
..

BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-91-M12

A Data Cache that Learns to Fetch

by

Mark L. Palmer

A Data Caclle that Learns to Fetch

Mark L. Palmer

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science

in the Department of Computer Science at Brown University

March, 1991

A This submission by Mark 1. Palmer is accepted in its present form

by the Department of Computer Science in partial fulfillment of the

requirements for the Degree of Master of Science.

Date ~8~;~
StaIlieYiZ oniV
Advisor

A Data Cache That Learns to Fetch

Mark Palmer
Digital Equipment Corporation
2 Elizabeth Drive CTC2-2/D10
Chelmsford, MA 01829

Abstract

This paper describes Fido, a predictive cache
[palmer 1990] that anticipates access by em­
ploying an associative memory to recognize
regularities in access pattern for each isolated
access context over time. Continual training
adapts the associative memory contents to data­
base and access pattern changes, allowing on­
line access predictions for prefetcbing. We dis­
cuss two salient components of Fido - MLP, a
replacement policy for managing prefetched ob­
jects, and Estimating Prophet, the component
that recognizes patterns and predicts access.
We tben present some early simulation results
which suggest that predictive caching worlcs
well and conr:lude that it is a promising method.

1 Introduction
A major performance factor for current OODB systems
is the cost of fetching data from secondary storage as
needed. In workstation-server architectures, this cost is
compounded as data crosses several I/O boundaries on
its path from the server's secondary storage to an appli­
cation's memory. Caching in workstation-server OODB
architectures improves performance, as described by
[Rubenstien 1987]. Chang and Katz [Chang 1989] found
that cache management policy has the largest effect on
response time, followed by clustering, a much-studied
topic [Chan 1982], [Stamos 1984], [Hudson 1990]. Cur­
rent OODB cache designs are derived from virtual mem­
ory demand pagers, which often prefetch clusters, but as­
sume no explicit knowledge of the future. The goal of
clustering is to force a locality of reference on data like
that inherent in code execution, the property exploited
by demand paging.

However, a major purpose of databases is to allow data
sharing and integration of diverse applications. Cluster
prefetcbing alone can be inherently ineffective when us­
ers mix conflicting patterns in accessing the same data.
Devising a clustering that is both fair and efficient then
becomes problematic and expertise-intensive, and find­
ing an optimal partitioning can be computationally un­
feasible [Niamir 1978]. Thus a user-specific yet general
purpose complement to cluster prefetch is of interest.

Stanley B. Zdonik
Brown University

Computer Science Dept.
Providence, RI 02912

We are finding that access within individual contexts
can be predicted because of structure in data and deter­
minism in programs, irrespective of inherent or ar­
ranged locality of reference. Fido automatically recog­
nizes and exploits patterns that emerge over time within
each access context to provide accurate prefetching un­
der mixed access paradigms, for which the best clus­
tering may be a compromise.

1.1 Predictive Caching

A predictive cache can supplement existing cache man­
agement strategies, such as demand paging with cluster
prefetching, or could function as a primary cache.
Fido's predictive cache model is an extension of com­
mon demand fetching strategies. The cache manager is
augmented with a component consisting of an assc.::ia­
tive memory and several pattern recognition routine&.
This "black box" is known as the Estimating Prophet.
The prophet learns access patterns for isolated contexts
over time well enough to predict access within each
context. During a database session, the prophet moni­
tors client-server communication and generates access
predictions, which Fido then uses to prefetch data.
Each prediction indicates an explicit expected order and
likelihood of access, information that is exploited by the
cache manager's replacement policy.

This solution addresses the difficulties described
above and has several desirable properties. The prophet
gains experience with each access pattern individually,
tailoring its predictions within each access context ac­
cording to the history of that context, without consider­
ing other usage patterns. Also, the prophet monitors ac­
cess sequences in a non-invasive way, requiring no
knowledge of data model or schema. Its operation is
automatic and invisible to the database administrator.
requiring little in the way of time, intuition. or expertise
to operate. By continually monitoring access sequences.
the prophet can adjust its predictions to reflect changes
in usage quickly, incrementally, and in a uniform way.

1.2 Paper Structure

This paper introduces concepts and terminology useful
as a framework for studying predictive caching, and
discusses design issues identified by running the simula­
tion experiments described. It does not attempt formal
analysis of optimality for all possible worlds.

Our current research focuses on two topics. The first
topic concerns how to best incolporate predictive
prefetch activity into cache management, given costs of
prediction and prefetching. The second topic involves
comparing various prophet designs to assess predictive
accuracy and efficiency. Accordingly, this paper pre­
sents a) a model for predictive cache management and
b) a prophet design that uses associative memory to rec­
ognize and predict access sequences on-line.

Section 2 describes how Fido fits into a workstation­
server OODB architecture. Section 3 presents a cache
management model that incolporates prediction. The
method of recognizing and predicting access patterns is
discussed in section 4. Section 5 describes some inter­
esting experiments simulating a predictive cache using
actual access traces. Section 6 discusses related worle,
and some conclusions are offered in Section 7.

2 ArChitectural Overview
The purpose of this section is to summarize just those

aspects of the target database architecture essential to il­
lustrate how Fido works. This description covers a sub­
set of functions provided by the database system, and
entails some simplifying assumptions. First, methods
for managing a cache of variable-sized objects are or­
thogonal to the issues of accuracy and costs of
prefetching examined in this paper, so one running as­
sumption is that objects are of uniform size. Second, the
distributed system architect must consider methods of
validating and synchronizing cached objects against
replicas. These issues have been addressed by others
(e.g. [Alonso 1990], [Wilkinson 1990], [Garza 1988]),
and are not considered here. We assume that prefetcbed
objects are locked and validated in cache as if they had
been requested. The target design applications will usu­
ally have low contention for write locks, since these ap­
plications often have high read/write ratios ([Cattell
1987], [Chang 1989]). The functioning of a predictive
cache per se does not rely on these simplifications.

