
Text Objects

George V. Reilly

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the Department of Computer Science

at Brown University

Ivlay 1991

This research project by George V. Reilly is accepted in its present form

by the Department of Computer Science at Brown University

in partial fulfillment of the requirements for the Degree of Master of Science.

Professor Andries van Dam

Advisor

Contents

1	 Introduction 1

2	 Text Objects 2

2.1 Font Formats	 2

2.2 Choosing a Font Format	 3

2.3 Representations of Characters in 3D .	 3

2.4 Choosing Representations for Text Objects	 4

2.5 Converting a Character to a TRIPobject	 4

3	 Text Layout 5

3.1 Two-Dimensional Virtual Page.	 5

3.2 Pros and Cons of 'lEX as a Formatting Language	 7

3.3 Interactive Text Editor	 8

3.4 Three Dimensions: Arbitrary Positions and Orientations 8

4	 Incorporation into BAGS 8

4.1 Adding New Fonts and Representations.	 9

4.2 Code Organization	 9

5	 Conclusions 10

.5.1 F11ture Work. 10

5.2 Summary	 11

1 Introduction

Digital typography is the technology of using computers for the
design, preparation, and presentation of documents: in vvhich the
graphical elements are organized, positioned, and themselves cre­
ated under digital control. - Richard Rubinstein
[Rub88]

Digital typography has been a moderately active area of research in com­
puter science. Work has been done in text formatting, page-description lan­
guages, WYSIWIG editors, writing tools, digital typefaces, the particular
problems of low-resolution devices, and rasterization of letterforms. Almost
all of this work has been directed towards two-dimensional text, that is, text
on a sheet of paper or a computer screen. Although some 'vvork has been done
on three-dimensional typography, as evinced by the 'flying logos' so beloved
of advertisers, almost nothing has been published about it.

This report describes a research project which investigated three-dimen­
sional text objects. An implementation exists within BAGS, the Brown An­
imation Generation System [ZCv+91, Str88], and arbitra:-y text can be ren­
dered.

Two key issues were addressed: (1) taking data descri bing a character and
converting that data into an object that BAGS can rencle:::-, a:J.d (2) specifying
the position and orientation of characters in a scene. (BAGS already handles
the time-varying attributes.)

This report describes various kinds of f(lnt data. po,,: -~ >: ~",;,:-esentations

for text objects, how text objects can be v·sir:"'2"'':i:=. :::>~c C<:10ices and
tradeoffs that were made in my implementation. cmci ?~'=5"--:: ~ :-=-:.-- ~'=·nclusions.

1

2 Text Objects

Before considering the nature of the text objects and how they might be
represented, we must first consider the data that describes characters. There
are several possible sources of font data. The limitations of the data used
determines the nature of the text objects in BAGS; e.g., the Hershey fonts
are made up of points connected by straight-line segments and clearly cannot
be rendered as smooth curves (although curves could be fitted to the data).

2.1 Font Formats

The following list of font formats is by no means complete.

Bitstream: Bitstream fonts define characters as outlines. Bitstream supply
data in three different formats.

Definitive Outlines: Characters are defined as a series of lines and
circle arCti on a very high-resolution coordinate system [Bit84].

Compressed Outlines: These are derived from Definitive Outlines,
but are stored in a very compact form [Bit87b!.

Bezier Outlines: Character outlines are described by lines and cu­
bic Bezier curves [Bit87a]. Again, the data is derived from the
Definitive Outlines.

Hershey: The Hershey fonts IHer67, Her72] were developed for vector plot­
ters and consist of points connected by straight-line segments.

POSTSCRIPT: POSTSCRIPT fonts come in two varieties: type 1 and
type 3 [Ado85a, Ado85b, Ado90]. Type 1 fonts are described by POST­
SCRIPT programs written using a very limited subset of the POST­
SCRIPT language (essentially straight-line segments and Bezier curves),
while type 3 font programs can use nearly any POSTSCRIPT construct.

