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Abstract 

A heterogenous multidatabase allows a user to manipulate data contained in a 
collection of individual, autonomous databases managed by different database man­
agement systems. This paper discusses an implementation of the whole transaction 
model which includes a language for defining transactions in the heterogeneous mul­
tidatabase, and a design for a database server which executes these transactions and 
enforces concurrency control according to the whole transaction model. The whole 
transaction model is distinguished from other heterogeneous multidatabase transac­
tion models in that it does not require the transactions on the multidatabase to be 
atomic. Rather, the user can specify how the different multidatabase transactions are 
allowed to interleave. 
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1 Introduction 

A heterogeneous multidatabase allows a user to manipulate data contained in a coilection of 
individual, autonomous databases in which the data is not only distributed geographically 
but also managed by different database management systems. The whole transaction model 
is distinguished from other heterogeneous multidatabase transaction models in that it does 
not require the transactions on the multidatabase to be atomic. Rather, the user can specify 
how the different multidatabase transactions are allowed to interleave. 

This paper gives a summary of the whole transaction model followed by a discussion 
of an implementation of this model which includes a language for defining transactions in 
the heterogeneous multidatabase and a design for a database server which executes these 
transactions and enforces concurrency control according to the whole transaction model. 

A heterogeneous database consists of two logical levels. The local level is comprised of 
autonomous databases, hereby referred to as local databases, which access data through 
local transactions. The model assumes that each local database makes its own guarantees 
of consistency, persistence and correctness. The global level accesses and updates data in 
the set of local databases using global transactions via a global interface. These global 
transactions allow the collection of local databases to cooperate to accomplish some task 
involving data contained in more than one local database. The global transaction manager 
enforces correctness and persistence guarantees at the global level. Note that such guarantees 
can be no stronger than those made in the local databases. 

The following travel agent example, first proposed by Gray [Gra8I], is used to illustrate 
the use of a heterogeneous multidatabase: 

1. Traveler provides travel agent with destination and dates of travel. 
2. Travel agent reserves seat(s) on flight(s) with airlines. 
3. Travel agent reserves rental car. 
4. Travel agent reserves hotel room. 
5. Travel agent sends confirmation to Traveler. 

The traveler sees the travel plans as one (global) transaction of long duration. This 
global transaction consists of a series of local transactions which cooperate to make the 
reservations for the entire trip. The travel agent coordinates the global transaction, and acts 
as an interface between the different organizations involved in the plans. Note that at least 
four different local databases are updated: a travel agent database by steps one and five, the 
airline database by step two, the car rental database by step three, and the hotel database 
by step four. 

In the whole transaction model, each step of a global transaction is accomplished by some 
complete local transaction. Thus, the car rental is accomplished by a complete transaction 
on the car rental database. The global transaction coordinates the local transactions. The 
global transaction also maintains an internal context which is updated based on the responses 
from the local transactions. Within a global transaction, a local transactions is often de­
pendent on prior local transactions; for example the travel agent can not make an airline 
reservation without first getting the travel dates and destinations from the traveler. Other 
local transactions are independent and can therefore execute in parallel. For example, once 
the airline reservation is made the car and hotel reservations can be attempted concurrently. 
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In the whole transaction model global transactions are not necessarily atomic, but are 
viewed as collections of local transactions that execute and commit in some constrained 
order. This order is specified using a variant of the notion of patterns and conflicts as 
defined in [NSZ90]. 

In the whole transaction model, the global transaction manager initiates a series of local 
transactions, where each local transaction executes as a single piece of code which resides 
in a transaction library. The global transaction manager receives a response from the local 
transaction manager indicating whether the transaction committed or aborted. 

Local database management systems are not modified to facilitate the operation of the 
global transaction manager. Because of the atomicity restriction on the local transactions, 
once a transaction commits its effects are guaranteed to persist in the local database. As 
a result of the persistence, a recovery strategy such as compensation must be explored in 
the event of global transaction aborts. Recall the travel arrangement global transaction. 
The global transaction is not committed until the traveler has returned from the trip. At 
any time prior, the global transaction may be aborted. For example, suppose the traveler 
before receiving confirmation of the trip arrangements decides to cancel the trip. At this 
point the local transactions have already updated the airline, car and hotel databases. These 
transactions are not at this time aborted, but are compensated for with delete or remove 
reservation transactions. The code for these compensating transactions resides in the global 
transaction manager's transaction library. 

Because each local transaction is actually a piece of code, issues such as how different 
database management systems and data models communicate with the global transaction 
manager are not addressed. It is assumed that the procedures in the transaction libraries 
deal with such issues. Instead higher-level transaction issues like synchronization, replication, 
and transaction specification techniques are stressed in the model and implementation. 

The rest of the paper is organized as follows: In Section 2 a summary of the related 
research is given. Section 3 summarizes the global transaction model as originally proposed 
by Marian Nodine and gives an overview of her definition of patterns and conflicts explaining 
how these patterns are used to specify global transaction execution and correctness crite­
ria. A graphical language and its programming equivalent for transaction specification is 
discussed in Section 4. Section 5 outlines the actual implementation of a global transaction 
manager in a heterogeneous multidatabase server. Section 6 concludes the paper. Data 
structures and the actual code for the implementation of the global transaction manager are 
provided in Appendix A. Appendix B describes the specifics of how to use a prototype of 
a database server for language specification and global transaction management and briefly 
discusses problems with the current prototype and suggested future enhancements. 

Related Research 

Recently much attention has been given to the problem of managing transactions in hetero­
geneous multidatabase environments. Some of the earliest work was conducted by Smith et. 
a!. in the Multibase system [SBD+81]. In Multibase, access to data in the autonomous local 
databases is read-only thus there was no study of recovery issues. This work focused mainly 
on issues of schema mapping and resolving inconsistencies among schemas and data. 
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Federated databases differ from heterogeneous muttidatabases in that they do not assume 
the same level of autonomy in the individual databases. In a federation of databases each 
knows about other members of the federation and can decide with whom to share informa­
tion. Heimbigner and MacLeod [HM85] view a federated database as a dynamic set of local 
databases that may cooperate on behalf of the users of the local database to retrieve infor­
mation from different databases in the federation. This differs from the whole transaction 
model in that we view the local databases as cooperating through a global interface rather 
than through each other. In the whole transaction model full communication autonomity is 
assumed. Thus individual local databases do not have any information regarding even the 
existence of the other local databases. 

Most of the proposed models of transaction management in the heterogeneous multi­
database domain follow traditional transaction management philosophy, requiring atomic 
updates at the global transaction level and using serializability as a correctness criteria. 
These include [EH88], [BST90] and [AGMS87]. Atomicity at the global level often restric­
tions transaction too severely. As noted by [Gra81], the global transaction for the travel 
reservation can not really commit until after the traveler has returned from his trip if atomity 
and serializability is required at the global level. 

[DE89] and [DE90] extend traditional serializability theory, with the notion of quasi­
serializability as a correctness criteria for global concurrency control. Quasiserializability 
requires global transactions to execute serially, but does not restrict local transaction exe­
cution. Their claim is that subtransactions of the same global transaction contain no global 
integrity constraints nor are there value dependencies among subtransactions for the same 
global transaction. 

Elmagarmid, Leu, Litwin and Rusinkiewicz [ELLR90] offer a model which supports a re­
laxed approach for non-atomic transactions. The flow of the global transaction is controlled 
by a predicate petri net. Participating database systems are assumed to be autonomous, 
as in the whole transaction model. Function replication is also addressed here. This model 
although similar to the whole transaction model does not deal with conflicts between con­
currently executing global transactions. 

Garcia-Molina et.al. [GMS87, GMGK+90] propose sagas and nested sagas as a way of 
ameliorating the problems associated with long-duration transactions (though not in the con­
text of heterogeneous multidatabases). Sagas are sequences of short-duration transactions 
operating in a traditional transaction framework. A saga is atomic and requires serializ­
ability of the short-duration transactions. As with the whole transaction model, sagas use 
compensation as a basic tool in recovery. However, this work does not address how to restrict 
the interleaving of sagas and nested sagas where necessary. 

The Whole Transaction Model 

This section describes in summary the work of Marian Nodine on the whole transaction 
model. The intent of this section is to familiarize the reader with the model enough to 
understand the language and implementation described in the remainder of the paper. For a 
more detailed description of the model and architecture see [NT91]. The work also contains 
a more rigorous analysis of global transaction correctness and recovery. 
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3.1 Underlying A.ssurnptions 

The whole transaction model makes several assumptions both about the local databases 
that comprise the multi database and the nature of the transactions that are supported at 
the global level. The assumptions made about local databases are meant to maximize the 
amount of autonomy they have. Basic definitions of autonomy are specified in [DE89]. 
·Design autonomy concerns the assumptions the global transaction manager makes about 
the data models and transaction management strategies of the local databases. In the 
whole transaction model all local transactions are atomic, serializable, and recoverable. No 
assumptions are made about the underlying data models, allowing heterogeneous data models 
to be supported. Local databases need not communicate with each other or even know 
about each others' existence. Thus, the whole transaction model gives full communication 
autonomy. Execution autonomy relates to how the local databases execute their transactions. 
Local databases can execute any transactions, including both local transactions generated 
by the global transaction manager and independent transactions initiated by other agents. 

A global database is seen as a set of local databases cooperating to execute global trans­
actions in a structured manner. Thus, the global database contains at most the set of infor­
mation contained in the collection local databases forming the heterogeneous multidatabase. 

Global transactions are not necessarily atomic. Rather, a global transaction is viewed as 
defining how a set of local transactions can cooperate to do some task that spans multiple 
local databases. This is similar to earlier work on cooperati1Je transactions by [NSZ90]. In 
the whole transaction model, global transactions are defined by sequences of operations that 
share state and work together to accomplish a specific task. 