Predictive caching will be most useful to distributed
applications that:

•	 are data intensive, with high read/write ratios

•	 use navigational access patterns which each imply
different data clusterlngs

•	 create and delete medium-granularity objects at a
rate slow enough to permit tracking of changes

•	 preserve some degree of object identity.

In general, CAD applications have many of these char­
acteristics. Object identity is maintained by OODBs,
which support data sharing between such applications.

Fido is intended to operate in OODB systems where
applications retrieve objects from secondary storage and
cache them in local memory. This is known as a
workstation-server, or intelpreter/ storage manager ar­
chitecture. The typical system consists of a central
server machine responding to requests for data shared
between applications running independently on worle­

•

stations. Several systems, such as Cactis [Hudson
1990], O2 [Velez 1989], ORION-ISX [Garza 1988],
and Mneme [Moss 1990] are similar in this respect. In
[DeWitt 1990], the performance of several such vari­
ations is compared. We wish to add Fido to Ob­
server/ENCORE [Fernandez 1990]. The primary com­
ponents of the architecture are the database server and
the client, which includes the predictive cache.

2.1 Database Server

Observer acts as a typeless back end to applications,
managing access to database secondary storage. Ob­
server maintains strong object identity [Khoshafian
1986], which aids predictive caching - the preservation
of identity simplifies recognition of reoccurring parts of
an access pattern over time. Object identity in Observer
is provided via an external unique identifier (UID) that
acts as an immutable handle for an object and is not re­
cycled. OODBs may assign meanings to individual bits
of UIDs, these semantics are not of concern to Fido,
which treats access sequences as strings of symbols.

A read message supplies a list of UIDs to Observer,
which gets the identified objects from disk or a server­
managed buffer and returns them to the requester. To
facilitate prefetching, the basic Observer read function is
extended in several ways. A requester marks reads for
either demand or pre/etch processing. Observer ensures
that outstanding prefetch requests never delay other re­
quests by providing a pre-emptive read operation, to be
used by demand requests, that is serviced before other
reads.

Observer objects can be clustered into segments and
can migrate or be replicated between segments. Ob­
server returns a segment when one object in the segment
is referenced, thus segments are the usual unit of server­
client communication. Segment prefetching may also
be disabled, in which case the set of objects in a request
is returned as the unit of network communication.

2.2 Client

A workstation application interfaces to Observer via the
ENCORE client component, which acts as an inter­
preter, mapping the data model used by the application
onto operations understandable by Observer. ENCORE
implements object type semantics, executing methods
and enforcing encapsulation, and is typically bound into
the application's image. ENCORE also validates cache
objects and supports other database functions related to
persistence and distribution, but the orer~tion of these
is unrelated to the prefetch mechanism. The salient
function of the client is that it allows the application to
reference objects by UID, without knowledge of how or
where objects are stored. The client ensures that refer­
enced objects are ferried between the server and the ap­
plication's local memory transparently. Clients take
various approaches to translating object references to
memory addresses, often using some form of Resident
Object Table (ROT) to obtain a pointer to the object's
location in memory, and may "swizzle" the ROT entry
by adding the memory pointer .

ENCORE maintains a cache of currently used objects,
sending demand requests to the server when the applica­
tion references an object not in cache and "flushing"
modified objects back to the server's secondary storage
as needed. If the way objects are clustered into Ob­
server segments does not suit the current access pattern,
cache faults can increase network demand fetches,
slowing response time perfonnance.

2.3 Access Contexts

The client isolates access patterns according to access
contexts. The prophet provides context identifiers
(ClOs) as a handle for associating patterns generated by
the same source. By default, ENCORE uses CIDs to in­
dicate the combination of user and application that gen­
erates a particular access sequence, but context assign­
ment may be controlled further by the programmer. For
example, an application might provide one function that
graphically displays a circuit design, and another func­
tion that allows ad hoc queries. The access pattern of the
display function might be very predictable, allowing
efficient learning, while sequen-:es generated by ad hoc
queries could be arbitrary and difficult to learn. A pro­
grammer might establish different CIDs corresponding
to these two functions, even when invoked by the same
user. With CIOs, a designer can use knowledge of an
application to "focus attention" of the prophet, reducing
pattern memory requirements at any given time and
speeding prediction.

2.3.1 Fido Predictive Cache

A portion of ENCORE's client cache is allocated to the
Fido predictive cache, which interfaces to the prophet to
decide what to prefetch and the order in which to' re­
place cached objects. The prophet can be configured as
a separate service or as part of the client image. It has
two primary modes of operation: prediction and train­
ing.

Given a sample of the latest sequence of access to
Fido, the prophet predicts which accesses will occur
next. An individual prediction may indicate that alter­
nate sequences are anticipated by arranging identifiers
according to expected order and likelihood of access.

In training mode, the prophet learns access patterns
over time and becomes increasingly better at prediction,
until it reaches a stable state where learning ceases.
This state may be reached because the prophet is not en­
countering any new infonnation or changes in access
pattern, or because it has exceeded user-specified re­
source limits. The access pattern infonnation for a single
CID is known as a pattern memory. Fido stores each
pattern memory between sessions.

Figure I shows how Fido fits in with the client and
server; UIDs are represented as letters and objects as cir­
cles. As an application session begins, Fido loads (0)
the pattern memory for the access context. The applica­
tion generates a sequence of references to the client,
which converts UIDs to object memory address via the
ROT.

4.prefetch
requeft

o =semaphoro=object

Client

Figure 1: Server and Client with Predictive Cache

References to a and b return pointers (2) to those objects
in the cache. If an accessed object (e.g. c) is not in
cache, the client issues a pre-emptive demand read (3) to
the server, and blocks. During the session, the prophet
samples the current access sequence (4), recognizes the
start of a known pattern, and completes it, predicting
"d e f g". Since e is already in cache, Fido starts a
prefetch request for (5) d, f, and g, entering "promises"
for these objects into the ROT. Any access to d, f, or g
before the prefetch request arrives blocks until I/O com­
pletion updates the promises, converting them to regular
ROT entries. As described in the next section, the
prophet's predictions also govern replacement ordering.