TrueType: Another outline format, TrueType was developed by Apple and
Microsoft [Gla90] in an effort to grab a share of the ront market from
Adobe.

2

METAFONT: Knuth's METAFONT is a sophisticated program for drawing
character glyphs [Knu86c, Knu86d, Knu86e]. Each character is de­
scribed by a series of pen strokes, drawn by pens with nibs of various
shapes.

2.2 Choosing a Font Format

The primary requirement for font data used in generating three-dimensional
text objects is that the characters be scaleable. This immediately precludes
using bitmaps. The characters should also look good at large magnifications
which rules out the (polygonal) Hershey characters. Finally, the character
data should be in a simple, easy-to-manipulate format, which excludes POST­
SCRIPT type 3 fonts and METAFONT fonts.

Thus, of the formats described above, we are left with the outline formats:
the three Bitstream formats, POSTSCRIPT type 1 fonts, and TrueType.

The current implementation in BAGS uses Bitstream Compressed Out­
line fonts, primarily because we have a derucnstration tape from Bitstream
containing sample fonts-Swiss (Helvetica), Dutch (Times), and Kanji-in
Compressed and Bezier Outline formats.

Bitstream sell several hundred different typefaces, so there is little point
in adding support for TrueType or POSTSCRIPT type 1 fonts.

2.3 Representations of Characters in 3D

There are several possible representations for text objects: polyhedra-TRIPobjects
(TRIangular Polyhedra) [Hua90] in BAGS terminology, eSG's [Hub90] of
prisms [Kaj83] (called translational sweeps in [FvDFH90, Chapter 12]), and
surface patches ([Far90], [BBB87], and [FvDFH90, Chapter 11]).

TRIPobjeets: It is conceptually straightforward to polygonize an outline
font and extrude the polygon into a three-dimensional shape.

CSG's of prisms: A prism is a closed planar curve extruded along a normal
vector. Clearly an extruded three-dimensional character is a prism.
CSG's are needed for characters that have two or m'::'re parts (e.g., an
'1' and its dot would be represented b:-- the uni·:,:::. . <~': L_._,:, prisms)
a,nd characters that have holes leg. i1 'b' \,."c:,tdd b,,' .~ ,::~ifTp,ence flf the

3

prism described by the outer outline and that described by the inner
outline).

Surface patches: A three-dimensional character can also be described as
a collection of surface patches. As both Bitstream and Adobe type 1
fonts can be described by Bezier curves, conversion to Bezier bicubic
patches should be straightforward.

Some of these representations can lead to having characters with beveled
edges, or characters with arbitrary profiles between the front and back faces.
Prisms cannot represent such character shapes, although polyhedra, surface
patches, and duets certainly could.

2.4 Choosing Representations for Text Objects

BAGS object classes must be able to present at least two versions of them­
selves to renderers-a polyhedral form for the polygonal modellers and a
ray-intersection form, although strictly speaking, the polyhedral f0~11l can
always be used instead of the ray-intersection form.

Text objects are currently implemented as TRIPobjects in BAGS. There
are several reasons for this: (a) the interactive polygonal modellers require
that object classes should provide a TRIPobject representation of themselves;
(b) prisms have not yet been implemented in the new system, and the surface
patch modeller is still under development; and (c) I expected it would be
straightforward to polygonize character outlines. I was wrong, as I first had
to enhance the TRI triangularization package so that it could triangulate
polygons ,vith holes, and this turned out to be much more difficult than I
expected.

2.5 Converting a Character to a TRIPobject

To convert a Bitstream Compressed Outline character into a TRIPobject,
we first build a tree of outline curves (e.g., a 'B' has one node at the root
and two children; an Ii' has two nodes at the root; a kanji character might
have as many as ten nodes in its curve tree. This hierarchical structure is
needed by the triangulation routine'), Each C'Jc"':' ~5 Cf:.-C":'>-.,;':'nized at a
user-controllable resolution. (As a special cas,=, ~i cn.e ::--::::- ·J.::-::·2 is zero. the

4

character is converted into a rectangle whose width and height is that of the
character. This is useful for testing purposes as the rectangles will render
quickly.) This collection of hierarchical polygonized curves is passed to the
triangularization routine which considers it all to be one polygon with holes
and islands.

