
Copyright © 1992

by Ronald C.P. Antony, Axel G. Merk

DeTerminator

Report on a

Decision Support System and Tool-Kit

using the ProFuSE method

by Ronald c.P. Antony, Axel G. Merk

Submitted in partial fulfillment of the requirements for the degree of

Master of Science

in the

Department of Computer Science at Brown University

May 1992

Leslie P. Kaelbling (Advisor): ~~ III rtl~ IQq2..

,

Decision Support System

oAbstract

In the following report, we describe a decision support system and tool-kit that combines advan­
tages of Bayesian Inference, rule-based systems, object-oriented decomposition and adds the
capability of dealing with multivalent data. The purpose of this is to obtain a system capable of
dealing with three notions that are important for making decisions under uncertainty. We call
these the dimensions of property, probability and risk. Furthennore, we describe the algorithms
and their properties that are fundamental to this decision support system. In a last step, we empir­
ically test our model tool on the domain concerned with trading in financial markets and comment
on some of the considerations that are essential in the creation of our test model.

2 R. Antony t A. Merle

I~-

BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-92-M15

"DeTenninator' ,

by

Ronald C.F. Antony and Axel G. Merk

Decision Support System

Table of Content

oAbstract 2
1 Definition of Objectives
2 Introduction
3 Design of DeTenninator

3.1 Overview of Decision Support System 7
3.2 Choice of Expert System 7

3.2.1 Paradigms in review 8
3.2.2 ProFuSE 10

3.2.2.1 Mathematical Interpretation of the ProFuSE Method 10
3.2.2.2 Approximation of Standard Paradigms 10
3.2.2.3 Custom Functions 13
3.2.2.4 Symbolic versus Numerical Evaluation 13
3.2.2.5 Notes on Computational Complexity 13
3.2.2.6 Isolation of Error Sources 15

4 Implementation of DeTerminator 16
4.1 Implementation Language 16
4.2 Notes on Implementation Structure 16

4.2.1 Program Structure 16
4.2.2 Data Structures 19
4.2.3 Algorithms 19

5 Empirical Test of Modelling Tool 21
5.1 Application Domain 21

5.1.1 Constraints due to Information Available 21
5.1.2 Constraints due to Know How 21
5.1.3 Application 22

5.2 Modelling the Knowledge Base 22
5.2.1 Requirements 23
5.2.2 Notes on the Knowledge Base 23

5.2.2.1 Indicators 23
5.2.2.2 Rule Functions 29
5.2.2.3 Joint Probability Density Functions 29

5.3 Preprocessing of Indicators 29
5.3.1 Implementation of Indicators and Musical Scores 29
5.3.2 Caching of Values 30
5.3.3 Date and Time 31

5.4 DeTerminator on the Test Stand 31
5.4.1 The Crash 32
5.4.2 Overall Performance 32
5.4.3 Dealing with Ambivalent Information, a Special Case 33

6 Conclusion 35
7 Outlook 36
8 Acknowledgments 37
9 Appendices 38

9.1 Bibliography 38

5
6
7

3 R. Antony, A. Merk.

Decision Support System

Table of Figures

Figure 1: ProFuSEe Rule
Figure 2: derivation ofjoint probability density function
Figure 3: xor, and, or as ProFuSE rules
Figure 4: linear dependencies as ProFuse rules
Figure 5: computational complexity, typical case
Figure 6: computational complexity, worst case
Figure 7: program structure
Figure 8: sample input with inspector
Figure 9: sample rule
Figure 10: sample network
Figure 11: data structure for input and rule
Figure 12: application structure
Figure 13: macd
Figure 14: macd decision tree
Figure 15: NYSE excerpt
Figure 16: on balance volume decision tree
Figure 17: on balance volume
Figure 18: Scores
Figure 19: Score
Figure 20: rule structure
Figure 21: expert opinion, crash 1987

Figure 22: a sample strategy
Figure 23: hussein rule

Figure 24: expert opinion, hussein 1991

page 9

page 11

page 12

page 12

page 14

page 14

page 16

page 17

page 18

page 18

page 19

page 20

page 25

page 26

page 27

page 28

page 29

page 30

page 30

page 31

page 32

page 33

page 33

page 34

4 R. Antony, A. Meek

Decision Support System

1 Definition of Objectives

Our objective is to design a modelling tool that is capable of evolving over time into a potent
decision support system. It is a major concern of ours to provide means such that knowledge mod­
elled in our system retains clearly defined semantics. This means that we want the system to have
more than some fuzzy notion of likelihood or a vague description of characteristics. Instead, we
aim at separating the dimensions of property, probability and risk.

Furthennore, we want a consistent means of representing knowledge that is powerful enough to
express arbitrary roles rather than just a few special cases.

Last, but not least, we want a system that scales well and is capable of performing in an on-line,
near real-time environment.

On a subordinate level, we want to explore applications of time-oriented data structures and
exploit the advantages provided by leveraging on object-oriented technologies.

We will empirically test our system on an example taken from trading in financial markets. It is
based on infonnation that is readily available to us and does not take advantage of all infonnation
that might be needed to achieve its task best.

s R. Antony, A. Merk

f

Decision Support System

ALPHONSE KARR 1808-1890
Plus fll change, plus c'est la meme chose.
The more things change, the more they are the same.

r.e. Gu'pe., Jan. 1849. vi

2 Introduction

After having studied a wide range of topics related to economics - and in particular finance - as
well as computer science - with an emphasis on artificial intelligence -, it seemed to be a logical
choice to combine these areas in a Master's project. Also, when we visited a conference on Artifi­
cial Intelligence Applications on Wall Street [AIIWS 1991], it seemed to us that many of the
approaches presented were rather arbitrary and incohesive.

It appears to us that making decisions under uncertainty requires that the decision-maker has
knowledge not only about what properties are valid at a given moment or are expected to be valid
at some point in the future, but rather has an idea on how likely every possible value of a property
may be at some point in the future. The reasons for this are intrinsic in the definition of mean val­
ues and expected values that are traditionally used to act under uncertainty. As one of our eco­
nomics instructors, Professor Ierome Stein, phrases it, a clock that stands still on six o'clock is
right on average - although it is almost always wrong.

To get a clear picture of a situation, a probability density function over the range of possible val­
ues helps a lot in assessing different possible actions. With a probability density function, we cap­
ture two out of three important dimensions: property and probability because for each possible
value, the property can take, we have a corresponding probability density. A third dimension of
interest is risk. Although risk is not defined in mathematical terms in a generally accepted form,
we can say that risk is a measure of how big the chances are that an action affects us adversely.
Therefore we think that risk can be interpreted as second order information that can itself be
expressed in terms of a property (the level of risk) and a probability density function over the
range of possible risk levels.

Since we did not find a decision support system or even a tool-kit that is capable of dealing with
, these dimensions elegantly and consistently, we decided to design such a system and we will

present the results in the following.

6 R. Antony, A. Merk

Decision Support System

3 Design of DeTerminator

3.1 Overview of Decision Support System
Trying to detennine the scope of our project, a decision support system, we want to shoot at the

following problem areas: we want to preserve the freedom to have infonnation available in a wide
range of fonnals. Ideally, we would like to keep the option open of supplying the system with
information that is extracted from arbitrary sources, including text analysis systems, laboratory
equipment, commercially available data streams (ticker tape) or output from other programs.
Since we want a general decision support system - rather than a solution to a given problem, we
cannot rely on fixed algorithms such as linear programming or network flow, but have to be able
to express expert knowledge that exists in a multitude of forms. Our system must capture the
semantic dimensions of risk, probability and properties. Since we do not know whether the action
that is based upon the output of the decision support system is perfonned by man or machine, our
system should provide information in a form that is suitable for treatment by both of them.

More specifically, we want to be able to treat data properties with a process of elimination, e.g.
if we have a property color that can range over the whole spectrum from red to violet, we should
be able to exclude certain colors as possible while all the rest are still being considered - although
to varying degrees. We call this dealing with multivalent data.

Since the traditional field of application for decision support systems can be found in custom­
ized applications that are designed for specific purposes rather than off-the-shelf solutions, it
seems imperative to us that the tools used to construct such decision support systems should
empower less specialized people than the original authors of those tools to create a system. We
thus want to create a user-friendly, graphics-oriented tool-set.

Our system determines many properties and variables in order to exterminate the decision prob­
lems at hand; hence, we call our system DeTenninator.

3.2 Choice of Expert System
Given the tool-set approach decided upon above, an expert system-like tool is a plausible

choice.
Given the other requirements stated before, it seems a natural consequence to evaluate various

multi-paradigm expert systems such as Babylon "that claim to be independent of the various
domains by supporting various representation formalisms. [...] These systems are referred to as
hybrid systems as they provide the possibility to alternate between or to combine various knowl­
edge representation formalisms in the development of knowledge bases." [Babylon 1989]

For various practical reasons such as general availability, access to source code and cost, we
decided to look more closely at Babylon. During our evaluation process, we encountered several
severe deficiencies in the paradigms available in Babylon as well as in other paradigms that are
generally used to solve problems of the type we are looking at. This ultimately forced us to think
of a new paradigm for representing expert knowledge. The remaining choice was between
enhancing Babylon by adding yet another paradigm or to create a system solely based upon our
new approach. In the end, we decided for the latter for two reasons: first, we wanted to show that
the method was powerful enough to stand on its own and second, for technical reasons, such as
execution speed, it seemed more reasonable not to base our system on a relatively big symbolic
computation environment.

7 R. Antony. A. Merle

Decision Support System

3.2.1 Paradigms in review
In the following, we show what particular weaknesses and problems arise with the standard par­

adigms used in many decision support systems, and we will lead to an escape from the limitations
in expressive power imposed by the standard paradigms.

Constraints
Constraints restrict the possible values of an attribute, i.e. the set of possible values that is

defined for this attribute. In mathematical tenus, we can define this restriction as reducing a
defined domain to a particular subset. [babylon 2.3.4] Consequently, constraints can be combined
to form systems with no, one or several solutions; thus, we can say they support multivalence.

Constraints are useful for second order knowledge, e.g. to verify boundary conditions.
It is awkward, however, to explicitly state facts. Also, constraints do not support an integrated

way of dealing with likelihoods.

Frames and Scripts
Frames share the advantages of object-oriented programming with those of symbolic computa­

tion. Their object-oriented nature endows them with the powerful capabilities of inheritance,
meaningful grouping of data and operations, and an intuitive way of expressing behaviors.

On the downside, frames and scripts resemble more an implementation language than a declara­
tive form of knowledge representation. They don't directly support the semantic dimensions we
require to express and process our knowledge in. Of course, frames and scripts could be used as
an implementation language for a paradigm that supports these dimensions.

Rules
Rules are a nice, declarative way of expressing a knowledge base separated from the underlying

evaluation mechanism. It separates the process of knowledge engineering from the programming
aspect of a decision support system and is therefore suitable for the construction of a variety of
"mission-critical,,1 custom decision support systems. Differently said, an evaluation program can
be delivered as an off-the-shelf solution while the necessary knowledge is filled in by unrelated
knowledge engineers.

Rules do not, however, easily allow sufficiently fine grained levels of expression on a symbolic
. level which is where rules shine. To express properties that can have subtle, but important differ­

ences such as the gray level of an area in a satellite picture, there is virtually no other means than
to take refuge to numerical representations.

Bayesian Inference
Bayesian Inference maintains a coherent, mathematically sound framework to express likeli­

hood in tenus of probabilities. Given correct information on the dependence of the data, Bayesian
inference guarantees correct results.

Bayesian Inference, however, does not attempt to solve the problem of representing multivalent
data.

1. ''For businesses to compete in the 1990s, requires effective management of one of their most valuable
assets, their information. More than ever, organizations are realizing that [...] accurate and timely informa­
tion is a strategic competitive weapon and vital to organizational success. But as an organization's informa­
tion requirements increase, MIS departments face a growing backlog of applications. And, often a
bottleneck occurs as they try to provide decision-makers with what they desperately need - the right data, on
time, presented in an intuitive fashion." [NeXT 1992] The applications designed to fill these bottlenecks are
called mission-critical custom applications.

8 R. Antony, A. Meek

Decision Support System

Probability Function Semantics Evaluation (ProFuSE)

Probability density
function over the
range of possible

values

Probability density
function over the
range of possible

values

Probability density
function over the
range of possible

values

Figure 1: ProFuSEe Rule

After we have seen the various difficulties that other schemes confront us with in the effort to
express multivalent data in conjunction with a mathematically sound notion of likelihood, we
decided to represent attributes in our system neither by some symbol, nor by a mere number, but
rather with a function. The approach we take is to map the entire domain over which a property is
defined into a range of real numbers and by defining a probability density function over said
range, we can associate a probability with each possible value of the attribute in question.

By employing a combination of rule functions and joint probability density functions, we can
soundly derive other attributes from known attributes. How this is done will be explain~ in more
detail later.

We believe that this approach constitutes a means of combining the positive aspects of Bayesian
inference and rule based systems, and incorporates support for multivalent data. Also, to some
degree, we can incorporate constraints explicitly into our rule functions.

An implementation based on object-oriented tools should allow us to group data (and operations
on them) in a meaningful way as well as to elegantly interface them with other programs, user~

interfaces, etc.
To get back to the more fundamental properties of this form of attribute representation, we can

see that we managed to achieve our goal to express three semantic dimensions of particular
importance to decision support systems: property, probability and risk.

We preserve the property dimension because we map all possible values a property can assume
to a range of rational numbers. Thus, since we choose a unique mapping, it can be reversed and
the property values can be retrieved.

Since for each possible value, there exists an associated probability density value, we can com­
pute a probability for an arbitrarily narrow range of possible attribute values (by integrating the
probability densities over that range).

The concept of risk is not uniquely defined. Relatively spoken, it confronts us with the hardest
problem: there are schools of thought that define risk as a function of probability; others, however,
consider risk to be a property that is completely orthogonal to probability, Le. the probability of an
event happening and the risk associated with a decision that depends on this event are not a direct
function of each other. We believe that the information provided by the property and probability

9 R. Antony, A. Meek

Decision Support System

dimensions is sufficient to allow for a second order ProFuSE rule network to extract risk if it is
defined as an orthogonal property.

3.2.2 ProFuSE
Now that we have shown how we can escape from the limitations in expressive power and have

a system that is capable of representing properties, probability and risk, we take a look at the
methods employed to do so and investigate how we can approximate certain scenarios of knowl­
edge representation such as Bayesian inference, Boolean expressions and linear dependencies.

3.2.2.1 Mathematical Interpretation ofthe ProFuSE Metlwd
Our aim is to arrive at a probability density function over a mapping of a domain of possible

attribute values onto a range of real numbers starting from several (in our case two) other
attributes of which we already have a valid representation of the same form. To achieve this, we
need a rule function and a joint probability density function.

The first is a function that reflects a relationship between any possible value of all the input
attributes and the corresponding value for the attribute to be computed.

The second is a function that computes the joint probability density for all possible combina­
tions of mapped attribute values of all the input functions given their respective probability densi­
ties. In the case of independent inputs, this function simply corresponds to a multiplication of the
probability densities.

The remaining task is to obtain a mapping from the rule function and the joint probability den­
sity function to the probability density function of the mapped attribute values of th~ computed
attribute. We know that every combination of mapped input attribute values that results in the
same computed attribute value has the same output of the rule function. Thus, we can obtain a
probability density for any mapped value of the computed attribute by integrating the joint proba­
bility density function over the inverse image of the computed attribute under the rule function.
Graphically spoken, this corresponds, in the continuous case, to the integration of the joint proba­
bility density function along the contour lines of the output of the rule function.

In mathematical terms, let p (x), p (y) be the probability density functions on the mapped val­
ues of the computed attribute; they have a joint probability density function j (x, y) == p (x, y) .
Our rule function is z = f(x, y) . Given those, the probability density function of the output of the
rule is

p(z) = L j(x,y)
(x, y) e r l (z;)

r 1where (z) is the inverse function of the rule function. See illustration on figure 2.

3.2.2.2 Approximation ofStandard Paradigms
Bayesian Inference

ProFuSE is equivalent to Bayesian inference, but is concerned with ranges and probability den­
sity functions over such ranges rather than with probabilities for certain fixed attribute values.

10 ; R. Antony, A. Merk

Decision Support System

probability deMlty function ot probabIUty danalty function ot
mapped valuM ot attribute x rnappad va/11M ot attrtbute y

j (X. Y)

p(y)

-1

rule function with projection ot joint
probability deMlty function aa ahadlng

~

0.5-0.5

Joint probability density funetlon ot
known mapped attribute values

-1

z =f(x.y)

rule tunctlon aa contour-plot and
projection ot joint probability danalty
function aa ehadlng

-11 I

-0.5

-1 -0.5 0 0.5

,
"p(z) = It j(X.Y)

" "
(X, y) E r l (z)

" "

,.'.'
.'."

