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Abstract 

This paper describes Fido, a predictive cache 
[palmer 1990] that anticipates access by em­
ploying an associative memory to recognize 
regularities in access pattern for each isolated 
access context over time. Continual training 
adapts the associative memory contents to data­
base and access pattern changes, allowing on­
line access predictions for prefetcbing. We dis­
cuss two salient components of Fido - MLP, a 
replacement policy for managing prefetched ob­
jects, and Estimating Prophet, the component 
that recognizes patterns and predicts access. 
We tben present some early simulation results 
which suggest that predictive caching worlcs 
well and conr:lude that it is a promising method. 

1 Introduction 
A major performance factor for current OODB systems 
is the cost of fetching data from secondary storage as 
needed. In workstation-server architectures, this cost is 
compounded as data crosses several I/O boundaries on 
its path from the server's secondary storage to an appli­
cation's memory. Caching in workstation-server OODB 
architectures improves performance, as described by 
[Rubenstien 1987]. Chang and Katz [Chang 1989] found 
that cache management policy has the largest effect on 
response time, followed by clustering, a much-studied 
topic [Chan 1982], [Stamos 1984], [Hudson 1990]. Cur­
rent OODB cache designs are derived from virtual mem­
ory demand pagers, which often prefetch clusters, but as­
sume no explicit knowledge of the future. The goal of 
clustering is to force a locality of reference on data like 
that inherent in code execution, the property exploited 
by demand paging. 

However, a major purpose of databases is to allow data 
sharing and integration of diverse applications. Cluster 
prefetcbing alone can be inherently ineffective when us­
ers mix conflicting patterns in accessing the same data. 
Devising a clustering that is both fair and efficient then 
becomes problematic and expertise-intensive, and find­
ing an optimal partitioning can be computationally un­
feasible [Niamir 1978]. Thus a user-specific yet general 
purpose complement to cluster prefetch is of interest. 
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We are finding that access within individual contexts 
can be predicted because of structure in data and deter­
minism in programs, irrespective of inherent or ar­
ranged locality of reference. Fido automatically recog­
nizes and exploits patterns that emerge over time within 
each access context to provide accurate prefetching un­
der mixed access paradigms, for which the best clus­
tering may be a compromise. 

1.1 Predictive Caching 

A predictive cache can supplement existing cache man­
agement strategies, such as demand paging with cluster 
prefetching, or could function as a primary cache. 
Fido's predictive cache model is an extension of com­
mon demand fetching strategies. The cache manager is 
augmented with a component consisting of an assc.::ia­
tive memory and several pattern recognition routine&. 
This "black box" is known as the Estimating Prophet. 
The prophet learns access patterns for isolated contexts 
over time well enough to predict access within each 
context. During a database session, the prophet moni­
tors client-server communication and generates access 
predictions, which Fido then uses to prefetch data. 
Each prediction indicates an explicit expected order and 
likelihood of access, information that is exploited by the 
cache manager's replacement policy. 

This solution addresses the difficulties described 
above and has several desirable properties. The prophet 
gains experience with each access pattern individually, 
tailoring its predictions within each access context ac­
cording to the history of that context, without consider­
ing other usage patterns. Also, the prophet monitors ac­
cess sequences in a non-invasive way, requiring no 
knowledge of data model or schema. Its operation is 
automatic and invisible to the database administrator. 
requiring little in the way of time, intuition. or expertise 
to operate. By continually monitoring access sequences. 
the prophet can adjust its predictions to reflect changes 
in usage quickly, incrementally, and in a uniform way. 

1.2 Paper Structure 

This paper introduces concepts and terminology useful 
as a framework for studying predictive caching, and 
discusses design issues identified by running the simula­
tion experiments described. It does not attempt formal 
analysis of optimality for all possible worlds. 



Our current research focuses on two topics. The first 
topic concerns how to best incolporate predictive 
prefetch activity into cache management, given costs of 
prediction and prefetching. The second topic involves 
comparing various prophet designs to assess predictive 
accuracy and efficiency. Accordingly, this paper pre­
sents a) a model for predictive cache management and 
b) a prophet design that uses associative memory to rec­
ognize and predict access sequences on-line. 

Section 2 describes how Fido fits into a workstation­
server OODB architecture. Section 3 presents a cache 
management model that incolporates prediction. The 
method of recognizing and predicting access patterns is 
discussed in section 4. Section 5 describes some inter­
esting experiments simulating a predictive cache using 
actual access traces. Section 6 discusses related worle, 
and some conclusions are offered in Section 7. 

