly a set of them. 

Step 2 - Loading Segments 

For each Internal UID thus obtained, the Segment (SEG) Open routine (SEGopenO) must be sure 
that the segment with the specified Virtual SID has been "opened" and is in main memory. To do 
this, it first consults the Main memory Segment Table (MST) to see if the Virtual SID is listed. IT 
so, the segment is already in memory and the rest of this step is skipped. Otherwise the procedure 
for reading in a segment is as follows. 

First, the Virtual SID must be mapped to a Real SID. This is necessary because the database 
stores segments according to Real SID only. This is done in one of two ways. If the segment has 
been altered since the most recent checkpoint, a new Virtual to Real SID mapping will have been 
entered in the Segment Mapping Table (SMT) which is kept entirely online. Thus the SMT is first 
searched for the desired Virtual SID. Otherwise, the lookup must be accomplished by consulting 
the Segment Mapping File (SMF) which is kept on disk and cached where possible. In either case, 
this process yields a {Real SID, Object Indez} pair. 

This Real SID must then be located in the database file. The Secondary Storage (SEeS) Read 
routine (SECSreadO) accomplishes this by consulting an extendible hash table of segments,located 
at the front of the database file itself. By traversing this tree, the appropriate entry in the Segment 
Pointer Table can be found. This SPT Entry (SPTE) will have the mapping from the Real SID to 
a {Real Segment ID, Offset, Real Size, Virtual Size} quadruple. The Offset and Real Size are used 
to locate the segment in the database file, the Virtual Size is how big the segment was initially 
allocated to be and the Real Segment ID is redundant. Once the segment is located, it is read in 
and stored in the MST. 

Step 3 - Locating Objects 

Finally, the Single Object routines in the Segment module (SEG-instalLsingle-Obj 0, 
SEG_update-eingle_obj 0 and SEG_delete-eingle_obj 0) use the Object Index from the each 
Internal UID to locate objects within the segments. This is a simple matter of finding the entry 
at index Object Indez in the Object Pointer Table (OPT). This OPT Entry (OPTE) contains a 
{Offset, Size, External UID} triple. The Offset and Size are used tQ locate the object in the 
segment and the Ezternal UID is redundant. 
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Figure 1: Current Object Mapping Procedure 
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+ ~ 
{Real SID, Offset, Real Size, Virtual Size} Object Index 

I 
OPT 
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5 Performance Enhancements 

To enhance the performance of ObServer, a number of design and implementation changes were 
made. These changes mostly involved reimplementing key data structures and algorithms in heav­
ily used areas of the code. This section gives brief descriptions of these changes, presenting the 
motivations for and the approximate effects of each change. 

There are, however, two items to keep in mind when examining the documented effects. First, 
as was mentioned in Section 2.2 above, the impact of individual changes was sometimes difficult 
to determine both because of the statistical nature of the gprof profiler and because its fallure to 
take time spent in system mode into account. Second, the percent improvements given below are 
based on a single run of the benchmark test using a single set of parameterss. Nevertheless, they 
should provide a general measure of the relative usefulness of each change. 

5.1 OLT and SMF Caches 

The Object Location Table and Segment Mapping File modules both use caches to provide quicker 
access to the potentially very large amounts of data they store in files. Previously, this caching was 
provided through separate Cache (CACHE) and Segment Mapping File Cache (SMFC) modules 
for the OLT and SMF respectively. However, there were a number of problems with the CACHE 
and SMFC modules. 

The first problems were from a software engineering standpoint. Since the basic purpose of 
both modules was to provide LRU caching for other modules in fixed-sized blocks, there were large 
portions of identical or nearly-identical code. Although the interfaces and the cache search routines 
were slightly different, the buffer management and paging code were identical. 

However, more importantly, they were very inefficient. The main cause of this inefficiency was 
the fact that the caches were too small to be useful. Considering that the SPARCstations now 
have 16 MB of RAM and that the time they take to read or write any amount of data up to 8 
KB is nearly constant, using caches of 120 or 60 byte blocks (as the CACHE and SMFC modules 
respectively used) was a mistake. The frequent need to flush and reload the caches caused frequent 
[seeks, fwrites and freads. For the OLT, this problem was compounded by the fact that each OLT 
file contained only 1000 entries. This meant that non-clustered accesses usually also caused the 
current OLT file to be closed and a different one to be opened. Additionally, as a minor matter, in 
implementing an LRU paging algorithm, the CACHE and SMFC modules used actual timestamps 
to determine which block of data was oldest. During the course of running the benchmark, this 
resulted in thousands of calls to gettimeofday. 

In order to correct the above problems, it was decided to completely redo the caching. First, 
the CACHE and SMFC modules were removed. Their purposes were not unique enough to merit 
their existence as separate modules. To replace them, a few cache-management macros were added 
to the GLOBAL module in the COMMON group. What little unique material they did contain 
was put directly into the OLT and SMF modules so that they could do the caching themselves. 
Keeping the majority of the common code in a common place not only makes maintainence easier, 
it also cut the quantity of code way down. The combined sizes of the old CACHE, OLT, SMF and 
SMFC modules was over 67 KB; now, the OLT and SMF only take up about 32 KB between them. 