Jil'" numerical approximation ot Integration ot
the joint probabiUty danalty function along
the contour II.,.. of the rule function

Figure 2
f:"S

11 R. Antony, A. Merk

Decision Support System

Boolean Expressions

or

1 -1 1-1 Fig 3

By choosing appropriate rule functions, our system can relatively easily approximate rules
based on Boolean logic. The way this works is similar to the implementation of logic circuits in
digital electronics where logic values are mapped onto voltages or currents, which - of course ­
are analog quantities. By using functions on real numbers as the ones depicted above, we can
emulate Boolean functions as long as we adhere to similar restrictions as those found in digital
electronics, Le. we cannot use the whole mapped range, but rather have to define intervals that we
consider a logical "1", others that we consider a logical "0" and a everything in between that we
consider invalid. In our case, for example, we could use values below -0.5 as logical "0" and val­
ues above 0.5 as logical "1". Values between -0.5 and +0.5 are considered invalid.

Nothing stops us, however, to have true Boolean expressions encoded in functions. If one
wanted to have a learning system integrated to the rules, though, one might want to choose an
approximation of the Boolean function using a continuous, differentiable function such as the one
displayed above for xor. More about learning in the outlook.
Linear Dependencies

Fig 4
1 -1 1 -1

In many cases, approximation of linear dependencies is a straightforward process: this is the
case when the range to which the function maps results in a derived attribute that can again be
used as a ProFuSE rule input. To simplify matters, however, and to be able to arbitrarily combine
derived attributes, the range of possible values should be unified, i.e. in graph a above, the inputs
as well as the output range from -1 to 1. Graph b also depicts a linear dependency, but the output
as denoted by the black areas on the graph exceeds the range [-1,+1]. If the vast majority of the
data lies within the defined (gray) range of the function, we can use a squashing function as a rule

12 R. Antony. A. Meek

Decision Support System

function that corresponds as closely as possible to the linear mapping where the linear ~ping is
defined, but is guaranteed to yield results within the defined range for all cases (graph c). Alter­
natively, one could scale the linear result down to defined range. The second approach is appropri­
ate when the data samples are more unifonnly distributed over the defined range.

3.2.2.3 Custom Functions
Just as we can express Boolean functions, any discrete set of values can be mapped in such a

way that it is feasible to be used as an input attribute for a ProFuSE rule. We believe that a well­
chosen combination of rule functions and attributes will allow us to express a great variety of
transfonnations relatively easily.

3.2.2.4 Symbolic versus Numerical Evaluation
Symbolic integration in general, and along contour lines in particular, is, in all but the most triv­

ial cases, a very difficult and often even impossible task. For that reason, we chose to use a numer­
ical approximation to arrive at our solutions. In order to trade off speed versus precision, our
implementation allows us to divide the range into an arbitrary number of equally sized intervals.

Whenever the slope of the probability density function is relatively steep and the division of the
range uses relatively large intervals, there are problems in smoothness of the resulting output. In
cases where this causes problems, decreasing the interval size can help in solving the problem.

3.2.2.5 Notes on Computational Complexity
In the following, we want to address some considerations on the computational complexity of

the numerical approximation discussed above.
Single Rule Update

41 of inputs)

R = (J +F) iIJ.0 # of intervals i(

The update-time for a single rule is shown by the fonnula above with J being a bound on the
time complexity of the computation of the joint probability density function j, and F correspond­
ing to a bound on to the time complexity of the rule functionj.
Network Update

There are two modes in which our system can operate: in one mode, we assume that for each
desired output, we have a complete set of inputs that change simultaneously and cause a complete
update of the network. We shall call this off-line operation. Alternatively, we allow any input to
change at any time and have the whole network be updated appropriately to reflect the new situa­
tion. We call this on-line operation.

According to these differences in operation, we can influence the evaluation strategy of the net­
work to make computation more efficient.

1. The squashing function used is a three-dimensional extension to the sigmoid function with the output
range adjusted to map to [-1.+1].

13 R. Antony. A. Merle

--

--
--
--
--

~ision Support System

Typical Case-,
-_..
-'"-­
-,

-,

---_..
-'"-­---_..
-'"-­_-_.., .._.-'"-­-_..
-'"-­

-­
EJ
@J
-­
EJ
@J
-­

--,-­-_..-'"­-

--,

-­
EJ
@J

-­-­-_..-'"­-
EJ
@J
-­
EJ

--­-­-_..-'"­-

-­-_..-'"­-

-­
EJ
(ID

~
As a typical case. we consider a balanced, binary tree network such as the one shown above.

Taking m as the number of inputs. n as the number of rules, thus n=m-l. and R as the update time
for a rule. we achieve the following upper bounds:

In off-line mode. a complete update of the net as well as a change in a single input requires time
O(Rn)

This result holds because before each complete network update. all inputs to any given rule are
declared invalid and thus during the update. a result is only propagated to the next level after all
inputs to the rule have been updated (and thus validated).

In on-line mode. a single input change requires time
o (Rlogn)

because at most one path from one input to the root of the tree is affected. Therefore. the update
time is proportional to the depth of the tree. A complete update in on-line mode is thus

o(mRlogn)

since for all m inputs, an update has to be performed.

14 R. Antony, A. Merle

--
--

--

Decision Support System

-­--...-"­-
--, -­o

(ID
... ..J

Worst Case for 2 inputs-,--...-"-­_.-_...

.-"-­ o -...-- ~(EJ
, -"-­

_.
~-=l::--r

-_...-"-­ "
"

", ,
"

"

,'",1 __-.....

'0

(ID

--lr--- --..-"--
In off-line mode, worst case and typical case are the same.
In on-line mode, the worst case of a single attribute update requires time

o (Rn)

since the attribute at the deepest level of the tree affects all rules. A complete update in on-line
mode is in the order of:

O(Rn+Rn+R(n-1) +R(n-2) + ... +R) =

n (n + 1)
O(R(n+ " » =

o (Rn2
)

3.2.2.6 Isolation ofError Sources
A particularly positive property of our ProFuSE rules is that they isolate the various error

sources in a system dealing with probabilities as well as with attributes. Since our rule functions
and our joint probability density functions are separated, we can more easily lock one of these
while examining the other one. This is especially useful in cases where one of them is known to
be correct.

15 R. Antony, A. Merle

Decision Support System

4 Implementation of DeTerminator

4.1 Implementation Language
We decided to use Objective-C as our implementation language. This was influenced by several

factors:
• execution speed of numerical computations
• object-oriented programming language with

• dynamic binding
• improved polymorphism (in comparison to C++)

• native language on the NeXT computer, on which the program has been implemented
• extensive application programmer interface (API)
• Interface Builder support

4.2 Notes on Implementation Structure

4.2.1 Program Structure

RuIt

°RuloF_
o 0i0lrIlulI0nF_

Figure 7

The program heavily builds upon the class hierarchy shown above (in blocks with multiple
fields, the lower fields correspond to class categories, i.e. code extensions to a previously defined
object). Our program is event-driven and has a graphical user interface: the knowledge engineer
creates a custom-decision support system primarily from building blocks representing inputs and
rules. The knowledge engineer decides on a List1 of Inputs, a set of Rules, and how they relate to
each other.

1. In the following, we use the Helvetica font to indicate words that directly correspond to class names.

16 R. Antony, A. Merk

Decision Support System

For an Input to be well defined, it needs an Input Initialization Function (llF) and a Distribution
Initialization Function (DIF). To integrate an Input into a network, it also needs to have infonna­
tion on what Rules are immediately dependent on this Input.

The knowledge engineer is given Input instances of the type shown that are provided by a cus­
tomized version of the NeXT InterfaceBuilder that was developed for this project by the authors.
He1 specifies the methods used for the IIF and DIF. The dependencies are expressed by connect­
ing the output of the Input with the inputs of the Rules immediately dependent on them; such a
network is illustrated further below. When the knowledge engineer has created the network, the
user will see the same instances; he cannot change the network structure, however, since the par­
ticular setup has been compiled into an executable. He can, though, change the IIF and DIP at run­
time if the knowledge engineer enables that functionality. As indicated by the windows captured
off the screen, one can choose between a display of the probability density function and the distri­
bution function for the output of the Input. Furthennore, the number of intervals over the defined
range can be modified for all Inputs individually, at run-time.

ml

Figure 8

Similarly, the knowledge engineer specifies a Rule Function (RF) and a Joint probability Den­
sity Function (JDF) for each Rule. The Rule class inherits most of its functionality from the
Input class. A Rule, however, may have more than one Input it is linked to; generally, two Inputs
together with the RF and the JDF define the output of the Rule. Again, the knowledge engineer
specifies other Rules immediately dependent upon on the current one. If no dependent Rules are
specified, the Rule is considered to be a root node of the network. Note that a network may have
more than one root node and thus allows for an output with more than one attribute.

Using this graphical approach and by not differentiating between a Rule within the network and
the root Rule(s), we are able to examine any rule when the system is running. This should encour­
age the knowledge engineer to choose meaningful rules so that intermediate results can be under­
stood by the user who might want to inquire how the decision support system derived its result.

1. For the sake ofpolitical correctness, be refers to a man, where man is a generic term for human being (-+ mankind).

17 R. Antony, A. Merk

Decision Support System

This space Is provided for
documentation purposes

Figure 9

Figure 10

18 R. Antony, A. MeIk

Decision Support System

4.2.2 Data Structures

......­

/ ~. ,
Input

IBWInput

output Statistics

lIIII_"_LIst01 dependent RUIe.S _I ~1 I ~2 I ~.- t
;,put initialization function name