3 Predictive Cache Management Model
As mentioned above, the client ferries objects between
the server and the workstation's memory transparently
to the application. The prophet generates predictions,
causing objects to be prefetched. The client needs a
strategy for managing prefetched objects. This section
outlines a predictive cache management model. Simula­
tion has been helpful in identifying design issues for
predictive caching, such as:

•	 defining an appropriate model for prediction

•	 ideal case operation. when many correct predictions
are being generated

•	 faulting and cache space utilization behavior in the
worst case. when no predictions are being made

•	 interactions between cached objects when a prefetch
is accessed or an object eviction is required

•	 computation and communication overhead for pre­
diction and prefetching.

Fido maintains a FIFO sampling window on the current
access sequence. On each access to an object 0, if 0 is
not in cache, a demand read is started. Fido then gives
the sequence sample to the prophet, which may return a
prediction of the immediate future. If so, Fido checks
whether any predicted objects are already in cache, and
starts a single prefetch request for those which are not.
When the prefetched objects arrive, an asynchronous
completion routine decides which cached objects to re­
place. The overall strategy of predictive cache manage­
ment involves three goals:

1. quickly flushing erroneous prefetches from cache

2.	 avoiding wasted cache when no predictions are made

3.	 controlling the volume and cost of predictions.

The first two goals are addressed by Fido's replacement
policy, and the last by heuristics - Fido monitors predic­
tion performance and adjusts certain prophet parameters
dynamically to throttle prediction rate balancing cost
against accuracy. We will now introduce some terms,
describe the replacement policy, and then portray Fido's
operation under several conditions.

3.1 Definitions

The following terms define a predictive cache.

3.1.1 Predictive cache

A predictive cache C={R U PI is a union of two disjoint

sets· a. prefetch set P, and a set of referenced objects, R.

, C can holu. k objects.

/ 3.1.2 Prefetch set

A prefetch set P is the set of prefetch requests present in
cache at anyone time. Objects in older prefetch re­
quests are considered less likely to be accessed than ob­
jects in more recent requests.

3.1.3 Prefetch request

A prefetch request 1t. is the order-maintained subset of
objects in prediction h. not in C at the time IT. is made.
The "head" of a prefelch request identifies the object
most likely to be accessed first, while the "tail" identi­
fies the object whose access is expected furthest in the
future and is thus least likely: 1ti = {IT; - C1. A
prefetch request is the intended unit of 1/0 between
cache and secondary storage; objects identified are
prefetched in a single request. In this sense, it resembles
a page of objects assembled at the server. The differ­
ence is that its contents are determined dynamically in­
stead of by static clustering, and have explicit ordering.

3.1.4 Prediction

A prediction IT = 0 1 ... 0 is a list of identifiers par­
tially ordered by expectedcgccess sequence and fully or­
dered by probability of access. That is, an access to ob­
ject o· is expected before an access to object OJ .for i<j,
unlesJ o· and o· are alternate possibilities, in Which case
an acces~ to 0i Is more likely than an access to oj'

3.2 MLP Replacement Policy

A cache manager decides which objects to replace with
new objects by implementing a replacement policy.
Fido's replacement policy flushes erroneous prefetches
from cache by ensuring that unused prefetches have
lower priority than new prefetches or referenced ob­
jects. The Minimum Likelihood Prefetch (MLP) re­
placement policy stipulates:

•	 Within a prefetch request, evict the Minimum Like­
lihood Prefetch first. That is, prefetch eviction hap­
pens from tail to head of each prefetch request.

•	 The definition of P implies that old prefetch re­
quests are evicted before new prefetch requests.

•	 On access to object 0, promote 0 to most-recently­
used status within C. If operating "beneath" a pri­
mary cache, swap 0 with 0' evicted by the primary
cache.

The MLP policy is adapted from the proven optimal re­
placement policy for demand paging, OPT [Mattson
19/v]. OPT always replaces that item which is accessed
furthest in the future, but operates off-line. MLP re­
places objects which are expected to be referenced fur­
thest in the foreseen future. One difference between
MLP and OPT is that MLP uses estimated, incremental
knowledge of the future, instead of perfect prescience as
assumed by OPT. During periods when the prophet
does not make predictions, however, the thitd role
causes Fido to operate as a demand LRU eachI'.

3.2.1 Replacement Ordering

The replacement ordering for objects in C can be mod­
eled by operations on a fixed size list. Identifiers are in­
serted at the head and deleted from the tail. This behav­
ior governs how objects are brought into and evicted
from C, whether by prefetch requests or by faults. As an
access sequence is processed, the prophet generates pre­
dictions, which result in prefetch requests. As prefetch
requests arrive, they are inserted at the list head in re­
verse of their expected access order. The object whose
expected access is furthest in the future, i.e. - that least
likely to be used, enters into and is evicted from C first.

TIme.. RefIPrefetcb Replacement List State

Oa ~
Ib ~
2c ~
2 II=defxg ~

3d	 =
4e	 ~
5 f
6 q
7 g
8 h

Figure 2: Replacement Example

c

The example in Figure 2 illustrates replacement priority
as a prefetch request is handled and faults occur. For
simplicity, the example assumes that Fido is operating
as a primary cache. Successive references descend the
left column, with the list state shown at right. Identifi­
ers are added at the list head (left) and removed from its
tail. By time 2, references to a, b, and c cause reorder­
ing, and the sampling window contents, abc, match a
known pattern, triggering the prefetch request for de­
!':!g. This prefetch request arrives before another refer­
ence is made, causing eviction of everything but c. At
6, an access to q (instead of x) faults, replacing c with
q. At 7, g is moved up, leaving x to be evicted by the
fault for h.

3.3 Cache Behavior

Three prototypic cases combine to characterize the in­
tended behavior of the cache during operation.

3.3.1 Sequence Recognition (best case)

A prefetch request of size k is made every k accesses,

which arrives, fills the cache, and is then consumed

from head to tail, moving 1t from P to R, and leaving
the replacement list containing 1t in reversed order.