112 MB Server segment cache, 250 objects per clustered segment, Clustered client accesses, No client.side caching. 
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But of greater interest is the fact that the new implementations deal with the above efficiency 
issues. The cache buffers in each module are now each 8 KB in size. This takes care of the first two 
problems. And, with the help of the new "cache" macros which implement doubly linked circular 
lists, ordered by the most recent access, they no longer need to call gettimeofday. This proved to 
be the single most-important change made, cutting out over 15% of all the server's time. It should 
be noted that since the OLT is very heavily used and the SMF is very lightly used, this reduction 
occurred almost entirely in the OLT. 

5.2 Message Handling 

The server sends a number of messages to the client. In response to any given client request, the 
server may send anywhere from zero to half a dozen or more informational messages, as well as a final 
signal that the desired request has been processed. Previously, each of these messages would be sent 
via a separate call to the Communication module's Write to Port routine, COMMvrite_to..portO 
in the COMMON group). Each of these calls would involve processing as well as at least one call 
to the system routine write, which requires crossing the user/system boundary and is expensive. 
Since all the informational messages were being sent out one after the other and the operation 
completion signal was coming out only a little later, it was decided to bundle these items together. 

This decision required significantly rewriting the Server Message Module (SMM) Send 
(SMKsendO) routine. First, instead of making one call to the Write to Port routine per type 
of message to go out, it now concatenates all the outgoing messages into a single buffer and sends 
this out. This yields a moderate speedup at the expense of some data copying. See the "Writing 
to Ports" suggestionwritev in Section 8.2 below for a way to eliminate this copying. 

Secondly, the Send routine now takes care of sending out the operation completion signal itself 
whenever possible. Previously, the SMM's Procedure Return routine (SMMproc.IeturnO) would 
always be called to do this. Now, the Procedure Return routine is only called when the Send routine 
is not, Le. when: 

1) The Client or Transaction ID of the incoming message is determined to be invalid. 
2) The requested operation cannot be performed or has failed for some reason. 
3) The operation normally returns no informational messages and thus never calls the Send 

routine. 

This has had the effect of halving the number of calls to the Write to Port routine and yielding an 
improvement of over 4%. 

A small change was also made in the handling of incoming messages. Previously, a buffer would 
be maIloced every time a new message would come in and freed once it was done being processed. 
Now, the incoming message buffer (now called SVRmsg_block) is kept around between messages. 
Its size is increased with reaIloc when necessary. This prevention of unnecessary maIloc/free pairs 
with each new message saves about 0.25%. 

5.3 Queuing Module 

The Queuing module (QUE) is used to maintain enlargeable data buffers which are used by other 
modules. Originally, the data in each queue was kept in individual nodes in a linked list. These 
nodes could be added to either end of the queue, were individually dequeueable and could also be 
compressed into one large node to be dequeued. This was a good general-purpose utility, but it 
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was unnecessarily powerful. 

Careful inspection of the actual usage of the queues revealed that elements were never needed 
singly, that a large amount of copying was being done to compress them and that only single, 
fixed-size headers were ever added to the front of the queues. Therefore, they were reimplemented 
as byte streams with control information. This control information includes the number of elements 
in the list, the size of the list, the size of the buffer and whether or not there is a header. Now when 
elements are added to a queue, they are simply concatenated onto the end of a buffer, rather than 
being made into nodes and linked into a list. The main advantages of this method are the removals 
of both the malloc/{ree pairs associated with adding and deleting nodes and the elimination of 
unnecessary bcopy calls. All in all, the change accounted for a speedup of about 3%. 

5.4 Recovery Log 

The server usually runs in NORMAL mode. In this mode, it receives incoming requests, processes 
them, logs them to a recovery log file and then sends the client its response6 • However, if for some 
reason the server has crashed or was killed, it is restarted in RECOVERY mode. In this mode, 
the server ignores client requests until it has "replayed" all the requests logged in the recovery log 
and brought itself back to the state it was in just before it went down. Then it switches back to 
NORMAL mode. 

Each time the server was to write an incoming request to the recovery log, it would first do an 
{seek to the end of the file. Similarly, when operating in RECOVERY mode, it would also do an 
{seek to the correct point in the file to read the next request to be replayed. This was completely 
unnecessary. Storing and retrieving requests are both serial processes and, as described above, are 
never interspersed. Thus the file pointer never needed to be explicitly changed. Removing the 
{seeks accounted for a savings of about 1.25% in the writing routine and would presumably have 
brought about a similar improvement in the read routine, had recovery been part of the benchmark. 

5.5 COMMON Group Code 

A few changes that had significant effects on the performance of the server were implemented on 
code in the common group. For the most part they were trivial to implement. 

•	 (Communication module) Since large amounts of data were being transferred through the 
sockets, it was decided that the send and receive buffers should be as large as possible. So, 
these buffers were increased from their default 4 KB to the maximum allowed, 32 KB. This 
caused a small speedup. 