The back face of the TRIPobject is built by copying the triangles of the
front face in reverse order (so that the normals point outwards) and shifting
their z-coordinates. Finally, the front face is connected to the back face, by
circling around the interior and exterior curves and connecting vertices to
their 'opposite numbers' and their neighbours ..

3 Text Layout

Text can be thought of as one-, two-, or three-dimensional. A word, a short
phrase, and a flying logo are all one-dimensional. One-dimensional text ob­
jects can be positioned like any other objects. A page of text, a caption, and
a slid.:: ap" bvo-dimensional.

There are two models of laying out text to be considered: the simple,
rectilinear, two-dimensional virtual page model, and the arbitrary-position,
arbitrary-orientation, three-dimensional model.

3.1 Two-Dimensional Virtual Page

To layout text on a two-dimensional virtual page, some sort of text-formatting
language is needed. (A WYSIWIG editor is arguably a simple, imperative
text formatter.) Either a new language must be written ham scratch or an
existing one can be adapted.

The complexity and sophistication of existing text-fo::matting languages
indicates that writing a new text formatter would be a :iifficult and time­
consuming task.

Thus, I decided to use T.EX1 as the formatting laI:g~].age for the BAGS
text objects. 'I£X outputs dvi (DeVice Independent) 5.~es; which contain
directions describing where characters should be placed ')n a page.

IT.EX is a sophisticated, programmable text formatter that c,:,:::.oc ':: c"·-:,:, ::12.jor flavors:
'plain'TEX [Knu86aJ and U-TEX [Lam86J. (This roC',:,'" ····'3.3 "'r:~~,:" ~:::: ~.c--:::-EX.) Tv" is
sometimes used as a synonym for plain TEo\:.

5

The characters in a BAGS text object are taken from either a literal string
or a dvi file.

For example: to generate the following virtual page

The Brown Computer Graphics Group

presents

Text Objects
Who is Text and to what does he object?

we would say something like this in the Flesh script:

foo: rep 0 = text
resolution 0 = [20J
scale C' = [2,2,2J
color 0 = [1,O,OJ
textstuff 0 = [IF", "bar.dvi", TExT_DvrJ

where 'bar.tex' (the M\.T# file from which 'bar.dvi' is generated) looks
like:

\documentstyle[bagstextJ{article}
\begin{document}

\begin{center}
{\Large\sl The Brown Computer Graphics Group}\\
\ \\
{\it presents}\ \
\ \\
{\LARGE\sf Text Objects}\\

\ \\
{\large Who is Text and to what does ne object?}\\

\end{center}
\end{document}

6

The material between the \begin{center} and the the \end{center} is the
source for the above example. The bagstext style in the \documentstyle
line sets up the correct set of fonts for use with BAGS text objects.

There are two variants of textstuff:

textstuff [(font), (string), TEXT_LITERAL]
textstuff [(page-specifier), (dvi-filename), TEXT_DVI]

The first form is used to produce literal strings; the second reads a page from
a dvi file.

3.2 Pros and Cons of T.EX as a Formatting Language

Advantages of using TEX and J;\\TEX include:

•	 The pages can be previewed and quickly debugged using any of the
several standard dvi previewers. The edit-compile-run cycle for a small
I;\\.TEX file is considerably shorter than that for a Flesh script.

• Switching fonts, weights, styles,	 etc. is trivial (if suitable font metric
data is set up).

•	 The user has control over leading (space between lines), formatting,
and justification.

•	 There is built-in pairwise kerning (adjusting the spacing between pairs
of letters, such as moving 'AV' closer together to form 'AV') and liga­
tures (converting pairs of letters such as 'f' and 'i' to 'fi').