2 ArChitectural Overview 
The purpose of this section is to summarize just those 

aspects of the target database architecture essential to il­
lustrate how Fido works. This description covers a sub­
set of functions provided by the database system, and 
entails some simplifying assumptions. First, methods 
for managing a cache of variable-sized objects are or­
thogonal to the issues of accuracy and costs of 
prefetching examined in this paper, so one running as­
sumption is that objects are of uniform size. Second, the 
distributed system architect must consider methods of 
validating and synchronizing cached objects against 
replicas. These issues have been addressed by others 
(e.g. [Alonso 1990], [Wilkinson 1990], [Garza 1988]), 
and are not considered here. We assume that prefetcbed 
objects are locked and validated in cache as if they had 
been requested. The target design applications will usu­
ally have low contention for write locks, since these ap­
plications often have high read/write ratios ([Cattell 
1987], [Chang 1989]). The functioning of a predictive 
cache per se does not rely on these simplifications. 

Predictive caching will be most useful to distributed 
applications that: 

•	 are data intensive, with high read/write ratios 

•	 use navigational access patterns which each imply 
different data clusterlngs 

•	 create and delete medium-granularity objects at a 
rate slow enough to permit tracking of changes 

•	 preserve some degree of object identity. 

In general, CAD applications have many of these char­
acteristics. Object identity is maintained by OODBs, 
which support data sharing between such applications. 

Fido is intended to operate in OODB systems where 
applications retrieve objects from secondary storage and 
cache them in local memory. This is known as a 
workstation-server, or intelpreter/ storage manager ar­
chitecture. The typical system consists of a central 
server machine responding to requests for data shared 
between applications running independently on worle­
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stations. Several systems, such as Cactis [Hudson 
1990], O2 [Velez 1989], ORION-ISX [Garza 1988], 
and Mneme [Moss 1990] are similar in this respect. In 
[DeWitt 1990], the performance of several such vari­
ations is compared. We wish to add Fido to Ob­
server/ENCORE [Fernandez 1990]. The primary com­
ponents of the architecture are the database server and 
the client, which includes the predictive cache. 

2.1 Database Server 

Observer acts as a typeless back end to applications, 
managing access to database secondary storage. Ob­
server maintains strong object identity [Khoshafian 
1986], which aids predictive caching - the preservation 
of identity simplifies recognition of reoccurring parts of 
an access pattern over time. Object identity in Observer 
is provided via an external unique identifier (UID) that 
acts as an immutable handle for an object and is not re­
cycled. OODBs may assign meanings to individual bits 
of UIDs, these semantics are not of concern to Fido, 
which treats access sequences as strings of symbols. 

A read message supplies a list of UIDs to Observer, 
which gets the identified objects from disk or a server­
managed buffer and returns them to the requester. To 
facilitate prefetching, the basic Observer read function is 
extended in several ways. A requester marks reads for 
either demand or pre/etch processing. Observer ensures 
that outstanding prefetch requests never delay other re­
quests by providing a pre-emptive read operation, to be 
used by demand requests, that is serviced before other 
reads. 

Observer objects can be clustered into segments and 
can migrate or be replicated between segments. Ob­
server returns a segment when one object in the segment 
is referenced, thus segments are the usual unit of server­
client communication. Segment prefetching may also 
be disabled, in which case the set of objects in a request 
is returned as the unit of network communication. 

2.2 Client 

A workstation application interfaces to Observer via the 
ENCORE client component, which acts as an inter­
preter, mapping the data model used by the application 
onto operations understandable by Observer. ENCORE 
implements object type semantics, executing methods 
and enforcing encapsulation, and is typically bound into 
the application's image. ENCORE also validates cache 
objects and supports other database functions related to 
persistence and distribution, but the orer~tion of these 
is unrelated to the prefetch mechanism. The salient 
function of the client is that it allows the application to 
reference objects by UID, without knowledge of how or 
where objects are stored. The client ensures that refer­
enced objects are ferried between the server and the ap­
plication's local memory transparently. Clients take 
various approaches to translating object references to 
memory addresses, often using some form of Resident 
Object Table (ROT) to obtain a pointer to the object's 
location in memory, and may "swizzle" the ROT entry 
by adding the memory pointer . 



ENCORE maintains a cache of currently used objects, 
sending demand requests to the server when the applica­
tion references an object not in cache and "flushing" 
modified objects back to the server's secondary storage 
as needed. If the way objects are clustered into Ob­
server segments does not suit the current access pattern, 
cache faults can increase network demand fetches, 
slowing response time perfonnance. 

2.3 Access Contexts 

The client isolates access patterns according to access 
contexts. The prophet provides context identifiers 
(ClOs) as a handle for associating patterns generated by 
the same source. By default, ENCORE uses CIDs to in­
dicate the combination of user and application that gen­
erates a particular access sequence, but context assign­
ment may be controlled further by the programmer. For 
example, an application might provide one function that 
graphically displays a circuit design, and another func­
tion that allows ad hoc queries. The access pattern of the 
display function might be very predictable, allowing 
efficient learning, while sequen-:es generated by ad hoc 
queries could be arbitrary and difficult to learn. A pro­
grammer might establish different CIDs corresponding 
to these two functions, even when invoked by the same 
user. With CIOs, a designer can use knowledge of an 
application to "focus attention" of the prophet, reducing 
pattern memory requirements at any given time and 
speeding prediction. 