3.3.2 Prediction Starvation

Within a session, intervals occur during which the cur­

rent sequence is unknown to the prophet, which gener­

ates no predictions. In this situation, the move-to-front

[TaIjan 1985] rule produces the replacement behavior of
a demand LRU cache processing the same sequence.

\
!
j 3.3.3 Error Glut (worst case)

In this situation, some maximum number of predictions
is made on every reference, but none are correct, poten­
tially causing the cache to be full of useless objects.

The following heuristic adjusts certain prophet pa­
rameters to control cases 2 and 3 above:

•	 Guess rate: Let A. denote the ratio of objects
prefetched divided by the number of references
made at any given time during the session

•	 Accuracy: Xdenotes the ratio of correct predictions
to total predictions during the session.

•	 Efficiency: If n denotes the sample window size,
and co denotes the size of a prediction, the ratio
'U=CO/n reflects how much sample is used in generat­
ing each prediction.

Guess rate, accuracy, and efficiency interact. Specifi­
cally, increasing the sample size lowers efficiency and
guess rate, but raises accuracy. Fido monitors guess rate
and efficiency by keeping running averages. Prediction
starvation can occur if too much information is supplied
in the samples, and error glut can happen if the sample
size is too small. To control these situations, Fido ad­
justs sample size, n, according to XI... If XI.. crosses a
low or high threshold, Fido increments or decrements n
accordingly to try to bring XI.. back into range.

4 Estimating Prophet
Previous sections of this paper have outlined a model

for managing a cache containing prefetched nhjects, bu,
have assumed an ability to predict references. This sec­
tion presents a design intended to illustrate how the cur­
rent prophet learns to predict. The p~ophet lear:ns acc~ss
patterns in training mode and recogrnzes them m predic­
tion mode. The client records reference traces from
each session within each access context. Training mode
processes each reference trace - normally (but not nec­
essarily) off-line, between sessions, and incrementally
improves pattern memory for each access context. Pre­
diction mode is used to generate prefetch requests, as
described in sections 2 and 3.

The intuitive explanation of how training and predic­
tion work is that the present sequence acts as a cue ­
when the prophet is presented with a sequence that is
similar to some previously encountered situations, it re­
calls the consequences of those previous situations - this
is analogous to the way organisms determine present be­
havior according to past experience. Thus both training
and prediction rely on an ability to G.uickly but inexactly
retrieve previous sequences using information about the
present sequence as a key. We will first .dis~ss this ,in­
exact retrieval capability, and then outhne Its function
in training and prediction.

4.1 Associative Memory
The prophet stores and retrieves access order informa­
tion in an inexact manner using a nearest-neighbor asso­
ciative memory. Much work has been done on associa­
tive memory architectures ([Potter 1987], [Kanerva
1988]) some of which provide the most biologically
plausible neural net models. Research by Anderson and
others has shown how such memories can be con­
structed from elements that imitate the functioning of
neurons in cortex [Anderson 1990], and evidence sug­
gests that cognition may indeed operate this way.
Nearest-neighbor models map data units with k elements
to points in k-dimensional pattern space, defining simi­
larity metrics in k dimensions. Similar patterns are near
each other in pattern space, and equivalence classes are
defined by radius values. The following terms apply to
the nearest-neighbor based pattern memory model.

4.1.1 Pattern Memory

A pattern memory consists of t unit patterns, ~O' ... , ~'
pairwise at least r distant in pattern space. Each urut
pattern defines an equivalence class - all o~ser;:ed se­
quences within the pattern-space sphere havmg S at l~S

center and radius r are considered equivalent to S. This
capacity for inexactness is important for two reasons.

First, it means that pattern memory is lossy - it ignores
minor variations in patterns encountered over time. only
using resources to represent significant differences. .

Second. it allows useful predictions to be made even If
the current access sequence does not exactly match what
has appeared before, as when new identifiers appear af­
ter recent updates to the database.

4.1.2 Unit Pattern

A unit pattern S=<o1...0 a> is a list of identifiers that
acts as a partial approximation of access pattern. Each
unit pattern divides into a prefix of variable length a and
suffix of length a-<X < k. The prefix acts as a key for the
suffix during prediction. One can think of the prefix as
an observed antecedent, and of the suffix as its conse­
quence. Each suffix usually contains the prefix of some
other unit pattern(s), creating inexactly linked chains of
unit patterns that approximate observed alternate se­
quences (see Figure 4). Also stored with each unit pat­
tern are ratings of its historical frequency of occurrence
and average predictive accuracy. Newly created unit
patterns are of a uniform maximum length, but may be
shortened over time by training.

4.1.3 Distance in Pattern Space
The measure of dissimilarity between two unit patterns
is the count of columnwise unequal identifiers.

",,--~ xllxy---''
,
,

"'---"':::r-
,
" ",	 ",.... agau , "

,	 , ...---- ",
"	 " "" abxd...... \ " , " " " \ \I I " \ \ , , , , , 1

: I I SL..,. pa'l'~'" iJisra(lC~
~~\~ :,::
" \ \, I ' _ ... " ,l :' "

\	 \ ""... x'bcd,,' " "

\	 " _-_... , "

"\	 " axce ,.,,' "
,.... ...xyzd........
... __ ,.,.",

-, _---_.....,

Figure 3: Unit Patterns in Pattern Space

In Figure 3, one sample S and a set of unit patterns, all
of equal lengths, are arranged according to increasing
distance from S. The nearest neighbors to S are the unit
patterns closest to S in pattern space. S is considered
equal to all unit patterns closer than r to S.

4.2 Resource Costs
The current prophet implementation is described further
in [Palmer 1990]. Two of its properties are:

•	 A non-repeating sequence of length i can be stored
in pattern memory using 0(1) space, creating t=lIa
unit patterns.

•	 All nearest neighbors of a sample of length a can be
found in O(a log(t) + f), where f is an expected
number of neighbors.