distribution tJitiaJization function name

gf8Ph
~~~~:.~: :.~~~::: ~: :.:Z~:Z~., :.:.:~ d&:::=~:·b:.:~~ :::.:.:::.:.~~: :.~ ,,: 

selBcted sample vaJUIiI field 

~:::.~.:.~~ ..~~.:~ ," ~'" ~.... ~"" .. ''''~. ~'..':' , ~~ ", «." ,""<.:~, ""'<'~~BJ§~~: 

LIstoIlnputs";

I ~«~1 I ~«~21 Ii~«~.-
, ... .",. ... ~ ~ 

output Statistics ., 
."'. ». ,';.;.:.~, ...... . ..... 

LIst 01 dependent Rules 

1-·~-'-·1 ~2 t ~.-
. 

t~ 
N,'" ,'X{' . ...",., ... 

rule function name 
. :' 'n~ '.<., "". ,;.-,,; ~ .., ":'. .::­ ," ,,'v), .. ':·~~n'~.:. ..... 

. jotJt probability density function name 
•...:..~.:.:-:-:-:~.:-;<, . . ..-:.~ ..• -:"":«-:-.~«"=-:.:<.. .""'.-:«~:''':':«' ,·x·:~-:'-:~· .. :-:-:'«« .-:-:.:.~..-: ... 

(JIlIPh 
.....~, ~~.: _, .':::~:::'-: . ~':~-:-:""~: .,. .-:-:,..; '~.':'l': . oX':'; : -:-: ,';, 

selected sample VBJue field 
,., •• ~~:, "'UN> ..:. . " •""w -""" ....., .. 

~ 

....... ~ 

Figure 11 

In the picture shown above, we can see the structures of our main building blocks, the Input and 
a Rule object. In the diagrams, a gray rectangle contains the instance variables of the object it is 
drawn in. It symbolizes the data abstraction and the protection of these instance variables (if there 
were any public instance variables, they would be shown outside the gray rectangles). Of course, 
objects can contain other objects that again have instance variables as can be seen above, e.g. with 
the List of Inputs. 

The other data structures we use only have supporting functionality, and we therefore refer the 
interested reader to the source code. 

4.2.3 Algorithms 

In the following, we will explain how the core algorithms of our system work. 

Propagation ofchanges 
In the case of on-line operation, we recalculate our output for any change in the List of Inputs, 

and then, if such an output change is significant, send a notification of a change in our output to 
every rule in the List of dependent Rules. It is up to the knowledge engineer to decide what con­
stitutes a significant change. 

if(some input has changed) 
then 

calculateChange(changed Input) 
if(change signficant) 
then 

for (each dependent rule) 
update (dependentRule) 

19 R. Antony, A. Merk 



Decision Support System 

In off-line mode, changes are only calculated after all Inputs to a Rule have changed since the 
last update. Thus, the pseudo-code looks as follows: 

if(some input has changed) 
then 

if(not(there is some unchanged input» 
then 

calculateChange(changed Input) 
for (each dependent rule) 

update (dependentRule) 

Calculation ofchanges 
Below, we show the pseudo-code of the routine computing the probability densities correspond­

ing to the output of a rule function. Note that this pseudo-code assumes that there are only two 
inputs (x and y). In the case of n inputs, we need a n-deep nested arrangement offor-loops or a 
comparable, recursive iteration construct. 

zero (outputPDF) 
for (all x) 

for (all y) 
ruleFunctionResult:=ruleFunction(x, y) 
jointProbabilityDensity:=jointProbDensityFunction(x, y) 
outputPDF[ruleFunctiOnResult]+= 

jointProbabilityDensity 
* binSizex 
* binsizey 
/ binSizeoutputPDF 

20 R. Antony, A. Merle 



Decision Support System 

5 Empirical Test of Modelling Tool 

5.1 Application Domain 
Due to our previous exposure to economics and in particular to finance, it was clear to us that we 

wanted to test our system on a problem of the finance domain. Although there are many interest­
ing aspects that could be tackled in that domain, such as financial valuation, bond ratings, portfo­
lio management, arbitrage, market prediction, trading and news understanding, we had to restrict 
ourselves due to limitations in time, available infonnation and our own knowledge. 

5.1.1 Constraints due to Information Available 
The difficulty in obtaining reasonable amounts of consistent fundamental data such as earnings 

reports, quarter and annual reports, etc., excluded from the beginning any kind of expert system 
working with this data. Fortunately, we had access to general market information such as the Dow 
Jones Industrials Average (DJIA) and the volume of the New York Stock Exchange (NYSE). These 
kind of data, called technical data, and numbers derived from those, so-called technical indicators, 
is what our system is based upon. It is known that if the Efficient Market Hypothesis holds true, 
prices of securities must be good indicators of value, Le. prices "fully reflect" available infonna­
tion and do not have predictive power [Fama 1976]. However, other approaches, such as Mandel­
brot's Stable Paretian Hypothesis [Mandelbrot 1964] suggest that the distributions underlying 
financial market time series are of the class called Stable-Paretian1. The Fractal Market Hypothe­
sis [Peters 1991] says the set of parameters to the Stable-Paretian distribution is such that the 
resulting time series have a fractal characteristics and therefore are statistically self-similar with 
respect to time. This violates the independence assumption underlying the Efficient Market 
Hypothesis, invalidates the arguments technical analysis of financial markets and therefore allows 
us to consider an approach based on technical data. Nevertheless, we do not claim that our system 
will successfully predict market behavior, especially since the choice of indicators was severely 
limited by the constraints we had in respect to time and information access. 

5.1.2 Constraints due to Know How 
Our project is solely based on published methods for technical indicators. Moreover, most of 

these indicators have been designed to be used on their own rather than in combination with other 
indicators. Our approach, however, tries combines these indicates to create an overall picture of 
the market. Due to restricted resources, we could not undertake extensive research on what indica­
tors are most suitable to be used in such a combination and what kind of combination produces 
the best results. We therefore have to assume that the performance of our system is suboptimal. 
Nonetheless, since our goal is to show the feasibility of such a system and not to find the perfect 
knowledge-base, the above mentioned constraints and restrictions did not stop us from pursuing 
this project. 

1. Also called Pareto or Pareto-Levy 

21 R. Antony, A. Merk 



--

Decision Support System 

5.1.3 Application 

Overview of
 
Decision
 

~ Support System ~
 

--­* 
1'IcFUBE_ " -., ,.,.,.",.. 

PrtoI DndIcn AMI:lINMI'IlIIIIon (PtlR) 

L..i!t*!!r DhdiDra Aaooi,w,=iidIiildtw. (l..I)A) 
-...l!!!I Figure 12 

We decided to create a system that could possibly fonn the core of an automated trading envi­
ronment in such a way that it receives certain preferences from a user as well as a constant data 
stream representing the public knowledge of the market. The system is supposed to arrive at its 
output in two steps: In the first step, it tries to derive a picture of the current market situation, and, 
in a second step, it recommends plausible reactions based upon this picture of the market situa­
tion. 

5.2 Modelling the Knowledge Base 

5.2.1 Requirements 
Following the two-step approach mentioned before, our first effort is to find a tenable represen­

tation for a particular market situation as well as a representation for action recommendations. 
The second step is to come up with a rule base that is capable of producing the results necessary to 
assign meaningful values to these representations. 

Representations ofMarket Situation and Action Reconunendations 
• Market Situation 

Analyzing the market situation, we find that there are several dimensions of interest: the first is a 
set of properties that define a particular point in the time series. The second is that if we consider 
not only a point, but the time series as a function, we have a value and a trend that is applicable to 
each property in the set. As the third dimension, we define how the combinations of the previous 
aspects vary depending on the scale at this time series is examined~ The following table represents 
all valid combinations of the second and third dimension mentioned. 

state change 

weather 
The immediate outlook, the current 
condition 

The current trend; a short-tenn 
moving average's first derivative 

climate 
Value of a longer-term moving 
average 

The Ionger-tenn trend; a Iong-tenn 
moving average's first derivative 

22 R. Antony, A. Merk 



Decision Support System 

It remains to determine the set of properties that define the first dimension. Besides price, we 
deem it valuable to include liquidity and volatility in our considerations. The choice of price is 
obvious, since it is the target around which the market circles. Liquidity is important because it 
determines the ability of a potential market participant to engage in trading. Lastly, volatility is 
worth consideration since it tells us something about market fluctuations and therefore about our 
ability to obtain a price that is as close as possible to the last recorded price on the same market 
issue. Consequently, we receive the following table that we have to fill the following slots: 

volatilityliquidItYprice -
state weather 

climate 
~ 

change weather 

I climate ] 

Note that in our system, each slot in the table corresponds to a probability density function over 
the range of all the values that the respective slot can take.1 Since there are no well-defined units 
in which to express notions like liquidity and volatility, and since price has a trend, and therefore 
has no meaning when used decoupled from the date, we map the values of all the slots in a range 
that is defined between LOW and HIGH. 
• Action Recommendation 

In order to act in financial markets, there are three notions that are generally considered of 
importance: the first and most obvious one is the question in which direction the market price will 
develop. The second one is whether the liquidity in a market increases or decreases since depend­
ing on the level of liquidity, certain transactions are impossible or influence the price at which 
they can be executed in a negative way. An idea of the liquidity to be expected in a particular mar­
ket is therefore crucial in determining which financial instruments can be successfully employed 
(Le. the choice between equity, option and/or futures trading is influenced by the liquidity). Lastly, 
we consider risk. Risk, although not precisely defined in general, is spoken about almost con­
stantly when financial transactions are undertaken. In our system, risk is a second order measure 
that tries to capture on the one hand how well different parts of the system agree in their assess­
ment of the current situation, and on the other band it tries to capture trends in volatility and 
liquidity that might handicap the trader's ability to perform actions of his choice in the market. 
The slots representing these three measures are called Price Direction Recommendation (PDR), 
Liquidity Direction Recommendation (WR) and Risk Recommendation (RR). Again, these mea­
sures are considered relative and therefore mapped into the range WW to HIGH. 

5.2.2 Notes on the Knowledge Base 
To give some idea what goes into the system that we use to test our overall approach, we com­

ment in the subsequent sections on some of the indicators, the rule functions and joint probability 
density functions used. 

5.2.2.1 Indicators 
Since most technical indicators, in their basic form, only have a fixed value for any given point 

in time rather than a distribution, we decided that we interpret this value as the mean, and the 

I. Each slot corresponds to a property in terms the ProFuSE method. We avoid the word property at this 
place to prevent confusion with the set of properties mentioned as a dimension in the table shown. 

23 R. Antony, A. Meek 



Decision Support System 

accuracy and reliability of the underlying data source as the standard deviation of a normal distri­
bution that is generated from the'raw input indicator to serve as an Input to our system. 

A Empirical Trading Rules 
In contrast to indicators, for which there is mostly some reasoning why they should work 

(although they are usually crude approximations), empirical trading rules are "truths" that can be 
observed, but the insight into the reasons of their existence is usually rather obscure. Furthennore, 
it is quite often difficult to express them in precise mathematical tenns. A couple of examples fol­
low - they are primarily discussed in Yale Hirsch's Don't Seu Stocks On Monday [Hirsch 1986]: 
• Don't Sell Stocks On Monday 

While the market from 1952 to 1984 was gaining 930 Dow points, Mondays alone were losing 
1565 points. 43.1 % of Mondays close higher than the previous trading day on average. Even dur­
ing bull years, only 47.7% of Mondays closed higher, whereas in bear years, 35.1% closed higher. 

The so-called Monday effect is often contributed to the preference of companies to release bad 
news on weekends in order not to cause a market panic. Although this is a plausible explanation, 
at a closer look this argument is a little bit shaky because it would attribute bad news in a few 
companies with overall market down-movement. 

Although the Monday effect is not strong enough to allow profitable trading on its own (con­
sider commission cost), it might give us a hint on when not to realize profits of longer tenn invest­
ments. 
• Election and Pre-Election Year 

It is no mere coincidence that the last two years of the 38 administrations since 1832 produced a 
total market gain of 515%, dwarfing the 8% gain of the first two years of these administrations. 

These results can be explained by what economists call the Nordhaus-political-cycle [Nordhaus 
1989]: this theory says that in order to be re-elected, the government has to stimulate the economy 
and lower unemployment rates in pre-election years since the short memory of average citizens 
only looks at the most recent performance of a government, whereas government spends the rest 
of the time stabilizing the economy, lowering inflation rates, and therefore also producing unem­
ployment. This leads to an overall healthier record of the administration that is considered by the 
more long-tenn oriented leaders of the economy and sponsors of presidential campaigns. 
• The Santa Claus Rally 

"Santa Claus comes to Wall Street almost every year with a short, sweet respectable rally. In the 
past thirty-three years he has appeared twenty-six times. The rally occurs within the last five days 
of the year and the first two in January. When Santa doesn't call, beware. Five of the years he 
failed to show up preceded bear markets.,,1 

There are various opinions on why and whether the market should go up the first few days of the 
year. It is a common opinion that the first few trading days of a new year are a good barometer for 
the entire year (that's a different rule, though). 

B Technical Indicators 
Many ofthe technical indicators discussed below are described in [Colby 1988]. 

• Moving Average Convergence-Divergence (MACDl 
A shorter tenn moving average will rise more quickly than a longer tenn moving average during 

market up-trends. As the rise comes to an end, the slower moving average will catch up, narrow-

I. Quoted literally from Don't Sell Stocks on Monday because of the nice wording 
2. invented by Gerald Appel, Signalert Corporation, New York 

24 R. Antony, A. Merk 



Decision Support System 

ing the distance between them. This narrowing suggests an end to the advance. The same pattern 
occurs during market down-trends. 

Figure 13 

25 R. Antony, A. Merk 



) No .1 SeI 

v.. 

~ 

No 1--~Y IoIpI 

v.. 

I~IIQ I 

~ 
No~ 

Figure 14 

Decision Support System 

F 

v.. 

v.. 

No-lNoolpll 

No..j Nowldolpl I 

Positive Divergence: A positive divergence exists when prices fall to a new low, but MACD fails
 