2.3.1 Fido Predictive Cache 

A portion of ENCORE's client cache is allocated to the 
Fido predictive cache, which interfaces to the prophet to 
decide what to prefetch and the order in which to' re­
place cached objects. The prophet can be configured as 
a separate service or as part of the client image. It has 
two primary modes of operation: prediction and train­
ing. 

Given a sample of the latest sequence of access to 
Fido, the prophet predicts which accesses will occur 
next. An individual prediction may indicate that alter­
nate sequences are anticipated by arranging identifiers 
according to expected order and likelihood of access. 

In training mode, the prophet learns access patterns 
over time and becomes increasingly better at prediction, 
until it reaches a stable state where learning ceases. 
This state may be reached because the prophet is not en­
countering any new infonnation or changes in access 
pattern, or because it has exceeded user-specified re­
source limits. The access pattern infonnation for a single 
CID is known as a pattern memory. Fido stores each 
pattern memory between sessions. 

Figure I shows how Fido fits in with the client and 
server; UIDs are represented as letters and objects as cir­
cles. As an application session begins, Fido loads (0) 
the pattern memory for the access context. The applica­
tion generates a sequence of references to the client, 
which converts UIDs to object memory address via the 
ROT. 

4.prefetch
requeft 

o =semaphoro=object 

Client 

Figure 1: Server and Client with Predictive Cache 

References to a and b return pointers (2) to those objects 
in the cache. If an accessed object (e.g. c) is not in 
cache, the client issues a pre-emptive demand read (3) to 
the server, and blocks. During the session, the prophet 
samples the current access sequence (4), recognizes the 
start of a known pattern, and completes it, predicting 
"d e f g". Since e is already in cache, Fido starts a 
prefetch request for (5) d, f, and g, entering "promises" 
for these objects into the ROT. Any access to d, f, or g 
before the prefetch request arrives blocks until I/O com­
pletion updates the promises, converting them to regular 
ROT entries. As described in the next section, the 
prophet's predictions also govern replacement ordering. 

3 Predictive Cache Management Model 
As mentioned above, the client ferries objects between 
the server and the workstation's memory transparently 
to the application. The prophet generates predictions, 
causing objects to be prefetched. The client needs a 
strategy for managing prefetched objects. This section 
outlines a predictive cache management model. Simula­
tion has been helpful in identifying design issues for 
predictive caching, such as: 

•	 defining an appropriate model for prediction 

•	 ideal case operation. when many correct predictions 
are being generated 

•	 faulting and cache space utilization behavior in the 
worst case. when no predictions are being made 

•	 interactions between cached objects when a prefetch 
is accessed or an object eviction is required 

•	 computation and communication overhead for pre­
diction and prefetching. 



Fido maintains a FIFO sampling window on the current 
access sequence. On each access to an object 0, if 0 is 
not in cache, a demand read is started. Fido then gives 
the sequence sample to the prophet, which may return a 
prediction of the immediate future. If so, Fido checks 
whether any predicted objects are already in cache, and 
starts a single prefetch request for those which are not. 
When the prefetched objects arrive, an asynchronous 
completion routine decides which cached objects to re­
place. The overall strategy of predictive cache manage­
ment involves three goals: 

1. quickly flushing erroneous prefetches from cache 

2.	 avoiding wasted cache when no predictions are made 

3.	 controlling the volume and cost of predictions. 

The first two goals are addressed by Fido's replacement 
policy, and the last by heuristics - Fido monitors predic­
tion performance and adjusts certain prophet parameters 
dynamically to throttle prediction rate balancing cost 
against accuracy. We will now introduce some terms, 
describe the replacement policy, and then portray Fido's 
operation under several conditions. 

3.1 Definitions
 

The following terms define a predictive cache.
 

3.1.1 Predictive cache
 

A predictive cache C={R U PI is a union of two disjoint
 
sets· a. prefetch set P, and a set of referenced objects, R. 

, C can holu. k objects. 

/ 3.1.2 Prefetch set 

A prefetch set P is the set of prefetch requests present in 
cache at anyone time. Objects in older prefetch re­
quests are considered less likely to be accessed than ob­
jects in more recent requests. 

3.1.3 Prefetch request 

A prefetch request 1t. is the order-maintained subset of 
objects in prediction h. not in C at the time IT. is made. 
The "head" of a prefelch request identifies the object 
most likely to be accessed first, while the "tail" identi­
fies the object whose access is expected furthest in the 
future and is thus least likely: 1ti = {IT; - C1. A 
prefetch request is the intended unit of 1/0 between 
cache and secondary storage; objects identified are 
prefetched in a single request. In this sense, it resembles 
a page of objects assembled at the server. The differ­
ence is that its contents are determined dynamically in­
stead of by static clustering, and have explicit ordering. 