• Specifying	 attributes of the text that make no sense in more conven­
tional I;\\.T,EX environments (e.g., laying a string along a duct) can be
achieved by writing a few macros which make use of TS\TEX's \special
primitive.

•	 TEX has its own powerful macro language.

7

Disadvantages of using 'lEX and Ib\TEX include:

•	 'lEX is not interactive.

• TEX is not easy to program (as distinct from using a canned set of
macros such as 17\TEJX.)

• Track kerning	 (the overall spacing between letters) cannot be easily
adjusted.

• 'lEX places boxes (lists of characters, rules, and boxes) in horizontal
rows across a page. It cannot run text along non-horizontal paths or
wrap text around non-rectangular figures.

3.3	 Interactive Text Editor

A WYSIWIG editor that interacts with the modellers would certainly be
easier to use than writing Flesh scripts containing references to dvi files,
although I~TEX is quite straightforward to use for simple purposes.

Time did not permit the implementation of a suitable text editor.

3.4	 Three Dimensions: Arbitrary Positions and Ori­
entations

To place text at arbitrary positions with arbitrary orientations, the virtual
page can be mapped onto a patch surface. The position of a string in
3-space would be determined by the (x, y, z) value of the patch surface at
the (u, v) value to which the coordinates of the string on the virtual page
mapped. The orientation of the string would be determined by the frame
(tangent, normal, and binormal) of the point (u, v) on the patch surface.

This awaits a working patch modeller.

4 Incorporation into BAGS

Text objects have been added to BAGS and they work witb. the new system.
Adding text objects entailed:

8

1.	 Generating TRIPobjects from the Bitstream characters (and inciden­
tally making the TRI triangulation package work with polygons which
contain holes and islands).

2.	 Text Layout:

(a)	 Building a dvi parser which takes a page of text and generates
text objects on a plane in a scene.

(b)	 Writing a 1;\.TEX style file ('bagstext. sty') which sets up the
appropriate fonts and \specials (currently none).

(c)	 Generating tfm2 files and bitmaps of characters for previewing.

3.	 Integrating the text objects with the new system.

4.1 Adding New Fonts and Representations

Adding a new Bitstream Compressed Outline font to BAGS should be the
work of a few minutes-all entry needs to be added to the internal list of
fonts (in the TYPO_open_font 0 routine), and two shellscripts need to be
run to generate a tfm file and the bitmapped fonts for the previewer.

Adding a font in a different format would entail writing a back end to
generate outline curves in the internal format used by the text object routines.

Adding a new representation (prisms, surface patches, etc.) for text ob­
jects is more difficult, but not excessively so. A routine to take the outline
curves and convert them into the new form must be written. This routine
should be modelled upon the existing routine which polygonizes and extrudes
text objects.

4.2 Code Organization

The code exists in two packages within BAGS: TEXT and I'YPO. The TEXT
package is just the object class routines needed by the neVi system. TYPO
contains all of the interesting code for converting Bitstream characters into

2tfm= 'lEX Font Metrics. A tfm file contains the width, height, and depth of each
character, kerning information, and instructions <)]1 hcnv "<) C0nst'!'.lc-:~~t,-,:es, TEX needs
this data so it can lay characters out on a page. T::.~ c.',':' ;:2.:3~: ;:.o~::s ~::.i3 data. as0,

does	 the routine which turns a literal string intr.' a l?\j?·;,:'jeet,

9

TRIPobjects and for parsing dvi files. There are three subdirectories within
the TYPO 'src' directory: 'bit stream', 'dvi', and 'test'; with the obvious
distribution of functionality. The data files-Bitstream Compressed Outline
fonts, tim files, bitmap fonts, and 'bagstext. sty'-can be found in TYPO's
'data' directory.

See the 'typo(3B)' manual page for details on generating dvi files.