to make a new low along with declining price movement.
 
Negative Divergences exist when prices move to new highs buy MACD fails to make a new peak
 
along with price.
 
• On-Balance Volume 

OBV [AIQ 1991] is a widely used indicator that shows accumulation and distribution action. 
The indicator is computed as a continuous summation of daily volume. On days when prices 
advance, the volume for that day is added to the running total. On days when prices decline, the 
volume for that day is subtracted from the running total. OBV assumes that if the price today is 
higher than the price yesterday, all of today's volume is accumulation. If the price today is lower 

. than the price yesterday, all of the volume is distribution. 
OBV=OBVt_1+ ft Vt 

ft= 1.0 if Pct > Pct-l 
ft=-l.O if Pct S; Pct-l 
ft= 0.0 ifPct = Pct-l 

26 R. Antony, A. Merk 



Decision Support System 

Where: 
OBV = On-Balance Volume 
ft =Weighting factor, day t 
PCt =Closing price, day t 
Vt =Volume, day t 

The index above is one example of a so-called technical indicator that stock and commodity 
traders use in their effort to determine the market behavior. In the indicator mentioned, the basic 
idea is that in the long-term, there should be as many shares sold in a falling market as there are 
bought in a rising market. The indicator is a crude approximation to see which side is out of bal­
ance. 
• Linear Regression 

Linear regression is a standard statistical trend following method. It is defined very simply as 
follows: 

y = a+bx 

where y is the closing price and x is the time and 

1 
a = -(1:y-b~) 

n 

b = n1:xy -1:x1:y 
n~2_ (1:x)2 

The semantics of this indicator are fairly trivial, nevertheless it is widely used as a first crude 
approximation on what to expect from the market behavior. It says that if the slope of the regres­
sion line is positive, the market tends to rise, if the slope of the line is negative, the market tends to 
fall. Below is the NYSE index with a regression line on the graph: 

Figure 15 

27 R. Antony, A. Merle 



Decision Support System 

By plotting the endpoint of the line for any given n-day long regression line we would yield a 
curve that is related to a moving average. 
• Volume Reversal 

The Volume Reversal technique1 is based on the concept that volume precedes price and, there­
fore, changes in the trend of prices often can be signaled by the expansions and contraction of vol­
ume. We first define the following terms: 
- Rally Day: A day when the intra-day high is higher than the previous day's high and the intra­

day low is the same or higher than the previous day's low. 
- Reaction Day: A day when the intra-day low is lower than the previous day's low and the intra­

day high is the same or lower than the previous day's high. 
- Inside Day: A day when the intra-day high is the same or lower than the previous day's high and 

the intra-day low is the same or higher than the previous day's low. 
- Outside Day: A day when the intra-day high is higher than the previous day's high and the intra­

day low is lower than the previous day's low. 

Period t: 

Period t·1 : 

Rally Day 

Reaction Day 

Inside Day 

Outside Day 

Rally Day 

Period t: 

Negative 
yes'+! volume 

reversal: sell 

Positive 
yes ~ volume 

reversal: buy 

Figure 16 

A Volume Reversal occurs when a change from a rally day to a reaction day, or vice versa, is 
accompanied by an increase in volume. Thus, if volume increases and the criteria for a reaction 
day are met, it is considered a negative Volume Reversal and time to sell. If, on the other hand, 
volume increases and the criteria for a rally day are met, it is considered a positive Volume Rever­
sal and time to buy. Inside and outside days are ignored in the Volume Reversal technique. 

I. Implemented and refined by Mark Leibovit, editor of 1M Volume Reversal Survey market newsletter. 

28 R. Antony, A. Merk 



Decision Support System 

Figure 17 

5.2.2.2 Rule Functions 
Creating rule functions to be used by Rules to update their output, is a straightforward process. 

Most of the functions written in support of this project were weighting functions that combine the 
Inputs in a mostly linear way. In addition, we use some special-purpose mapping functions for 
Inputs like the weekday (Monday Rule) or the election year. Explicit negation is also supported; 
currently, in order to negate an Input, one needs to assign a none-Input as the second Input to the 
negate rule. The none-Input is a standard-normal distribution and, given independence, does not 
influence the output of the negate-Rule (or any other unary "Rule"). 

5.2.2.3 Joint Probability Density Functions 
Throughout our sample system, we assume independence of the Inputs to the Rules. Of course, 

this is not realistic, especially considering the limited amount of basis information that we have at 
hand to derive our indicators. Nevertheless, it is the best we can do without extensive research on 
the interdependencies of the various indicators. 

We note that finding joint probabilities and especially joint probability density functions is a 
hard problem in general and not particular to our approach. 

5.3 Preprocessing of Indicators 
To successfully handle the huge amounts ofdata involved in financial markets time series analy­

sis, we take advantage of a data structure described in [Antony & Merk 1991]. Below we describe 
how we apply the concepts to our project. 

5.3.1 Implementation ofIndicators and Musical Scores 
During the DeCAF1 project, we came up with the idea to store financial data in musical scores. 

Although we are not aware of anyone else who takes a similar approach, we believe that both ­
financial data and musical scores - have many attributes in common. Their common base is that 
they are both strongly time-dependent. The manuals describing Objective-C classes provided by 
NeXT Computers, Inc., include hundreds of pages related to "Sound, Music and Signal Process­
ing." We choose to take advantage of the implementation already provided and extend it to suit 
our needs. A simplified model of the Score object looks as follows: 

I. DEsign in Computer Aided Finance 

29 R. Antony t A. Meek 



Decision Support System 

Score I I Part 

Part 

Part 

Figure 18 

A Score object contains a list of Parts; a Part contains Notes. The Notes contain user-defined 
parameters with their respective values, if available. 

Score 

Parts The Parts represent a specific 
index or security. Presently. 
we use only one Part per 
score. 

Notes A Note originally contains the 
parameters close. high, low. 
volume 

Figure 19 

• Implementing Indicators == Adding Parameters 
We can attach an indicator to an index by adding infonnation to the Notes. We can add infonna­

tion by adding a parameter to every single Note that is relevant - this means that it is up to us 
whether any new parameter introduced is defined for all entries, i.e. Notes, or just for those we 
have a signal for. 

5.3.2 Caching ofValues 
The possibility to add parameters to Notes, is heavily used by us to cache values computed from 

either basic parameters or other parameters directly or indirectly computed from the basic param­
eters. This saves a lot of processing time, especially in those cases where we need to access 
parameters that are computed recursively with respect to time, or that are composed of other 
derived parameters. In the following, we describe how a x-day Exponential Moving Average is 
implemented: 

Moving averages are important components of many indicators - the MACD, for example, is 
dependent on the difference between two moving averages of varying time spans. An exponential 

30 R. Antony. A. Merk 



-------------------

Decision Support System 

moving average is used as an approximation to a true moving average, but a lot easier to compute 
since it is only dependent on the previous day's average and today's data. It is defined as follows: 
New Exponential Average =Smoothing Constant ·Today's data-Yesterday's Expo)+Yesterday's Expo 
Smoothing Constant = 21(1+x), where x is the number of days the average is applied to. 

If a Note receives the request to return the value of its x-day exponential moving average for a 
specific parameter at its time tag, it checks whether such a value has been computed previously. If 
it exists, the value is returned. If it does not exist, the Note recursively calls its predecessors to 
receive the previous entry's information in order to compute the average. The recursion stops 
either when the requested parameter has been found or when the beginning of the data set is 
reached; in the latter case, the non-averaged value is returned. 

5.3.3 Date and TIme 
In order to keep maximum compatibility and portability we try to stay close to the UNIX and 

VMS time specifications. The time is expressed in seconds since midnight (0 hour), January I, 
1970 GMT. We will record time before January I, 1970 using negative numbers. All entries will 
be normalized to GMT in order to maintain relationships that are important to track concurrency 
especially in issues related to global arbitrage. 

5.4 DeTerminator on the Test Stand 

~-------------------~ 
I ~-:: ~------------------- ~ u.~
 

~-------------------~
 
I~~~------------------- ----­
I~~:r~-------------------~ 
1 ......:.._. ~ J"*I -_. Figure 20 

Above is a diagram depicting the relationships in our knowledge base to give an idea of the level 
of complexity. In the following, we look at how DeTerminator behaves under some specific mar­
ket conditions. 

31 R. Antony, A. Merle 



Decision Support System 

5.4.1 The Crash 
On October 19, 1987, the onA closed at 1738.74,508 points or 22.61 % lower than the previous 

trading day. The volume is at an all-time record of 604,330,000 million shares traded. 

Figure 21 

On Friday, October 17, 1987, DeTerminator predicts a LOW POR with high probability, a 
HIGH LOR with high probability and a relatively low RR with high probability. In words, the rec­
ommendation is to have an investment strategy that is suitable for a market moving to a low price 
with high liquidity; DeTenninator sees relatively little risk in pursuing such a strategy. 
See figure 21. 

5.4.2 Overall Performance 
Since we have not specified an exact trading strategy based upon DeTenninator's recommenda­

tions, it is difficult to express in numbers how well it perfonns. 
To satisfy our and the reader's curiosity, however, we could not resist evaluating the perfor­

mance of our Rule network. Our strategy focused on the highest peak of the price direction rec­
ommendation (POR): have a LOW POR-peak refer to not invested and a HIGH POR-peak refer to 

32 R. Antony, A. Merle 



Decision Support System 

be 100% invested with corresponding, proportional investments for peaks in-between. Then, by 
adjusting the investment on a daily basis, we achieve a perfonnance relative to the DnA as shown 
in the graph below (figure 22). By adjusting the investment daily, we would incur fairly high com­
mission costs, in practice. We do not, however, put the non-invested cash into a cash fund to earn 
interest. The graph indicates that this particular strategy combined with the Rule set is good at 
avoiding sharp down-turns of the market; during other periods, it seems like the strategy keeps up 
with the market. 

The y-axis shows % of original capital at any given point in time Figure 22 

5.4.3 Dealing with Ambivalent Information, a Special Test Case 
During the week of January 14, 1991, the public did not know whether the United States would 

start a war against Iraq with the goal to liberate Kuwait. One might have designed a Rule that cap­
tures the expectations for the case a war broke out versus if no war broke out. The hussein-Rule 
below is enabled in the days before the ultimatum runs out: 

Figure 23 

The Rule states that whatever is going to happen, it is either going to be very positive or very neg­
ative. The complete recommendation is shown further below. 

33 R. Antony, A. Merle 



Decision Support System 

Figure 24 
The network propagated the bimodality all the way to the recommendation layer of the network. 

According to the recommendation, a strategy accounting for the high possibility of a small market 
up-move as well as a high possibility for a sharp market-downturn combined with low liquidity in 
a risk environment that is spread from average to a little high. 

In truth, the market raced up as soon as the war had broken out. We believe that the temporary 
addition of the hussein-Rule proved valuable. The remainder of the network was prevalent 
enough, however, to weaken the effect of the hussein-Rule. 

34 R. Antony, A. Merk 



Decision Support System 

6 Conclusion 

We have been successful in creating a modelling tool with clearly defined semantics. It can deal 
with multivalent data as well as it can cope with probabilities. Our original aim to express a third 
dimension, namely risk, is supported under two possible scenarios: if one believes risk to be a 
mere matter of variance, it is directly reflected in the joint probability density functions with 
which our system works; if, however, one believes that risk is an orthogonal, third dimension 
influencing decisions under uncertainty, we can express risk as a second order property within the 
given framework. 

Our ability to dynamically trade-off precision versus computing time as well as the choice of 
toll evaluation strategies enables us to use the system both in an off-line as well as in an on-line, 
near real-time mode. 

By leveraging on the advantages of object-oriented development, we were able to not only 
implement a sample decision support system within a relatively short time-frame, but in addition 
to that, we managed to implement a tool that allows the knowledge engineer to build user-friendly 
decision support systems with a graphical user-interface by means of visual programming. 

Due to the new concept that adds dimensionality, knowledge engineers might encounter prob­
lems as well with understanding on how to use these additional possibilities to create more power­
ful decision support systems, as with the dimensionality reduction and final representation of the 
output of a decision support system based upon our tool-kit. 

Nevertheless, the fact that we could implement a relatively primitive decision support system 
with our tool-kit in a very short time-frame and that without refining the first, relatively arbitrary, 
knowledge base, we already could achieve performance in excess the market's. 

Overall, we are pleased to have created a foundation for a computational treatment of distribu­
tion based knowledge. 

3S R. Antony, A. Merk 



Decision Support System 

7 Outlook
 

,
 

Although we are pleased with our achievements, there is, of course, plenty of room for further 
development and improvement. A couple of ideas that should be pursued further, shall be briefly 
discussed here: 

It is worthwhile investigating whether a learning algorithm could be employed to either learn a 
knowledge base from scratch or to optimize an existing knowledge base created by a knowledge 
engineer. We believe that the most promising approach probably is based on some sort of gradient 
descent and error back-propagation method, which implies that our rule functions as well as our 
joint probability density functions be continuous and describable by means a limited set of param­
eters. 

This would also have another advantage - the few parameters of such joint probability density 
functions and rule functions could be controlled by direct user interaction and therefore alleviate 
the need to define rule functions and joint probability density functions in terms of c-code. 

An improvement in the results of the numerical algorithms could be achieved by using a dynam­