3.1.4 Prediction 

A prediction IT = 0 1 ... 0 is a list of identifiers par­
tially ordered by expectedcgccess sequence and fully or­
dered by probability of access. That is, an access to ob­
ject o· is expected before an access to object OJ .for i<j, 
unlesJ o· and o· are alternate possibilities, in Which case 
an acces~ to 0i Is more likely than an access to oj' 

3.2 MLP Replacement Policy 

A cache manager decides which objects to replace with 
new objects by implementing a replacement policy. 
Fido's replacement policy flushes erroneous prefetches 
from cache by ensuring that unused prefetches have 
lower priority than new prefetches or referenced ob­
jects. The Minimum Likelihood Prefetch (MLP) re­
placement policy stipulates: 

•	 Within a prefetch request, evict the Minimum Like­
lihood Prefetch first. That is, prefetch eviction hap­
pens from tail to head of each prefetch request. 

•	 The definition of P implies that old prefetch re­
quests are evicted before new prefetch requests. 

•	 On access to object 0, promote 0 to most-recently­
used status within C. If operating "beneath" a pri­
mary cache, swap 0 with 0' evicted by the primary 
cache. 

The MLP policy is adapted from the proven optimal re­
placement policy for demand paging, OPT [Mattson 
19/v]. OPT always replaces that item which is accessed 
furthest in the future, but operates off-line. MLP re­
places objects which are expected to be referenced fur­
thest in the foreseen future. One difference between 
MLP and OPT is that MLP uses estimated, incremental 
knowledge of the future, instead of perfect prescience as 
assumed by OPT. During periods when the prophet 
does not make predictions, however, the thitd role 
causes Fido to operate as a demand LRU eachI'. 

3.2.1 Replacement Ordering 

The replacement ordering for objects in C can be mod­
eled by operations on a fixed size list. Identifiers are in­
serted at the head and deleted from the tail. This behav­
ior governs how objects are brought into and evicted 
from C, whether by prefetch requests or by faults. As an 
access sequence is processed, the prophet generates pre­
dictions, which result in prefetch requests. As prefetch 
requests arrive, they are inserted at the list head in re­
verse of their expected access order. The object whose 
expected access is furthest in the future, i.e. - that least 
likely to be used, enters into and is evicted from C first. 

TIme.. RefIPrefetcb Replacement List State 

Oa ~ 
Ib ~ 
2c ~ 
2 II=defxg ~ 

3d	 = 
4e	 ~ 
5 f 
6 q 
7 g 
8 h 

Figure 2: Replacement Example 
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The example in Figure 2 illustrates replacement priority 
as a prefetch request is handled and faults occur. For 
simplicity, the example assumes that Fido is operating 
as a primary cache. Successive references descend the 
left column, with the list state shown at right. Identifi­
ers are added at the list head (left) and removed from its 
tail. By time 2, references to a, b, and c cause reorder­
ing, and the sampling window contents, abc, match a 
known pattern, triggering the prefetch request for de­
!':!g. This prefetch request arrives before another refer­
ence is made, causing eviction of everything but c. At 
6, an access to q (instead of x) faults, replacing c with 
q. At 7, g is moved up, leaving x to be evicted by the 
fault for h. 

3.3 Cache Behavior 

Three prototypic cases combine to characterize the in­
tended behavior of the cache during operation. 

3.3.1 Sequence Recognition (best case)
 
A prefetch request of size k is made every k accesses,
 
which arrives, fills the cache, and is then consumed
 
from head to tail, moving 1t from P to R, and leaving 
the replacement list containing 1t in reversed order. 

3.3.2 Prediction Starvation
 

Within a session, intervals occur during which the cur­

rent sequence is unknown to the prophet, which gener­

ates no predictions. In this situation, the move-to-front
 
[TaIjan 1985] rule produces the replacement behavior of 
a demand LRU cache processing the same sequence. 

\ 
!
j 3.3.3 Error Glut (worst case) 

In this situation, some maximum number of predictions 
is made on every reference, but none are correct, poten­
tially causing the cache to be full of useless objects. 

The following heuristic adjusts certain prophet pa­
rameters to control cases 2 and 3 above: 

•	 Guess rate: Let A. denote the ratio of objects 
prefetched divided by the number of references 
made at any given time during the session 

•	 Accuracy: Xdenotes the ratio of correct predictions 
to total predictions during the session. 

•	 Efficiency: If n denotes the sample window size, 
and co denotes the size of a prediction, the ratio 
'U=CO/n reflects how much sample is used in generat­
ing each prediction. 

Guess rate, accuracy, and efficiency interact. Specifi­
cally, increasing the sample size lowers efficiency and 
guess rate, but raises accuracy. Fido monitors guess rate 
and efficiency by keeping running averages. Prediction 
starvation can occur if too much information is supplied 
in the samples, and error glut can happen if the sample 
size is too small. To control these situations, Fido ad­
justs sample size, n, according to XI... If XI.. crosses a 
low or high threshold, Fido increments or decrements n 
accordingly to try to bring XI.. back into range. 