Because the global transactions are not atomic, they may interact with each other through 
the sharing of data. Also, the global transactions may interact with independent transac­
tions in the local databases, in that the independent transactions may affect parts of the 
local database that are currently being accessed by the global transactions. In this model, 
these interactions are considered non-critical, and will be ignored during normal database 
operation. [NT91] discusses this assumption and its ramifications in more detail. 

3.2 An Architectural Overview 

Figure 1 shows a basic architecture that implements the whole transaction model. 
All of the global transactions in the heterogeneous multidatabase are submitted to the 

global transaction manager, which handles the standard database functions such as transac­
tion synchronization, deadlock detection, and global database failure and recovery. Global 
transactions execute by initiating local transactions. 

The local transaction library has a set of parametrized procedures that can be called 
to initiate specific transactions in the local database. The library defines all possible local 
transactions that can occur in the database. A library routine interacts with a local database 
using the local DML. Once the library routine receives the response, it can translate it into 
the global DML. The result is then returned from the library routine as a return value, along 
with an indication of whether the local transaction committed or aborted. 

The local data managers are the servers responsible for executing the local transactions. 
All accesses and updates in the heterogeneous multidatabase are ultimately executed by the 
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Figure 1: A Multidatabase Architecture Using the Whole Transaction Model. 

local data managers. The global data mana.ger requires that the local data managers execute 
their transactions a.tomically, and that those transactions be recoverable by the local data 
manager. However, we assume that the local managers are completely independent of the 
global data manager in defining their local data model and in managing their data. 

3.3 The Global Database 

A global database is a time-varying collection of local databases. No information is retriev­
able from the global database that is not stored in some local database. In other words, 
the set of information GDB that a global database can provide access to is the union of the 
sets of information available in its current collection of local databases. Note that while the 
global database does not store extra information independent of the local databases, it may 
choose not to provide information that is stored in the local database. 

The global schema defines the information available from the global database, and the 
form in which it is accessed. It is defined according to some global data model. Each local 
database has its own local schema defined according to its own local data model. The local 
schema defines the information available from the local database, and the form in which it 
can be accessed. 

3.4 Global Transactions 

In the whole transaction model, global transactions span multiple local databases. A global 
transaction accomplishes some task, and is defined as a pattern of actions that must occur 
for that task to successfully complete. An action is a unit of work that is accomplished by 
completing a single local transaction on a single database. Since both function and data 
replication are allowed in the model, there may be more than one local transaction that can 
accomplish a specific action. A pattern defines the actions that are necessary to accomplish 
the global transaction's task. Patterns may specify alternatives if different sequences may be 
used to accomplish the task. They may also specify actions for the same global transaction 
that may occur in parallel. 
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In addition to defining the global transaction, patterns also serve as a correctness speci­
fication for the global transaction. Because of this, actions that may not occur at a specific 
point in the execution of the global transaction (conflicts) may also be defined within the 
context of patterns. 

This definition is similar to the patterns and conflicts defined for cooperative transactions 
in [NSZ90]; however it differs significantly in that a pattern tells some global transaction 
manager how to run the entire transaction. Once the global transaction is fully-specified 
and sent to the manager, it should be able to initiate all local transactions and do all 
computations necessary for completion of the transaction without additional input from the 
definer of the global transaction. 

3.5 Transaction Definition 

Global transactions may consist of one or more atomic actions. These actions must conform 
to some pattern in order to correctly execute the global transaction. The pattern specifies, at 
any time, what actions may be done next. Actions may also be interspersed with computa­
tions relevant to the global transaction, which use information internal to it. A computation 
may indicate, for instance, which action to choose to do next. 

Conflicts may also be specified by a global transaction. A conflict specified at some 
point in a global transaction GT indicates actions (actuallY, local transactions) that cannot 
be initiated at that point in the execution of GT. That is, conflicts restrict how global 
transactions can interleave their actions. 

In the pattern specification techniques, described in detail in Section 4, one of the goals 
was to give the user certain flexibility in specifying global transactions. Function replication 
and non-vital actions facilitate in this aim. 

Function replication means that the same objective can be accomplished in basically 
equivalent ways in different databases. There are two ways in which this can occur in a 
global transaction. One is that an action may specify alternative local transactions. For 
instance, if the action is making a plane reservation, alternative local transactions might be 
to use United airlines or to use Delta airlines. Another way is to use alternative actions. For 
instance, you may want to fly to another city and rent a car, or you rnay want to drive to 
the other city. 

Non-vital actions do not need to be completed for the global transaction to complete. For 
example, renting a car in a foreign city may be desirable; however, if no cars are available, 
using public transportation is a viable alternative. Non-vital actions are desirable, but 
not necessary. Therefore, a non-vital action will always be attempted, usually as the last 
alternative, but if it fails, the global transaction will not fail. 

3.5.1 Global Transaction Specifications 

The pattern associated with a global transaction is specified as an augmented finite state 
automaton, called a global transaction specification (GTS). States in the GTS represent states 
in the execution of the global transaction, and may have associated computations. Arcs in 
the GTS represent actions that need to complete for the global transaction to change state. 
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The start state of the GTS represents the beginning of the pattern for the global transaction, 
and final states represent possible ends of the pattern. 

A conflict is an action, possibly initiated by some other global transaction, that cannot 
occur when this global transaction is in some specific state. A conflict is represented in the 
GTS as an arc to a dead state (conveniently named DEAD). T'1us, if a conflicting action is 
taken, this global transaction cannot successfully complete its pattern. 

We see that each global transaction is a regular expression in some language, where the 
terminal symbols in the language are actions. 

A GTS is formally defined as follows: 

GTS =< N, K,~, 6., 5, C, F > 

N is the name of the GTS,
 

K is a finite set of states, including the DEAD state,
 

~ is an alphabet, where (J E ~ is the name of some action or NULL,
 

6. is a transition function from K i x ~ ---+ Kj, where i ~ 1 and j ~ 1,
 

5 E K is the initial or start state set,
 

c E K is the set of current state, and
 

F ~ K is the set of final state sets.
 

3.5.2 Action Specifications 

An action is a set of local transactions, exactly one of which must succeed for the arc to be 
traversed. Because the action must be completely specified in the global transaction, and 
because the user may wish to specify a preferred order in which the local transactions should 
be tried, the set of local transactions in an action is partially ordered. 

A local transaction is specified within an action as a call to some procedure in the GTM's 
transaction library. This includes both the name and the required arguments. 

In	 addition to normal actions, there is also the NULL action used for non-vital transac­
tions. The arcs labeled with the NULL action are automatically traversed. 

4 Global Transaction Specification 

4.1 A Visual Language 

Patterns are used for global transactions specifications in heterogeneous databases. Each 
global transaction is defined by a single pattern. In this section the representation of patterns 
or GTSs are discussed. Changes need to be made for the following reasons: 

.." 

1.	 Patterns are active. The GTS must contain enough information to allow the g1cbal 
transaction manager to execute the transaction without requiring any interaction from 
other processes or transactions. Thus computations internal to the global transaction 
need to be associated with the GTS at specific points. TLese computations may be 
used, for example, to tell the global transaction what actions to try next, or to specify 
parameters for a given action. 
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Figure 2: States and state sets. (a) Start state and start state set. (b) Final state and final 
state set. 

2.	 Function replication allows the same task to be performed equivalently by either one 
of several actions or an action to be accomplished by one of several local transac­
tions. A priority order needs to be presented among these alternative actions or local 
transactions. In the whole transaction model, operations are initiated by the global 
transaction itself, and the patterns specify the form of the global transaction. Thus, 
the patterns need to encapsulate all of the information necessary for the transaction 
manager to initiate operations in the desired order. 

3.	 A GTS needs to specify the potential for parallel actions or sets of actions whose 
execution order is nondeterministic. 

A GTS is represented as a graph. A node in the graph corresponds to a state (or a part 
of a state). Each node has information associated with it, including an optional entrance 
computation to run when the state is first entered. and an optional exit computation which 
is run when the state is exited. 

There are a few types of nodes distinguished in the GTS. The start state set indicates 
the current states at the beginning of the GTS. A set of final states indicates the end of the 
GTS. These final states are partitioned into final state sets. A global transaction can only 
terminate when the current state set is identical with some final state set. The pictorial 
representation for these nodes is shown in Figure 2. 

An arc is a directed edge from some (set of) state(s) to some (set of) state(s). Each arc is 
associated with an atomic, independent action. The simplest kind of arc connects one node 
to	 another. It is directed from its tail node to its head node. A simple arc may be traversed 
when its tail node is in the set of current states. When it is traversed, the node at its tail 
is	 removed from the set of current states, and the node at its head is added. Arcs may also 
fork, or have multiple heads. When a fork arc is traversed, each state at its head is added 
to	 the set of current states. An arc which joins has multiple tails. A join arc may not be 
traversed until each state in its tail is in the set of current states. All states in the tail are 
removed from the set of current states when the arc is traversed. Arcs may also both fork 
and join. Figure 3 shows how these are represented graphically. 

Alternative actions may also be described for a global transaction. Alternative actions are 
represented by more than one arc leaving a particular state. Alternatives may be specified 
with a priority, where the priority is represented by a number on the arc. These numbers are 
not necessarily unique. Figure 4 shows that there may be more than one way to make the 
trip. Flying is the alternative of choice, though driving and taking the train are also options 
to consider. 

Conflicts defined in a GTS for a global transaction indicate when other global transac­
tions cannot access the same data. This occurs at the level where the local transactions 
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Figure 3: Types of arcs. (a) Simple arc. (b) Fork arc. (c) Join arc. (d)An arc that both 
forks and joins. 