Pattern memory space requirements of the implementa­
tion are adequate for problem sizes of current interest
(i.e. - infrequently-repeating strings of 0(105) identifi­
ers). The size of pattern memory can be controlled by
user-set resource limits, and by establishing multiple ac­
cess contexts per application. Neighbor finding is fast
enough for predictions involving thousands of unit pat­
terns, since sample size is typically small. We expect to
be able to further reduce prophet resource requirements
through continued research.

4.3 Training Mode
After each session. the client saves a reference trace for
each access context invoked, then runs the prophet in
training mode to process the saved traces. The training
algorithm adapts the contents of pattern memory over
time so that only common unit patterns are retained in
pattern memory. Training reinforces unit patterns that
appear frequently, and represses sequences that appear
sporadically, or which consist of obsolete information.
Unit patterns "compete" for space in pattern memory
over time based on their ability to generate prefetch re­
quests contributing to overall system speedup. This
causes pattern memory to self-organize, focus on regu­
larly reoccurring phenomena, and evolve an internal
generalization of each access pattern. The training algo­
rithm employs an "evolutionary" strategy consisting of
two phases - credit assignment and adaptation.

4.3.1 Credit Assignment

This phase assigns credit to all unit patterns that contrib­
ute to predicting the training trace. Some stored unit
patterns recur only infrequently, while others become
obsolete as updates to the database cause new identifiers
to appear and others to disappear. Also, the lengths of
unit patterns are initially uniform, producing arbitrary
sampling boundaries. Infrequent, obsolete, or poorly
chosen samples produce unit patterns that do not func­
tion well as predictors, and which can congest pattern
memory with useless information.

Credit assignment begins by simulating a prediction
run along the training trace i. Each time a prediction oc­
curs at a point i in i, accuracy and frequency ratings of
each unit pattern S contributing to the prediction are up­
dated. Accuracy is assessed for S by counting the num­
ber of identifiers in the suffix of S that appear within a
lookahead interval, usually k. ahead of i in i. in any or­
der. If the accuracy of S falls below a threshold, it may
be because errors occurred at the end of S's suffix. If so,
the length of S is decreased and S is re-rated. Frequency
of occurrence is then updated for all contributing unit
patterns.

4.3.2 Adaptation

Each time an application runs, it can reveal more of its
total access pattern. To recognize new parts of an ac­
cess pattern, the algorithm again scans the training trace,
shifting it through a sample window of unit pattern size,
matching each sample against pattern memory, and
skipping ahead by a when an equivalence is found.

Any subsequences of unit pattern length that do not
fall within an existing equivalence class and which were
not predicted well during credit assignment are added a'>
new unit patterns to pattern memory, timestamped, and
rated. All unit patterns are then ranked according to rat­
ing and length. Unit pattern'> with the lowest ratings and
shortest lengths are pruned, until pattern memory fits
within space allotted to it. The pattern memory is then
ready to be saved or to be used for prediction mode.

4.4 Prediction Mode
The task of prediction mode is to quickly recognize
similarities between the current access sequence sample
and stored unit pattern prefixes, and combine their asso­
ciated suffixes. During a session, the sampling window
contents are given to the prophet's PREDICT routine on
each access. PREDICT finds the nearest neighbors of
the sample. One can think of prediction as a navigation
through pattern space. Training initially overlaps suc­
cessive unit patterns, and when re-training does not
change these links, consumption of one prefetch request
generates a match with the next unit pattern prefix. In
this example, access to efg in the suffix of Sl matches
the prefixes of S2 and S4.
r--­
I 1;2

:
I
~1

:' f~ '1G1. 1;3

!(~b¢d;~~g..... ~:.~J... ·.. ·.. ·~·iJi1mopq

l I; . .
:	 ~ J: ~
I	 ~ •.. 'oJ

:	 :.~~qy.~"";>"'"'' ···b····:)cy~ ~

Lp~~~_e_~_~~g~_______________ ~~~ :~ _

a	 ~ b strong match

a ;. b weaker match

Figure 4: Linked Unit Patterns

PREDICT constructs an ordered union of suffixes as
the prediction, n. As it copies the suffix of each Sto n,
it uses the rating of each unit pattern to place UIDs from
the "best" S at the head of n, and avoids duplicates.
Thus, UIDs of multiple unit pattern suffixes are inter­
leaved in the prediction output, with UIDs from the best
matches and predictors appearing first. The following
example shows efg matching unit patterns Sz and S4
above, causing an interleaving of their suffixes lOto n.
SAMPLE: gl"g
S2 erg hi ikl X=.4
S4 e x g h g y X= .3

OUTPUT, n: h i g j Yk I

Note that the prophet finds multiple matches for a sam­
ple. Fido's model of prediction permits parallel possi­
bilities. Since cache memory is cheaper than I/O time
[Gray)987], Fido spends cache space to save I/O,
prefetching alternate possibilities (limited to a constant
factor) simultaneously into P. For example, suppose
that after sequence e f g h, an access to i is .4 likely,
but an access to q is.3 likely. Fido's prefetch request
includes both i and q, giving a combined hit probability
of .7 - and assuming that one of i or q will go unused.
MLP replacement then quickly reclaims space wasted
by erroneous prefetches by evicting unused prefetches
first.

I based on conversations with Digital CAD tool developers

5 Experiments
We have been experimenting with predictive caching,
using Fido as a framework for exploration. Our first
simulations examined aspects of prediction, prefetch and
faulting behaviors, and we are using the results to fit
predictive cache operations to the actual I/O subsystem.

5.1 Resilience to Noise

Other users make unpredictable updates to a database,
changing the set of UIDs to be leame~ and predicted.
One measure of prediction performance is the rate at
which prediction accuracy degrades as updates increas­
ingly disrupt pattern recognition. urn changes appear as
"noise" in the access sequence during prediction. While
the update rate of OODB applications is slower than for
transaction processing, it is reasonable to expectI that 10
or 20 percent of the UIDs could change between ses­
sions. Experiments with an early (also nearest-neighbor)
pattern memory [palmer 1990] revealed a property of
resilience to create/delete noise. One experiment ran as
follows. An access simulator produced a string, 1, of 600
random UIDs, used to train the prophet and produce a
pattern memory. The following process was repeated
until the original 1contained 30% noise:

I.	 Mutate 2% of 1 by deleting or inserting new UIDs at
uniformly random points, maintaining 1's length

2.	 Simulate prediction along 1 without first re-training,
then plot final guess rate and accuracy against total
percent noise in 1.