ically adapting sample interval size that depends on the slope of the probability density function at 
the location of that interval; thus, steeper areas would be assigned more bins that flatter areas. In 
an ideal case, one could ensure that the absolute difference in density from one bin to the next is 
always the same. This would simplify the computation joint probability density functions. 

Some less significant, but still desirable addition would be an algorithm that creates a visual rep­
resentation of our knowledge base automatically by tracing all the connections among the instan­
tiated building blocks. 

Finally, we should apply DeTerminator to a complex task that takes extensive advantage of mul­
tivalent information. 

Also, we look forward to the availability of NeXTstep 3.0 which should allow us to create an 
even more intuitive user-interface for our tool-kit since what we are doing has no longer to be 
achieved by means of some sneaky tricks, but rather is fully supported and documented, in the 
next version of InterfaceBuilder. 

36 R. Antony, A. Merle 



Decision Support System 

8 Acknowledgments 

First and foremost, our thanks go to Leslie P. Kaelbling, who proved to be a highly-motivating 
and highly-motivated advisor always available for constructive criticism and moral support. In 
addition, she proved to be a humorous person who is great fun to work with. 

We are thankful to John Irwin of Franz, Inc., for spending days of his time to narrow down an 
operating system bug. Also, Julie Zelenski from NeXT Computer, Inc., was very helpful in show­
ing us how to work around some undocumented features of InterfaceBuilder and for being gener­
ally one of the most helpful people at NeXT developer's support. 

Furthennore, we would like to thank all those that have helped make DeCAF a success in previ­
0us years; these include Jak Kinnan, Jerome Stein, F. Canova, John Savage, P. Falb and F. Biss­
hopp. 

We want to thank Kim and Hanna for not showing their jealousy on machnix and idefix that 
were happy spending long and late hours in our company and whose heart beat for us reached 
25MHz. Also, we want to thank our parents for their ongoing support, even if at times, they must 
have felt like birds feeding their children that keep starring with a wide open beak. 

Last, but not least, we thank Tom Dean for suggesting to us to do something completely orthog­
onal to what we have done so far. 

37 R. Antony, A. Meek 



Decision Support System 

9 Appendices 

9.1 Bibliography 

[AIQ 1991] AIQ IndexExpert, AIQ Systems, Inc., Technical Appendix IX-16 
[AIIWS 1991] Proceedings ofthe First International Conference on Artificial Intelligence 

Applications on Wall Street, IEEE Computer Society Press 1991 
[Antony & Merk 1991] DEsign in Computer Aided Finance, DECAF, by Ronald Antony and Axel 

Merk, Brown University, 1991. 
[Babylon 1989] The AI Workbench Babylon, Addison-Wesley, 1989 (English draft-version) 
[Colby 1988] The Encyclopedia Of Technical Market Indicators, Robert Colby and Thomas 

Meyers, Dow Jones-Irwin, 1988 
[Fama 1976] chapter 5, Foundations ofFinance, Eugene F. Fama, Basic Books, Inc., 1976 
[Hirsch 1986] Don't Sell Stocks On Monday, Yale Hirsch, Penguin Books, 1986 
[Mandelbrot 1964] "The Variation of Certain Speculative Prices", in P. Cootner, ed., The Random 

Character ofStock Prices. Cambridge, MA: M.I.T. Press, 1964 
[Nordhaus 1989] Economics, Paul Samuelson and William Nordhaus, McGraw Hill 1989, 13th 

edition 
[NeXT 1992] DB-KIT: Developing Object-Oriented Database Applications, Eighth In The NeXT 

Computer, Inc., White Paper Library. NeXT Computer, Inc., 1992. 
[Peters 1991] Chaos and Order in the Capital Markets, Edgar E. Peters. John Wiley & Sons. Inc., 

1991 

38 R. Antony. A. Merle 



Actioris.h .
 

@end 



i\.btfbl1S"trt
 

.. 

#import "Actions.h" 

@implementation ButtonCell(Actions) 

- propagateChange:sender 

if([self targetJ==nil)
 
return sel f;
 

else
 
return [[self target] propagateChange:sender];
 

- batchMode:sender 

if([self targetJ==nil)
 
return sel f,
 

else
 
return [[self target] batchMode:sender] ,
 

@end 

'-j 



·BiflBlltt6nCe1l1nspettcftAi 
'import <nib/lnterfaceBuilder.h> 

@interface BinButtonCelllnspector:lnspector 
( 

id foregroundGraySlider; 
id foregroundGrayText<ield; 
id backgroundGraySlider; 
id backgroundGrayText<ield; 
id maxGraphValueSlider; 
id maxGraphValueText<ield; 
id binValueSlider; 
id binValueText<ield; 
id disabledSwitch; 
id tagText<ield; 

+ finishLoading: (struct mach_header *)header; 
+ startUnloading; 

init; 
- ok:sender; 
- revert: sender; 

@end 



.. 

#import "BinButtonCelllnspector.h" 
#import "BinButtonCell.h" 
#import <appkit/Application.h> 
#import <appkit/Slider.h> 
#import <appkit/TextField.h> 

@implementation BinButtonCelllnspector 

+ finishLoading: (struct mach_header ·)header 

NIBDidLoadClass(self. headerJ;
 
return nil;
 

+ startUnloading 

NIBWillUnloadClass(self) ;
 
return nil;
 

- init 

[super init!;
 
[NXApp loadNibSection:"BinButtonCelllnspector.nib" owner:selfl;
 
return sel f;
 

- ok:sender 

[object setForegroundGray: [foregroundGrayslider floatValue]];
 
[object setBackgroundGray: [backgroundGrayslider floatValue]l;
 
[object setMaxGraphValue:[maxGraphValueSlider floatValue]];
 
[object setBinValue: [binValueSlider doubleValue]];
 
[object setEnabled: (! [disabledSwitch state])];
 
[object setTag:[tagTextField intValue]];
 
return [super ok: sender] ; 

- revert:sender 

[foregroundGraYSlider setFloatValue: [object foregroundGrayll;
 
[foregroundGrayTextField setFloatValue:[object foregroundGray]];
 
[backgroundGraySlider setFloatValue:[object backgroundGray]];
 
[backgroundGrayTextField setFloatValue:[object backgroundGrayl];
 
[maxGraphValueSlider setFloatValue:[object maxGraphValue]l;
 
[maxGraphValueTextField setFloatValue: [object maxGraphValue]];
 
[binValueSlider setDoubleValue:[object binValue]];
 
[binValueTextField setDoubleValue: [object binValue]];
 
[disabledSwitch setState:(! [object iSEnabled]J];
 
[tagTextField setlntValue:[object tag]];
 
return [super revert:senderl; 

@end 

/

\
) 



.Bit1Bt1tt6t1C~iI.h)············· .
 
Jimport <appkit/graphics.h> 
Jimport <dpsclient/wraps.h> 
limport <appkit/ButtonCell.h> 

//todo: 
//will be changed to use NXColor 
//add methods to use color in addition to grayValues 

@interface BinButtonCell:ButtonCell 
( 

float backgroundGrayValue; 
float foregroundGrayValue, 
float maxGraphValue; 
double binValue, 

- (id) init;
 
- (id)setMaxGraphValue:(float)aGraphValue,
 
- (floatlmaxGraphValue;
 
- (id)setBackgroundGray:(float)aGrayValue;
 
- (float)backgroundGray;
 
- (idlsetForegroundGray: (float)aGrayValue,
 
- (float)foregroundGray,
 
- (id)setBinValue: (double)aBinValue;
 
- (double)binValue;
 
- (id)drawlnside:(const NXRect *)aRect inView:(id)controlView,
 
- takeForegroundGrayFrom:sender;
 
- takeBackgroundGrayFrom:sender;
 
- takeMaxGraphValueFrom:sender,
 
- takeBinValueFrom:sender;
 
- (const char*)inspectorName;
 
- write: (NXTypedStream *)stream;
 
- read: (NXTypedStream *)stream;
 

@end
 



... 

~import "BinButtonCell.h" 
~import <appkit/View.h> 
~import <appkit/Control.h> 
#import "DensityButtonCell.h" 

@implementation BinButtonCell 

- (id)init 

[super init];
 
backgroundGrayValue=l.O; IINX_WHITE;
 
foregroundGrayValue=O.O; IINX_BLACK;
 
binValue=(double)O.5;
 
maxGraphValue=l.O;
 
return self;
 

- (id)setMaxGraphValue;(float)aGraphValue 

maxGraphValue=aGraphValue;
 
return sel f;
 

- (float)maxGraphValue 

return maxGraphValue; 

- (id)setBackgroundGray; (float)aGrayValue 

backgroundGrayValue=aGrayValue;
 
return sel f;
 

- (float)backgroundGray 

return backgroundGrayValue; 

- (id)setForegroundGray' (float)aGrayValue 

foregroundGrayValue=aGrayValue;
 
return sel f;
 

- (float)foregroundGray 

return foregroundGrayValue; 

- (id)setBinValue; (double)aBinValue 

binValue=aBinValue;
 
return self;
 

- (double)binValue 

return binValue; 

- (id)drawInside: (const NXRect *)aRect inView; (id)controlView 

NXRect barR! *aRect; 

float factor; 

[controlView lockFocus) ;
 
PSsetgray([self backgroundGray]);
 
NXRectFill(aRect) ;
 
PSsetgray([self foregroundGray]);
 
Ilmodify the size of barRect here ...
 
factor = [self binValue]/maxGraphValue;
 
if«(factor<=l.O)&&(factor>=O.O))
 

barRect.size.height*=factor; 
Iithis is to accomodate for the flipped coordinate system .. 
Ilmaybe there is some other way to do that with setFlipped: ... 
barRect.origin.y=(*aRect) .origin.y+(*aRect) .size.height-barRect.size.height; 
NXRectFill(&barRect) ; 
[controlView unlockFocus] ; 
return self; 

- takeForegroundGrayFrom:sender; 

if ([sender respondsTo;@selector(grayValue)])
 
[self setForegroundGray; (float) [sender grayValue]];
 

else
 
[self setForegroundGray; [sender floatValue]];
 

[(self controlView] updateCell;self];
 
return self;
 

- takeBackgroundGrayFrom:sender; 

if([sender respondsTo;@selector(grayValue)])
 
[self setBackgroundGray' (float) [sender grayValue)];
 

else
 
[self setBackgroundGray; [sender floatValue]];
 

[[self controlView] updateCell;self];
 
return self;
 

- takeMaxGraphValueFrom;sender; 

if ([sender respondsTo;@selector(maxGraphValue)])
 
[self setMaxGraphValue:[sender maxGraphValue]];
 

else
 
[self setMaxGraphValue: [sender floatValueJ];
 

[(self controlView] updateCell:self];
 
return self;
 

- takeBinValueFrom;sender; 

if([sender respondsTo:@selector(binValue)])
 
[self setBinValue; [sender binValue]];
 

else
 
(self setBinValue; (sender doubleValue]];
 

[[self controlView] updateCell,self];
 
return self;
 

- (const char*)inspectorName 

return "BinButtonCellInspector"; 

'rite: (NXTypedStream *)stream ') 



···llitfButtol1CeU"n1
 

[super write,stream! ; 
NXWriteTypes(stream, 

"fffd" , 
&backgroundGrayValue, 
&foregroundGrayValue, 
&maxGraphValue, 
&binValue) ; 

return sel f; 

- read: (NXTypedStream *lstream 

[super read,stream]; 
NXReadTypes(stream, 

"fffd", 
&backgroundGrayvalue, 
&foregroundGrayValue, 
&maxGraphValue, 
&binValue) ; 

return sel f; 

@end 



'II 

BiOOtttf6n.h
 
*import <appkit/Button.h> 

//todo: 
//will be changed to use NXColor 
//add methods to use color in addition to grayValues 

@interface BinButton:Button 
{ 
} 

//+ initialize: //see history in BinButton.m 
- init; 

initFrame: {canst NXRect ')frameRect; 
initFrame: (canst NXRect')frameRect 
title: (canst char ')aString 
tag: (int)anlnt 
target:anObject 
action: (SEL)aSelectar 
key: (unsigned shart)charCode 
enabled: (BOOL) flag; 
initFrame: (canst NXRect ')frameRect 
icon: (const char ')aString 
tag: (int)anlnt 
target:anObject 
action: (SEL)aSelector 
key: (unsigned short)charCode 
enabled: (BOOL) flag; 
takeForegroundGrayFrom:sender; 
takeBackgraundGrayFrom:sender; 
takeMaxGraphValueFram:sender; 
takeBinValueFram:sender; 

@end 

) 



:ainButtbIl"ltr .
 
.import "BinButton.h"
 
.import "BinButtonCell.h"
 
.import "DensityButtonCell.h"
 
.import <appkit/View.h>
 

@implementation BinButton
 

II Here some interesting history:
 
II First what we wanted to do:
 
11+ initialize
 
If(
 
II [super initialize];
 
II [self setCellClass: [BinButtonCell classl];
 
II return sel f;
 
If)
 
II
 
II Now what it should be, since super is initialized automatically
 
II by the runtime system, if need be:
 
11+ initialize
 
III
 
II II to prevent interference with calls from subclasses:
 
II if I self == [BinButton class] )
 
II I
 
II [self setCeIIClass:[BinButtonCell class]];
 
II }
 

II return self;
 
If)
 
II
 
II Now, we realize that cellClass is not really a class variable, but a
 
II static variable, globally bound :-(
 
II So we have to set it temporarily during the init methods of the
 
II instances ...
 
II Here is what we would like to do:
 
11­ init
 
III 
II id someCellClass;
 
II
 
II someCellClass=[[BinButton class] setCeIIClass:[BinButtonCell class]];
 
II [super init];
 
II [[BinButton class] setceIIClass:someCeIIClass];
 
II return self;
 
If)
 
II
 
II Now the last sad discovery: +setCellClass does not return the previous
 
II cellClass, thus we have to hard code as follows:
 

init 

[[BinButton classl setCellClass: [BinButtonCell class]];
 
[super init];
 
[[BinButton class] setCellClass: [ButtonCell classl];
 
return sel f;
 

initFrame: (const NXRect *)frameRect 

[[BinButton class] setCellClass: [BinButtonCell classll;
 
[super initFrame:frameRect];
 
[(BinButton class] setCellClass: [ButtonCell class]);
 
return self;
 

- initFrame: (const NXRect *)frameRect 
title: (const char *)aString 

tag: (int) anlnt
 
target :anObject
 
action: (SELlaSelector
 
key: (unsigned short)charCode
 
enabled: (BOOL) flag
 

[[BinButton class] setCellClass: [BinButtonCell classl]; 
[super	 initFrame:frameRect
 

title:aString
 
tag:anlnt
 
target:anObject
 
action:aSelector
 
key:charCode
 
enabled: flag];
 

[[BinButton class] setCellClass: [ButtonCell classll; 
return	 self; 

- initFrame: (const NXRect *)frameRect 
icon: (const char *)aString 
tag: [int) anlnt 
target:anObject 
action: (SEL)aSelector 
key: (unsigned short)charCode 
enabled: (BOOL) flag 

[[BinButton class] setCellClass: [BinButtonCell classl]; 
[super	 initFrame:frameRect
 

icon:aString
 
tag:anlnt
 
target:anObject
 
action:aSelector
 
key:charCode
 
enabled: flag];
 

[[BinButton classl setCellClass: [But tonCel I class]]; 
return	 self; 

- takeForegroundGrayFrom:sender; 
I 
II if([sender respondsTo:@selector(grayValue)]) 
II [cell setForegroundGray: (float) [sender grayValue]l; 
II else 
II [cell setForegroundGray: [sender floatValuel]; 

[[self selectedCellJ takeForegroundGrayFrom:sender]; 
return [self display]; 

- takeBackgroundGrayFrom:sender;
 
(
 
II if([sender respondsTo:@selector(grayValue)])
 
II [cell setBackgroundGray: (float) [sender grayValuell; 
II else 
II [cell setBackgroundGray: [sender floatValue]]; 

[[self selectedCell] takeBackgroundGrayFrom:sender]; 
return [self display]; 

- takeMaxGraphValueFrom:sender; 
I 
II if([sender respondsTo:@selector(maxGraphValue)]l
 
II [cell setMaxGraphValue: [sender maxGraphValuelJ;
 
II else
 
II [cell setMaxGraphValue:[sender floatValue]];.
 



...•·· •• •·· •.•.••.•••• .•··••••. i.··Bifii3llttori.m.··••••·•• / ..
 

... 

[[self selectedCell] takeMaxGraphValueFrom:sender];
 
return [self display);
 

- takeBinValueFrom:sender; 
( 
II if([sender respondsTo:@selectorlbinValuel]J 
II [cell setBinValue: [sender binValue)); 
II else 
II [cell setBinValue: [sender doubleValue]l; 

[[self selectedCell) takeBinValueFrom:sender]; 
return [self display]; 

@end 

') 



···iBlhMatriX.lt<
 
.import <appkit/Matrix.h> 

Iitodo: 
/Iwill be changed to use NXColor 
Iladd methods to use color in addition to grayValues 

@interface BinMatrix:Matrix 

11+ initialize; Iisee history in BinButton.m 
- init; 

initFrame: (const NXRect *)frameRect; 
initFrame: (const NXRect *) frameRect 
mode: (int)aMode 
prototype:aCell 
numRows: (int)rowsHigh 
numCols: (int)colsWide; 
initFrame:(const NXRect *) frameRect 
mode: (int)aMode 
cellClass:factoryld 
numRows:(int)rowsHigh 
numCols: (int)colsWide; 
takeForegroundGrayFrom:sender; 
takeBackgroundGrayFrom:sender; 
takeMaxGraphValueFrom:sender; 
takeBinValueFrom:sender; 

@end 



..•...•. >BiliMatrlX.rri···.··········
 

... 

.import ·BinMatrix.h· 

.import ·BinButtonCell.h· 

.import "DensityButtonCell.h" 

.import <appkit/View.h> 

@implementation BinMatrix 

- init 
( 

Ii fdef PALETTE 
id someCellPrototype; 

.endif 

[[BinMatrix class] setCellClass: [BinButtonCell class]];
 
[super initl;
 
[[BinMatrix class] setCellClass: [ButtonCell class]];
 

Ii fdef PALETTE 
someCellPrototype=[self set Prototype: [[BinButtonCell allocFromZone: [self zone])init] 

J; 
if (someCellPrototype!=nil) 

{
 
II[lself prototype]setSize:[someCellPrototype size]];
 
[someCellPrototype free];
 

.endif 
return self; 

- initFrame: (const NXRect *)frameRect 
( 

Ii fdef PALETTE 
id someCellPrototype; 