Figure 4: Alternative actions in a global transaction. 
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Figure 5: A Conflict Arc 

are manipulating data in the local dataoases. Thus, a conflict occurs between some local 
transaction which may be used to accomplish some action, and some other global transaction 
that does not want that particular local t",ansaction to be executed. 

A conflict arc specifies the set of local transactions that conflict at this point. Given a 
GTS that describes a transaction, a conflict arc specified within that GTS defines one or more 
local transactions that one or more other global transactions cannot do at a specific point. 
For example, a conflict might state that once an inquiry has been made about a particular 
flight, no other global transaction can ino_uire about the flight or change a reservation until 
this global transaction decides whether or not to make a reservation on the flight. Barring 
interference by independent transactions in the local database, this conflict ensures that no 
other global transaction will do anything ~o interfere with the information returned by the 
mqUlry. 

Conflicts are indicated in a GTS by an X on the arc representing the action, as shown in 
Figure 5. The head of a conflict arc is always the DEAD state. 

4.2 Nesting of Global Transaction Specifications 

In order to facilitate modularity in global transaction definition, a global transaction may 
specify a nested global transaction on an arc in addition to specifying an action. Note that a 
nested global transaction or an action is specified on an are, but a nested global transaction 
may not be an alternative in the partial order of local transactions which compose an action. 
Recursive nesting of global transactions is not allowed, thus nesting does not change the 
power of the transaction which can be expressed with operation machines since the GTS for 
any nested global transaction can be substituted directly into the top level GTS. 

A nested global transaction is specified as a GTS and its associated conflicts. Traversing 
the arc representing a nested global transaction is equivalent to traversing the complete child 
GTS, starting as some start state and finishing in some final state set. All conflicts in the 
parent GTS are active while executing the child GTS. Thus once the child GTS is initiated, 
all operations are checked first against the parent GTS for conflict or queue requests and then 
against the child GTS for conflict, queue or accept. A nested GTS is can be one of several 
alternative actions. If the child GTS aborts, the parent GTS may attempt an alternative 
action from the current node. 

Nested global transactions complete under the same conditions as a top-level global 
transaction. When all the current state tokens are final states in a final state set, the nested 
global transaction can commit and terminate. The completion of a nested global transaction 
does not indicate a commit of the parent GTS, but the traversal of the arc associated with 
the nested transaction. 

Let us consider the trip reservation example. The GTS for this example is shown in 
Figure 6. The process of making a plane reservation may require the travel agent to query 
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Figure 6: Global Transaction Specification for the Plane Reservation Example. 

a database containing flight information on all airlines as to which flights suit the traveler's 
needs. This ma.y be based on information provided by the traveler regarding accepta.ble 
price ranges and travel times. Once this query finishes the current state of the GTS is 
actually in the nested global transaction PLANE. PlaneJes is a partial order of airline specific 
seat reservations. The seat is reserved by updating one of these databases. Following this 
procedure the travel agent needs to update the traveler's customer record with the agent 
transaction to record the specific flight reservation. Upon completion of this update the 
tPLANE nested transaction is complete and the current state tokens are moved to the two 
middle states in the parent transaction's GTS. 

4.3 The Specification Language 

A simple specification language is provided for users to define the GTS and conflicts associ­
ated with global transactions. In our language a GTS is a list of node declarations, followed 
by start and final state sets, followed by arc declarations, enclosed in the START_PATTERN 
and ENDYATTERN keywords. The keyword DEFINE_NODE precedes each node decla­
ration where as the keyword DEFINE_ARC precedes each arc declaration. Declarations of 
local variables used in the GTS and their types precede all other declarations. Local variables 
can be any type valid in the C programming language or of type ACTION. Type ACTION 
is used for a pointer to a partial order of local transactions defining an action for an arc. For 
convenience, a user may include comments in the specification language by enclosing them 
in square brackets. 

Figure 7 shows a template of the global transaction specification language. Words in 
upper case letters are keywords in the language where as words in lower case letters are user 
supplied information. Required fields in the language are underlined in the template. Fields 
not underlined may be omitted. Figure 8 gives the BNF specifiootion for the language 

The ENTRANCE and EXIT fields may be omitted if a node does not have any such 
computations. The CONFLICT keyword is specified if a particular arc represents a conflict. 
If the CONFLICT keyword is omitted then the arc is an action arc. The head state of all 
conflict arcs is the system specified DEAD state. 

Following the ACTION keyword is either a list of procedure names, the name of a nested 
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START-PATTERN pattern name [this begin a new pattern) 
LOCAL_VARIABLES (type variable..name, 

type variable..name, 

.) 
DEFINE-NODE node name
 

ENTRANCE entrance computation name
 
EXIT exit computation name
 

DEFINE-NODE node name 

START-STATES {list of nodes in start state sets} 
FINAL-STATES {{list of nodes in final state sets}, {list of nodes in final state sets}, ..1 
DEFINE..ARC 

ALT-PRI priority, if any 
HEAD-STATES {list of nodes at head of arc}
 

TAIL-STATES {list of nodes at tail of arc}
 
CONFLICT
 
ACTION {{procedure name, order},{procedure name, order}, ... } I
 

{{name of nested global transaction, PATTERN}} I 
{{name of local variable of type action, VAR}} I 
{{NULL}} 

DEFINE..ARC 

END_PATTERN 

Figure 7: Global Transaction Specification Language Template.... 
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pattern spec	 ---. pat.-name 
::lode_def 
start..state 
finaLstate 
are-def 
END...PATTERN 
i pat-Ilame 
varJist 
node_def 
start..state 
final..state 
arc_def 
END...PATTERN 

pat-Ilame --+ START...PATTERN ident 
varJist --+ LOCAL_VARIABLES (type3ar) 
node_def --+ node 

I node comp 
I node_def node 
I node_def node camp 

arc_def	 --+ acLare-def 
I con-are-def 
! are-def acLare-def 
I are-def con_are-def 

con_are-def --"conflict 
! are-def conflict 

act _are-def --+ act..a.rc 
: are-def act_arc 

act_arc	 --.. arC-Ilame head..state 
tail..state action 
I arC-Ilame order head..state 
tail..state action 

conflict	 --+ arC-Ilame head..state 
tail..state CONFLICT action 

order --+ ALT...PRI number 
comp ---. exiLcomp 

I entr_comp 
I entr-comp exiLcomp 

start..state --+ START_STATES list} 
finaLstate --+ FINAL..5TATES {stateJist} 

actionJist	 -----; action_ent 
I actionJist , action_ent 

action_ent	 --+ { ident COMMA number} 
I { ident } 
I { expr , number} 
I { expr } 

action	 --+ ACTION { actionJist } 
IACTION { nested} 
IACTION { lLvar } 

stateJist	 --+ list } 
I stateJist COMMA list} 

node --+ DEFINE-NODE ident 
exit-camp --+ EXIT ident 

I EXIT expr 
entr-comp --+ ENTRANCE ident 

I ENTRANCE expr 
paramJist --+ ( type3ar ) 
expr --+ proc.-name paramJist 

I proc.-name 0 
type_var	 --+ type var 

I type var var 
I type * var 
I type3ar , type var 
i type_var type var var 1 

I type3ar , type * var
 
prOC-Ilame --+ ident = ident
 
arC-Ilame --+ DEFINE-ARC
 
head..state --+ HEAD..-STATES list}
 
tail..state --+ TAIL..-STATES list}
 
list --+ {ident
 

I list ,ident
 
nested --+ { ident , PATTERN}
 
lLvar --+ {ident , VAR R}
 
type --+ TYPES
 
var --+ num
 

lident 

Figure 8: BNF format for Global Transaction Specification Language Template. 
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global transaction, or a local variable name of type ·ACTION. Note that the three different 
types of actions can not be interspersed within the partial order for same action. 

The specification language provides some validity checking to ensure that correct GTSs 
are specified. Besides checking for correct syntax, the system performs some semantic checks. 
All final state sets are checked to make sure that a node is a member of at most one final state 
set. All nodes referenced must be previously defined with the DEFINE_NODE keyword. All 
arcs must have at least one head and one tail node. All nodes except those that are part 
of a start state set must have at least one incoming arc and except for nodes which part of 
final state sets all nodes must at least one outgoing arc. The GTS specified by the arcs must 
be connected and acyclic, these checks are performed using well known algorithms for cycle 
detection and connectivity [AHU74]. 

The specification language should also make sure that the number of current state tokens 
remains consistent through out the graph structure. New current state tokens are only 
generated by traversing fork arcs. Current state tokens are only removed from the set 
by the traversal of a join arc. Since the graph representing the GTS is acyclic this can 
be accomplished by performing a modified depth first search of the non-conflict arcs and 
checking that all leaves are final states. By definition, depth first search visits every node 
and thus every path, starting with nodes which make up the start state and ending with the 
nodes which compose final state sets. A fork arc essentially If all leaf nodes are final states, 
then each path from the root ends in a final state. If there were no fork or join arcs then 
the total number of tokens would remain consistent through out the graph created by the 
GTS. For each new path created by a fork arc, this search guarentees that either there are 
a consistent number of final state tokens as there are start states and tokens created by fork 
arcs or that some join arc caused the path created by the fork to rejoin in an already found 
path to the final states set. At this point, all paths created by the fork arc are marked as part 
of the same set. When the end of the path or the final state is reached this node is added to 
a working final state set. When all paths stemming from the fork arc have been traversed 
this working final state set is checked against specified final state sets and the working final 
state set is reset to NULL. 

When a join arc is traversed, a token is removed from the current state set, as dictated 
by the return to an already traversed path the a final state. 