We observed that accuracy and guess rate degraded
linearly as noise increased, that guess rate declined more
quickly than accuracy, and that the relative rates could
be varied by adjusting sample size, i.e. - efficiency.
The result appears in Figure 5.

Percentage of UIDs
100

Accuracy!correctJpredlckd)

80 •...•• 0° ••••••• '0 •••••• , ••••••• :_

.. ..
..	 :

..... ~.~ ..., : : ,'

•••••• : •

~ .
. - -:- - - - ":~uess Rate ipredlcled/uilall

60

..... ", ',' , '," .., , .40
'" ." ..

20

10 15 :0

Percent Noise [)u rl~ Prediction

Figure 5: Prediction Accuracy and Guess Rate vs. Noise

5.2 Predictive Cache Simulation

We next wished to simulate the functioning of training
and predictive caching using an access trace. Develop­
ers at Digital's CAD/CAM Tedmology Center provided
virtual address reference traces from a CAD tool that
seemed to perform navigational access, spending most
of its time waiting to fault through a graphics display
structure, especially during invocation, when the whole
design was displayed. Two traces were obtained, each
recording 5 to 10 minutes of tool use: invocation, zoom
in and out, selecting ICs, and setting filters to remove
certain parts of the bow display (runs and junctions).
In observing the display, possibilities for establishing
distinct access contexts became obvious, but we treated
the tool as a black box generator, using a single access
context for training and prediction. The circuit design
data contained 100,000 objects, but only 10,000 or so
could fit in the graphics "usable window" at once. The
first trace, TI, had 73,767 identifiers and TI had
147,345. The first session was kept short, so we could
notice the effect that training after a first short session
had on caching during the next, longer session.

We simulated a Fido cache of 500 elements handling
faults from an ENCORE demand LRU cache. Recall
that Obsetver allows a segment of objects to be
prefetched in response to a read., or up to k identified
objects to be returned in a single prefetch request, either
way saving k-l network I/Os. However, the setver may
complete a segment fetch faster that its equivalent
prefetch request. We wanted to isolate effects due only
to prediction, so we did not siJ!'ulate segment prefetch in
the LRU cache and made no assumptions about service
rates for prefetch requests or segment prefetch.

Placing Fido below a primary client cache would- en­
sure that prophet computation only occurred during pri­
mary cache faults, incurring no prediction overhead for
hits to the LRU cache. Prophet computation would be­
gin after and complete well before each Fido fault, while
each hit in the Fido cache would save one fault I/O at
the cost of at most one prediction computation.

One question was whether cache space spent storing a
pattern memory would pay for itself or would be better
spent increasing LRU cache size. To find out, we trained
the prophet on session Tl's fault sequence, measuring
growth of pattern memory, then used the result to
predictively cache the next session's fault sequence.
First, we simulated a lOOO-element LRU cache using
TI, to produce sequence LRU-IOoo(TI). This fault se­
quence was about 21 % shorter than TI, evincing some
re-use. LRU-IOoo(TI) was then input to train Fido. The
sampling window size was 0.=5, with unit pattern size
of 250. The equivalence radius used during training was
.4 - i.e., 60% of the UlDs in two unit patterns had to
differ before they were considered distinct.

During training, pattern memory grew in steps but
the fault total grew linearly. During learning plateaus,
few new patterns were being found - indicating recur­
ring sequences in the fault trace. The result is shown in
Figure 6 (pattern memory size estimated in identifiers).

35 -,-------------------:""-----,

UID '
m~~	 , ~

30

25

20

15

10

70

60

50

40

30

20

10

....•...........•...........•.... .,•.....•..
 ,,
·	 - . , .,,
·	 LRU-Io¥1,):l~ .

Faull.',
· , ,	 . ,,
· ;'. Patter... Merncwy' . . .

, Size,
· _ ,	 - - ..

o 10 20 30 40 50 60 70 74
thowond. TralBlDg Time Is UID Referesces

Figure 6: Pattern Memory Growth During Training

Next, we compared the faulting performance of the

LRU-I0oo/Fido-500 combination to that of a strict

LRU-20oo cache for session T2. If object sizes aver­

aged 140 bytes and UIDs had 32 bits, the LRU-20oo

would occupy about the same space as the LRU/Fido

cache, including mace to store the pattern memory from

TI in the Fido cache, as in the following diagram:

LRU-lOOO

VS 1__LR_U_-_2_000__

Figure 7: Configurations Requiring Similar Space

We measured faults accumulating, looking for the ef­

fects of prefetching. An LRU-2000 cache was simulated

with trace TI, producing fault sequence LRU-2000(TI).

The accumulation of LRU-2000 and LRU-IOoo faults is

compared to LRU-I0oo/Fido-500 faults during session

TI below:

F:fu:T'"---------------------,
thOUSIIlI S	 " ,

: - . : : - .. : : ..•.. 'j" .
~ . \" , . ," \"

•... •.:.. •••. ~ ...•.•:. . . • . . :...•.. ",';' ~ " " ;, ~ • • • • .

·	 .",. \ "
- .: :- ...•..: .. LRU,~~.:,;.~' ~ - LRU:-.2000. ..

, .,'
•...• -: : - . ;:0(' (I~··:

•. .•..,."" .. " · · ./". .,
""" •. ",. " " . " " ,".,"

~

.... - ':' >1"' . :' ..
. .,

,; ­.

.--­

" .,'"•... - " . ,. . " - . . • • • • • " . ,". .
~

, . .
...• ", ..• - •• " •.•.••

..•. - .: :.. - .