.endif 

[[BinMatrix class] setCellClass: [BinButtonCell class]];
 
[super initFrame:frameRect];
 
[[BinMatrix class] setCellClass: [ButtonCell class)];
 

.ifdef PALETTE 
someCellPrototype=[self setPrototype: [[BinButtonCell allocFromZone: [self zone]]init] 

] ; 

if (someCellPrototypel=nil) 
(
 

11[[self prototype]setSize:[someCellPrototype size]];
 
[someCellprototype free];
 

.endif 
return self; 

- initFrame:(const NXRect *J frameRect 
mode: (int) aMode 
prototype:aCell 
numRows: (int)rowsHigh 
numCols: (int)colsWide 

[[BinMatrix class] setCellClass: [BinButtonCell class]]; 
[super	 initFrame:frameRect
 

mode:aMode
 
prototype:aCell
 
numRows:rowsHigh
 
numCols:colsWide] ;
 

[[BinMatrix class] setCellClass: [ButtonCell class]];
 
return sel f:
 

- initFrame: [const NXRect *)frameRect 
mode: (int J aMode 
cellClass:factoryld 
numRows: (int)rowsHigh 
numCols: [int)colsWide 

[[BinMatrix class] setCellClass: [BinButtonCell class]]; 
[super	 initFrame:frameRect
 

mode:aMode
 
cellClass:factoryld
 
numRows:rowsHigh
 
numCols:colsWide] ;
 

([BinMatrix class] setCellClass: [ButtonCell class]]; 
return	 selfi 

- takeForegroundGrayFrom:sender;
 
(
 
II if([sender respondsTo:@selector(grayValue)])
 
II [[self selectedCell] setForegroundGray: (float) [sender grayValue]];
 
II else
 
II [[self selectedCell] setForegroundGray:[sender floatValue]];
 

[[self	 selectedCell] takeForegroundGrayFrom:sender]; 
return [self display]; 

- takeBackgroundGrayFrom:sender;
 
(
 
II if ([sender respondsTo:@selector(grayValue)])
 
II [[self selectedCell] setBackgroundGray: (float) (sender grayValue]];
 
II else
 
II [[self selectedCell] setBackgroundGray: [sender floatValue]];
 

[[self	 selectedCell] takeBackgroundGrayFrom:senderJ; 
return [self display]; 

- takeMaxGraphValueFrom:sender; 
( 
II if [[sender respondsTo:@selector(maxGraphValue)]) 
II [[self selectedCell] setMaxGraphValue: [sender maxGraphValuel]; 
II else 
II [[self selectedCellJ setMaxGraphValue: [sender floatValue]]; 

[[self selectedCell] takeMaxGraphValueFrom:senderJ; 
return [self display]; 

- takeBinValueFrom:sender;
 
(
 
II if([sender respondsTo:@selector(binValue)])
 
II [[self selectedCell] setBinValue: [sender binValue]];
 
II else
 
II [[self selectedCell] setBinValue:[sender doubleValuel];
 

[[self	 selectedCell] takeBinValueFrom:senderJ; 
return [self display]; 

@end 

'J
 



·CAFIBjmain;th
 
1* 

Generated by the NeXT Interface Builder. 
* 1 

timport <stdlib.h> 
timport <nib/InterfaceBuilder.h> 
timport <appkit/Application.h> 

void main(int argc, char *argv[]) 
NIBInit("CA,IB") ; 
NIBLoadPal et te ( "But tonPalette. nib", "But tonPalet te", "But t onPa let teH") ; 
NIBLoadPalette("CA'Palette.nib", "CAFPalette", "CA,PaletteH"); 
NIBLoadPalette("zzz.nib", "zzz", "zzzH"); 
NIBRun(); 



·CAmdt~.h
 
'import <musickit/musickit.h> 
'import <objc/Object.h> 
'import <musickit/Note.h> 
'import <float.h> 
'import "CAFPart.h"
 
'import "globals.h"
 
'import "dates.h"
 
'import ·preprocessing.h"
 

@interface Note (CAFNote)
 
II no new instance variables in category
 

1/ additional methods 
- (double)infoAsDouble: (int)par; 

(BOOL)islnfoPresent: (int)par; 
(double)maxWithinDays: (unsigned int)days forParName: (char *)aName; 
(double)minWithinDays: (unsigned int)days forParName: (char *)aName; 
(double)expMovingAverageForDays: (unsigned int)numOfDays andParName: (char *)aName; 
(double)onBalanceVolumeForParName: (char *)aName; 
(double)macdWithShortMA: (unsigned int)shortMADays 

andLongMA: (unsigned int)longMADays 
andParName:(char *)aName; 

(double)macdNegOf: (double)compMACD 
forShortMA: (unsigned int)shortMADays 
andLongMA: (unsigned int)longMADays 
andParName:(char *)aName; 

(double)macdSignalForDays: (unsigned int)signalDays 
andShortMA: (unsigned int)shortMADays 
andLongMA: (unsigned int)longMADays 
andParName: (char *)aName; 

(double) macdDi ffForDays: (unsigned int)signalDays 
andShortMA: (unsigned int)shortMADays 
andLongMA: (unsigned int)longMADays 
andParName:(char *)aName; 

(double)macdDecisionForDays: (unsigned int)signalDays 
andShortMA:(unsigned int)shortMADays 
andLongMA: (unsigned int)longMADays 
andParName: (char *)aName; 

(double)macdDecisionForDays: (unsigned int)signalDays 
andShortMA: (unsigned int}shortMADays 
andLongMA: (unsigned int)longMADays 
andParName: (char *)aName 
depreciated: (double) percentage; 

(double)sumForParName: (char *)aName: 
(double)sumOfProductForParName:(char *)aName andParName: (char *)aName; 
(double)sumOfSquaresForParName:(char *)aName; 
(double)sumForDays:(unsigned int)days 

andParName:(char *)aName: 
(double)sumOfProductForDays: (unsigned int)days 

andParName:(char *)aName 
andParName: (char *)otherName; 

Idouble)sumOfSquaresForDays: (unsigned int)days 
andParName:(char *)aName; 

(double)linearRegressionCoefficientForDays:(unsigned int)days 
andXPar: (char *)xPar andYPar: (char *)YPar; 

(double)linearRegressionOffsetForDays: (unsigned int)days 
andXPar: (char *)xPar andYPar: (char *)yPar; 

- (int)marketType; 
- (int)marketTypeDays: (unsigned int)days; 
- (int)increaseRelativeToNote:aNote forDays: (unsigned int)days forParName: (char *)aName; 
- lint)increaseRelativeToNote:aNote forParName: (char *)aName; 
- (int)volumeReversal; 
- (int)volumeReversalDays: (unsigned int)days; 

(double)volumeP"'rsalDays: (unsigned intJdays depreciated: (double) percentage; 

- (int)volumeReversalWeekly;
 
- (int)weekday;
 
- (int)year;
 
- (int)dayOfYear;
 
- (int)santaClaus;
 
- (int)santaClausYearlnfluenceForParName: (char *)aName:
 
- ensureHighLowSpreadAvailableUpToNoteForDays: (unsigned int)days;
 
- (double)highLowSpread: (unsigned int)days;
 
@end
 

'~ . , 



limport "CAfNote.h" 

@implementation Note (CAfNote) 

- (double)infoAsDouble: (int)par 

char +parameterName=[Note nameOfPar:par]: 

if (strcmp(parameterName, "timeTag") ==0) 
return [self timeTag): 

else 
if (strcmp(parameterName, "index") ==0) 

return [[self part) indexOfNote:self); 
else 

return [self parAsDouble:par): 

- (BOOL)islnfoPresent: (int)par 

if((strcmp([Note nameQfPar:par),"timeTag")==O) II 
) ~~O») 

return YES:
 
else
 

return [self isParPresent:par];
 

- (double)maxWithinDays: (unsigned int)days forParName: (char +)aName 

int par=[Note parName:aName];
 
double maximum=[self infoAsDouble:par];
 

if (days>l)
 
( 

id previousNote~[[self part) previous:self); 

if(previousNote!=nil) 
maximum=HAX(maximum, [previousNote maxWithinDays:(days-1) forParName:aName) ); 

} 

return maximum; 

- (double)minWithinDays: (unsigned int)days forParName: (char +)aName 

int par=[Note parName:aName);
 
double minimum~[self infoAsDouble:par);
 

if (days>l)
 
( 

id previousNote~[[self part) previous:self]; 

if[previousNote!~nil} 

minimum~MIN(minimum, [previousNote minWithinDays: (days-I) forParName:aName] ); 

return minimwn; 

- (double)expMovingAverageforDays: (unsigned int)numOfDays andParName:(char +)aName 

char +parName~(char +)malloc(80);
 
int emaPar:
 
int parameter~[Note parName:aName);
 

sprintf(parName,"ema_%u_%s",numofDays,aName) ; 

CAFNote.m ·1,,'ll_I~'l;:l~ili~tMlt. 
emaPar=[Note parName:parNamel: 
free (parName) ; 

if (numOfDays==l) 1+ avoid recursive search for 
return [self infoAsDouble:parameterl: 

else 
if([self islnfoPresent:emaPar]) 

(
 
return [self infoAsDouble:emaPar];
 

) 

else 

II recursively find appropriate value 
double newExpMovAverage; 

simple case - for efficiency only +1 

(strcmp([Note nameOfPar:par) ,"index" 

id previousNote~[[self part} previous:self): 

if (previousNote==nil)
 
newExpMovAverage=[self infoAsDouble:parameter);
 

else
 

double smooth~2.0/((double)(numOfDays+1)): 
double prevMovingAverage=[previousNote expMovingAverageForDays:numOfDays andPar 

Name:aName]; 

newExpMovAverage~smooth+([selfinfoAsDouble:parameter) - prevMovingAverage) + p 
revMovingAveragei 

)
 
II store appropriate value
 
[self setPar:emaPar toDouble:newExpMovAverage);
 
return newExpMovAverage,
 

- (double)onBalanceVolumeForParName: (char +)aName 

double neWCBV=O.O:
 
char +parName~(char +)malloc(80),
 
int obvPar;
 

sprintf(parName, "obv_%s",aName);
 
obvPar=[Note parName:parName);
 
free (parName) :
 

if([self islnfoPresent:obvPar])
 
(
 

return [self infoAsDouble:obvPar];
 
) 

else 
( 

II recursively find appropriate value
 
int parameter=[Note parName:aName);
 
int volumePar~[Note parName:"volume"):
 
id previousNote~[[self part) previous:selfl:
 

if (previousNote!=nilJ 
(
 

double preVOBV=[previousNote onBalanceVolumeForParName:aName) :
 
double prevPar~[previousNoteinfoAsDouble:parameter]:
 
double thisPar~[self infoAsDouble:parameterl;
 
double volume=[self infoAsDouble:volumePar);
 

prevPar+ =1.001;
 
neWOBV=preVOBV;
 
if (thisPar>prevPar)
 

I 



...
 

neWOBV+=volume,
 
else
 

iflthisPar<prevPar)
 
neWOBV-=volume,
 

) 

II store appropriate value
 
[self setPar:obvPar toDouble:newOBV],
 
return newOBV,
 

- (doublelmacdWithShortMA: (unsigned int)shortMADays 
andLongMA: (unsigned int)longMADays 
andParName: (char ')aName 

return	 [self expMovingAverageForDays:shortMADays andParName:aNamel ­

[self expMovingAverageForDays:longMADays andParName:aName],
 

I' returns timeTag of last zero-crossing 'I 
- (double)macdNegOf: (double)compMACD 

forShortMA:(unsigned int)shortMADays 
andLongMA: (unsigned int)longMADays 
andParName:(char ')aName 

double thisMACD = [self macdWithShortMA:shortMADays andLongMA:longMADays andParName:aN 
arne] , 

if(thisMACD ' compMACD < 0.0)
 
return [self timeTagl:
 

else
 
(
 

id previousNote=[[self part] previous:selfl:
 

if (previousNote==nil)
 
ret urn - DBL_MAX,
 

else
 
{
 

return [previousNote	 macdNegOf:compMACD
 
forShortMA:shortMADays
 
andLongMA:longMADays
 
andParName:aName] :
 

- (double)macdSignalForDays: (unsigned int)signalDays 
andShortMA: (unsigned int)shortMADays 
andLongMA: (unsigned int)longMADays 
andParName:(char ')aName: 

char 'parNameMacdSignal=(char ')malloc(80):
 
int macdSignalPar,
 

sprintf(parNameMacdSignal, "macdsignal_%u_%u_%u_%s",signalDays,shortMADays,longMADays,a 
Name); 

macdSignalPar=[Note parName:parNameMacdSignal]; 
free (parNameMacdSignal) , 

if(lself isInfoPresent:macdSignalPar]) 
( 

return	 [self .infoAsDouble:macdSignalParJ: 

else 

II recursively find appropriate value
 
double newSignal;
 
id previousNote=[[self part] previous:self] ,
 

if (previousNote==nil)
 
(
 
newSignal=[self macdWithShortMA:shortMADays
 

andLongMA:longMADays 
andParName:aName]; 

) 

else 
( 

double	 smooth=2.0/(signalDays+l), 
double prevSignal=[previousNote macdSignalForDays:signalDays 

andShortMA:shortMADays 
andLongMA:longMADays 
andParName:aName] , 

newSignal=smooth'([self macdWithShortMA:shortMADays 
andLongMA:longMADays 
andParName:aName] 

- prevSignal) + prevSignal, 
)
 

II store appropriate value
 
[self setPar:macdSignalPar toDouble:newSignal];
 
return newSignal,
 

- (double)macdDiffForDays: (unsigned int)signalDays 
andShortMA: (unsigned int)shortMADays 
andLongMA: (unsigned int)longMADays 
andParName:(char ')aName 

return [self macdWithShortMA:shortMADays
 
andLongMA:longMADays
 
andParName:aName]
 

- (self macdSigrialForDays:signalDays
 
andShortMA:shortMADays
 
andLongMA:longMADays
 
andParName:aName] ,
 

- (double)macdDecisionForDays: (unsigned int)signalDays 
andShortMA:(unsigned int)shortMADays 
andLongMA: (unsigned int)longMADays 
andParName: (char ')aName 

char 'parName=(char ')malloc(80),
 
int macdDecPar,
 

sprintf(parName, "macdDec_%u_%u_%u_%s",signalDays,shortMADays,longMADays,aName),
 
macdDecPar=[Note parName:parName],
 
free (parName) ;
 

if([self isInfoPresent:macdDecPar])
 
return [self infoAsDouble:macdDecPar];
 

else
 

II recursively find appropriate value
 
double newDec = NO_SIGNAL, ')
 



id previousNote=([self part] previous:self]: 

if(previousNote'=nil) 
( 

BOOL cont=YES; 
double prevDiff=[previousNote macdDiffForDays:signalDays andShortMA:shortMADay 

s 
andLongMA:longMADays andParName:aName], 

thisDiff=[self macdDiffForDays:signalDays andShortMA:shortMADays 
andLongMA:longMADays andParName:aName]; 

if(prevDiff * thisDiff < 0.0) /* MACD crosses signal line */ 
( 

double thisMACD = [self macdWithShortMA:shortMADays andLongMA:longMADays a 
ndParName:aName] ; 

double timeQfLastMACDZeroCrossing = 
[self macdNegOf:thisMACD 
forShortMA:shortMADays 
andLongMA:longMADays 
andParName:aName]; 

double timeQfLastSignal=-DBL_MAX; 

while«cont==YES) && (previousNote!=nil)) /* find time of last signal */ 
( 

if([previousNote macdDecisionForDays:signalDays 
andShortMA:shortMADays 
andLongMA:longMADays 
andParName:aName]==NO_SIGNAL) 

previousNote=[(self part] previous:previousNote]; 
else 
( 

timeOfLastSignal=(previousNote timeTag]; 
cont=NO; 

) 
if (timeDfLastMACDZerocrossing>timeOfLastsignal) /* valid signal */ 
( 

if (thisDi ff>O. 0) 
( /* buy */ 

newDec=(double) BUY_SIGNAL; 
/* TODO: check for positive divergence */ 

} 

else 
/* sell */ 

newDec= (double) SELL_SIGNAL; 
/* TODO: check for negative divergence */ 

} 

// store appropriate value
 
(self setPar:macdDecPar toDouble:newDec];
 
return newDec;
 

(doublelmacdDecisionForDays: (unsigned int)signalDays
 
andShortMA:(unsigned intlshortMADays
 
andLongMA: (unsigned int)longMADays
 
andParName: (char *)aName
 
depreciated: (double) percentage
 

double result;
 
id previousNote=[[self part] previous:self];
 

if «result=(double) [self	 macdDecisionForDays:signalDays
 
andShortMA:shortMADays
 
andLongMA:longMADays
 
andParName:aName]l==NO_SIGNAL)
 

result =depreciate ( [previousNote	 macdDecisionForDays:signalDays 
andShortMA:shortMADays 
andLongMA:longMADays 
andParName:aName 
depreciated: percentage] ,percentage) ; 

return result; 

- (double)sumForParName: (char *laName 

double sum=O.O;
 
int rawPar=[Note parName:aName];
 
int sumPar;
 
char *sumName=(char *)malloc(80l;
 

sprintf(sumName, ·sUffi_%s·,aName); 
sumPar=(Note parName:sumName] ;
 
free (sumNamel ;
 
if([self isInfoPresent:sumPar])
 

sum=[self infoAsDouble:sumPar];
 
else
 

(
 
id previousNote=[(self part] previous:self];
 

if([self isInfoPresent:rawPar]I
 
sum=(self infoAsDouble:rawPar];
 

if (previousNote!=nil)
 
sum+=[previousNote sumForParName:aName];
 

[self setPar:sumPar toDouble:sum];
 

return sumj 

- (double)sumOfProductForParName:(char *laName andParName: (char *lotherName 

double sum=O.O;
 
int rawParl=(Note parName:aName], rawPar2=[Note parName:otherName];
 
int sumPar; 
char *sumName=(char *)malloc(160); 

sprintf(sumName, ·sumProd_%s_%s·,aName,otherName);
 
sumPar=[Note parName:sumName]:
 
free (sumName) ;
 
if([self isInfoPresent:sumPar]I
 

sum=[self infoAsDouble:sumPar];
 
else
 

(
 
id previousNote=[[self part] previous:self]:
 

if«(self isInfoPresent:rawParl] && (self isInfoPresent:rawPar2]) 
sum=[self infoAsDouble:rawParl]*(self infoAsDouble:rawPar2]: 

if(previousNotel=nil) 
sum+=[previousNote sumOfProductForParName:aName andParName:otherName]: 

[self setPar:sumPar toDouble:sum]: 
) 

return sum: 

- (double)sumOfSquaresForParName:(char *laName 



···········}CAFN6t~.ffi··.·····
 

.. 

double sum=O.O;
 
int rawPar={Note parName:aName];
 
int sumPar;
 
char *sumName=(char *)malloc(160);
 

sprintf(sumName, ·sumSq_%s·,aName); 
sumPar=[Note parName:sumName];
 
free (sumName) ;
 
if([self islnfoPresent:sumPar])
 

sum=[self infoAsDouble:sumPar];
 
else
 

(
 
id previousNote=[[self part] previous:self];
 

if([self islnfoPresent:rawPar])
 
(
 

sum=[self infoAsDouble:rawPar];
 
sum*=sUffi; 

)
 
if (previousNote!=nil)
 

sum+=[previousNote sumOfSquaresForParName:aName];
 
[self setPar:sumPar toDouble:sum];
 

return	 sum; 

- (double)sumForDays: (unsigned int)days andParName: (char *)aName 

id baseNote=[[self part] noteAtlndex:[[self part] indexOfNote:selfJ-days]; 

return	 [self sumForParName:aName] - [baseNote sumForParName:aName]; 

- (doUble)sumOfProductForDays: (unsigned int)days andParName: (char *)aName andParName: (ch 
ar *)otherName 
( 