4.4 Examples 

4.4.1 Global Transaction PLANE 

Recall the global transaction for making a plane reservation as described in Section 4.2 above. 
The arc labeled inquire in Figure 6 represents a simple action which is executed by running 
the inquire procedure from the transaction library. This procedure takes as arguments the 
source and destination cities, the dates of arrival and departure from the destination city 
and the earliest and latest time of departure from both the source and destination cities. 
The procedure queries the travel agent database for appropriate flights. The start state, 
node A, gathers specific information regarding times and destinations from the traveller. 
As an entrance computation node B takes the results of the query and generates a partial 
order from the least to the most expensive of alternative flights which are available. This 
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partial order is used for the next action. The travel' agent then tries to make reservations 
on each alternative flight according to the partial order resulting from node B's entrance 
computation in the planeJes action. After making a successful reservation the travel agent 
updates its own database taking the customer name and flight number on which the seats 
were finally reserved as input. 

Figure 9 shows an example of what the language would looks like to make such a plane 
reservation. Note that planeJes is the name of a local variable which points to the action 
generated by the entrance computation for node B. Note that all local variables associated 
with generated actions are initialized to an empty list. If for example the inquire action 
returned no appropriate flights then the global transaction would fail. 

4.4.2 Global Transaction TRIP RESERVATION 

The GTS shown in Figure 10 contains nested global transaction PLANE. This transaction 
starts in state A with several alternative actions. The preferred alternative for travel is by 
plane, followed by car then by train or bus. In this case, multiple arcs are needed between 
nodes A and {B,C} since although both the plane and train alteratives result in the same 
next state set they are not part of the same action. For simplicity in drawing GTSs one arc 
with several labels is used to indicate several alternative actions resulting in the same next 
state set. 

Before preceding to translate this GTS into the specification language, consider the follow­
ing assumptions about the states and actions in this GTS. All actions except that indicated 
by the arc between nodes C and F are vital. Non-vital actions are specified by defining a 

(NULL arc, as shown between nodes C and F. This arc is traversed if all local transactions \ 

in the partial order associated with the car action fail. Assume that car is actually a nested 
GTS similar to the plane GTS as shown in Figure 6. The exit computation on node A 
calculates the number of days for the entire trip. Node G has an entrance computation 
which prints all confirmed reservations to date. Note the conflict arc between nodes C and 
DEAD, the system specified dead state. This conflict indicates that no other global transac­
tions may update the agent database until the car arc has been traversed. Conflicts indicate 
actions that can not be taken at the global transaction level, but do not govern any local 
level transactions. Also note that when an action has only one local transaction, the priority 
of this action may be omitted. 

The language for the trip reservation global transaction in Figure 10 is as follows in 
Figure 11. 

5 A Global Transaction Manager 

5.1 Executing A Global Transaction 

Assume that there is exactly one pattern for each global transaction. In enforcing that
 
the transactions are executed correctly, an approach similar to the one used for cooperative
 
transactions [NSZ90] is taken. The GTS associated with the patterns for all the active global
 
transactions (i.e., those which have started but have not yet terminated) together specify
 
what can be accepted next, as opposed to what operations should be rejected or queued.
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START-PATTERN PLANE
 
LOCAL_VARIABLES: (ACTION planeJesv, 

char *specifics) 
char *possible) 
char *confirmed) 

DEFINE...NODE A 
[get dates and times from traveler] 

ENTRANCE specifics=geLuserjnfo() 
DEFINE...NODE B 

[order flights by priority] 
ENTRANCE planeJes=computeJeservation_attempLorder(char *possible) 

DEFINE...NODE C 
DEFINE...NODE D 
START.-STATES {A} 
FINAL.-STATES {{D}} 
DEFINE-..ARC 

HEAD.-STATES {B} 
TAIL.-STATES {A} 

[find appropriate flights] 
ACTION{{possible = inquire(specifics) 

DEFINE-ARC 
HEAD.-STATES{C} 
TAIL.-STATES{B} 

[attempt reservation according to order] 
ACTION{{confirmed=planeJes,VAR}} 

DEFINE-ARC 
HEAD.-STATES{D} 
TAIL.-STATES{C} 

[update agent database] 
ACTION{{update_db(confirmed)}} 

END_PATTERN 

Figure 9: Code for Plane Reservation Exainple. 
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hotel 

agelllrrain(l ),bu.s(2)-3 G car -1 
NUU-2~ F 

agent 

hotel 

DEAD 

Figure 10: Nested Global Transaction Specification Example. 

All actions are assumed to be active. Thus, the database can determine what to do next, 
find the appropriate executable, execute it, and digest the results without intervention. 
Therefore the actual history of the actions in the database is deterministically generated 
according to the specifications in the patterns for execution order. 

Recall that an action may be specified as a nested global transaction. In this case the 
local transactions of the nested GTSs must be executed in order to traverse the arc in the 
parent GTS. A nested global transaction may be one of several alternatives arcs leaving the 
current state. 

A global transaction is executed according to its specified pattern or GTS. A global trans­
action begins execution when a user issues an execute_gt command from the client. The client 
and server communicate through an RPC-type interface. The execute_gt command takes the 
name of the GTS which represents the global transaction as an argument. The global trans­
action manager looks for the structure by name. If such a GTS has not already been defined 
then the global transaction manager automatically aborts the global transaction. If the GTS 
is found then the global transaction manager executes the global transaction using the steps 
outlined below. Each global transaction runs in a separate thread in the global transaction 
manager. 

1.	 Set the current state to the nodes which make up the start state set in the GTS 
structure. 

2.	 Execute any entrance computation associated with the node(s) corresponding to the 
current state in the GTS and add any conflict arcs to the global conflict list. 

3.	 For each node in the current state set, the ouLarc points to the head of an ordered 
list of arcs which represent alternative actions. Choose the highest priority alternative 
action that has not yet been attempted. 

a.	 If several actions have the same priority choose one at random. 
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STARTYATTERN TRIP _RESERVATION 
DEFINE-NODE A 

EXIT calculate_days 
DEFINE-NODE B 
DEFINE-NODE C 
DEFINE-NODE E 
DEFINE-NODE F 
DEFINE-NODE G 

EXIT prinLdetails 
DEFINE-NODE H 
DEFINE-NODE I 
START-STATES {A} 
FINAL-STATES {{G}} 
DEFINE-ARC 

ALT.J>Rll
 
HEAD-STATES {B,C}
 
TAIL-STATES {A}
 
ACTION {{PLANE,PATTERN}}
 

DEFINE-ARC 
ALT.J>RI2 
HEAD-STATES {B,C} 
TAIL-STATES {A} 
ACTION {{train,I},{bus,2}} 

DEFINE-ARC
 
ALT_PRI3
 
HEAD-STATES {H}
 
TAIL-STATES {A}
 
ACTION {{car,PATTERN}}
 

DEFINE-ARC
 
HEAD-STATES {E}
 
TAIL-STATES {B}
 
ACTION {{hotel}}
 

DEFINE-ARC 
HEAD_STATES{I} 
TAIL-STATES {H} 
ACTION{ {hotel}} 

DEFINE-ARC 
ALTYRll 
HEAD-STATES {F} 
TAIL_STATES {C} 
ACTION {{car,PATTERN}} 

DEFINE-ARC 
ALTYRI2 
HEAD-STATES{F} 
TAIL-STATES {C} 
ACTION {{NULL}} 

DEFINE-ARC 
HEAD-STATES {G} 
TAIL-STATES {E,F} 
ACTION {{agent}} 

DEFINE-ARC 
HEAD-STATES {G} 
TAIL_STATES {I} 
ACTION {{agent}} 

DEFINE-ARC 
HEAD-STATE {DEAD} 
TAIL_STATE {C} 
CONFLICT 
ACTION {{agent}} 

ENDYATTERN 

Figure 11: Code for Language for Global Transaction trip reservation 
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b.	 If no unattempted action remains abort the global transaction. 

c.	 If arc is NULL, than traverse it and go to step 7. 

.t.	 If the arc represents a nested global transaction, find the first arc in the nested global 
transaction using the same procedure as outlined in steps 1-3. Recall that global trans­
actions can nest to several levels, thus the process may need to be applied recursively 
until an action is found. 

J.	 Make sure all nodes at tail of arc are in the current state set. 

6.	 Execute action. (See Section 5.3) 

7.	 Execute exit computation. 

8.	 Remove node from current state list and conflicts from global conflict list 

9.	 Follow head...node pointers to set of nodes at head of arc representing action just exe­
cuted and add to current state list. 

10.	 Check if all current states are part of a final state set. If not go to step 2 else commit 
global transaction. 

For the global transaction to commit, all current states should be final states in the same 
final state set, with one current state token per state in the final state set. 

5.2 Checking for Conflicts 

When a local transaction is executed, the GTM checks to see if the local transaction to 
be attempted is present in the global conflict list. If not then no conflict exists and the 
local transaction is attempted. If the local transaction that is being attempted is present, 
then a conflict exists. There are two options. The global transaction that initiated the 
local transaction as a part of its GTS specifies at start up which choice it prefers by giving 
QUEUE or REFUSE as parameters to the execute_gt command. 

1.	 QUEUE: The global transaction manager requests that all local transactions are queued, 
which means the global transaction manager should wait until the conflict no longer ex­
ists, then try the local transaction again. (Note: this option introduces some potential 
for deadlocks). 

2.	 REFUSE: The global transaction requests that it all conflicts be refused, which means 
that when the conflict occurs, the global transaction manager should treat the conflict­
ing operation in the same way as if the local transaction failed. The global transaction 
manager continues in its attempts to find some other local transaction that succeeds 
for the current action. 

The prototype linearly searchs the global conflict list which contains the conflict arcs for 
all active global transactions. If the procedure name is found then if QUEUE is specified 
queue the local transaction and wait for the conflict to be resolved. If REFUSE is specified a 
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conflict exists and the global transaction is notified of the conflict. The next highest priority 
alternati':e loca.l tra.nsaction is attempted as discussed in the previous section. If the search 
of global conflict list is exhausted without finciing the local transaction then there is no 
conflict. :.iote that the global conflict list may not be modified from the time a search is 
started to the time that the actual local transaction has completed. 