•	 (Communication module) Previously, select was being called before each attempt to read or 
write data on a port, even if no timeout was specified for the operation. This was pointless 
since calling select on a single port with a NULL timeout blocks until the port is ready, which 
is what read and write do anyway. This has been fixed. 

epreviously, this proce88 was reversed: the request would first be logged and then it would be processed. However, 
this presented a problem. H this request had somehow caused the server to die, it would be in the recovery log, and 
would be replayed when the server came back up, quite poBBibly "killing" the server again. Under the current system, 
requests are only logged if the server is able to succe88fully proce88 them. 
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Also, for each message that was to be received or sent out, select was being called before 
each individual read or write. Now, select is only called the first time, to be sure the port 
is ready. After that, it is assumed that the port has not stopped transmitting or receiving 
in the middle of a message. In the unlikely case where this has happened, the alarm clock 
(which goes off every 30 seconds) eventually terminates the read or write. The result ofthese 
two changes is a savings of about 2.5%. 

•	 (Global module) There are three macros in this module for setting, unsetting and check­
ing bits in (64-bit) masks. Previously, these macros called abs to make sure the bit to be 
checked was a positive number. This was done despite the fact that the macros were always 
called with positive operands. Since these macros were called a total of about 1.18 million 
times throughout the course of the benchmark, the trivial action of removing the call to abs 
produced a savings of about 1.25%. 

•	 (System module) Previously, the macro provided for calling the malloc system call would 
always call bzero so that the memory area returned would be zero-:fi11ed. This was unnecessary 
in a number of cases. Now, a second macro is provided (and frequently used) which does not 
call bzero. Through the course of the benchmark, this removed about 70 thousand of the 
initial 98 thousand bzero calls. The profiler never showed bzero to take any time in the first 
place but the "zword" routine (which is believed to be called by bzero) accounted for about 
2.25% less time after the change was made. 

5.6 Bug Fixes 

The enhancements to ObServer also include two actual bug fixes. The first concerns the Number 
(NUM) module which is responsible for issuing External UID numbers. A previous change in the 
way External UIDs were numbered had caused a programming bug to manifest itself as an off-by­
one error in the number of UIDs that were given out in response to client requests. The bug was 
fixed and some redundant 'defines that had helped cause the problem were removed. 

The second problem was in the Segment Mapping File Cache (SMFC) module. A bug in the 
code that selected which part of the SMF was to be removed had caused the cache not to contain 
what it was supposed to. This problem would cause the server to hang when the SMFC was used 
heavily enough. This bug was first fixed and then rendered moot when the SMFC module was 
removed (as noted in Section 5.1 above). 

6 Usability and Maintainability Changes 

There were also a number of changes that were made to ObServer that were unrelated to perfor­
mance. Most of these changes were of a software engineering nature. Descriptions of the significant 
changes are listed below. For a list of additional, less critical changes, see the file "changes". 

6.1 Deleted Files 

A large number of unnecessary files were deleted. Among these were all the files for three separate 
modules. None of the material in these modules was being used. The modules were as follows: 
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• The Operation Filter (OF) module in the SERVER group. In theory, this module was used 
to allow the client to Ufilter out" certain server operations, preventing them from being 
called in the future. The SVRset_op-filterO server routine was provided for selecting these 
operations. However, this routine (which does not appear to be documented anywhere) was 
not fully implemented and the module itself could never be accessed. For this reason, the 
module was deleted. 

•	 The Lock Filter (LF) module in the COMMON group. Like to the OF module above, this 
module was designed to allow the client to Ufilter out" certain lock combinations from being 
requested. Through the SVRset~ock-filterOserver routine, the client could specify what 
kind of environment (cooperative, strict, etc.) was to be used. But, like the OF module, this 
functionality was undocumented and not fully implemented. 

•	 The Object Hash Table (OHT) module in the COMMON group. It is unclear how this module 
was to be used. 

Both the OF and LF concepts appear to be useful ones. But until a decision is made to fully 
document and implement them, it seems best to keep them out of the way. IT they are ever needed, 
they can be restored via RCS[WFT82]. For a complete list of deleted files, see the file "deleted.Jiles". 

6.2 Other Deletions 

The ObServer code had many unused constants, variables, macros and routines. Additionally, 
there were a number of procedure declarations and 'include lines that had become unnecessary 
for various reasons. Furthermore, there were routines which had been commented out, were never 
fully implemented or were otherwise unusable. This material not only made ObServer code harder 
than necessary to work with, it also added excess bulk to the executable files. So, as much as 
possible, the above items were deleted. As with the deleted files, RCS can be used to retrieve any 
of these items in the unlikely case that they tum out to be needed. 

6.3 Reformatting 

All the files were reformatted. Although there was a standard format evident for the original 
ObServer source files, these standards had deteriorated with the work of subsequent developers. 
Perhaps the most obvious change is that all the lines are now less than 80 characters wide except 
where quoted strings make this necessary. Also, a number of general formatting rules were applied 
to make the code more consistent and readable. Most of these changes were accomplished through 
the use of the formatting programs indent and cb. See the file "indent" for a list of options used 
with indent and their meanings. 

6.4 Renaming 

Previously, a number of client files had included various server header files (especially 
"SVRproc_defs.h") and it was often necessary for client programs to link a Server object file 
("SVRsvr_utils.o") into their images. This goes against the preferred structure of ObServer which 
specifies that only COMMON group files are to be used in this manner. To fix this problem, 
"SVRproc_defs.h" was renamed to "CMNprocs.h" and "SVRsvr_utils.c" became "CMNprocs.c". 
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This change is also consistent with the contents of the two files. Now, no references to Server files 
are necessary for the client. 