5 Conclusions

There is no One True Way to generate text objects. Choices and tradeoffs
had to be made.

Bitstream Compressed Outline fonts were used because (a) they are scaleable
and high quality, and (b) we had a sample set of data at hand.

Text objects were converted into TRIPobjects because (a) we needed them
to be TRIPobjects for the polygonal modellers, and (b) no other set of prim­
itives (prisms or patches) is currently available. The TRIPobjects ray trace
well when they are generated at a reasonably high resolution, but should
produce better-looking results and require less (ray-tracing) computation if
the text objects were represented by prisms or patches.

The characters in a text object can be specified by either a literal string
or the contents of a dvi file. A literal string is sufficient for a one-dimensional
short phrase, but inadequate for a two-dimensional page. Generating a type­
set page of text is an inherently complex task and one that 'lEX already does
very well, far better than any text formatter that one could hope to build in
a short amount of time.

5.1 Future Work

In descending order of importance:

•	 Obtain a proper set of fonts. The sample data is sufficient for a proof­
of-concept, but the lack of vowels and other characters makes the fonts
worthless for real use .

•	 Implement a ray-intersection form fr:>r the t":::-~t C'1:;;,,:--:' '',):-::025 or pa.tches).
This will give better-looking resulh (".,::"0:-0 ... :~~ ':::e c :"~<~ .. "'ill render
faster, and use less memory.

10

• Write a simple WYSIWIG editor for the artists.

ft Map a virtual page to a patch surface.

• Special effects such as bevelled edges, tubular characters, etc.

5.2 Summary

The current implementation is functionally adequate for most uses: slides,
captions, and flying logos. Using T.EX as a front end provides a powerful
means for laying out text, but it is not interactive, so the less technically
inclined artists will find it harder to use than a WYSIWIG editor.

Aesthetically, TRIPobjects are more-or-less satisfactory when generated
at high resolution, but a ray-intersection form would be superior.

For more advanced uses, mapping a page onto a patch surface probably
provides all the necessary functionality. It is hard to say tow easy this would
be to use in practice.

11

References

[Ado85a] Adobe Systems Incorporated. POSTSCRIPT Language Reference
Manual. Addison-Wesley, 1985.

[Ado85b] Adobe Systems Incorporated. POSTSCRIPT Language Tutorial
and Cookbook. Addison-Wesley, 1985.

[Ado90] Adobe Systems Incorporated.
Addison- Wesley, 1990.

Adobe Type 1 Font Format.

[AH89] Jacques Andre and Roger D. Hersch, editors. Raster Imaging a.nd
Digital Typography. Cambridge University Press, October 1989.

[BBB87] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An In­
troduction to Splines for Use in Computer Graphics and Geometric
Modeling. Morgan Kaufmann, 1987.

[Bit84] Bit'5tream. Bitstream guide to fonts:
Definitive Outlines, November 1984.

Outlines. [Confidential]

[Bit87a] Bitstream.
tial]' 1987.

Bitstream guide to fonts: Bezier outlines. [Confiden­

[Bit87b] Bitstream. Bitstream guide to fonts:
fidential], June 1987.

Compressed outlines. [Con­

[Far90] Gerald Farin. Curves and Surfaces for Computer Aided Geometric
Design. Academic Press, second edition, 1990.

[FK82] David R. Fuchs and Donald E. Knuth. Optimal bnt caching. Tech­
nical Report STAN-CS-82-901, Stanford University, March 1982.

[FvDFH90] James D. Foley, Andries van Dam, Steven K. feiner, and John F.
Hughes. Computer Graphics: Principles and Practice. Addison­
Wesley, second edition, 1990.

[Gla90] L. Brett Glass. Font wars. Bvte. pages 289-29; A'Jg'_lst 1990.

12

[Her67]	 Allen V. Hershey. Calligraphy for computers. Technical Report
2101, United States Naval 'Weapons Laboratory, Dahlgren, Vir­
ginia, August 1 1967.