5.3 Executing an Action 

An action is defined as a partially-ordered set of one or more local transactions, exactly one 
of which must commit for the action to commit. Note that results from earlier actions may 
determine this partial order, or may determine how this action executes. There are two ways 
to attempt an action. The first involves determining a full order consistent with the partial 
order and attempting local transactions in this order, one at a time, until one commits. At 
this point the action itself is committed. This is the alternative used in the prototype. A 
detailed algorithm follows: 

1.	 Find the highest priority local transaction not already attempted. If none, return 
failure to GTM 

2. Check for conflicts. Accept, queue or refuse request based on user input. 

a.	 If there are no conflicts go to step 3 

b.	 If the local transaction conflicts and is refused go to step 1 with next highest 
priority alternative local transaction. 

c.	 If local transaction is to be queued due to a conflict, wait for resolution then if 
accepted to go step 3 I if rejected go to step 1. 

3.	 Execute the procedure in the transaction library which corresponds to this local trans­
action. 

a.	 If action succeeds commit local transaction and return success to GTM. 

b.	 If action fails go to 1 with next local transaction in partial order. 

The second way to execute actions is to attempt local transactions according to the 
partial order. If more than one local transaction is of the same priority, attempt to execute 
them in parallel, each in a separate thread. When the first one commits, commit the action. 
This procedure requires compensatory transactions for each local transaction since the GTM 
would need to compensate for any local transactions that commit after the first. 

5.4 Committing an Action 

Call the global transaction GT and the process that initiates the local transaction T. The 
global transaction manager is GTM. The semantics of the commit is that the GTM updates 
the GTS associated with GT if and only if T commits. The procedure for running T in the 
global database is as follows: 
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1.	 GTM initiates T to start the transaction in the'local database. If the local transaction 
commits, the following is done: 

a.	 T commits and the GTM is notified. The GTM determines which action the local 
transaction satisfies. 

b.	 GTM updates the GTS associated with GT. GTM then logs the action and the 
local transaction information in the global transaction log and forces the log to 
be written to non-volatile storage. (Local transaction information includes the 
name of the procedure that runs the local transaction, the arguments that were 
originally specified, the results, and the name of the procedure that runs the 
compensating transaction.) 

2.	 If the local transaction aborts, the action in the GTS is not done. 

a.	 If no alternative local transactions are being attempted in parallel, GTM should 
try the next alternative local transaction if one exists. 

b.	 If there are alternative local transactions being attempted in parallel then wait 
for outcome of such alternatives. 

c.	 If there are no further alternative local transactions, repeat step a. and b. above 
with any alternative actions. If no alternative actions exist abort global transac­
tion. 

Obviously if there are no communications or process failures, at the end of this procedure 
the local transaction is committed and the GTS is updated. This means that if the action 
is later invalidated because of some abort, the recovery process must be based on issuing 
compensatory transactions. 

The implementation of the prototype does not handle any failure or recovery and thus 
does not log actions as discussed in this section. However, note that communication and 
process failures may cause the GTS not to know the status of the local transaction. Assume 
that the state of the GTS is flushed out to disk every time some action commits. Also 
assume that a local commit ensures that the information is permanent in the local database. 
Failures could result in one of the following situations: 

1.	 GTM sends a message to start local transaction T, but the message is lost because of 
a communication failure before it reaches the machine the local database runs on. 

2.	 GTM initiates the local transaction T, but never receives a response because T IS 

deadlocked, livelocked, or in some infinite execution state. 

3.	 GTM initiates the local transaction T, but the machine on which T is running fails 
before T terminates (either commits or aborts). 

4.	 GTM initiates the local transaction T, and T runs to completion, but the reply is lost 
because of a communication failure. 

5.	 The local transaction T is run to completion, but the GTM fails in the meantime, and T 
cannot respond. The resolution here is entirely dependent on the policies implemented 
in the local database. 
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Cases 1-4 look the same to the global transaction manager, and can thus be handled in the 
same way. The GTM has the option of either waiting for a reply or attempting to get the 
: ransaction back into a known state using the following procedure: 

1.	 Try to abort T. If this succeeds, the GTM knows what happened. 

2.	 If the GTM receives a message that the abort failed, then T has run to completion, 
but we do not know if it committed or aborted. Run the transaction that compensates 
for T until the compensation succeeds. Note that if T actually aborted, the compensa­
tion should do nothing because the compensation procedure is idempotent. Once the 
compensation succeeds, the GT is in a known state. 

3.	 If the GTM receives no response, either the communication link is down or the machine 
the local database is running on is dead. If the machine is dead, it should eventually 
corne up. At this point the local database recovery should abort T, because we assume 
that all local databases support atomic transactions. However, the local database may 
not know where to send the response. 

4.	 If either the communication link is dead or the machine is down, the GTM will eventu­
ally resume contact with the local database. At this point, the GTM can try to abort 
or compensate for T again. This time, it should succeed. 

Note also that the GTM can continue to try alternative actions even if some local transaction 
T is in an inconsistent state due to failure. Once the GTM has gotten the transaction 
to abort or compensated for it, it has the option of either leaving things as they are, or 
resubmitting T and aborting any alternative that succeeded. Because the local transactions 
commit immediately, compensation-based recovery must be supported. This is true both for 
the case when an individual local transaction is invalidated, and when the global transaction 
is aborted. 

5.5 Committing a Global Transaction 

A global transaction commits only when all current state tokens are in the same final state 
set. Furthermore, there should be one token per final state in the final state set, and no 
state in the final state set should not be a current state. At this point, all actions have 
previously committed in their corresponding local databases. When a global transaction 
commits, the log is updated to reflect the termination of the global transaction and its 
associated GTS is removed from the set of active GTSs . At this point no information about 
the transaction including compensating transactions needs to be kept since once the global 
transaction commits the transaction in permanent. 

Committing a global transaction means it cannot later be aborted even though it may 
have dependencies on other global transactions which may later abort. Since these de­
pendencies are seemed to be unimportant in this implementation, the commit takes effect 
immediately, regardless of what may happen to the other global transactions in the future. 
This may cause inconsistent or incorrect information in the database some transaction on 
which the committed global transaction is dependent on later aborts. 
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Let us examine the trip reservation transaction again to see how using the second option 
may effect the traveler. Suppose the traveler could only get a reservation in their last choice 
of hotels due to prior bookings at their first choices. If a transaction which reserved a room 
at one of the more preferred hotels aborts, then a rooms is now available for the traveler, 
but the transaction making his trip reservations has already committed. The effect of the 
aborted transaction does not cause severe problems in this case. 

5.6 Aborting Global Transactions and Actions 

An abort of an entire global transaction is effected by aborting all of the actions associated 
with that transaction. A similar approach to this kind of abort is taken in nested sagas 
[GGKKS90]. Refer to [NT91] for details on failure and recovery. 

6 Conclusions 

This work has addressed the problem of transaction specification and synchronization in 
heterogeneous multidatabases according to the whole transaction model. We believe that 
the whole transaction model accesses and manipulates data in much the same why as humans 
do in everyday life. The whole transaction model differentiates itself from other transaction 
models in the heterogeneous multidatabase domain in that it does not assume that global 
transactions are atomic or serializable. Rather, global transactions are series of transactions 
on a set of local databases which conform to the correctness criteria specified by the collection 
of GTSs for all concurrently executing global transactions. 

Transaction specification is accomplished by defining a GTS for each global transaction. 
Together the global transaction specifications determine how local transactions can work 
together to accomplish tasks which span the local databases that make up the heterogeneous 
multidatabase. A GTS may contain conflict arcs governing which transactions can not occur 
simultaneously. 

Both a visual and written transaction specification language has been developed to facili­
tate the specification and definition of global transactions. The latter has been implemented 
and has proved to be an efficient tool with which to define global transactions specifications. 
Future work in creating a graphical interface to this tool consistent with the visual language 
discussed in Section 4.1 should be considered. 

One of the goals of the whole transaction model is to maximize the autonomy of the 
the local database, thus no changes are made to the local transaction management systems 
to facilitate synchronization. Instead the global transaction manager submits local transac­
tions to the local transaction manager and receives a notification of whether the transaction 
has successed or failed. A global transaction manager has been implemented to perform 
according to this model. Shortcomings and suggested improvements to the implementation 
are discussed in more detail in Appendix B. 
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A Data Sturctures, Algorithrris and Pseudocode 

A.I Data Structures 

This section contains the data structures used in the prototype. These structures are initially 
allocated and set up when the GTS is parsed with the language specification. They are 
maintained by global transaction manager. 

struct arcJist { 
struct arcJist *next; 
int order; 
struct arc *are-ptrj 

}; 
struct pattern { 

struct pattern *nextj 
char name[32] j 
int *globaLtidj 
struct nodeJist *start-.Statej 
struct nodeJist *final-.State[10] ; 
struct node *nodesj 
struct arc *arcsj 

}; 
struet arc { 

struct arc *next; 
int alLpri; 
struct nodeJist *head_states; 
struet nodeJist *tail-.States; 
int action_type; 
union { 

struct local *ltj 
char pattern[32]j 
char locaLvar[32]; 

} action; 
}; 

struct argJist { 
struct argJist *next; 
char type(32]; 
char value(32]; 

}; 
struct nodeJist { 

struct nodeJist *next; 
struet node *node_ptrj 

}; 
struct local { 

struct local *next; 
int order; 
char proc[32]j 
struet argJist *arguments; 

}; 
struct node { 

struct nocie *next; 
char name~32]; 

int current; 
int start; 
int final; 
struct arcJist *ouLarc; 
struct arcJist *confl.ict; 
char entrance[32]j 
struct argJist *entrance_argsj 
char exit[32]j 
struct argJist *exiLargs; 
char *corntraints; 

}; 
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~ Code for Database Server 

Following is the actual code for the communications portion of the server. The server and 
clients communicate using an RPC style interface. Ideally the server will listen for two 
types of requests, either specify_pattern which parses a new GTS and stores the associated 
structures in the system or execute_gt which actually executes the local transction. 