6.5 Rewriting the Scheduler Module 

The entire Scheduler module (SCHED) was rewritten. The original data structure used by this 
module was a circular linked list. In this list were intervals between which the alarm should be 
signaled and lists of routines to be called when an alarm was signaled. This was messy and hard to 
maintain. The new data structure is simply an array of routines to be called and their frequencies 
(SCHED...array). The code to deal with this new array is also simpler. 

6.6 Rewriting Debugging Code 

Previously, each routine HODroutineO (where "MOD" was the name of the routine's module and 
"routine" was the actual name) in ObServer had a variable declaration of the form: 

P = MOD__routine; 

where HOD.....routine was 'defined to some unique number. Additionally, each module had its own 
MODrtn-proc...name () routine that consisted of a large "switch" statement to translate HOD.....routine 
into a character string containing the routine's name. These items were used for debugging purposes 
to print routine names when they failed. Also, each routine used HJRTenter, MJRTexit and 
M.....return (now called HJRTreturn) macros that took strings containing the routines' names as 
parameters and printed these names (when desired for debugging purposes) when the routines were 
entered or exited. The need to type in the text of each routine's name at its beginning and at each 
point at which the routine could exit was not only inconvenient, it also wasted a good deal of space. 

So, all the SVR.])ROC declarations were changed to ones of the form: 

static char *P = IMODroutine"; 

and the MJRT macros above were modified to use this variable, rather than a separate macro 
parameter. Furthermore, all the MODrtn-proc...nameO routines were removed since a translation 
was no longer necessary. This change removed 80 KB throughout the ObServer executable files. 

6.7 Other Rewriting 

Various portions of ObServer were poorly coded. The changes that were made include: 

• Cleaning up some comments. 

• Renaming some local variables that hid global ones, especially in the Binder. 

• Fixing some inconsistent caller/ callee type errors. 

• Making non-void routines always explicitly return 0, so that they no longer cause errors when 
optimization is turned on (especially in the Deadlock (DEAD) module). 
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•	 Making various other minor modifications so that the compiler now produced no warnings 
and lint produces many fewer than it used to. 

Additionally, in the "makefile", dependencies were fixed up, unnecessary files were removed and 
general cleaning up was performed. 

6.8 Summary 

The changes mentioned above not only resulted in code that was easier to use and modify, they 
also produced executables that were far less bulky. The final size changes produced were as follows: 

"OBSbinder" 40 KB smaller 
"OBSclient" 40 KB smaller 
"OBSdaemon" 24 KB smaller 
"0BSserver" 160 KB smaller 

7 Current Performance 

The overall effect of the above changes was quite significant. Table 5 compares the results of the 
benchmark tests before and after the changes were made. For a description of the row and column 
headings in Table 5, see Section 3.2 above. 

Table 5: Pre- and Post-Enhancement Times 
Test Parameter(s) Before After Improvement 

Create Database 100 Objects 52.2 40.4 23% 
250 Objects 49.4 37.1 25% 

Create & Access No Cache, Clustered Access 575.9 259.7 55% 
250 Objects, 2 MB 607.5 282.7 54% 

Average Access No Cache, Clustered Access 0.102 0.055 46% 
250 Objects, 2 MB 0.091 0.054 41% 

Average Commit No Cache, Clustered Access 0.201 0.048 76% 
250 Objects, 2 MB 0.219 0.068 69% 

The next two tables are presented to provide a final contrast between the numbers given in 
[FZE90] and the present. For a description of the row and column headings in Tables 6 and 7, see 
Section 3.1 above. 

The cause of the rather large increase in file system writes in Table 6 is unclear. The most 
important fact to note from this table is that the overall database creation time is more than four 
times faster than it originally was. 

The significant fact demonstrated by Table 7 is that, depending on how slow the original 
numbers were, object accesses are now between 13 and 44 times faster than they used to be! 
It is also worth noting that random requests have generally faster response times than clustered 
ones. This is quite unexpected and merits further investigation. 
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Table R: Database Creation Statistics-Final Effects 
Item Benchmark Present Average 

100Objects 250 Objects 100 Objects 250 Objects Improvement 

Time 41177 245 38 81% 
Minor Page Faults 413 327408 303 21% 
Major Page Faults 928 925 43 > 99% 
File System Reads 6590 94%3 7 
File System Writes 653 627 1072 1066 -67% 

Table 7: Average Object Access Times-Final Effects
 

Segment Cache, Clustered Accesses
 
I;-C-=-ac""""':h'e-S~i:-ze-I Objects ~ Benchmark I-P=re-sen--:-t"T'""""':I:~m-pro-v-em-en-t-l 

2MB 100 0.90 0.052 94% 
250 0.80 0.056 93% 

1 MB 100 1.05 0.052 95% 
250 0.90 0.053 94% 

Segment Cache, Random Accesses 
j-C':::"a-c""':'"h-e--:S=iz-e--rl-O..".;b;:.,tj;-ec-ts-~ Benchmark I Present l""""l=-m-p-ro-v-em-e-n-t I 

