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1 Introduction 

Computer-generated animation embodies a wide variety of disparate motion­
synthesis techniques. The earliest computer animation systems employed 
kinematic approaches, in which the animator explicitly specified a number 
of keyframes, and the computer calculated the in-between frames. Various 
methods were used to specify the interpolation methods for the smoothness 
of the in-betweening. 

The quality of keyframed animations is directly proportional to the num­
ber of keyframes used. Thus, much of the burden of producing a quality an­
imation is placed on the animator. In an effort to achieve increased realism 
and relieve the animator of this burden, procedural-based motion synthesis 
has gained popularity. These methods simplify motion specification at the 
expense of an increased computational cost. These methods, which include 
inverse kinematics, are popular in articulating human and other joint-based 
movement. 

However, the greatest realism in motion for computer-generated anima­
tions is achieved through physical simulation. In a simulation, the user 
specifies a set of initial conditions and invokes the physical simulation. The 
simulation method is responsible for calculating the relevant data for the ob­
jects after each of a series of finite time steps. The calculations are based on 
a set of rules that will generate the realistic motion, for example, Newton's 
Laws. Although computationally expensive, physically-based simulations 
have produced the most realistic computer-generated animations to date. 

The Brown Animation Generation System (BAGS) is a large-scale time­
parameterized modeling and animation system. Previous versions of BAGS 
allowed the creation of animations through purely keyframed techniques. 
This project adds the ability to perform dynamic simulations to BAGS 
without compromising the previous keyframing functionality. This requires 
modifications to existing algorithms in BAGS, and the addition of new data 
structures to deal with the flow of control through time. In addition, this 
project provides a partial solution to the problem of integrating disparate 
control-method techniques. 

The reader is assumed to be familiar with the Brown Animation Gener­
ation System, as described in [13J and [4J. 
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2 Previous Work 

The earliest computer animation systems were designed to compute the "in­
between" frames from specified 2D keyframes [3J. 3D animation systems 
were originally logical extensions of the 2D keyframe systems, but higher 
levels of control were necessary for more complex models [10]. Parameterized 
models [8] [9J allowed a slightly higher level of control, as the values stored 
at each keyframe were parameters which controlled the positioning of the 
model, as opposed to being the positions themselves. 

While parameterized keyframing is still a widely used technique, and will 
probably remain the paradigm of choice with many animators [7J, researchers 
have sought higher-level motion specification techniques in order to simplify 
the animation development process and increase the realism of the resulting 
motion. Procedural methods can be used to specify the keyframes based 
on simple instructions rather than explicit positions. One such technique, 
inverse kinematics [2], simplifies the specification of keyframes. 

Realistic, as in real life, motion requires that the objects obey the laws 
of physics. In recent years, a great deal of research in computer graphics 
has focused on techniques to produce motion based on the laws of physics 
[1] [6]. In a dynamic simulation, objects are given a set of initial conditions 
and a forward simulation is begun. At each time step, the objects' new 
positions (and/or shapes) are determined from their previous positions and 
their current physical properties, such as mass, force, and torque. 

Dynamic simulations provide vastly more realistic motion, but they pay 
the price of being more computationally expensive. In addition, the simu­
lated objects often require some form of control [11] [12], as they may be 
constrained to exhibit specific behaviors. 
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3 Project Goals 

3.1 The addition of simulation 

The primary goal of this project is to add simulation to BAGS. BAGS is 
a parametric keyframing system, but since all BAGS object attributes are 
inherently time-varying, BAGS objects are well-suited for use in dynamic 
simulations. In fact, it is possible to add simulation to BAGS without 
compromising the keyframing functionality. 

As a keyframing system, BAGS can quickly obtain information from an 
object at any given time in a random-access fashion. That is, an inquiry 
for information from an object at time t will find the two keyframes whose 
times enclose time t, and interpolate a value for time t. The value at time 
t is not dependent on the value at any previous time, and can therefore be 
evaluated quickly. 

In contrast, dynamic simulations require a past history to be maintained. 
A dynamic simulation begins with the specification of initial conditions. 
When an advance in time of dt is made, new values are calculated based on 
t.he previous values n,'ld the time step dt. Thus, if an inquiry for information 
is made at time t, it is necessary to simulate from time 0 to time t, one time 
step at a time, until time t is reached. The value at any time t is dependent 
on the value at the time t - dt. 