1***********************************************************************1 
1* Main: This just starts the server up */ 
1***********************************************************************1 

mainO { 

specify_pattern(l!pat. templ!); /* specify intial patterns */ 
THREADgo (1,O,setup_connect,O,O,30*1024,8); 

} 

/***********************************************************************/ 
1* This	 routine sets up a TCP connection and gets a name and a port 50 

connections can be made to the server. The server name and port 
are written to a file so that clients can connect to server. 
(we assume all clients know the location of this file) . 

The socket listens for connect requests and child thread processes 
are forked to receive the messages */ 

/***********************************************************************/
 
void setup_connect()
 
{ int sock,msgsock;
 

struct hostent *h;
 
int len,rval;
 
char h_name[32];
 
FILE *fp;
 
THREAD child_proc;
 

/*	 establish an internet socket */ 

if	 ((sock = socket(AF_INET,SOCK_STREAM,O))== -1) {
 
perror (I! opening t cp socket I!) ;
 
exit(1) ;
 

} ; 

/*	 get a name so we can accept messages */
 

name.sin_family=AF_INET;
 
name.sin_addr.s_addr=htonl(INADDR_ANY);
 
name.sin_port=htons(O); /* convert to network byte order*/
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if	 (bind(sock,&name,sizeof(name))~~-1){
 
perror("bind") ;
 
exit (1) ;
 

} ; 

1*	 what is our name, get the host name and the port number which
 
we were assigned */
 

gethostname(h_name,sizeof(h_name));
 
printf("host 'I.s is running\n",h_name);
 
len = sizeof(name);
 
if (getsockname(sock,&name,&len) == -1) {
 

perror(lIgetsockname ll
); 

exit (1);
 

}
 
1* write this information to file (or database) so client knows
 

how to get to server *1 

fp=fopen(lIserver_dbll,lIw");
 
fprintf(fp,IIYod Yod Yos Yes\n ll ,htons(name.sin_port),l,lIgtm ll ,h_name);
 
fclose(fp);
 

1*	 set up monitors for threads */ 

io_mon=THREADmonitorinit(O,NULL);
 
conflict_mon=THREADmonitorinit(O,NULL);
 

1*	 start accepting connections, fork thread to handle connections *1 

listen(sock,5); 
do{
 

msgsock = accept(sock,(struct sockaddr *)0, (int *)0);
 
if (msgsock == -1) perror(lIacceptll);
 
else THREADcreate(receive_data,msgsock,O,O,30*1024,16);
 

}while (1); 

/*	 when all are finished we synch up and close socket */ 

while (child_proc=THREADwaitforchild())
 
THREADeliminatechild(child_proc);
 

c1ose(sock); 
} 
\newpage 
/***********************************************************************/ 
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1* This routine reads from the accepted socket, unpacks the message which 
contains either: 

o - indicating a request to add patterns to system 
in which case the remainder of the message is the 

file name containing the pattern specifications 

or 

1 - indicating a request to run a global transaction 
in which case the remainder of the message is the 

name of the pattern which represents the global 
transaction to be run by the system 

Upon return from this call the return value if any is ready to be sent 
back to client and the socket is closed */ 

1***********************************************************************/
 
int receive_data(sock)
 
int sock;
 

{ 

char buffer[1028] ,string [1024] ,message [1024] ; 
short service,ret; 
int rval; 
extern struct pattern *first_pattern; 

bzero(buffer,sizeof(buffer));
 
if «rval = read(sock,buffer,1028)) < 0)
 

perror(lI reading message ll 
);
 

else {
 
memcpy(&service,buffer,2);
 
service=ntohs(service);
 
memcpy(string,&buffer[2] ,1024);
 

switch (service) {
 
case 0: /* specify pattern */
 

first_pattern=specify_patternCstring);
 
ret=htons(l);
 

memcpy(&ret,message,2);
 
break;
 

case 1: /* execute global transaction*/ 
ret=execute_gt(string,O); ­
ret=htons (ret) ; 
printf(lI status = y'd\n ll ,ret); 
memcpy(&message[O] ,&ret,2); 
break; 

} 
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write(sock,message,1024); 
}; 

close(sock); 
} 

A.3 Code for Client 

Each machine accesses the GTM through a client procedure using an RPC type interface. 
This procedure is outlined below. A user of the client will just need to make a procedure 
call to either execv.te_gt to run a global transaction or specify_pattern to add a GTS to the 
system. 

These two procedure calls are given below: 

int execute_gt(pattern_name,args,queue)
 
char *pattern_name;
 
struct arg_list *args;
 
int queue;
 

struct pattern *specify_pattern(spec)
 
char *spec; /*name of ascii file containing GTS */
 

The following is the code for the client stubs for the specify_pattern and execute_gt remote 
procedures. The the code for the communication portion of the client is also provided below. 

/***********************************************************************/ 
/* client stub for specify pattern procedure */
 
/***********************************************************************/
 
specify_pattern(s)
 
char s[32]
 
{
 

int c,i,stat;
 
short port;
 
char mess [1032] ,ret_buf[1024],temp[100];
 
char host[32];
 

/*	 find server, package arguments to send, call client side of RPC, 
unpackage arguments upon return from RPC */ 

port=find_server(IIgtm",host); 
if (port == O){
 

printf("server_not_available\n");
 
return;
 

} 

stat=rpc$client(host,port,s,ret_buf,O,1); 
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if	 (stat > 0)
 
printf ("pattern specified --~I,s\n", s) ;
 

} 

1***********************************************************************1 
1* client stub for executing a global transaction *1 
1***********************************************************************1 
execute_gt(s) 
char *s ; 
{ 

int c,i.stat; 
short port; 
char mess[1032].ret_buf[1024] .temp[100]; 
char host [32] ; 

1* find server, package arguments to send. call client side of RPC, 
unpackage arguments upon return from RPC *1 

port=f ind_server ("gtm" .host); 
if	 (port == O){
 

printf(IIserver_not_available\n");
 
return;
 

} 

stat=rpc$client(host.port.s,ret_buf.l,l);
 
if (stat> 0)
 

printf("--%s • global transaction executed\n".s);
 
}
 

1***********************************************************************1 
1* rpc$client performs the client side RPC function. This includes setting 

up a TCP socket. creating the connection and packaging the 
service number and return flag associated with the call at the 
beginning of message passed to the server. This procedure waits 
a return value if one is expected. */ 

/***********************************************************************/ 
rpc$client(host.port,message,return_b.service.ret) 
char *host;
 
short port;
 
char *message.*return_b;
 
short service;
 
short ret;
 
{
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int sock;
 
struc~ sockaddr_in name;
 
struct hos~ent *h;
 
int x;
 
int rval;
 
char buffer [1024] ;
 
char temp [1028] ;
 
fd_set mask;
 
struct timeval to;
 
short stat;
 

/*	 establish an internet socket */ 

if	 ((sock = socket(AF_INET,SOCK_STREAM,O»== -1) {
 
perror (II opening t cp socket ") ;
 
exit (1) ;
 

} ; 

/*	 set up to connect to server */ 

h=gethostbyname(host);
 
if (h == NULL) printf("host unknown\n");
 
bcopy(h->h_addr,&name.sin_addr,h->h_length);
 
name.sin_family=AF_INET;
 
name.sin_port=port;
 

/*	 make the connection */ 

if (connect(sock,(struct sockaddr *)&name,sizeof(name» < 0) { 
perror(" establishing connect") ; 
exit (1) ; 

} 

/*	 send the message by writing to socket, append number of program 
and return flag at the beginning of the buffer */ 

service=htons(service);
 
memcpy(temp,&service,2);
 
memcpy(&temp[2],message,1024);
 
message=temp;
 

if	 (write(sock,message,1032) < 0) perror("writing on stream socket"); 

/*	 setup for select and timeout */ 
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FD_ZERO (&mask);
 
FD_SET (sock,&mask);
 
to.tv_sec: 600;
 

bzero(buffer,sizeof(buffer)) ;
 
while (stat: select (sock+1,&mask,NULL,NULL, &to) > O){
 

if ((rval : read(sock,buffer,1024)) < 0)
 
perror("reading message") ;
 

else {
 
memcpy(&ret,&buffer[O] ,2);
 
printf(" status = Xd\n" ,ret) ;
 
return(ret) ;
 

} 

} 

if (stat== 0)
 
printf("time expired, no longer awaiting reponse\n") ;
 

close(sock); 

} 

A.4 Code for parsing GTS 

This section contains interface to a compiler which will parse a GTS and create the appro­

priate data stuctures. The compiler itself is written using YACC and LEX. Code is not
 
provided here for the compiler, but can be found in u/pat/thesis/proto. The parsing code is
 
simliar to the BNF in Figure 8.
 

struct pattern *specify_pattern(spec)
 
char *spec; /* name of ascii file containing GTS */
 

{ 

extern int error_flag;
 
extern struct pattern *first_pattern;
 
int sts;
 
THREAD_MANAGER_BLOCK manager;
 

THREADmonitorentry(io_mon,&manager);
 
freopen(spec, "r " , stdin) ;
 
error_flag = FALSE;
 
sts=yyparseO;
 
THREADmonitorexit(io_mon,&manager);
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if C sts == TRUE ) 
printf C"error\n") ; 1* this error indicates error getting into 

parser routine */ 
else if (error_flag == FALSE){ /* if we get here and error_flag = TRUE */ 

/* a more comprehensive error will have 
already been returned by parser */
 

printf ("f inished pars ing patt ern\n") ;
 
return(first_pattern);
 
} 

} 

A.5 Code for Global Transaction Manager 

This section contains the code associated with the global transaction manager used in the 
prototype. This includes all syncrhonization and conflict checking code. 