2MB 100 1.25 0.050 96% 
250 0.70 0.053 92% 

1 MB 100 0.95 0.051 95% 
250 1.10 0.052 95% 

N0 Segment Cache, Clustered Accesses 
I-C-=a'c-=h-e-S==iz;-e-I Objects ~ Benchmark IPresent j-I:=-m-p-ro-v-e-m-e-nt-I 

2MB 100 1.80 0.049 97% 
250 1.90 0.053 97% 

1 MB 100 1.80 0.057 97% 
250 2.15 0.061 97% 

No Segment Cache, Random Accesses 
I;-C-=-ac""""':h;-e-S~i:-ze-j Objects ~ Benchmark IPresent I Improvement I 

2MB 100 2.10 0.049 98% 
250 2.30 0.052 98% 

1 MB 100 1.45 0.057 96% 
250 2.25 0.064 97% 
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8 Future Areas of Research 

Although the changes described above provided significant performance improvements, there are 
still some areas of the server that could use improvement. In addition, there are also some aspects 
of ObServer whose behavior is inconsistent with the documentation. 

8.1 Reimplementing Secondary Storage 

The server's actual database file is mainly used for storing segments. However, the front of the 
database file contains a number of non-segment structures that the Secondary Storage module uses 
to maintain the database file. These structures are, in order: 

1) A Super Server Block (SECS..sblock). 
2) Two Free Segment ID Bitmaps (SECS..fsidb). 
3) An old Free Segment ID Bitmap (SECS..fsidb_old). 
4) Two Free Extendible Hashing Leaf Page Bitmaps (SECS..flb). 
5) Two Free Block Bitmaps (SECS..fbb). 
6) Two Extendible Hash Tree Directories (SECS.Jtdir). 
7) Two Sets of Extendible Hash Tree Leaves (SECS~eaf). 

8) An Offset to Shadow Page Offsets (SECS..shadowoffs). 

The Super Server Block keeps track of the size of database blocks, the maximum size of the 
database file itself, and the compactor delay (the number of seconds to wait after last SECS call 
before starting the compactor). The Free Segment ID Bitmap tells which segment numbers can 
be used. The Free Extendible Hashing Leaf Page Bitmap says which hashing leaf pages are free. 
The Free Block Bitmap keeps track of which blocks are free. The Extendible Hash Tree Directory 
and the Extendible Hash Tree Leaves handle the mapping from Segment IDs to database block 
numbers. Where there are two copies of an item, this is for shadowing. 

Aside from maintaining control information (in item 1), the SECS module mainly uses these 
structures to implement two functions: 1) mapping Real SIDs to database offsets and sizes 
(items 4, 6 and 7), and 2) keeping track of unused Real SIDs (items 2 and 3) and database blocks 
(item 5). Although this scheme currently works, there are a number of reasons why it should be 
replaced. They are listed below in order of increasing significance: 

•	 The code in the SECS module is difficult to read and modify. This is in large part due 
to the extendible hash table that is used to keep track of segment locations (the Segment 
Pointer Table). Manipulations of this structure are scattered throughout the module and 
while individual operations are well documented, the purposes as a whole are often unclear. 

•	 The SECS module does not actually do all that it should. It is supposed to periodically 
compact the database, but this facility has been disabled, presumably because it corrupted 
the data. Because the code is currently so convoluted, it seems unlikely that anyone will be 
willing and able to figure out what is wrong and fix it. 

•	 But most importantly, the scheme itself is inefficient. Accessing or updating the SPT or other 
data structures kept at the front of the database file is slow because none of that information 
is cached. While presumably some of this information could be cached, it again seems unlikely 
that anyone will figure out a good caching method that is both useful and assures database 
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consistency. Again, this is in large part because of the difficulty of working with the SECS 
module code itself. 

Furthermore, it should be noted that database consistency is currently assured by having 
the SECS module toggle a shadow switch before each write to the database. This forces 
every changed structure (except the segments themselves) to be written to the database each 
time they are changed. For example, this means that currently, each call to the Secondary 
Storage Write routine (SECSvriteO) causes six calls to lseek and write, both of which are 
fairly time-consuming. 

In light of these problems, it is probably a good idea to revamp the entire Secondary Storage 
module, including the information it stores. The first item to deal with is mapping Real SIDs 
to database offsets and sizes. As described in Step 2 in Section 4.3 above, this procedure is the 
second half of the process of locating a segment. However, it need not be. There is no reason 
why Internal UIDs could not be modified to store Real SIDs and the Segment Mapping File could 
not instead map these Real SIDs directly to {Offset, Real Size, Virtual Size} triples. Not only 
would this eliminate the extra level of indirection currently necessary in object lookup, it would 
also allow all the data necessary for this lookup to be cached in main memory. Furthermore, it 
would eliminate the need for storing extra information (Virtual SIDs). Both the concept of Virtual 
SIDs and the Segment Pointer Table with its elaborate extendible hashing scheme (implemented in 
items 4, 6 and 7 above) could simply be thrown out. This proposed procedure is shown graphically 
in Figure 2. 