4 Estimating Prophet 
Previous sections of this paper have outlined a model 

for managing a cache containing prefetched nhjects, bu, 
have assumed an ability to predict references. This sec­
tion presents a design intended to illustrate how the cur­
rent prophet learns to predict. The p~ophet lear:ns acc~ss 
patterns in training mode and recogrnzes them m predic­
tion mode. The client records reference traces from 
each session within each access context. Training mode 
processes each reference trace - normally (but not nec­
essarily) off-line, between sessions, and incrementally 
improves pattern memory for each access context. Pre­
diction mode is used to generate prefetch requests, as 
described in sections 2 and 3. 

The intuitive explanation of how training and predic­
tion work is that the present sequence acts as a cue ­
when the prophet is presented with a sequence that is 
similar to some previously encountered situations, it re­
calls the consequences of those previous situations - this 
is analogous to the way organisms determine present be­
havior according to past experience. Thus both training 
and prediction rely on an ability to G.uickly but inexactly 
retrieve previous sequences using information about the 
present sequence as a key. We will first .dis~ss this ,in­
exact retrieval capability, and then outhne Its function 
in training and prediction. 

4.1 Associative Memory 
The prophet stores and retrieves access order informa­
tion in an inexact manner using a nearest-neighbor asso­
ciative memory. Much work has been done on associa­
tive memory architectures ([Potter 1987], [Kanerva 
1988]) some of which provide the most biologically 
plausible neural net models. Research by Anderson and 
others has shown how such memories can be con­
structed from elements that imitate the functioning of 
neurons in cortex [Anderson 1990], and evidence sug­
gests that cognition may indeed operate this way. 
Nearest-neighbor models map data units with k elements 
to points in k-dimensional pattern space, defining simi­
larity metrics in k dimensions. Similar patterns are near 
each other in pattern space, and equivalence classes are 
defined by radius values. The following terms apply to 
the nearest-neighbor based pattern memory model. 

4.1.1 Pattern Memory 

A pattern memory consists of t unit patterns, ~O' ... , ~' 
pairwise at least r distant in pattern space. Each urut 
pattern defines an equivalence class - all o~ser;:ed se­
quences within the pattern-space sphere havmg S at l~S 

center and radius r are considered equivalent to S. This 
capacity for inexactness is important for two reasons. 

First, it means that pattern memory is lossy - it ignores 
minor variations in patterns encountered over time. only 
using resources to represent significant differences. . 

Second. it allows useful predictions to be made even If 
the current access sequence does not exactly match what 
has appeared before, as when new identifiers appear af­
ter recent updates to the database. 



4.1.2 Unit Pattern 

A unit pattern S=<o1...0 a> is a list of identifiers that 
acts as a partial approximation of access pattern. Each 
unit pattern divides into a prefix of variable length a and 
suffix of length a-<X < k. The prefix acts as a key for the 
suffix during prediction. One can think of the prefix as 
an observed antecedent, and of the suffix as its conse­
quence. Each suffix usually contains the prefix of some 
other unit pattern(s), creating inexactly linked chains of 
unit patterns that approximate observed alternate se­
quences (see Figure 4). Also stored with each unit pat­
tern are ratings of its historical frequency of occurrence 
and average predictive accuracy. Newly created unit 
patterns are of a uniform maximum length, but may be 
shortened over time by training. 

4.1.3 Distance in Pattern Space 
The measure of dissimilarity between two unit patterns 
is the count of columnwise unequal identifiers. 
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Figure 3: Unit Patterns in Pattern Space 

In Figure 3, one sample S and a set of unit patterns, all 
of equal lengths, are arranged according to increasing 
distance from S. The nearest neighbors to S are the unit 
patterns closest to S in pattern space. S is considered 
equal to all unit patterns closer than r to S. 

4.2 Resource Costs 
The current prophet implementation is described further 
in [Palmer 1990]. Two of its properties are: 

•	 A non-repeating sequence of length i can be stored 
in pattern memory using 0(1) space, creating t=lIa 
unit patterns. 

•	 All nearest neighbors of a sample of length a can be 
found in O(a log(t) + f), where f is an expected 
number of neighbors. 

Pattern memory space requirements of the implementa­
tion are adequate for problem sizes of current interest 
(i.e. - infrequently-repeating strings of 0(105) identifi­
ers). The size of pattern memory can be controlled by 
user-set resource limits, and by establishing multiple ac­
cess contexts per application. Neighbor finding is fast 
enough for predictions involving thousands of unit pat­
terns, since sample size is typically small. We expect to 
be able to further reduce prophet resource requirements 
through continued research. 