[Her72]	 Allen V. Hershey. A computer system for scientific typography.
Computer Graphics and Image Processing, 1(4):373-385, Decem­
ber 1972.

[Hob89]	 John D. Hobby. A METAFONT-like system with POSTSCRIPT
output. TUGboat, 10(4):505-512, 1989. TUG Conference Pro­
ceedings.

[Hua90]	 Nathan T. Huang. A Guide to TRIP. Brown University Computer
Graphics Group, October 1990.

[Hub90]	 Philip M. Hubbard. Constructive solid geometry for triangulated
polyhedra. Technical Report CS-90-07, Brown University, Septem­
ber 1990.

[Kaj83]	 James T. Kajiya. New techniques for ray tracing procedurally
defined objects. ACM Transactions on Graphics, 2(3):161-181,
July 1983. An earlier version of this paper appeared in Proceedings
of SIGGRAPH '83, published as Computer Graphics, Vol. 17, No.3.

[Knu86a]	 Donald E. Knuth. The 'IDYbook, volume A of Computers and
Typesetting. Addison-Wesley, 1986.

[Knu86b)	 Donald E. Knuth. 'IDY: The Program, volume B of Computers
and Typesetting. Addison-Wesley, 1986.

[Knu86c]	 Donald E. Knuth. The METAFONTbook, volume C of Computers
and Typesetting. Addison- 'Wesley, 1986.

[Knu86d]	 Donald E. Knuth. METAFONT: The Program, \"Jlume D of Com­
puters and Typesetting. Addison-\iVesley, 1986.

[Knu86e!	 Donald E. Knuth. Computer Modern Typefaces. volume E of Com­
puters and Typesetting. Addison-\Vesley, 1986

c[Lam8S:	 Leslie Lamport. 1I\TE?~: ..:.\ _'·~~~c:-:-::,::::::~ ··"'.'~;"~'~IJ Si·stem.
Addison- Wesle)T, 1986.

13

[Nai88] Avi Naiman. Generating and modeling grayscale characters.
[SIG88], pages 13-1-13-30, August 1988.

In

[NF87] Avi Naiman and Alain Fournier. Rectangular convolution for fast
filtering of characters. In Proceedings of SIGGRAPH '87, published
as Computer Grapbics, Vol. 21, No.3, pages 229-239, July 1987.
Reprinted in [SIG88].

[PS83] Michael Plass and Maureen Stone. Curve-fitting with piecewise
parametric cubics. In Proceedings of SIGGRAPH '83, published as
Computer Graphics, Vol. 17, No.3, pages 229-239, July 1983.

[Rub88] Richard Rubinstein. Digital Typograpby. Addison-Wesley, 1988.

[SIG87] SIGGRAPH '87 Course Notes, Volume 2. Documentation graphics,
July 1987.

[SIG88] SIGGRAPH '88 Course Notes, Volume 14.
August 1988.

Digital typography,

[Str88] Paul S. Strauss. BAGS: The Brown Animation Generation System.
Technical Report CS-88-22, Brown University, 1988.

[War80] John E. Warnock. The display of characters using gray level sample
arrays. In Proceedings of SIGGRAPH '80, published as Computer
Grapbics, Vol. 14, No.3, pages 302-307, July 1980. Reprinted in
[SIG88].

[YB90] Shimon Yanai and Daniel M. Berry. Environment for translating
METRFONT to POSTSCRIPT. TUGboat, 11(4):525-541, 1990.

[ZCv+91]	 Robert C. Zeleznik, D. Brookshire Connor, A:cldries van Dam,
Matthias M. Wloka, Daniel G. Aliaga, Nathan T. Huang, Philip M.
Hubbard, Brian Knep, Henry E. Kaufman, ane John F. Hughes.
An object-oriented framework for the integration of interactive an­
imation techniques. In Proceedings of SIGGRAFH '91, to be pub­
lished as Computer Graphics, Vol. 25, No. 3~ July 1991.

14