As a simple example, consider the motion of a ball moving through space 
with a velocity v. If the simulation's time step is 0.1, then the position of, 
the ball at any time t is the position at time t - 0.1 plus the integral of v 
from time t - 0.1 to t. More complex dynamic simulations also take into 
account attributes like mass, force, torque, moment of inertia, and friction. 

Although dynamic simulations provide a much greater degree of real­
ism for motion, the advantages of the previous keyframing system should be 
preserved in a general animation system, since motion based on physical sim­
ulation requires intense floating-point computation and does not necessarily 
produce the desired motion. In some cases, parametric keyframing can pro­
vide an animator with the exact motion desired. For example, a clock's hour 
hand and minute hand motion can be exactly specified by through simple 
rotations - it is not necessary to preform a dynamic simulation to achieve 
this motion. 

This project strives to provide the maximum flexibility to create: 

1. Animations where all motion is keyframed. 
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2. Animations where all motion is calculated by simulations. 

3. Hybrid animations where some objects' motion is under the control of 
simulations and other objects' motion is keyframed. 

4.	 Hybrid animations where a single object's motion is specified by both 
simulation and keyframe specifications. 

Note that (4) offers a form of control for a dynamic simulation. An object's 
initial conditions can be specified in a traditional keyframe fashion. Then, 
after each simulation step, additional keyframe specifications can be given 
to the object to adjust or constrain any attributes that the user desires. 

3.2 Integration of disparate control methods 

This project evolved from a series of discussions by a working group in 
the Brown Graphics Group addressing the problem of integrating disparate 
control methods. The aim of the discussions was to better understand the 
problem of integrating different rnimation paradigms into one large frame­
work, and to make an ini~jal attempt at SO]ViT,g the problem. A detailed 
summary is given in [5]. The main points relevant to this project are restated 
here. 

In theory, a controller is an object that can read and modify the states 
of other objects. For example, given a set of joint and linkage objects, 
an inverse kinematics controller writes chops into the states of the joint 
and linkage objects, and thereby controls some or all of the behavior of 
those joint and linkage objects. As another example, a collision detection 
controller inquires the states of a set of objects and determines if there is any 
penetration between the polygonal representations of the objects. If there 
is, the collision detection controller can modify the states of those objects 
by writing in appropriate response chops, or it can simply relay the collision 
information to a collision response controller. 

In practice, the controlled object makes a data inquiry to the controller 
object. The controller's data inquiry method supplies the requested data. 
For example, the object ball has its acceleration controlled at time 0 (and 
on) by the controller gravity. In a SCEFO script, this is specified in the 
following manner: 

ball: acceleration 0 = gravity.acceleration; 

If the controller is controlling multiple objects, the chop reference may be 
parameterized: 
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ball:	 force 0 = ncr.force(ball); 

Here, ncr is a Newtonian collision response controller that might be used for 
many objects to calculate the appropriate responses for collisions between 
any two objects. 

The working group found the problem of integrating disjoint controllers 
hard, probably unsolvable. The biggest difficulty arose from the desire to 
consider each of the multiple controllers as a black box - a separate entity that 
contains no knowledge of the mechanics or even the existence of the other 
controllers. The working group came up with a simple example in which 
it is impossible for two black box controllers controlling a single object to 
correctly solve a given p:roblem. Some form of communication between the 
two controllers is necessary to determine the correct solution. 

While this was a disappointing result, it is still possible to have multiple 
controllers affecting a single object. BAGS chops are prioritized, and state 
traversal is performed in strict priority ordering. For example, an object 
ball could be controlled by the controllers gravity and wind: 

ball:	 acceleration 0 = gravity.accelerativn
 
force 0 =wind. force;
 

Due to chop priorities, the end effects of multiple controllers on a single 
object may depend on the priority ordering of the object's controller refer­
ences. In the above example, gravity affects the ball before the wind does. 
Script priority ordering of the controllers offers the user more flexibility than 
BOLIO's strict ordering of kinematics before dynamics. 