The only concern with making this change is assuring that the database could not become 
corrupted in the event of a server crash. It must always be possible to make a segment contain 
the exact same data that it did as of the last checkpoint. Currently, the use of both Virtual and 
Real SIDs is necessary to assure this. However, as long as segments are given new locations the 
first time they are written after each checkpoint, there is no need for new SIDs too. If the server 
crashes, the backup version of the SMF can be used to retrieve the old mappings. Otherwise, the 
old locations can be reused after the database has been checkpointed. It should be noted, though, 
that the segments' old locations would have to be stored in some temporary main memory data 
structure until this time. If the server crashed before the checkpoint, it is critical that the data in 
that memory not have been touched. 

The Segment ID bitmaps (items 2 and 3 above) could be incorporated into this modified SMF 
module. Since SIDs are initially given out sequentially, the SMF would simply need to keep track 
of the highest-numbered SID used. When segments got deleted their entries in the SMF could be 
marked as unused and incorporated into a free list of SIn entries. This would require no additional 
space and the the SMF module would merely need to maintain a pointer to the most recently 
deleted SID entry. Again, the locations that these entries pointed to would have to be stored in 
some temporary main memory data structure until the next checkpoint, in case the server crashed. 

The Free Block Bitmap (item 5) would probably also be better placed in its own file and kept as 
a free list of {Offset, Size} pairs. This information could also be cached. As mentioned above, care 
would have to be taken not to reuse recently freed database blocks until after the next checkpoint. 
This storage system would have the additional advantage of not having to allocate a bitmap one 
l024th of the size of the database just to indicate which blocks were and were not in use (as is 
currently necessary). 

With the elimination of this last changeable database header structure, the Shadow Page Offsets 
(item 8) could also be deleted. Thus, only the Super Server Block (item 1) and the segments 
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Figure 2: Proposed Object Mapping Procedure 
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themselves would need to remain in the database file. This set of changes would yield a significant 
performance improvement and would almost surely be worth the time necessary to implement them. 

8.2 Other Areas of Improvement 

The following are additional suggestions for future work to improve the performance of ObServer. 
For other, less critical suggestions, as well as a list of various items to investigate and a short list 
of rejected ideas, see the file "suggestions". 

Object Location Table 

As mentioned above, the Object Location Table is currently kept in a numbered set of files. An 
External UID ofthe form {File, Index} is looked up by reading in the entry at index Index in OLT 
file File. This method requires no computation and only a single disk access to look up any entry. 
IT few or none of the database objects that are ever created get deleted,_ this is clearly an optimal 
algorithm. 

However, if a large percentage of the objects are transient, a like portion of space will be wasted 
in the OLT files with tombstones. At 8 bytes per object ever in the database, this could become 
very significant. Assuming, for example, that 8 GB can be used solely for OLT files, this sets a 
hard limit of 1 billion objects in the database ever, even if no more than a thousand are around at 
any given time. This is undesirable, especially in light of the fact that the choice of using 64-bit 
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UIDs (instead of 32-bit ones) was presumably made to a.llow more than 4 billion objects ever7 • If 
ObServer is to reach its full potential of a seemingly infinite number of available UIDs, the OLT 
entries should be stored in a more flexible structure such as a B-tree[DEK73, pp. 473-480]. 

Duplicate Object Table 

Currently, the Duplicate Object Table has no main memory cache structure. Since most existing 
ObServer applications do not replicate or migrate objects, this is not a problem. However, if this 
functionality is to be used in the future, a cache structure like those in the OLT or SMF modules 
would be very useful. 

Also, the DOT, like the OLT, does not reclaim its memory. Every object that was ever in the 
DOT leaves a 48-byte entry behind, never to be reused, even if the object is deleted. IT a number of 
replicated or migrated objects get deleted, this becomes an inefficient use of space. In this case, a 
better system would be for the DOT module to maintain a pointer to the most recently freed DOT 
entry and for each free entry to have a pointer to the next free one after that (e.g. a free list). 

Main Memory Segment Table 

An LRU algorithm is used to select which segment should be paged out from the Main memory 
Segment Table when space is needed. The current implementation of this algorithm involves check­
ing the timestamp of each node in the MST. This is an O(n) operation and is unnecessary. Entries 
in the MST could be chained together in doubly linked lists, ordered by the most recent access 
(like the data structures in the OLT and SMF modules) and then the least recently used segment 
would always be immediately available. 

File Memory Management 

Currently, the responsibility for opening and closing files, as well as caching their data (if desired), 
lays with the individual modules that use files. As a result, caching is spotty and a number of 
modules have redundant file-open and -close code. Furthermore, each module only a.llows itself 
one open file at a time, which leads to unnecessary file-opens and -closes. From both a software 
engineering standpoint and a performance standpoint, this situation is undesirable. 

A good solution to this problem would be for a COMMON group module to be written to provide 
a global file memory management system. It is possible that the mmap memory-mapping facility 
could be used to help implement this, though maintaining compatibility with systems that did not 
support mmap would have to be considered. Besides removing the redundant code, this could a.llow 
file descriptors to be used where needed. Furthermore, caching could be uniformly provided for a.ll 
modules that do not need to write their data straight to disk for database consistency reasons8 . 