4.3 Training Mode 
After each session. the client saves a reference trace for 
each access context invoked, then runs the prophet in 
training mode to process the saved traces. The training 
algorithm adapts the contents of pattern memory over 
time so that only common unit patterns are retained in 
pattern memory. Training reinforces unit patterns that 
appear frequently, and represses sequences that appear 
sporadically, or which consist of obsolete information. 
Unit patterns "compete" for space in pattern memory 
over time based on their ability to generate prefetch re­
quests contributing to overall system speedup. This 
causes pattern memory to self-organize, focus on regu­
larly reoccurring phenomena, and evolve an internal 
generalization of each access pattern. The training algo­
rithm employs an "evolutionary" strategy consisting of 
two phases - credit assignment and adaptation. 

4.3.1 Credit Assignment 

This phase assigns credit to all unit patterns that contrib­
ute to predicting the training trace. Some stored unit 
patterns recur only infrequently, while others become 
obsolete as updates to the database cause new identifiers 
to appear and others to disappear. Also, the lengths of 
unit patterns are initially uniform, producing arbitrary 
sampling boundaries. Infrequent, obsolete, or poorly 
chosen samples produce unit patterns that do not func­
tion well as predictors, and which can congest pattern 
memory with useless information. 

Credit assignment begins by simulating a prediction 
run along the training trace i. Each time a prediction oc­
curs at a point i in i, accuracy and frequency ratings of 
each unit pattern S contributing to the prediction are up­
dated. Accuracy is assessed for S by counting the num­
ber of identifiers in the suffix of S that appear within a 
lookahead interval, usually k. ahead of i in i. in any or­
der. If the accuracy of S falls below a threshold, it may 
be because errors occurred at the end of S's suffix. If so, 
the length of S is decreased and S is re-rated. Frequency 
of occurrence is then updated for all contributing unit 
patterns. 

4.3.2 Adaptation 

Each time an application runs, it can reveal more of its 
total access pattern. To recognize new parts of an ac­
cess pattern, the algorithm again scans the training trace, 
shifting it through a sample window of unit pattern size, 
matching each sample against pattern memory, and 
skipping ahead by a when an equivalence is found. 

Any subsequences of unit pattern length that do not 
fall within an existing equivalence class and which were 
not predicted well during credit assignment are added a'> 
new unit patterns to pattern memory, timestamped, and 
rated. All unit patterns are then ranked according to rat­
ing and length. Unit pattern'> with the lowest ratings and 
shortest lengths are pruned, until pattern memory fits 
within space allotted to it. The pattern memory is then 
ready to be saved or to be used for prediction mode. 



4.4 Prediction Mode 
The task of prediction mode is to quickly recognize 
similarities between the current access sequence sample 
and stored unit pattern prefixes, and combine their asso­
ciated suffixes. During a session, the sampling window 
contents are given to the prophet's PREDICT routine on 
each access. PREDICT finds the nearest neighbors of 
the sample. One can think of prediction as a navigation 
through pattern space. Training initially overlaps suc­
cessive unit patterns, and when re-training does not 
change these links, consumption of one prefetch request 
generates a match with the next unit pattern prefix. In 
this example, access to efg in the suffix of Sl matches 
the prefixes of S2 and S4. 
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Figure 4: Linked Unit Patterns 

PREDICT constructs an ordered union of suffixes as 
the prediction, n. As it copies the suffix of each Sto n, 
it uses the rating of each unit pattern to place UIDs from 
the "best" S at the head of n, and avoids duplicates. 
Thus, UIDs of multiple unit pattern suffixes are inter­
leaved in the prediction output, with UIDs from the best 
matches and predictors appearing first. The following 
example shows efg matching unit patterns Sz and S4 
above, causing an interleaving of their suffixes lOto n. 
SAMPLE: gl"g 
S2 erg hi ikl X=.4 
S4 e x g h g y X= .3
 
OUTPUT, n: h i g j Yk I
 

Note that the prophet finds multiple matches for a sam­
ple. Fido's model of prediction permits parallel possi­
bilities. Since cache memory is cheaper than I/O time 
[Gray )987], Fido spends cache space to save I/O, 
prefetching alternate possibilities (limited to a constant 
factor) simultaneously into P. For example, suppose 
that after sequence e f g h, an access to i is .4 likely, 
but an access to q is.3 likely. Fido's prefetch request 
includes both i and q, giving a combined hit probability 
of .7 - and assuming that one of i or q will go unused. 
MLP replacement then quickly reclaims space wasted 
by erroneous prefetches by evicting unused prefetches 
first. 

I based on conversations with Digital CAD tool developers 

5 Experiments 
We have been experimenting with predictive caching, 
using Fido as a framework for exploration. Our first 
simulations examined aspects of prediction, prefetch and 
faulting behaviors, and we are using the results to fit 
predictive cache operations to the actual I/O subsystem. 