id baseNote=[[self part] noteAtlndex: [[self part] indexOfNote:self]-days]; 

return	 [self sumOfProductForParName:aName andParName:otherName]­

[baseNote sumOfProductForParName:aName andParName:otherName];
 

- (double)sumOfSquaresForDays:(unsigned int)days andParName: (char *)aName 

id baseNote=[[self part] noteAtlndex: [[self part] indexOfNote:selfj-days]; 

return	 [self sumOfSquaresForParName:aName]­

[baseNote sumOfSquaresForParName:aName];
 

II TODO: presently. it is assumed that all data are pairwise available 
- (double)linearRegressionCoefficientForDays: (unsigned int)days 

andXPar: (char *)xPar andYPar:(char *)yPar 

double n;
 
double sumX=[self sumForDays:days andParName:xPar];
 
double sumY=[self sumForDays:days andParName:yParJ;
 
double sumXY=[self sumOfProductForDays:days andParName:xPar andParName:yPar];
 
double sumSqX=[self sumofSquaresForDays:days andParName:xPar];
 
double coefficient;
 

if«n=(doublej/ ~'lf part] indexOfNote:selfJ+l.O»days) 

n= (double) days;
 
coefficient=(n*sumXY - sumX*sumY) I (n*sumSqX - sumX*sumX);
 
return coefficient;
 

II TODO: in the current implementation. n assumes that all data are available 
II up to the first day of available data 
- (double)linearRegressionOffsetForDays: (unsigned int)days 

andXPar: (char *)xPar andYPar: (char *)yPar 

double offset,n;
 
II (sumY - b*sumX) In)
 
double nominator=[self sumForDays:days andParName:yPar]
 

- [self linearRegressionCoefficientForDays:days andXPar:xPar andYPar 
:yPar] 

* [self sumForDays:days andParName:xPar]; 

if «n= (double) [[self part J indexOfNote :self] +1. 0) >days) 
n=(double)days;
 

offset=nominator I n;
 
return offset;
 

- ( int)marketTYpe 

id previousNote=[[self part] previous:self];
 
int lowPar=[Note parName:'low'];
 
int highPar=[Note parName:'high'];
 
double low=[self infoAsDoUble:lowPar];
 
double high=[self infoAsDouble:highPar];
 
double prevLow=(previousNote infoAsDouble:lowPar];
 
double prevHigh=[previousNote infoAsDouble:highPar];
 
int marketTYpe=O; 

if (previousNote==nil)
 
marketTYpe=O;
 

else if( (high>prevHigh) && (loW>=prevLow ))
 
marketTYpe=RALLY;
 

else if«low<prevLow) && (high<=prevHigh»
 
marketTYpe=REACTION;
 

else if( (high<=prevHigh) && (low>=prevLow)
 
marketTYpe=INSIDE;
 

else if«high>prevHigh) && (low<prevLow»
 
marketTYpe=OUTSIDE;
 

return market TYpe;
 

- ( int)marketTYpeDays:(unsigned int)days 

id compNote=[[self part) noteAtlndex:[[self part] indexOfNote:self]-days];
 
int marketTYpe=O;
 

if (compNote!=nil) 
(
 

double low=[self minWithinDays:days forParName:'low'];
 
double high=[self maxWithinDays:days forParName:'high'];
 
double prevLow=(compNote minWithinDays:days forParName:'low'];
 
double prevHigh=[compNote maxWithinDays:days forParName:'high'];
 

if (compNote==nil)
 
ma rket TYpe=O ;
 

else if«high>prevHighl && (loW>=prevLow »
 
market TYpe=RALLY; ..~
 

else if( (low<prevLow) && (high<=prevHigh» )
 



·CAFNdte.rli/
 
rna rketType=REACTION ,
 

else if( (high<=prevHigh) && (low>=prevLow))
 
rnarketType=INSIDE,
 

else if( (high>prevHigh) && (low<prevLow»)
 
rna rketType=OUTSI DE ,
 

}
 
return rnarketType;
 

- ( int)increaseRelativeToNote:aNote forDays: (unsigned int)days forParNarne: (char *laNarne 

double value=[self expMovingAverageForDays:days andParNarne:aNarne];
 
double otherValue=[aNote expMovingAverageForDays:days andParNarne:aNarne),
 

if (value>otherValue)
 
return YES,
 

else
 
return NO,
 

- ( int)increaseRelativeToNote:aNote forParNarne: (char *)aNarne 

return [self increaseRelativeToNote:aNote forDays:l forParNarne:aNarne]: 

- ( int)volurneReversalDays:(unsigned int)days 

id otherNote=self,
 
int rnarketType=[self rnarketTypeDays:days) ,
 
int otherMarketType;
 
int ret=NO_SIGNAL;
 
char *aName=·volume-i 

char *parNarne=(char *)rnalloc(BO),
 
int volRevPar:
 

sprintf(parNarne,'volRev_%u',days);
 
volRevPar=[Note parNarne:parNarne];
 
free (parNarne) ,
 

if([self isParPresent:volRevPar]) 
return (int) (self infoAsDouble:volRevPar];
 

else
 
(
 

do 
( 

otherNote=[[self part] previous:otherNote], 
otherMarketType=[otherNote rnarketTypeDays:days]; 

) while«(otherNote!=nil) && «otherMarketType==INSIDE) 11 (otherMarketType==OUTSI 
DE))) ; 

if (otherNote!=nil) 
switch (otherMarketType) 

( 
case RALLY: if (rnarketType==REACTION) 

if( [self increaseRelativeToNote:otherNote forDays:days forPar 
Narne:aNarne]==YES) 

ret=NEG_VOL_REVERSAL; 
break; 

case REACTION: if (rnarketType==RALLY) 
if([self increaseRelativeToNote:otherNote forDays:days forPar 

Narne:aNarne]==YESl 
ret=POS_VOL_REVERSAL; 

break; 

) 

[self setPar:volRevPar toDouble: (double) ret] ;
 
return ret;
 

- (double)volurneReversalDays: (unsigned int)days depreciated: (double) percentage 

double result;
 
id previousNote=[[self part] previous:self] ,
 

if«result=(double) [self volurneReversalDays:days))==NO_SIGNAL) 
result=depreciate([previousNote volurneReversalDays:days depreciated:percentageJ,perce 

ntage) ; 
return result: 

- ( int)volurneReversal 

return [self volurneReversalDays:1J, 

- ( int)volurneReversalWeekly 

return [self volumeReversalDays:5]; 

- (int)weekday 

return weekday([self tirneTag)), 

- (int)year 

return year([self tirneTag]), 

- (int)dayOfYear 

return dayOfYear([self tirneTag]), 

- (int)santaClaus 

double tt=[self tirneTag];
 
int doy=dayOfYear(tt),
 

if«doy>7) && (doy<355))
 
return MIDDLE_DAY,
 

else'
 
if (doy<=7)
 

(
 

int busDay=businessDayOfYear(tt); 

if (busDay<=2)
 
return POS_INFLUENCE,
 

else
 
return NO_INFLUENCE;
 

) 

else 
( 

int busDaysLeft=businessDaysLeftInYear(tt); 



'"", 

if (busDaysLeft<=S)
 
return POS_INFLUENCE;
 

else
 
return NO_INFLUENCE;
 

- (int)santaClausYearInfluenceForParName: (char ')aName 

char 'parName=(char ')malloc(80); 
int santaYrPar i 

sprintf(parName, "santaYr_%s",aName);
 
santaYrPar=[Note parName:parName];
 
free (parName) ;
 

if«self isInfoPresent:santaYrPar])
 
return [self infoAsDouble:santaYrPar];
 

else
 

id previousNote=[[self part] previous:self];
 
int parameter=[Note parName:aName]:
 
double newSantaYr=(double)NO_INFLUENCE;
 

if (previousNote!=nil)
 
(
 

int thisBusinessDayOfYear=businessDayOfYear([self timeTag]);
 

if (thisBusinessDayOfYear>2) 
II recursively accept prior entry 
neWSantaYr=[previousNote santaClausYearInfluenceForParName:aName]; 

else 
( 

unsigned int thisIndex=[[self part] indexOfNote:self]; 
double thisValue=[self infoAsDouble:parameter]; 
id compNote; 

if«compNote=[[self part] noteAtIndex: (thisIndex-S-(unsigned int)thisBusin 
essDayOfYear)]) !=nil) 

( 
double compValue=[compNote infoAsDouble:parameter]; 
double ret=thisValue/compValue; 

if(ret!=(double)1.0)
 
(
 

if(ret>(double)1.0)
 
newSantaYr=POS_INFLUENCE;
 

else
 
newSantaYr=NEG_INFLUENCE;
 

}
 
II store appropriate value
 
[self setPar:santaYrPar toDouble:newSantaYr];
 
return (int}newSantaYr:
 

II temporary -- to be avoided 
- ensureHighLowSpreadAvailableUpToNoteForDays: (unsigned int)days 

char ·parName=J.······,. ')malloc (80); 

( 

int parHLSpread; 

sprintf(parName, "HLSpread_%u",days);
 
parHLSpread=[Note parName:parName];
 
free(parName);
 
if([self isParPresent:parHLSpread]==NO)
 

[self highLowSpread:days];
 
[[[self part] previous:self] ensureHighLowSpreadAvailableUpToNoteForDays:days];
 
return self;
 

I'	 although the high low spread is easily computed, 
we store it here because a variety of transformations 
of it is needed and thus, the transparency is 
advantageous. 

'1 
- (double)highLowSpread: (unsigned int)days 

char 'parName=(char ')malloc(80):
 
int parHLSpread;
 

sprintf(parName, "HLSpread_%u",days);
 
parHLSpread=[Note parName:parName];
 
free (parName) ;
 

if([self isInfoPresent:parHLSpread])
 
return [self infoAsDouble:parHLSpread];
 

else
 

double hlSpread=log([self maxWithinDays:days forParName:"high"] - [self minWithinDa 
ys:days forParName:"low"]); 

[self setPar:parHLSpread toDouble:hlSpread];
 
return hlSpread;
 

@end 

'j 



.. .. CAFPati.li···· .. 
limport <musickit/musickit.h> 
~import <objcIObject.h> 
limport <musickit/Part .h> 

@interface Part (CAFPart)
 
II no additional variables
 

II methods
 
- previous:aNote;
 
- (unsigned int)indexOfNote:aNote;
 
- noteAtlndex: (unsigned int)anlndex;
 
- atOrBeforeTime: (double)timeTag;
 

@end
 



... 

@end#import "CAFPart_h" 

@implementation Part (CAFPart) 

- previous:aNote 

if (isSorted==NO)
 
Iself sort];
 

return [notes objectAt: [notes indexOf:aNoteJ - 1J;
 

(unsigned int)indexOfNote:aNote 

return [notes indexOf:aNote), 

- noteAtlndex: (unsigned int)anlndex 

return [notes objectAt:anlndex], 

- atOrBeforeTime: (double)timeTag 

id afterNote=[self atOrAfterTime:timeTag]; 

if ([afterNote timeTag]==timeTag)
 
return afterNote;
 

else
 
if(afterNote==nil)
 

return [notes objectAt: [self noteCount]-l];
 
else
 

unsigned int afterlndex=[notes indexOf:afterNote); 

if(afterlndex==O)
 
return nil;
 

else
 
return [self noteAtlndex: (afterlndex-1»);
 

II redundant since replaced with Note-methods infoAsDouble
 
11- timeTagAsParameter
 
II(

II unsigned int count=[notes count],
 
1/ X;
 

I I id aNote,
 
II int timeTagPar=[Note parName:"timeTag"],
 
II BOOL cont=YES;
 
II 
II iff! [[notes objectAt:count-1) isParPresent:timeTagParl) 
I I ( 
II for(x=count, (x>O) && cont,x--) 
I I (
 
II aNote=[notes objectAt:x-1J,
 
I I if ([aNote isParPresent :timeTagPar])
 
II cont=NO,
 
I I else
 
II [aNote setPar:timeTagPar toDouble: [aNote timeTagl);
 
1/ )
 
II )
 
II return self;
 
II)
 :~-) 



.import <objc/objc.h> 

.import <time.h> 

.import <math.h> 

.import <stdlib.h> 

.define SECONDS_PER_DAY 24*60*60 /* hours*minutes*seconds per day */ 

.define EST_ZONE -5 

/* dates.h 

* created 8 March 1991 

* This is a generic time utility package that provides support for 
* time tags in data series. It tries to remain as compatible as possible 
* with the standard UNIX and VMS time formats, in that it counts the seconds 
* since 1970 to identify any point in time. Also all times should be 
* to UTC/GMT. However to allow a wider range of possible dates, We use 
* double floating point numbers that give us at least 4 times the range of the 
* integers used by the system built-in routines. Dates before 1970 are given in 
* form of negative numbers. As far as possible we also use the structs used in 
* time.h. 

*	 To Do,
 
- add support for the tzone support of the as
 
- add support for DOW (day of week)
 

*/ 

/* 
* returns the number of days that are correct 
* relative to the calendar valid for England and her colonies.
 
* -> it may be used for date comparisons with any date
 
* after September 1752 when the Gregorian calendar was introduced. 
*/ 

int days(struct tm *tp); 

/* 
* returns days since 1 Jan 1900 B.C. (post Christum natum) 
*/ 

int daysSince1900(struct tm *tp); 

/* 
* returns seconds since 1 Jan 1970, UTe/GMT, 
* negative numbers are dates before 1 Jan 1970 
*/ 

double secondsSince1970(struct tm *tp); 

/* 
* returns a time tag (i.e. seconds since 1 Jan 1970) for 
* a	 date specified by the respective integers. 
*/ 

double timeTag(int year, int month, int day, int zone); 

/* returns the day of the week (SUN=O, MON=1, ... , SAT=6) 
* for a specific time tag. 
*/ 

int weekday(double timeTag); 

/* returns the year of timeTag 
* plenty of room for optimization ... 
*/ 

int year(double timeTag); 

int	 dayOfYear(double timeTag); 

int businessDayOfYear(double timeTag); 

int businessDaysLeftInYear(double timeTag); 

void month_day (int year, int yearday, int *pmonth, int *pday); 



... 

limport ·dates.h· 

int weekday(double timeTag) 
( 

static BOOL computed=NO;
 
static int daysTo1970;
 
if (computed==NO)
 

( 

struct tm origin;
 
(origin) .tm_mday=l;
 
(origin) .tm_mon=O;
 
(origin) .tm-year=70;
 
daysTo1970=days(&origin) ; 
computed=YES; 

) 
return «(int) (timeTag/(double)SECONDS_PER_DAY) + (double)daysTo1970))) + 7) % 7; 

int year(double aTimeTag) 

int startYear=(int) (aTimeTag/«(double)SECONDS_PER_DAY) *365.25))+70; /* 0==1970 */ 

while(timeTag(startYear,l,l, EST_ZONE) <aTimeTag)
 
(
 

startYear++ ;
 
)
 

return --startYear;
 

int dayOfYear(double aTimeTag) 
( 

double seconds; 

seconds=aTimeTag-timeTag(year(aTimeTag),l,l,EST_ZONE) ; 

return (int)floor(seconds/{(double)SECONDS_PER_DAY))+l; 

int businessDayOfYear(double aTimeTag) 
( 

double otherTag=aTimeTag; 
int aYear=year(aTimeTag); 
int daysPast=O; 
int wd; 
int fd=l; 
double fdTag=timeTag (aYear, 1,1, EST_ZONE) ; 
int wdfd=weekday(fdTag); 

if (wdfd==O)
 
fd+=l;
 

else
 
if(wdfd==6)
 

fd+=2;
 

while(year(otherTag)==aYear) 
(
 

wd=weekday(otherTag) ;
 
if((wd>O) && (wd<6) && (dayOfYear(otherTag) !=fd))
 

daysPast++;
 
otherTag-= (double) SECONDS_PER_DAY;
 

) 

return 'daysPast; 

int businessDaysLeftlnYear(double aTimeTag) 
( 

double otherTag=aTimeTag; 
int aYear=year(aTimeTag); 
int daysLeft=O; 
double xmassTag=timeTag(aYear,12,25,EST_ZONE); 
int xmass=dayOfYear(xmassTag); 
int wdXmass=weekday(xmassTag); 
int wd; 

/* US holiday/weekend rule */
 
if (wdXmass==O)
 

xmass+=l; 
else 

if (wdXmass==6) 
xmass+=2; 

//printf(·x-dow:%i x-doy:%i ·,wdXmass,xmass); 

while(year(otherTag)==aYear) 
(
 

wd=weekday(otherTag) ;
 
if((wd>O) && (wd<6)
 

&& (dayOfYear(otherTag) !=xmass)) 
( 

//printf(·doy:%i ·,dayOfYear\otherTag)); 
daysLeft++; 

) 
otherTag+= (double) SECONDS_PER_DAY; 

) 

return daysLeft; 

/***********************************************/ 

int days(struct tm *tp) 
( 

int total=O; 
int year= (*tp) .tm-year+1900; 
unsigned int feb29s={year»2)+1; 
feb29s-= (year / 100 + 1); 
feb29s+= (year / 400); 

total+=year*365+{int)feb29s;
 
if({ (*tp) .tm-mon<2) &&
 

(year%4 == 0) && (year%100!=0) I I (year%400==0)))
 
total--;
 

switch((*tp) .tm_mon)
 
(
 
case 0: break;
 
case 1: total+=31; break;
 
case 2: total+=59; break;
 
case 3: total+=90; break;
 
case 4: total+=120; break;
 
case 5: total+=151; break;
 
case 6: total+=181; break;
 
case 7: total+=212; break;
 
case 8: total+=243; break;
 
case 9: total+=273 ; break;
 
case 10: total+=304; break;
 
case 11: total +=33 4; break;
 
) 

total+=(*tp) .tm_mday;
 
return total;
 

') 



dates.c
 
/***********************************************/ 

int dayssince1900(struct tm *tp) 
(
 

static BOOL computed=NO;
 
static int daysTo1900;
 
if (computed==NO)
 

( 

struct tm origin;
 
(origin) . tm_mday=l;
 
(origin) .tm_mon=O;
 
(origin) .tm-year=O; /* 1900 */
 
daysTo1900=days(&origin) ;
 
computed=YES;
 

) 

return days(tp)-daysTo1900; 

double secondsSince1970(struct tm *tp) 
{ 

static BOOL computed=NO; 
static int daysTo1970; 
if (computed= =NO) 

( 

struct tm origin;
 
(origin) .tm_mday=l;
 
(origin) .tm-mon=O;
 
(origin) .tm-year=70; f* 1970 *f
 
daysTo1970=days(&origin) ;
 
computed=YES;
 

return (double) (days(tp)-daysTo1970) * (double)SECONDS_PER_DAY • (double) (*tp) .tm-gm 
toff; 
) 

// uses system function for dates>1970, uses own function for other dates 
// valid range: Jan 1, 1900 - Jan 1, 2038 
double timeTag(int year,int month,int day,int zone) 
( 

double timePoint;
 
struct tm *tp=(struct tm *)calloc(l,sizeof(struct tm));
 

(*tp) .tm-mday=day;
 
(*tp) .tm-mon=month-1;
 
(*tp) .tm-year=year;
 
(*tp) .trn-gmtoff=zone*60*60; /* offset from GMT in seconds *f
 

// if one wanted to use mktime(tp), one would need to test if the date given
 
// is within an acceptable range, i.e.
 
// if((*tp) .tffi-Year<70 I I
 
// ((*tp).tm-year==70 && (*tp) .tm-mon==O && (*tp) .tm-mday==l && (*tp) .tm_gmtoff<O)
 

// timePoint= (double) secondsSince1970 (tp)
 
// else
 
// if((timePoint=mktime(tp)==-l)
 
// <error condition>
 

timePoint=secondsSince1970(tp) ,
 
free(tp) ,
 
return timePoint;
 

void month_day (int year, int yearday, int *pmonth, int *pday) 

int L leap; 
static char daytab[2] [13] = ( 

(0, 31. 28, 31, 30, 31. 30, 31. 31, 3D, 31. 30, 31), 
(0, 31, 29, 31. 30, 31, 30, 31, 31, 30, 31, 30, 31»; 

leap = year" 4 == 0 && year" 1000 != 0 II year" 400 == 0, 