7Note that currently the constants defined in "CMNuid.h" provide {or up to 65534 (211 - 2) OLT entries per file in 
up to 1001 files for a current object limit of just under 65.6 million. In theory, either the file number or entry number 
limits can be raised up to 22S 

- 1 {or up to 2lil objects though of course this would require a quarter of a billion OLT 
files, each with two billion characters in them. Also, KAX..PlLE..ID (currently defined at 2000 in "CMNglob.loc.h") 
would have to be increased. Finally, Steve Reiss' Garden[SPR87] project currently assumes that only the lower-order 
16 bits o{ the file and index numbers are valid and he should be informed o{ any changes. 

'This should only preclude the database and log files from using a cache. The MST provides a cache {or the 
database file and the log files must be as non-volatile as pOlllli.ble. Otherwiae, ObServer's recovery system (which 
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Perhaps most significantly, such a system would make checkpointing much faster. As noted in 
Section 4.2 above, at checkpoint time, the entire contents of each persistent server structure (except 
the database file itself) are dumped to backup or shadow files. This is done regardless of how much 
or little has actua.I1y changed since the last checkpoint. A global file memory management system 
could keep track of which blocks of data would need to be updated in the shadow copy and only 
these blocks would need to be rewritten. The use of "backup" copies-which is confusing alongside 
the "shadow" system-could then be eliminated. 

Writing to Ports 

The Server Message Module Send routine (SMMsendO) currently concatenates a.I1 its outgoing 
messages into a single buffer and passes this buffer to the Communication module's Write to 
Port routine (COMMvrite_to_portO in the COMMON group). If a new Write to Port routine 
were written that used writev, this concatenation would be unnecessary. However, maintaining 
compatibility with systems that did not support writev would have to be considered. 

Reading from Ports 

Currently, the Communication module's Read from Port routine (COMKread~rom_portO in the 
COMMON group) only reads as much data as its ca.I1ing routines request. Though this may seem 
logicalt it actua.I1y results in an unnecessary amount of calls to the read routine since messages 
waiting at ports are often read in two pieces: first the header, then the actual data. One possible 
way to improve the efficiency of reading from ports (at the expense of performing some additional 
data copying) would involve creating buffers for each open port and reading as much as possible 
with each ca.I1 to the Read from Port routine. If this routine were modified to use the ready ca.I1, it 
could :first read the amount of data specified by its ca.I1ing routines and then put the rest into the 
port's buffer. Then, on subsequent calls, the Read from Port routine could first look to this buffer 
for more data before going to the system ca.I1 again. 

M ultigranularity Locking 

Dave Langworthy suggested using multigranularity locking. "Suppose you want to read locks on a.I1 
the objects in a segment and write locks on a few objects in that segment. With multigranularity 
locking you could get a.I1 the read locks by just read locking the entire segment and then only have 
to obtain the write locks. For that matter you could write lock the entire segment with just one 
table reference" [Personal letter]. This is probably a good idea. Currently, locks are kept on a 
per-uid basis in a giant hash table. Thus locking a segment with 250 objects, for example, requires 
250 lock table entries. Segment-level locking would prevent this. 

8.3 Unnecessary Modules 

Additionally, there are two modules in the SERVER group which should probably be deleted. The 
first is the Segment Hashing Table (SHT) module which keeps track of open segments on a per­
transaction basis. The information stored in SHT entries repeats what is in the Main memory 

treats open files as volatile and uses log and backup files for recovery purpOBel) makes the immediate writing of data 
to files unnecessary. 
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Segment Table, except that the SHTs only know about the segments for one transaction, not 
the entire set of transactions. Therefore, if each transaction has a number of segments open and 
none of the other transactions use the same segments, this might be useful to avoid searching the 
whole MST. On the other hand, SHT entries do not show what segments other transactions have 
in memory and are therefore unable to suggest using these. Furthermore, SHT entries are not 
updated when the MST swaps segments out so its suggestions might be useless or wasteful., Rich 
Kogut notes: "I don't know if maintaining the SHT is worth the trouble or not. IT anyone ever 
reactivates the segment context [Segment Group] code, it might be easy to establish an implicit 
segment context instead of putting the information in the SHT" [Personal letter]. 

The Segment Mapping Table is also not really necessary. There is no reason why Virtual to 
Real SID mappings cannot be written straight to the Segment Mapping File. IT the server crashes, 
the old SMF can be restored from its ".bak" files; the real SIDs are not "lost" until the next 
checkpoint. The only real use of keeping track of which mappings have been created since the 
most recent checkpoint is to keep the Segment writing routine (SEGvriteO) from unnecessarily 
creating more Real Sills and to know which old Real Sills can be recycled after checkpoints. 
When the Segment writing routine is called, it first sees if a Virtual SID is already mapped in the 
SMT-if so, there is no need to create a new reallocation for the segment because one has already 
been created since the last checkpoint. Also, the routine that converts the SMT to the SMF at 
checkpoints (SHTconvert..smt_to..smf 0 returns a list of old mappings that were changed since the 
last checkpoint and this list is used to decide which Real Sills can now be marked unused. A minor 
modification to the SMF to keep track of "dirty" mappings would take care of both these needs 
and make the SMT completely unnecessary. 

Also, see Section 6 for a discussion of modules that have already been deleted but may be of 
interest in the future. 

8.4 Inconsistencies with the Documentation 

Finally, there are a few places in ObServer where the actual behavior is inconsistent with what 
is in the documentation. In the items below, "the documentation" refers to "ObServer II Server 
Interface Specification"(MFF88]. 