/***********************************************************************/ 
/* execute_gt: This routine handles the execution of a global transaction. 

In this implementation conflicts are refused, but we 
provide for the queue or refuse option for future 
implementations */ 

/**********************************************************************/
 

int execute_gt(pattern_name,gtid,args,queue)
 
char *pattern_name;
 
int gtid;
 
struct arg_list *args;
 
int queue;
 

{	 struct arc *arc_temp; 
struct arc_list *temp_arc,*last_arc,*checked,*new_arc; 
struct node_list *node_temp,*temp,*tempa,*c_states,*new,*last; 
struct pattern *c_pattern; 
int finished, status; 
THREAD_MANAGER_BLOCK manager; 

/*	 find pattern in known pattern list */ 

c_states = NULL;
 
c_pattern=find_pattern(pattern_name);
 
if (c_pattern == NULL)
 

return(ABORT); 
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1*	 assign Global transaction id, if not a nested transaction */ 

if	 (gtid==O) {
 
THREADmonitorentry(gtid_mon,&manager);
 
c_pattern->global_tid=tid_ct++;
 
gtid=c_pattern->global_tid;
 
THREADmonitorexit(gtid_mon) ;
 

} 

/*	 for each node in the start state set set add to current */ 

temp=c_pattern->start_state; 
while (temp != NULL) {
 

c_states=add_to_current(temp,c_states);
 
temp=temp->next;
 

}; 

/*	 while current state does not equal any final state sets traverse 
arcs in graph structure, serially */ 

while (finished=check_states(c_states,NULL,c_pattern->final_state,TRUE) 
==FALSE){
 

status = FALSE;
 
while (status == FALSE){
 
arc_temp = find_highest_arc(c_states,checked);
 

if	 (arc_temp == NULL) return (ABORT); 
new_arc = (struct arc_list *) calloc (l,sizeof(struct arc_list)); 

new_arc->arc_ptr=arc_temp; 
if (checked == NULL) checked=new_arc; 
else { 

temp_arc=checked; 
while (temp_arc!= NULL){
 

last_arc=temp_arc;
 
temp_arc=temp_arc->next;
 

}; 

last_arc->next=new_arc; 
}; 

/* find out what type of arc we and try to traverse it */ 

if (arc_temp->action_type == PAT)
 
status = execute_gt(arc_temp->action.pattern,gtid);
 

else
 
status = execute_action(arc_temp,c_states,gtid);
 
if (status) {
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checked = NULL;
 
tempa=arc_temp->tail_states;
 

while (tempa != NULL) { 
c_states=remove_from_current(tempa->node_ptr->name,c_states); 
tempa=tempa->next; 

} 

tempa=arc_temp->head_states; 
while (tempa != NULL) { 1* add head nodes to current*1 

c_states=add_to_current(tempa,c_states);
 
tempa=tempa->next;
 

} ;
 
};
 

} ;
 

} ; 

return (status); 
} 

1************************************************************************1 
1* execute_action: searchs a list of local transactions and tries to find 

the highest priority non-conflicting action to execute. 
When a conflict occurs the GTM refuses to execute 
request and search for next conflicting action. This 

m~ 

change in future implementations by setting queue flag 
to true when calling the check_conflict routine. *1 

1***********************************************************************1 
execute_action(arc_temp,c_states,gtid)
 
struct arc *arc_temp;
 
struct node_list *c_states;
 
int gtid; tempa=c_states;
 

{ 

struct local *temp;
 
int num,status,stat=FALSE;
 
int getid,id;
 
char string[32];
 
int (*comp) 0 ;
 
struct timeval time_out;
 
THREAD_MANAGER_BLOCK manager;
 

temp=arc_temp->action.lt; 

while (temp != NULL && stat == FALSE) { 
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if	 (check_conflict(gtid,temp->proc) == FALSE) {
 
system(temp->proc);
 
time_out.tv_sec=2;
 
time_out.tv_usec=O;
 
select (NULL ,NULL ,NULL ,NULL ,&time_out) ;
 

stat = TRUE;
 
}
 

temp=temp->next;
 
} ; 

return (stat); 
} 

1***********************************************************************/ 
/* add_to_current: add node to current state state set, add conflict to 

global conflcit list & execute entrance computation */ 
1***********************************************************************/ 

struct node_list *add_to_current(np,c_states)
 
struct node_list *np,*c_states;
 
{
 

struct node_list *new,*last,*temp;
 
struct arc_list *last_conflict,*temp_conflict;
 
THREAD_MANAGER_BLOCK manager;
 

/*	 set current state to true and add node to current state list */
 

np->node_ptr->current = TRUE;
 
new = (struct node_list *) calloc (l,sizeof(struct node_list) );
 
new->node_ptr= np->node_ptr;
 
if (c_states == NULL)
 

c_states = new; 
else {
 

temp = c_states;
 
while ( temp!= NULL) {
 

last=temp;
 
temp=temp->next;
 

} ; 

last->next=new; 

if	 (np->node_ptr->conflict != NULL) { 

/*	 set gtid flag for conflicts in list */ 

temp_conflict = np->node_ptr->conflict;
 
while (temp_conflict != NULL){
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np->node_ptr->conflict->arc_ptr->gtid=gtid;
 
temp_conflict=temp_confl:ct->next;
 

").. 
J , 

/*	 conflicts to end of global conflict list */ 

THREADmonitorentry(conflict_~on,&manager); 

temp_conflict=global_conflic~; 

last_conflict=global_conflic~; 

while (temp_conflict != NULL) { 
temp_conflict=temp_conflic~->next; 

last_conflict=temp_conflict;
 
}
 
if (last_conflict == NULL)
 

global_conflict=np->node_ptr->conflict;
 
else
 

last_conflict->next=np->noae_ptr->conflict;
 
THREADmonitorexit(conflict_mon);
 

}; 

}; 

/***********************************************************************/ 
/* remove_from_current: remove node from current state set and execute 

exit computations */ 
/***********************************************************************/ 
struct node_list *remove_from_current(string,c_states) 
struct node_list *c_states;
 
char *string;
 
{
 

struct node_list *temp.*last,*next;
 
struct arc_list *last_conflict,*temp_conflict;
 
THREAD_MANAGER_BLDCK manager;
 
int found = FALSE;
 

/*	 find node in current state list */ 

temp=c_states;
 
last=NULL;
 
while (temp != NULL && found == FALSE) {
 

if	 (strcmp(temp->node_ptr->name.string) == 0) {
 
found == TRUE;
 
temp->node_ptr->current = FALSE;
 
if (last == NULL)
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c_states = temp->next; 
else {
 

last->next=temp->next;
 
free (temp);
 
return (c_states);
 

} 

else {
 
last=temp;
 
temp=temp->next;
 

} ; 

/* remove conflicts from global conflict list */ 

if (temp->node_ptr->conflict != NULL) { 
THREADmonitorentry(conflic~_mon,&manager); 

temp_conflict=global_conflict;
 
last_conflict=global_conflict;
 
while (temp_conflict != NULL) {
 

if (gtid == temp_conflict->arc_ptr->gtid) 
if (last_conflict != global_conflict) 

last_conflict->next=temp_conflict->next; 
else 

global_conflict=NULL;
 
temp_conflict=temp_conflict->next;
 
last_conflict=temp_conflict;
 
} ; 

THREADmonitorexit(conflict_mon);
 
};
 

} ; 

if (found == FALSE) 
printf("ERROR: should never not be able to remove from current\n"); 

return (c_states); 
} 
/***********************************************************************/ 
/* find_pattern: find requested global transaction in list of 

patterns */ 
/***********************************************************************/ 

struct pattern *find_pattern(pattern_name) 
char *pattern_name; 

{ 

extern struct pattern *first_pattern;
 
struct pattern *tp;
 
int found=FALSE;
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tp=first_pattern;
 
while (tp != NULL && found == FALSE ){
 

if	 (strcmp(tp->name,pattern_uame) == 0) {
 
found = TRUE;
 
return (tp);
 

}
 

else
 
tp=tp->next; 

} ; 

printf ("ERROR: Global Transaction %s not specified\n",pattern_name); 
return (NULL); 

} 

1***********************************************************************1 
1* check_conflict: this routine checks to see there are conflicts with 

execution of this local transaction *1 
1***********************************************************************1 

int check_conflict(gtid,string)
 
int gtid;
 
char *string;
 

{ 

struct local *temp2; 
struct arc_list *temp_conflict; 
THREAD_MANAGER_BLOCK manager; 

THREADmonitorentry(conflict_mon,&manager);
 
temp_conflict=global_conflict;
 
while (temp_conflict != NULL) {
 

temp2=temp_conflict->arc_ptr->action.lt; 
while (temp2!=NULL) { 

if (gtid!=temp_conflict->arc_ptr->gtid && 
strcmp (string,temp2->proc)==O) { 

printf("gt %d conflicts with gt %d on It %s\n", 
gtid,temp_conflict->arc_ptr->gtid,string); 

THREADmonitorexit(conflict_mon); 
return(TRUE); 

} ;
 

temp2=temp2->next;
 
}; 

temp_conflict=temp_conflict->next; 
}; 
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THREADmonitorexit(conflict_mon) ; 

return (FALSE); 
} 

/***********************************************************************/ 
/* check_states: this routine checks that all head_states are 

part of current state set if the flag is set to 
FALSE otherwise check if all the current states 
are part of a final state set */ 