The working group concluded that an initial attempt should be made at 
integrating different motion controllers. The first step was to add the ability 
to perform simulation to BAGS. 
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4 Implementation 

The actual implementation of a framework to provide BAGS with a tech­
nique to perform simulations involves extensive modifications to many low­
level systems packages, including STATE, CHOP, and SXF. These modifications 
involve the creation of new data structures and algorithms, as well as mod­
ifications to existing algorithms. 

4.1 Review of the previous version of BAGS 

Before presenting the new data structures required to add simulation to 
BAGS, it is useful to review some of BAGS' previous mechanisms for main­
taining chops and performing data inquiries. 

In the previous version of BAGS, there was a single linked list of all the 
chops presently in the database, ordered by chop priority. When a chop was 
created, it was added into this chop list at the appropriate location based 
on its priority. 

E~.ch state maintained a single list of chops, also ordered by chop pri­
0~i!~r. !n':].'.ll:ies to the state were made at a given time and chop priority. 
The state's chop list was traversed up until the given priority, each chop 
being evaluated at the requested time, and an response to the inquiry was 
accumulated during this traversal. 

4.2 Scopes 

The notion of a scope is introduced in order to differentiate between the 
keyframing and simulation data evaluation paradigms. A scope is a group 
of chops that is either static or dynamic. A static scope is one in which data 
evaluation at a given time t is not dependent on any data at previous times. 
A dynamic scope is one where data evaluation at time t is based on data at 
a previous time t - dt. 

A data inquiry into a static scope will cause a state traversal, as in 
the previous version of BAGS. Since the inquired data is not dependent on 
data at previous times, the data can be quickly evaluated and returned in 
a random-access fashion. A data inquiry into a dynamic scope, however, 
will require data from previous times. If these values have not been com­
puted (i.e.. this is the first inquiry into this dynamic scope), a simulation is 
performed up until the requested time. 
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4.3 New data structures 

Two new data structures, the CHOPs cope and the STATEscope, are intro­
duced to provide a more general framework for chop management that will 
allow for both keyfraIl}ing and simulation paradigms through the concept of 
scopes. 

4.3.1 Chop Scopes 

Recall that the goal is to not just to add simulation to BAGS, but to create 
a general mechanism that will also preserve the previous keyframing func­
tionality. That is, a SCEFO script that previously worked in the purely 
keyframing system should also work in this modified system. 

A new CHOP data structure, the CHOPs cope, is introduced. A CHOPs cope 
has the following fields: 

1.	 a name for this CHOPscope 

2.	 a pointer to a CHoPscopa, llspd to maintain a linked list of all the 
CHOPscopes in the d~tab~::;c 

3.	 a linked list of chops in this CHOPs cope 

4.	 a field denoting the CHOPs cope as either a static scope or dynamic 
scope 

The previous version of BAGS maintained an ordered list of all chops 
in the database. This is now represented by an ordered list of CHOPscopes, 
where each CHOPscope maintains an ordered list of chops. A CHOPscope is 
created by the SCEFO statements scope_static and scope_dynamic. Any 
chops defined after one of these statements will be placed in the chop list 
of this CHOPscope, until another scope_static or scope_dynamic statement 
is encountered. 

4.3.2 State Scopes 

In addition to the CHOPs cope data structure, a new STATE data structure, 
the STATEscope, is introduced. A STATEscope has the following fields: 

1.	 a pointer to the CHOPscope associated with this STATes cope 

2.	 a list of chops 
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3.	 the number of chops in the chop list 

4.	 two pointers to STATEscopes in order to maintain a doubly-linked list 
of STATEscopes for a particular state. 

In the previous version of BAGS, each state maintained a single ordered 
list of chops. Now, a state maintains an ordered list of STATEscopes, where 
each STATEscope contains an ordered list of chops. When a chop is added to 
a state, it is placed in the STATEscope associated with the chop's CHOPscope. 
A state only needs to maintain a STATEscope for a particular CHOPscope if 
it includes a chop from that CHOPscope. 