5.1 Resilience to Noise 

Other users make unpredictable updates to a database, 
changing the set of UIDs to be leame~ and predicted. 
One measure of prediction performance is the rate at 
which prediction accuracy degrades as updates increas­
ingly disrupt pattern recognition. urn changes appear as 
"noise" in the access sequence during prediction. While 
the update rate of OODB applications is slower than for 
transaction processing, it is reasonable to expectI that 10 
or 20 percent of the UIDs could change between ses­
sions. Experiments with an early (also nearest-neighbor) 
pattern memory [palmer 1990] revealed a property of 
resilience to create/delete noise. One experiment ran as 
follows. An access simulator produced a string, 1, of 600 
random UIDs, used to train the prophet and produce a 
pattern memory. The following process was repeated 
until the original 1contained 30% noise: 

I.	 Mutate 2% of 1 by deleting or inserting new UIDs at 
uniformly random points, maintaining 1's length 

2.	 Simulate prediction along 1 without first re-training, 
then plot final guess rate and accuracy against total 
percent noise in 1. 

We observed that accuracy and guess rate degraded 
linearly as noise increased, that guess rate declined more 
quickly than accuracy, and that the relative rates could 
be varied by adjusting sample size, i.e. - efficiency. 
The result appears in Figure 5. 
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Figure 5: Prediction Accuracy and Guess Rate vs. Noise 



5.2 Predictive Cache Simulation 

We next wished to simulate the functioning of training 
and predictive caching using an access trace. Develop­
ers at Digital's CAD/CAM Tedmology Center provided 
virtual address reference traces from a CAD tool that 
seemed to perform navigational access, spending most 
of its time waiting to fault through a graphics display 
structure, especially during invocation, when the whole 
design was displayed. Two traces were obtained, each 
recording 5 to 10 minutes of tool use: invocation, zoom 
in and out, selecting ICs, and setting filters to remove 
certain parts of the bow display (runs and junctions). 
In observing the display, possibilities for establishing 
distinct access contexts became obvious, but we treated 
the tool as a black box generator, using a single access 
context for training and prediction. The circuit design 
data contained 100,000 objects, but only 10,000 or so 
could fit in the graphics "usable window" at once. The 
first trace, TI, had 73,767 identifiers and TI had 
147,345. The first session was kept short, so we could 
notice the effect that training after a first short session 
had on caching during the next, longer session. 

We simulated a Fido cache of 500 elements handling 
faults from an ENCORE demand LRU cache. Recall 
that Obsetver allows a segment of objects to be 
prefetched in response to a read., or up to k identified 
objects to be returned in a single prefetch request, either 
way saving k-l network I/Os. However, the setver may 
complete a segment fetch faster that its equivalent 
prefetch request. We wanted to isolate effects due only 
to prediction, so we did not siJ!'ulate segment prefetch in 
the LRU cache and made no assumptions about service 
rates for prefetch requests or segment prefetch. 

Placing Fido below a primary client cache would- en­
sure that prophet computation only occurred during pri­
mary cache faults, incurring no prediction overhead for 
hits to the LRU cache. Prophet computation would be­
gin after and complete well before each Fido fault, while 
each hit in the Fido cache would save one fault I/O at 
the cost of at most one prediction computation. 

One question was whether cache space spent storing a 
pattern memory would pay for itself or would be better 
spent increasing LRU cache size. To find out, we trained 
the prophet on session Tl's fault sequence, measuring 
growth of pattern memory, then used the result to 
predictively cache the next session's fault sequence. 
First, we simulated a lOOO-element LRU cache using 
TI, to produce sequence LRU-IOoo(TI). This fault se­
quence was about 21 % shorter than TI, evincing some 
re-use. LRU-IOoo(TI) was then input to train Fido. The 
sampling window size was 0.=5, with unit pattern size 
of 250. The equivalence radius used during training was 
.4 - i.e., 60% of the UlDs in two unit patterns had to 
differ before they were considered distinct. 

During training, pattern memory grew in steps but 
the fault total grew linearly. During learning plateaus, 
few new patterns were being found - indicating recur­
ring sequences in the fault trace. The result is shown in 
Figure 6 (pattern memory size estimated in identifiers). 
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Figure 6: Pattern Memory Growth During Training
 

Next, we compared the faulting performance of the
 
LRU-I0oo/Fido-500 combination to that of a strict
 
LRU-20oo cache for session T2. If object sizes aver­

aged 140 bytes and UIDs had 32 bits, the LRU-20oo
 
would occupy about the same space as the LRU/Fido
 
cache, including mace to store the pattern memory from
 
TI in the Fido cache, as in the following diagram:
 

LRU-lOOO
 

VS 1__LR_U_-_2_000__
 

Figure 7: Configurations Requiring Similar Space
 
We measured faults accumulating, looking for the ef­

fects of prefetching. An LRU-2000 cache was simulated
 
with trace TI, producing fault sequence LRU-2000(TI).
 