/***********************************************************************/ 

int check_states(c_states,q_states,f_states,flag)
 
struct node_list *c_states,*q_states;
 
struct node_list *f_states[];
 
int flag; /* if flag is true we are looking for final state sets */
 
{
 

struct node_list *temp, *temp_current;
 
int found,array = 0;
 

if (flag == 0) ( 

temp = q_states; 
else 

temp = f_states[O]; 
while (temp != NULL) {
 

found=FALSE;
 
temp_current = c_states;
 
while (temp_current != NULL && found == FALSE) {
 

if (strcmp(temp_current->node_ptr->name,temp->node_ptr->name)==0) 
found=TRUE; 

else 
temp_current=temp_current->next; 

}; 

if (found == FALSE) {
 
if (flag == 0)
 

return (FALSE);
 
else {
 

temp=f_states[++array] ;
 
if (temp == NULL) return (FALSE);
 

}
 

}
 

else
 
temp=temp->next; 
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}; 

return (TRUE); 
} 

/***********************************************************************/ 
/* find_highest_arc:	 this routine finds the highest priority arc in the 

current state set which is ready for traversal. 
An arc 
must have all nodes in the head_state set in the 

current state set to be ready for traversal. If 
more then one highest priority arc use the first one 
found. Once a priority one arc is found return it 

/***********************************************************************/ 

struct arc *find_highest_arc(c_states,checked) 

struct node_list *c_states; 
struct arc_list *checked; 
{ 

struct node_list *tp;
 
struct arc *tp_arc,*highest;
 
int found=FALSE;
 

tp=c_states;
 
highest =NULL;
 
~hile (tp != NULL) { /* for each node in current state set*/
 

tp_arc=tp->node_ptr->out_arc->arc_ptr; 
while (tp_arc != NULL) { 

if (check_states(c_states,tp_arc->tail_states,NULL,FALSE)== TRUE) { 
if (notchecked (checked,tp_arc)) { 

if (highest == NULL I Ihighest->alt_pri > tp_arc->alt_pri) 
highest=tp_arc; 

if (highest->alt_pri== 1) 
return (highest); 

}
 

}
 
tp_arc=tp_arc->next;
 

}
 
tp=tp->next; /* look at next node *1
 

}; 

if (highest == NULL) /* return highest alternative or null*/
 
printf ("Can currently traverse no arcs\n");
 

return (highest);
 

} 
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B The Prototype 

B.l Tips on Using the Prototype 

The code associated with the prototype resides on the Sun system in u/pat/thesis/proto 
on February 10th, 1991. This directory contains the source code, makefiles and all other 
necessary files. The executable image server can be run on any system. This will start up 
the server and write a file to in the default directory to announce its availability and give 
the port of the server. The server can handle several clients concurrently. 

Client software can be executed from any machine in the system and from rer::ote ma­
chines which can access the server's port file. A user writes a C routine which contains calls 
to the remote procedures specify_pattern andexecute_gt. These calls are expected to be in the 
following form: 

int execute_gt(pattern_name,args,queue)
 
char *pattern_name;
 
struct arg_list *args;
 
int queue;
 

struct pattern *specify_pattern(spec)
 
char *spec; /* name of ascii file containing GTS */
 

The user must then compile their client code with the client.c code which resides in the 
directory /u/pat/thesis/proto. 

specify_pattern takes the path name of an ascii file containing the GTS as input. Note, 
standard input is redirected to this file while the pattern is being specified. 

In the prototype, local transactions are not stored in a transaction library as specified 
in the model. Instead, local transactions are executable files which are expected to be in 
the same directory as the server executable. When a user writes a local transaction, this 
transaction must be compiled and linked with any relevant librarys. The executable image 
is then place in the same directory as the server, this directory was chosen for convenience in 
testing this prototype. If one wants to have all the executables in a different directory then 
just substitute the name of the new path in the gt.c procedure. The same is true of entrance 
and exit procedures. One might want to have a specified directory for local transactions and 
one for entrance and exit computations. 

B.2 Example 

In this section, several examples of global transaction execute as performed by the prototype 
are given. These examples use the plane and trip GTSs as defined in Section 4. 
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B.2.1 Two concurrent global transactions, no conflicts 

Global transaction plane and trip executing concurrently. Both global transactions commit. 

accepted connect from client1
 
clientl requesting plane
 
starting on GTS plane gtid = 11
 
about to call inquire gtid = 11 from nodes Aplane
 

##executing local transaction inquire
 
accepted connect from .client2
 
client2 requesting trip
 
starting on GTS trip gtid = 12
 
starting on GTS plane gtid = 12
 
about to call inquire gtid = 12 from nodes Aplane
 

##executing local transaction inquire
 
about to call planeres gtid = 11 from nodes Bplane
 

##executing local transaction plane
 
about to call planeres gtid = 12 from nodes Bplane
 

##executing local transaction plane
 
about to call agent gtid = 11 from nodes Cplane
 

##executing local transaction agent
 
about to call agent gtid = 12 from nodes Cplane
 

##executing local transaction agent
 
final state Dplane gtid = 11
 
COMMIITED global transaction plane gtid = 11
 
final state Dplane gtid = 12
 
COMMIITED global transaction plane gtid = 12
 
about to call hotel gtid = 12 from nodes Btrip
 

##executing local transaction hotel
 
about to call car gtid = 12 from nodes Ctrip
 

##executing local transaction car
 
about to call agent gtid = 12 from nodes Etrip,Ftrip
 

##executing local transaction agent
 
final state Gtrip gtid = 12
 
COMMITTED global transaction trip gtid = 12
 

B.2.2 Two concurrent global transactions, non-fatal conflict 

Global transaction test and trip executing concurrently. test is similar to plane, but contains 
a conflict from node Atest with the inquire action. This forces the trip GTS to use alternative 
action car instead of the nested GTS plane. Both global transactions commit. 

accepted connect from clientl
 
clientl requesting test
 
starting on GTS test gtid = 1
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about to call car gtid = 1 from nodes Atest
 
accepted connect from client2
 
client2 requesting trip
 
starting on GTS trip gtid = 2
 
starting on GTS plane gtid = 2
 
**->gt 2 conflicts wit~ gt 1 on local transaction inquire
 
gtid 2 can currently traverse no arcs in GTS plane
 
about to call car gtid = 2 from nodes Atrip
 

##executing local transaction car 
about to call planeres gtid = 1 from nodes Btest
 

##executing local transaction plane
 
##executing local transaction car
 

about to call agent gtid = 1 from nodes Ctest
 
##executing local transaction agent
 

about to call hotel gtid = 2 from nodes Htrip
 
##executing local transaction hotel
 

final state Dtest
 
COMMITTED global transaction test gtid = 1
 
about to call agent gtid = 2 from nodes Itrip
 

##executing local transaction agent
 
final state Gtrip
 
COMMITTED global transaction trip gtid = 2
 

B,2,3 Two concurrent global transactions, fatal conflict 

Global transaction plane and trip executing concurrently. A conflict occurs on local trans­
action agent. This causes plane to be aborted since all conflicts are refused and there is no 
alternative actions or local transactions for the vital action inquire. 

accepted connect from clientl
 
client 1 requesting trip gtid = 3
 
starting on GTS trip gtid = 3
 
starting on GTS plane gtid = 3
 
about to call _nquire gtid = 3 from nodes Aplane
 

##executing local transaction inquire
 
about to call planeres gtid = 3 from nodes Bplane
 

##executing local transaction plane
 
about to call agent gtid = 3 from nodes Cplane
 

##executing local transaction agent
 
final state Dplane
 
COMMITTED global transaction plane gtid = 3
 
about to call hotel gtid = 3 from nodes Btrip
 

##executing local transaction hotel
 
about to call car gtid = 3 from nodes Ctrip
 
accepted connect from client2
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client2 requesting plane 
starting on GTS plane gtid = 4 
about to call inquire gtid =4 from nodes Aplane 

##executing local transaction inquire 
about to call planeres gtid = 4 from nodes Bplane 

##executing local transaction plane 
##executing local transaction car 

**->gt 4 conflicts with gt 3 on local transaction agent 
gtid 4 Can currently traverse no arcs in GTS plane 
ABORTED global transaction plane gtid = 4 
about to call agent gtid = 3 from nodes Etrip,Ftrip 

##executing local transaction agent 
final state G 
COMMITTED global transaction trip gtid = 3 

B.3 Unresolved Problems and Suggested Enhancements 

The prototype does not support interactive specification of patterns as originally planned. 
All the code to support this is available, but there is a problem with using the LEX and 
YACC code with Brown threads. Brown threads requires the use of u/pro/threads/thread.h" 
library instead of the stdio.h, the standard c library. LEX somehow imports the standard 
library. Attempts to override this have thus far failed. 

Local transactions currently only return information regarding whether the transaction 
committed or aborted. The system(} call is used to fork a process which executes the local 
transaction. This mechanism does not allow for return values. Therefore two alternatives 
exist to deal handle this return information. We could either use a message passing system or 
return it to some global return area. The message passing system is the preferred alternative, 
but this requires that each local transaction send a message to the GTM with the designated. 
return parameters. This could be done by have a standard piece of code which is appended. 
to the local transaction code to set up the communications with the GTM and return the 
appropriate information. The server would also have to set up a socket to listen for responses. 
Future implementations should allow for more comprehensive information to be returned. 
This is due in part to the way local transactions are executed. 

The prototype automatically refuses all conflicting local transaction. The next version 
should allow for queueing of conflicting actions. Note that this may result in deadlock, 
therefore a deadlock deeteetion algorithm will be needed. 

Further concurrency could be added to the GTM, by running the actions associated with 
the fork arcs in separate threads. Additionally if several alternatives were to be attempted 
in parallel, these would also be executed from separate threads. 
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