4.4 Preserving Keyframing in STATEtraverseO 

With the new modifications, all data inquiries are now made at a given 
time, STATEscope and chop priority. STATEtraverseO is used to step 
through each chop in a given STATEscope. In any given inquiry to the 
state, STATEtraverseO might be called recursively to inquire data from 
a STATEscope previous to the one the original inquiry was mad,:> at. For 
example, if a state has two scopes, scope1 and scope2, and an inquiry is 
made for information as of priority 2112 in scope2, a recursive inquiry for 
the same information as of the" last priority in scope1 will be made (unless 
there is a valid cache of this data in scope2). 

4.5 Adding Simulation 

Up until this point, two new data structures and an algorithm modification 
have been introduced. These changes preserve the keyframing functionality 
of BAGS. This section presents a new traversal routine that allows BAGS 
to perform dynamic simulations. 

4.5.1 STATEtraverse_dynamicO 

An inquiry for data in a static scope is treated as in the previous BAGS. The 
data is inquired at a given time t, and the chops are evaluated at that time. 
STATEtraverseO is used for inquiries into static scopes. In pseudo-code, 
the routine is: 

1*	 STATEtraverse() *1 
1* Handle an inquiry at time t and chop priority pri *1 
find most recent cache; 
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for each chop from most recent cache until priority pri 
call the chop method, accumulating the response; 

For dynamic scopes, an inquiry for data at time t requires the value of this 
(and possibly other) data at a previous time t-dt. To handle this, a new rou­
tine, STATEtraverse_dynamicO, is introduced. STATEtraverse-.dynamicO 
contains a for-loop that performs the simulation's time-stepping - this loop 
is called the simulation loop. In pseudo-code, STATEtraverse-.dynamicO is: 

1* STATEtraverse_dynamic *1 
1* Handle an inquiry at time t and chop priority pri *1 
1* in a dynamic scope *1 
find most recent cache; 
It = time of most recent cache in this dynamic scope; 

1* The simulation loop*1
 
for sim_time =It to t step dt
 

1* inquire initial conditions *1
 
inquiry data at end of previous scope;
 

1* traverse the chop list *1 
for each chop from most recent cache until priority pri 

call the chop method and accumulate response; 

Thus, if an object's position and velocity are controlled by a dynamic simu­
lation method, then the object contains chops that are placed in a dynamic 
scope. When an inquiry to this object is made at this dynamic scope, 
STATEtraverse_dynamicO is called and a simulation is performed from the 
time of the last valid values (or time 0 is there are no previous values) up 
until the requested time. 

Subtle Issues in Simulations 

The above pseudo-code for STATEtraverse_dynamic is a simplified version 
of the actual implementation. There are a few subtle problems that must 
be dealt with - these are discussed in the following subsections. 
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5.0.2 Conserved Data 

A dynamic simulation requires the retrieval of certain data at previous time 
steps. In a sense, this data must be conserved from one time step to the next 
- the value of the data at the end of the simulation loop iteration at time 
t - dt must be the same as the value at the beginning of the next iteration 
at time t. Physical attributes such as position and velocity are examples of 
conserved data. 

At the end of each iteration of the simulation loop, conserved data must 
be stored for use the next iteration. The BAGS caching mechanism [13] is 
used to store this data. At the end of each iteration of the simulation loop, 
any conserved data that has been accumulated is stored as a cache at time 
sim-iime (a point time interval). Therefore, this data may be retrieved 
during the start of the next iteration. 

One drawback of this technique is memory usage. For example, a simu­
lation with 500 time steps will produce 500 caches each of position, velocity, 
angular velocity, and potentially other conserved data. This is highly waste­
ful, since each cache is typit:<llly used only once, during the iteration after it 
was created. A iU0iC effidcilt 5trategy is desirable, and of high priority for 
future work. 

5.0.3 The Dynamic Chop 

At each time step in a simulation, current values are derived from previous 
values, and often involve some form of computation. For example, a physical 
simulation that obeys Newton's Laws will derive an object's current position 
from the position at the previous time step and the current velocity. The 
current velocity is derived from the velocity at the previous time step and the 
current acceleration. By definition, these computations involve integration 
of velocities and accelerations with respect to time. 