The accumulation of LRU-2000 and LRU-IOoo faults is
 
compared to LRU-I0oo/Fido-500 faults during session
 
TI below:
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Figure 8: Fault Accumulation per Client Configuration 

The faulting behavior was a<; we had hoped. LRU-I000 
fault sequences learned from session T1 reappeared in 
session T2 and were prefetched, suppressing faults. This 
was particularly noticeable during the first part of T2 
(Figure 9 provides a closer view). After one training run. 
we had reduced total faults by about half. Places where 
faults rise at the same rate as LRU faults indicate se­
quences not yet known to the prophet. 
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6 Related Work 
Previous adaptive database work in the mid-1970s 
([Niamir 78], [Chan 1976], [Hammer 1976]) explored 
methods of automatically adapting the physical and sec­
ondary access structures of databases according to use. 
These methods differ from ours in that they require run­
ning statistical analysis procedures periodically to 
reconfigure a schema or to choose indices. The struc­
tures did not adapt to changing usage patterns between 
reconfigurations, and data was unavailable during recon­
figuration. The statistical procedures required customi­
zation to handle each database schema, resulting in 
brittleness and lack of generality. These adaptive 
mechanisms were not transparent to the database admin­
istrator, and attempted to optimize over all users rather 
than for each access context individually. 

Although the current prophet is not implemented as a 
neural net, we are interested in using appropriate leam­
ing technology to detect and exploit regularities in the 
operation of low-level system components. When the 
best way of exploiting a context-specific pattern is un­
known, approximate solutions such as those developed 
by neural models can have high payback. 

Recent research in neural networks has produced self­
organizing systems that are less ad hoc, more robust, 
and better understood than previously, enabling their use 
for adaptive database work. Computational models of 
cognition [Anderson 1990] provide a rich set of tools to 
"make sense" out of patterns, forming internal represen­
tations during learning [Rumelhart 1986], fLapedes 
1987]. The concept of solving a problem by using a 
black box that "programs itself' to produce a desired be­
havior from examples of the behavior is known as 
extensional programming [Cottrell 1988]. In Fido's 
case, the desired behavior is sequence prediction, but 
we are not yet sure of an optimal algorithm for it, mak­
ing extensional programming attractive. [Moody 1989] 
discusses other potentially useful models. Hardware for 
parallel associative memory [Potter 1987] presents the 
possibility of vastly increasing the pattern space that can 
be processed on-line. Much more computational power 
is now available to learning algorithms. Neural models 
are also quite robust, adapting and functioning well in 
the presence of noise. Lastly, since these models operate 
as black boxes, they are inherently non-invasive in ob­
serving system interactions. 

Our use of associative memory for prediction is not 
new. [Kanerva 1988] describes a k{old Memorv able to 
predict events generated by kth-order stochastic proc­
esses (e.g. a Markov process is a 1st-order stochastic 
process). A Kanerva memory addresses words by con­
tent, storing ~ . pattern St at location St-l to represent 
order-l transltlOns. 

In the area of priority-based buffer management, 
[Jauhari 1990], [Chou 1985], [Alonso 1990] have used 
access pattern information to manage buffers, but use it 
chiefly to make replacement decisions for demand pag­
ing schemes, not directly for prefetching. Typically, 
qualitative "hints" about page priority are supplied, not 
detailed information about expected access order. 

7 Conclusions 
We began by noting a conceptual conflict between data 
clustering and data sharing, then introduced a 
prefetching method that promises to improve response 
time performance for conflicting but regular access re­
quirements. We described a pattern memory for predict­
ing sequences that has well-defined resource costs and 
scaling properties, adapts to changes in access pattern 
and data, and improves in prediction accuracy over 
time. This should result in client response time perform­
ance that improves over time, depending on how 
prefetch request processing actually maps to I/O. Since 
no semantics are involved in processing strings of iden­
tifiers, many variations are possible. For example, Fido 
tnight be used in both server and client to prefetch pages 
or clusters by using appropriate identifiers during train­
ing and prediction. Although predictive caching can 
prefetch independently of clustering, it can complement 
rather than replace clustering. In fact, a trained prophet 
should be able to provide useful clustering hints. 

Fido's current pattern memory handles noise and inex­
act input, and learns to predict navigational access well. 
Navigational access can cause severe problems for a de­
mand cache. For example, the fault trace produced by a 
demand cache of size k for a sequence 1 that is non­
repeating within k references equals I. Such patterns 
may be fairly common in data-intensive applications. 
[Chang 1989] observed that the access patterns of CAD 
tools they studied were "predictable". Navigational ac­
cess predominates in design applications, occurring dur­
,,,g verification scans and during complex object expan­
sion. However, navigation is often performed in a 
deterministic manner, resulting in bursts of non­
repeating access. The benchmark in [DeWitt 1990] em­
ploys a "scan query" that reads all complex objects in a 
set, using breadth-first traversal to expand each complex 
object. Presumably this benchmark could produce the 
same sequences over time by expanding complex ob­
jects in the same way each time. 

Predictive caching is a very promising method. Fido 
automatically assimilates and isolates context-specific 
access order regularities and exploits this information to 
avoid I/O. Our early results suggest that faults saved are 
worth the costs of maintaining access pattern informa­
tion and retrieving it on-line. We hope to continue 
studying predictive optimality and efficiency, and to add 
a predictive cache to a real system. 
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