O+-......+-==----r---..----,...---,....------,~-___\

1\ 21 42 64 85 107 128 I~O
thou~ond~ Session Time in UID References

Figure 8: Fault Accumulation per Client Configuration

The faulting behavior was a<; we had hoped. LRU-I000
fault sequences learned from session T1 reappeared in
session T2 and were prefetched, suppressing faults. This
was particularly noticeable during the first part of T2
(Figure 9 provides a closer view). After one training run.
we had reduced total faults by about half. Places where
faults rise at the same rate as LRU faults indicate se­
quences not yet known to the prophet.

http:�...........�...........�

": :i' - ..
I

':;,
........... ! : : ..,

I,
;

! . ,

6 Related Work
Previous adaptive database work in the mid-1970s
([Niamir 78], [Chan 1976], [Hammer 1976]) explored
methods of automatically adapting the physical and sec­
ondary access structures of databases according to use.
These methods differ from ours in that they require run­
ning statistical analysis procedures periodically to
reconfigure a schema or to choose indices. The struc­
tures did not adapt to changing usage patterns between
reconfigurations, and data was unavailable during recon­
figuration. The statistical procedures required customi­
zation to handle each database schema, resulting in
brittleness and lack of generality. These adaptive
mechanisms were not transparent to the database admin­
istrator, and attempted to optimize over all users rather
than for each access context individually.

Although the current prophet is not implemented as a
neural net, we are interested in using appropriate leam­
ing technology to detect and exploit regularities in the
operation of low-level system components. When the
best way of exploiting a context-specific pattern is un­
known, approximate solutions such as those developed
by neural models can have high payback.

Recent research in neural networks has produced self­
organizing systems that are less ad hoc, more robust,
and better understood than previously, enabling their use
for adaptive database work. Computational models of
cognition [Anderson 1990] provide a rich set of tools to
"make sense" out of patterns, forming internal represen­
tations during learning [Rumelhart 1986], fLapedes
1987]. The concept of solving a problem by using a
black box that "programs itself' to produce a desired be­
havior from examples of the behavior is known as
extensional programming [Cottrell 1988]. In Fido's
case, the desired behavior is sequence prediction, but
we are not yet sure of an optimal algorithm for it, mak­
ing extensional programming attractive. [Moody 1989]
discusses other potentially useful models. Hardware for
parallel associative memory [Potter 1987] presents the
possibility of vastly increasing the pattern space that can
be processed on-line. Much more computational power
is now available to learning algorithms. Neural models
are also quite robust, adapting and functioning well in
the presence of noise. Lastly, since these models operate
as black boxes, they are inherently non-invasive in ob­
serving system interactions.

Our use of associative memory for prediction is not
new. [Kanerva 1988] describes a k{old Memorv able to
predict events generated by kth-order stochastic proc­
esses (e.g. a Markov process is a 1st-order stochastic
process). A Kanerva memory addresses words by con­
tent, storing ~ . pattern St at location St-l to represent
order-l transltlOns.

In the area of priority-based buffer management,
[Jauhari 1990], [Chou 1985], [Alonso 1990] have used
access pattern information to manage buffers, but use it
chiefly to make replacement decisions for demand pag­
ing schemes, not directly for prefetching. Typically,
qualitative "hints" about page priority are supplied, not
detailed information about expected access order.

7 Conclusions
We began by noting a conceptual conflict between data
clustering and data sharing, then introduced a
prefetching method that promises to improve response
time performance for conflicting but regular access re­
quirements. We described a pattern memory for predict­
ing sequences that has well-defined resource costs and
scaling properties, adapts to changes in access pattern
and data, and improves in prediction accuracy over
time. This should result in client response time perform­
ance that improves over time, depending on how
prefetch request processing actually maps to I/O. Since
no semantics are involved in processing strings of iden­
tifiers, many variations are possible. For example, Fido
tnight be used in both server and client to prefetch pages
or clusters by using appropriate identifiers during train­
ing and prediction. Although predictive caching can
prefetch independently of clustering, it can complement
rather than replace clustering. In fact, a trained prophet
should be able to provide useful clustering hints.

Fido's current pattern memory handles noise and inex­
act input, and learns to predict navigational access well.
Navigational access can cause severe problems for a de­
mand cache. For example, the fault trace produced by a
demand cache of size k for a sequence 1 that is non­
repeating within k references equals I. Such patterns
may be fairly common in data-intensive applications.
[Chang 1989] observed that the access patterns of CAD
tools they studied were "predictable". Navigational ac­
cess predominates in design applications, occurring dur­
,,,g verification scans and during complex object expan­
sion. However, navigation is often performed in a
deterministic manner, resulting in bursts of non­
repeating access. The benchmark in [DeWitt 1990] em­
ploys a "scan query" that reads all complex objects in a
set, using breadth-first traversal to expand each complex
object. Presumably this benchmark could produce the
same sequences over time by expanding complex ob­
jects in the same way each time.

Predictive caching is a very promising method. Fido
automatically assimilates and isolates context-specific
access order regularities and exploits this information to
avoid I/O. Our early results suggest that faults saved are
worth the costs of maintaining access pattern informa­
tion and retrieving it on-line. We hope to continue
studying predictive optimality and efficiency, and to add
a predictive cache to a real system.

F. Is	 I,
lho~ ndt.

: ;

, . : LRU-2000: J
__ .~ _. __'_.__ • ._ ~.J

o	 Ihoosands 5 10 15 10 2S

Ses..on Time In Refermc:e!

Figure 9: Fault Suppression Early in Session T2

.W "5

7.0.1 Acknowledgments

The authors are very grateful for the help and patience
of Patrice Tegan, Marian Nodine, Jim Anderson, and
Dave Langworthy in reading paper drafts. Also, thanks
to H.C. Wu of Digital's Chebnsford CAD/CAM Tech­
nology center, who obtained the CAD tool traces, to
Bob Weir and Barnacle for inspiration, and to Digital's
Graduate Engineering Education Program for making it
possible. Views expressed herein are the authors' own,
not those of Digital Equipment Corporation.