To perform this integration, a new dynamic chop is introduced. The 
dynamic chop is automatically inserted at the beginning of a dynamic scope. 
Its function is to inquire previous values of data (i.e., retrieve the values 
cached at the previous time step) and perform the integration over time to 
derive new values. Since the dynamic chop is placed at the beginning of a 
dynamic scope, it will always be handled before the rest of the chops in the 
scope during a state traversal. Thus, integration is done at the start of each 
new iteration of the simulation loop. 

In this implementation, the dynamic chop handling method performs 
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a simple Euler integration technique in order to determine position from 
velocity, orientation from angular velocity, velocity from acceleration, and 
angular velocity from angular acceleration. The following set of equations 
summarizes this technique: 

1. x"i = Xt-dt +Vt X dt 

2. R t = Rt-dt +Wt X dt 1 

where x is position, R is the orientation, v is velocity, ii is acceleration, W is 
angular velocity, and a. is angular acceleration. 

5.0.4 Partial SXF Forms 

BAGS stores database information in a data structure called a SXFform. 
During a state traversal in a static block, a SXFform i~ l':l..ssed along as each 
chop is visited, and the inquired data is accumuiated into this SXFform. 

However, when caching conserved data in the simulation loop, the entire 
form should not be cached. If the entire form, which includes the initial con­
ditions, is cached and reinquired in each successive iteration, an undesired 
"multiplying" effect is achieved. That is, if the simulation loop runs for ten 
iterations, then the initial conditions will be applied ten times. If the initial 
position of an object is (5,0,0), then by the tenth iteration of the simulation 
loop, the object will be translated out to (50,0,0). 

The problem is that the initial conditions should not be conserved. The 
conserved data should only represent the partial product of the accumulated 
data, that is, the portion of the data that has been obtained only by the 
simulation, not from the initial conditions. To accommodate this, a SXFform 
can now contain two parts, one for the initial conditions, and one for the 
partial product in a dynamic scope. At the end of each iteration of the 
simulation loop, the partial product portion of the form is the only part 
that is conserved and cached. 

After the simulation loop is completed, the two parts of the SXFform 
are usually compressed into one complete SXFform which represents the 
answer to the inquiry. The function SXFcompress..form accomplishes this ­

1 Although this equation is not valid mathematically, the idea is what is important ­
rotations are based on angular velocities. 
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it contains the knowledge of how to merge the initial condition information 
and the partial product into one SXFform for all the types of conserved data. 

5.1 Using Multiple Scopes 

In practice, a dynamic simulation usually contains a static scope that sets 
up the initial conditions of the simulation, and a dynamic scope where the 
simulation is actually performed. In addition, a final static scope may be 
placed after the dynamic scope in order to specify kinematic adjustments 
to the objects in the simulation. The scope mechanism gives the user the 
flexibility to add kinematic user control as necessary. 

The scope mechanism allows some objects to be under the control of 
a simulation and others to be purely keyframed in the same animation. 
This is due to the feature that an object performs a dynamic simulation 
if and only if it contains chops declared in a dynamic scope. Thus, it is 
simple and straightforward to create a scene in which the scenery (walls 
of a room, floor, and other "immovable" objects") does not get involved 
with the objects being controlled by a dynamic simulation. This can save 
considerable computation time. 
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6 Conclusions and Future Work 

The Brown Animation Generation System was previously a purely keyfram­
ing system. This project has added the ability to perform dynamic sim­
ulations, while preserving the previous keyframing functionality. The new 
technique involves the creation of static and dynamic scopes, and a new state 
traversal routine to perform the simulation. The BAGS caching mechanism 
is utilized to carry data over from one time step to the next. 

There is much opportunity to improve on the existing framework. One 
area for improvement is reducing the amount of cached data used to carry 
information over from one time step to the next. These caches are typically 
used only once, during the iteration after they were created. Thus, it would 
be useful to remove some or all of the caches immediately after they are 
used. Along the same lines is the notion of a time 0 simulation, in which 
the system behaves as a forward simulator running for an indefinite length 
of time. This would certainly require a better caching strategy. 

This project represents an important step towards the development of a 
general animad.:m system. Although simulation methods are becoming in­
creasingiy popuiar, keyframe techniques will remain an important paradigm 
in the creation of computer animations. By merging the two paradigms into 
one general framework, this project is the first step towards the creation of a 
unified graphics architecture in which multiple forms of motion control can 
be specified. 
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