Group Mode 

The following paragraphs are from the documentation: 

In ObServer II, the server executes in one of two modes: normal or group. In normal 
mode, any object modifications that a transaction makes are installed in the database 
even if the transaction aborts. Although this violates the standard notions oftransaction 
behavior, it makes no assumptions about which transactions are privy to uncommitted 
object changes. In group mode, it is assumed that all transactions are cooperating and 
are thus dependent on each other's behavior. While the server executes in this mode, all 
transactions must abide by predefined group protocols. These protocols are described 
below in the server interface specifications. 

In a future release, it is intended that multiple levels of transaction groups will be 
supported and that the group protocols will be user-definable. (Section 2.3, p. 4] 
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Unfortunately, although this feature was researched thoroughly and discussed in [FZ89], no actual 
progress was made on implementing it. Furthermore, since it seems unlikely that group mode will 
ever be implemented, the remaining vestiges9 of this feature should probably be removed. 

Segment Groups 

Similarly, the initial description of ObServer has a notion of segment groups which are sets of re­
lated segments[HZ87, Section 4, p. 76]. The SVRset-sg_contextO, SVRappend-segment..groupO, 
SVRcreate..segment-p"oupO, SVRfetch-segment..groupO and SVRinquire...segment..groupO 
server routines are provided to work with them. However, the Segment Group Module (SGM) 
is not yet fully implemented and none of the above routines is actually callable. This module 
should either be removed completely or implemented completely. 

Schedule Files 

The following is also from the documentation: 

In addition to a configuration file specified by a client, each server has a unique schedule 
file. The schedule file determines how frequently certain server functions will be per­
formed. The file is named DB...PATH/database-name.schedule.data. A default schedule 
file is found in I{OBS}/data/schedule.data. [Section 3.3, p. 6] 

The last sentence is incorrect and unclear. Currently, there is no such file, but that can easily be 
changed (see also the "doclssues" file). More importantly, the sentence hints that putting a file 
named "schedule.data" in one's "SOBS" directory will provide default values. This is not the case 
although it probably should be. Such a system would allow one to have a default set of schedules, 
instead of having to create one for each new database. This change, if desired, would involve a 
simple modification to the "SCHED..read" function in "SVRschedJoc.c". In any case, a decision 
should be made and the documentation should re:flect this decision. 

Also, the documentation says: "If a keyword is omitted, the server never executes the associated 
function." This is currently not true. Again, minor changes to the "SVRschedJoc.c" file could make 
it so. 

Streams 

Finally, the documentation says: 

At transaction commitment, any open streams will be closed and the operations exe­
cuted on the buffered data. Aborting of a transaction will result in the aborting of all 
open streams. [Section 9, p. 27] 

This is currently false. Either the documentation or the code should be changed appropriately. 

8These include a variable called "MODE" in the "config..fi.le" and the svaexecution..aode variable, as well as the 
already deleted Lock Filter module. 
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9 Supplementary Information 

Along with the documentation provided in this paper, there are a number of supplementary files 
that are also of interest. These files are located in "/pro/observer/doc/masters/ghd". 

"benchmarking" Instructions on how to generate the benchmark data. 
"changes" A list of the less significant changes I made to ObServer. 
"common..modules" Single-sentence descriptions of each module in the COMMON 

group. 
"deleted...files" A complete list of the files that I removed from the ObServer 

source directory, along with reasons for each deletion. 
"global..macros" A description of each macro in the global module in the 

COMMON group. 
"indent" A list of formatting decisions for the indent program. 
"overview" An overview of the structure of ObServer and some pointers on 

coding style. 
"server..modules II A detailed description of each module in the SERVER group. 
"suggestions" Less significant suggestions, as well as a list of various items to 

investigate and a short list of rejected ideas. 

Additionally, the"Ipro/observer/doc/masters/ghd" directory contains two subdirectories. The 
"DATA" subdirectory contains all the data used in tables in this paper except what was taken 
from [FZE90]. The "MISC" subdirectory contains a few files of data and observations that 
were not included in this paper. This paper itself is named "FINAL.tex" and is also in the 
"IproIobserverIdoclmastersIghd" directory. 
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A Server Modules
 

The following is a complete list of modules in ObServer's SERVER group: 

CAT 
CF 
DEAD 
DOT 
LOCK 
MST 
NUM 
OBJC 
OLT 
QUE 
RL 
SCHED 
SECS 
SEG 
SGM 
SHT 
SMF 
SMM 
SMT 
SSDT 
SVR 
TRANS 

Client Activation Table 
Constants File 
DEADlock material 
Duplicate Object Table 
LOCK material 
Main memory Segment Table 
NUMbers for objects (UIDs) 
OBJect Cache table 
Object Location Table 
QUEuing procedures 
Recovery Log 
SCHEDuling timer events 
SECondary Storage 
SEGment maintenance 
Segment Group Module 
Segment id Hashing Tables 
Segment Mapping File 
Server Message Module 
Segment Mapping Table 
Server Socket Data Transfer 
SerVeR routines 
TRANSaction module 

For a more complete description of each module, see the file "server..modules". This includes 
purpose and relation to other modules, significant main and secondary memory data structures and 
important routines. 
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