7.0.2 References

[Alonso 1990] R. Alonso, D. Barbara, H. Garcia­
Molina, "Data Caching Issues in an Information Re­
trieval System," ACM Transactions on Database Sys­
tems, Vol. 15, No.3, September 1990.
[Anderson 1990] J. Anderson, E. Rosenfeld, Neuro­
computing. MIT Press, 1988.
[Chan 1976] A. Chan, "Index Selection in a Self­
Adaptive Relational Data Base Management System,"
SM Dissertation, MIT, September 1976.
[Chan 1982] A. Chan, A. Danberg, S. Fox, W. Lin, A.
Nori, and D. Ries, "Storage and Access Structures to
Support a Semantic Data Model," Proceedings of the
8th Conference on VLDB, September 1982.
[Chang 1989] E. Chang, R. Katz, "Exploiting Inheri­
tance and Structure Semantics for Effective Clustering
and Buffering in an Object-Oriented DBMS," Proceed­
ings ACM-SIGMOD International Conference on Man­
agementofData, Portland, OR, June 1989.
[Chou 1985] H. Chou, D. DeWitt, "An Evaluation of
Buffer Management Strategies for Relational Database
Systems," Proceedings of the 11th VLDB Conference,
Stockholm, Sweden August 1985.
[Cottrell 1988] G. Cottrell, P. Munro, D. Zipser, 'lm­
age Compression by Back Propagation: an Example of
Extensional Programming," Advances in Cognitive Sci­
ence, Vol 3, Norwood, NJ, 1988.
[DeWitt 1990] D. DeWitt, D. Maier, "A Study of Three
Alternative Workstation-Server Architectures for Object
Oriented Database Systems," Proceedings of the 16th
VLDB Conference, Brisbane, 1990.
[Fernandez 1990] M. Fernandez, A. Ewald, S. Zdonik,
"ObServer: A Storage System for Object-Oriented Ap­
plications," Tech Report CS-90-27, Brown University,
November 1990.
[Garza 1988] J. Garza, H. Chou, W. Kim, D. Woelk,
"ORION Object Server - Architecture and Experi­
ences," MCC TR ACA-ST-423-88, 1988.
[Gray 1987] J. Gray, "The 5 minute Rule for Trading
Memory for Disc Accesses and the 10 Byte Rule for
Trading Memory for CPU Time," Proceedings ACM­
SIGMOD International Conference on Management of
Data, San Francisco CA, May 1987.
[Hammer 1976] M. Hammer, A. Chan, "Acquisition
and Utilization of Access Patterns in Relational Data
Base Implementation," Pattern Recognition and Artifi­
cial Intelligence, Academic Press, 1976.

[Hudson 1990] S. Hudson, R. King, "Cactis: A Self-

Adaptive, Concurrent bnplementation of an Object­
Oriented Database Management System," ACM Trans­
actions on Database Systems, 1990.
[Jauhari 1990] R. Jauhari, M. Carey. M. Livny,
"Priority-Hints: An Algorithm for Priority-Based Buffer
Management," Proceedings of the 16th VLDB Confer­
ence, Brisbane, 1990.
[Kanerva 1988] P. Kanerva, Sparse Distributed Mem­
ory. MIT Press, 1988.
[Khoshafian 1986] S. Khoshafian, G. Copeland, "Ob­
ject Identity," ACM Proceedings on the Conference on
Object-Oriented Programming Systems, Languages, and
Applications, Portland, OR, 1986.
[Lapedes 1987] A. Lapedes, R. Farber, "Nonlinear Sig­
nal Processing Using Neural Networks: Prediction and
System Modelling," Tech Report, Los Alamos National
Lab Theoretical Division, July 1987.
[Mattson 1970] R. Mattson, J. Gecsei, D. Slutz, I.
Traiger, "Evaluation Techniques for Storage Hierar­
chies," IBM Systems Journal 9, 1970.
[Moss 1990] J.Moss, "Design of the Mneme Persistent
Object Store," ACM Transactions on Information Sys­
tems, Vol 8 No.2, April 1990.
[Moody 1989] 1. Moody, "Fast Learning in Multi­
resolution Hierarchies," Advances in Neural Information
Processing, Morgan-Kaufmann, Los Altos, CA, 1989.
[Niamir 1978] B. Niamir, "Attribute Partitioning in a
Self-Adaptive Relational Database System," MS thesis,
MIT/LCS/TR-192, January 1978.
[Palmer 1990] M. Palmer. S. Zdonik, "Predictive Cach­
ing," Tech Report CS-90-19, Brown University, No­
vember 1990.
[Potter 1987] T. Potter, "Storing and Retrieving Data in
a Parallel Distributed Memory System," PhD Thesis.
State University of New York at Binghamton, 1987.
[Rubenstien 1987] W.Rubenstien. M. Kubicar. R.
Cattell, "Benchmarldng Simple Database Operations,"
Proceedings ACM-SIGMOD International Conference
on Management of Data, San Francisco, May 1987.
[Rumelhart 1986] D. Rumelhan, Goo Hinton, R. Wil­
liams, "Learning Internal Representations by Error
Propagation," Parallel Distributed Processing Vol 1: Ex­
plorations in the Microstructure of Cognition, MIT
Press, 1986.
[Stamos 1984] 1. Stamos, "Static Grouping of Small
Objects to Enhance Performance of a Paged Virtual
Memory," ACM Transactions on Computer Systems,
Vol 2, No.2, May 1984.
[Tarjan 1985] D. Sleator, R. Tarjan, "Amortized Effi­
ciency of List Update and Paging Rules." Communica­
tions of the ACM 28, February 1985.
[Velez 1989] F. Velez, G. Bernard, and V. Darnis. "The
O2 Object Manager: An Overview," Proceedings of the
lS-th International Conference on VLDB, Amsterdam.

1989.

[Wilkinson 1990] K. Wilkinson. M. Neimat, "Maintain­

ing Consistency of Oient-Cached Data," Proceedings of

the 16th VLDB Conference, Brisbane, 1990.