for(i=l; yearday > daytab[leap] [il; i •• ) 

yearday -= daytab[leap) [i); 
*pmonth = i; 
*pday = yearday; 



•. •••••••/iDertsityB.uttbfiCellIhspecto'r.W············
 
*impo,t <nib/lnte,faceBuilde,.h> 

@interface DensityButtonCelllnspector:lnspector 
( 

id graySlider, 
id grayTextField, 
id disabledSwitch, 
id tagTextField, 

+ finishLoading: (struct mach_header ')header; 
+ startUnloading; 
- init; 
- ok:sender; 
- revert:senderi 

@end 

') 



.. ··DensityBtittonCellIri~pe2tbhfu.
 
'import "DensityButtonCelllnspector.h" 
'import "DensityButtonCell.h" 
'import <appkit/Application.h> 
'import <appkit/Slider.h> 
'import <appkit/TextField.h> 

@implementation DensityButtonCelllnspector 

+ finishLoading: (struct mach_header ')header 

NIBDidLoadClasslself, header):
 
return nil;
 

+ startUnloading 

NIBWillUnloadClasslself) ;
 
return nil;
 

- init 

[super init]; 
[NXApp loadNibSection:"DensityButtonCelllnspector.nib" owner:self]; 
return self; 

- ok:sender 

[object setGrayValue:[graYSlider floatValue]];
 
[object setEnabled: (! [disabledSwitch state])];
 
[object setTag:[tagTextField intValue]]:
 
return [super ok:sender] ;
 

- revert:sender 

[graySlider setFloatValue:[object grayValue]];
 
[grayTextField setFloatValue:[object grayValue]];
 
[disabledSwitch setState: I! [object isEnabled])];
 
[tagTextField setlntValue: [object tagl];
 
return [super revert:sender]:
 

@end 



-

.import <appkit/graphics.h> 

.import <dpsclient/wraps.h> 

.import <appkit/ButtonCell.h> 

@interface DensityButtonCell:ButtonCell 
( 

float grayValue, 

- (id)setGrayValue:(float)aGrayValue;
 
- (float) grayVal ue;
 
- (id)drawlnside: (const NXRect *)aRect inView: (id)controlView;
 
- takeGrayValueFrom:sender,
 
- (const char*linspectorName,
 
- write: (NXTypedStream *)stream;
 
- read: (NXTypedStream *)stream;
 

@end
 

---, 
II

/



DeflsityBuft6I1CeiI.fu··
 
limport "DensityButtonCell.h· 
limport <appkit/View.h> 
limport <appkit/Control.h> 

@implementation DensityButtonCell 

- (id)setGrayValue, (float)aGrayValue 

grayValue=aGrayValue; 
ret urn sel f; 

- (float)grayValue 

return grayValue; 

- (id)drawlnside: (const NXRect *)aRect inView: (id)controlView 

[controlView lock<ocusl;
 
PSsetgray( [self grayValue]);
 
NXRect<ill(aRect) ;
 
[controlView unlock<ocusl;
 
return self;
 

- takeGrayValue<rom:sender 

if([sender respondsTo:@selector(grayValue)])
 
[self setGrayValue, [sender grayValuel];
 

else
 
[self setGrayValue:[sender floatValue]1 ;
 

[[self controlViewl updateCell:self];
 
return self;
 

- (const char*)inspectorName 

return "DensityButtonCelllnspector"; 

- write: (NXTypedStream *)stream 

[super write:streaml ;
 
NXWriteType(stream,"f",&grayValue) ;
 
return self;
 

- read: (NXTypedStream *)stream 

[super read:stream];
 
NXReadType(stream, "f',&grayValue);
 
return sel f;
 

@end 



-

iimport <appkit/Button.h> 

@interface DensityButton:Button 
( 
) 

II> initialize; Ilsee history in DensityButton.m 
init; 
initFrame: (const NXRect *)frameRect: 
initFrame: (const NXRect*}frameRect 
title: (const char *)aString 
tag: (int) anlnt 
target:anObject 
action: (SEL)aSelector 
key: (unsigned short)charCode 
enabled: (BOOL) flag; 
initFrame: (const NXRect *)frameRect 
icon:(const char *}aString 
tag: (int)anlnt 
target:anObject 
action: (SEL)aSelector 
key: {unsigned short)charCode 
enabled: (BOOL) flag; 
takeGrayValueFrom:sender; 

@end 

-~) 



limport 
# import 
# import 

.. ".. . ".. ,",","., . cIA...DehsityBtittoh.m 

@implementation DensityButton 

II Here some interesting history:
 
II First what we wanted to do:
 
II> initialize
 
If(
 
II [super initialize];
 
II [self setCellClass: [DensityButtonCell class]];
 
II return self;
 
III 
II 
II Now what it should be, since super is initialized automatically 
II by the runtime system, if need be: 
I I> init iali ze 
If( 
II II to prevent interference with calls from subclasses: 
II if ( self == [DensityButton class] 1 
II ( 
II [self setCellClass: [DensityButtonCell class]]; 
II ) 

II return sel f; 
III 
II 
II Now, we realize that cellClass is not really a class variable, but a 
II static variable, globally bound :-( 
II SO we have to set it temporarily during the init methods of the 
I I instances ...
 
II Here is what we would like to do:
 
11- init
 
II(
 
II id someCellClass;
 
II 
II someCellClass=[[DensityButton class] setCellClass: [DensityButtonCell class]];
 
II [super init];
 
II [[ DensityButton class] setCellClass:someCellClass];
 
II return sel f;
 
III
 
II 
II Now the last sad discovery: >setCellClass does not return the previous 
II cellClass, thus we have to hard code as follows: 

init 

[[DensityButton class] setCellClass: [DensityButtonCell class]];
 
[super init];
 
[[DensityButton class] setCellClass: [ButtonCell class]];
 
return self;
 

- initFrame:(const NXRect *)frameRect 

[[DensityButton class] setCellClass: [DensityButtonCell class]];
 
[super initFrame:frameRect];
 
[[DensityButton class] setCellClass: [ButtonCell classl]:
 
return self;
 

initFrame: (const NXRect *J frameRect
 
title: (const char *)aString
 
tag: (int) anlnt
 

target:anObject
 
action: (SEL)aSelector
 
key: (unsigned short)charCode
 
enabled: (BOOL) flag
 

[(DensityButton class] setcellClass: [DensityButtonCell classl]; 
[super	 initFrame:frameRect
 

title:aString
 
tag:anlnt
 
target:anObject
 
action:aSelector
 
key:charCode
 
enabled: flag];
 

[[DensityButton class] setCellClass: [ButtonCell class]]: 
return	 sel f i 

- initFrame: [const NXRect *) frameRect 
icon: (const char *)aString 
tag: (int Ianlnt 
ta rget :anObj ec t 
action: (SEL)aSelector 
key: (unsigned short)charCode 
enabled: (BOOL) flag 

[[DensityButton class] setCellClass: [DensityButtonCell class]]; 
[super	 initFrame:frameRect
 

icon:aString
 
tag:anlnt
 
target:anObject
 
action:aSelector
 
key:charCode
 
enabled: flag];
 

[[DensityButton class] setCellClass: [ButtonCell class]]; 
return self; 

- takeGrayValueFrom:sender 
( 
II if([sender respondsTo:@selector(grayValue)]l 
II [cell setGrayValue: [sender grayValuel]; 
II else 
II [cell setGrayValue: [sender floatValuell; 

[[self selectedCell) takeGrayValueFrom:sender]; 
return [self displaYl; 

@end 



-
.import <appkit/Matrix.h> 

@interface DensityMatrix:Matrix 
( 
) 

11+ initialize; Iisee history in DensityButton.m 
init ; 
initFrame: (const NXRect *)frameRect; 
initFrame: (const NXRect *)frameRect 
mode: (int) aMode 
prototype: aCell 
numRows: (int)rowsHigh 
numCols: (int)colsWide; 
initFrame: (const NXRect *) frameRect 
mode: (int) aMode 
cellClass:factoryId 
numRows: (int)rowsHigh 
numCols: (int)colsWide; 
takeGrayValueFrom:sender; 

@end 

'\ 
J 



*import "DensityMatrix.h" 
*import "DensityButtonCell.h" 
*import <appkit/View.h> 

@implementation DensityMatrix 

II Here some interesting history: 
II First what we wanted to do: 
11+ initialize 
II( 
II [super initialize]; 
II [self setCellClass: [DensityButtonCell class]]; 
II return sel f; 
III 
II 
II Now what it should be, since super is initialized automatically 
II by the runtime system, if need be: 
I I + initialize 
II( 
II II to prevent interference with. calls from subclasses: 
II if ( self ~~ [DensityMatrix class] ) 
II ( 
II [self setCeIIClass:[DensityButtonCell class]]; 
II ) 

II return sel f; 
III 
II 
II Now, we realize that cellClass is not really a class variable, but a 
II static variable, globally bound :-( 
II So we have to set it temporarily during the init methods of the 
II instances ...
 
II Here is what we would like to do:
 
11­ init
 
II(
 
II id someCellClass;
 
II
 
II someCeIIClass~[[DensityMatrixclass]
 
II [super init];
 

setCellClass: [DensityButtoncell class]]; 

II [ [DensityMatrix class] setCeIIClass:someCeIIClass]; 
II return self; 
III 
II 
II Now the last sad discovery: +setCellClass does not return 
II cellClass, thus we have 

- init 
( 

H fdef PALETTE 
id someCellPrototype; 

tendif 

[[DensityMatrix class] 
[super init]; 
[[DensityMatrix class] 

H fdef	 PALETTE 
someCeIIPrototype~[self 

nit]] ; 

the previous 
to hard code as follows: 

setCellClass: [DensityButtonCell class]]; 

setCellClass: [ButtonCell class]]; 

setPrototype:[[DensityButtonCell allocFromZone:[self zone]]i 

if(someCeIIPrototype!~nil) 

( 

11[[self prototype]setSize:[someCeIIPrototype size]]; 
[someCellPrototype free]; 

lendif 
return self; 

·. .. ... .... , .
 

.DellsityMatriX.m 

- initFrame: (const NXRect *)frameRect 
( 

*ifdef PALETTE 
id someCellPrototype; 

*endif 

[[DensityMatrix class] setCellClass: [DensityButtonCell class]];
 
(super initFrame:frameRect];
 
[[DensityMatrix class] setCellClass: [ButtonCell class]];
 

*ifdef PALETTE 
someCeIIPrototype~(self setPrototype: [[DensityButtonCell allocFromZone: [self zone]]in 

it]] ; 
if(someCeIIPrototype!~nil) 

(
 
11[[self prototype]setSize: [someCellPrototype size]];
 
[someCellPrototype free];
 

*endif 
return self; 

- initFrame: (const NXRect *) frameRect 
mode: (int) aMode 
prototype:aCell 
numRows: (int)rowsHigh 
numCols: (int)colsWide 

[[DensityMatrix class] setCellClass: [DensityButtonCell class]]; 
[super	 initFrame:frameRect
 

mode:aMode
 
prototype: aCell
 
numRows:rowsHigh
 
numCols:colsWide] ;
 

[[DensityMatrix class] setCellClass: [ButtonCell class]];
 
return self;
 

- initFrame: (const NXRect *) frameRect 
mode: (int)aMode 
cellClass:factoryld 
numRows: (int)rowsHigh 
numCols: (int)colsWide 

[[DensityMatrix class] setCellClass: [DensityButtonCell class]]; 
[super	 initFrame:frameRect
 

mode:aMode
 
cellClass:factoryld
 
numRows:rowsHigh
 
numCols:colsWide] ;
 

[[DensityMatrix class] setCellClass: [ButtonCell class]];
 
return self;
 

- takeGrayValueFrom:sender
 
(
 
II if([sender respondsTo:@selector(grayValue)])
 
II [[self selectedCell] setGrayValue: [sender grayValue]];
 
II else
 
II [[self selectedCell] setGrayValue: [sender floatValue]];
 

[[self selectedCell] takeGrayValueFrom:senderJ;
 
return [self display];
 





limport <objc/Object.h>
 
limport <appkit/Application.h>
 
limport <musickit/musickit.h>
 
limport <appkit/OpenPanel.h>
 
limport <appkit/Matrix.h>
 
limport <appkit/Button.h>
 
limport <appkit/Form.h>
 
limport <appkit/Panel.h>
 
limport "Actions.h"
 
limport "globals.h"
 
limport "dates.h"
 
limport "CAFPart.h"
 
limport "CAFNote.h"
 
limport "Statistics.h"
 
limport "StatisticsView.h"
 
limport "dates.h"
 

Idefine DAY_PAR 0
 
Idefine MONTH_PAR 1
 
Idefine YEAR_PAR 2
 
Idefine WEEKDAY_PAR
 

@interface DeTerminator:Object 
( 

id inputldentifiers; //matrix of button cells 

id openPanel, 
savePanel;
 

id timeFrameWindow;
 
id dateCurrentParameter;
 
id dateFromParameter;
 
id dateToParameter;
 
int realTimeMode;
 

id score;
 
id part;
 
id currentNote;
 

id inspectedObject;
 
id inspectorPanel;
 
id binCountSlider;
 
id binCountTextField;
 

- init;
 
- openRequest:sender;
 
- (int)openDocument: (canst char ·)fileName;
 
- saveRequest:sender;
 
- saveToRequest:sender;
 
- (int)saveDocument: (canst char ·)fileName;
 
- (int)saveToDocument: (canst char ·)fileName;
 

- animateUpdateForTimeFrame:sender;
 
- updateForTime:sender;
 
- forceUpdate:sender;
 
-lid) inputUpdated;
 
-lid) batchModeUpdated;
 
- currentEntry;
 
- last Entry;
 

- timeFrameWindowMakeKeyAndOrderFront:sender;
 
- (double)fromTime;
 
- (double)toTime;
 
- currentTirnej 

, 1YW-€%.~::. , .~<\. ".' -1& ~, 

·D~T~ftninatdi:h.·••• ·•••••··•··· i>ill~lll::lI11~" 
-inspect:sender;
 
-ok:sender;
 
-revert:sender; 

- showError: (canst char ·)errorMessage;
 
- free;
 

@end 



ow 

···.···.Del'enftinatohm i 
/· 

_import RDeTerminator.h­

@implementation DeTerminator 

- init 

[super init J ;
 
[NY~pp setDelegate:selfJ;
 

open Panel = [OpenPanel new];
 
save Panel = [SavePanel new];
 
score=[[Score alloc] init];
 
part =n i I;
 
currentNote=nil;
 
realTimeMode=NO;
 

return sel f; 

- appDidInit:sender 

[NXApp loadNibSection:"TimeFrame.nib" owner:self];
 
return sel f;
 

- openRequest:sender 

const char *fileName;
 
II TODO: add string table support
 
II const char *const types[2] = ([stringSet valueForStringKey:"extension"],
 
I I NULL);
 
const char *const types[3] = ("score", "playscore", NULL);
 

if ([openPanel runModaIForTypes:types] && (fileName = [openPanel filename]» 
[self openDocument:fileName]; 

else 
II TODO: add string table support 
II [self showError: [stringset valueForStringKey:"errorOnOpenRequest"JJ; 
[self showError:"errorOnOpenRequest"]; 

return self; 

- (int)openDocument: (canst char *) fileName 

char *aFileName=(char *)calloc(512,sizeof(char»; 

strcpy (aFileName, fileName} ;
 
if (part! =nil)
 

[[score freeParts] freeNotesJ;
 
if([score readScorefile:aFileName]==nil)
 

{
 

[self showError:"errorOnFileRead"j;
 
return -1;
 

} 

part=[[score parts] objectAt:OJ;
 
currentNote=[[part sort] nth:OJ;
 
free (aFileName) ;
 
return 0;
 

- saveRequest:sender 

canst char *fi~~~~me; 

const char *const types[2J = ("score", NULL); 

{savePanel setRequiredFileType:types[OJ];
 
if (score==nil)
 

[self showError:"errorOnSaveRequest"J;
 
else
 

if([savePanel runModall && (fileName=[savePanel filenameJ»
 
[self saveDocument:fileNameJ;
 

else
 
[self showError:"errorOnSaveRequest"J;
 

) 

return self; 

- saveToRequest:sender 

canst char *fileName;
 
canst char *const types[2J = ("playscore", NULL);
 

[savePanel setRequiredFileType:types[OlJ;
 
if (score==nil)
 

[self showError:"errorOnSaveRequest"J;
 
else
 

( 

if([savePanel runModal] && (fileName=[savePanel filenameJ»
 
[self saveToDocument:fileName];
 

else
 
[self showError:"errorOnSaveRequest"J;
 

) 

return self; 

- (int)saveDocument: (canst char *}fileName 

if([score writeScorefile:(char *)fileNameJ==nil) 
(
 

[self showError:"errorOnFileWrite"J;
 
return -1;
 

) 

return 0; 

- (int}saveToDocument: (canst char *)fileName 

if([score writeOptimizedScorefile: (char *J fileNameJ==nil) 
(
 

[self showError:"errorOnFileWrite"J;
 
return -1;
 

) 

return 0; 

- animateUpdateForTimeFrame:sender 

double fromTime=[self fromTimeJ;
 
double toTime=[self toTime] + ((double) (SECONDS_PER_DAY - 1»;
 

id noteList=[part firstTimeTag:fromTime lastTimeTag:toTime];
 
unsigned int noteCount=[noteList count];
 
int x=O;
 

for(x=O;currentNote=[noteList objectAt:x],x<noteCount;x++) 
~-- [self forceUpdate:senderJ; r) 



(noteList freel; 
return self; 

- updateForTime:sender 

double toTime=(self toTimel + «double) (SECONDS_PER_DAY - 1»;
 
id showNote=(part atOrBeforeTime:toTimeJ;
 

if (showNotel=nil) 
(
 

currentNote=showNote:
 
[self forceUpdate:senderJ;
 

) 

return self; 

- forceUpdate:sender 

[self currentTimel;
 
[self inputUpdatedl:
 
if (reaITimeMode==NO)
 

(self batchModeUpdatedl:
 
return self:
 

-lid) inputUpdated 
( 

unsigned int i; 
int numCells=[inputldentifiers cellCountl: 

for(i=O:i<numCells;i++) 
( 

[[[inputldentifiers ceIIListlobjectAt:ilperformClick:selfl; 
[[(inputldentifiers ceIIListlobjectAt:ilpropagateChange:selfJ: 
[[[inputldentifiers ceIIListlobjectAt:ilperformClick:selfl: 

) 

return self: 

-lid) batchModeUpdated 
( 

unsigned int i; 
int numcells=[inputldentifiers cellCountl; 

for(i=O:i<numCells:i++) 
{ 

[[[inputldentifiers ceIIListlobjectAt:ilperformClick:selfJ: 
[[[inputldentifiers ceIIListlobjectAt:ilbatchMode:selfl: 
[[[inputldentifiers ceIIListlobjectAt:ilperformClick:selfl; 

}
 

return self:
 

- currentEntry 

return currentNote; 

- last Entry 

return [[part notesl lastObjectl; 

~1:::j:j:j:j:)/tltj~rjill'l
:~.'%W
l%tillfM 

.Del'errrtinator.fu··· 

- timeFrameWindowMakeKeyAndOrderFront:sender 

return (timeFrameWindow makeKeyAndOrderFront:senderJ; 

- (double)fromTime 

return timeTag«(dateFromParameter intValueAt:YEAR_PARJ,
 
[dateFromParameter intValueAt:MONTH_PARl,
 
(dateFromParameter intValueAt:DAY_PARJ,
 
EST_ZONE) ;
 

- (double)toTime 

return timeTag«(dateToParameter intValueAt:YEAR_PARJ,
 
[dateToParameter intValueAt:MONTH_PARJ,
 
(dateToParameter intValueAt:DAY_PARJ,
 
EST_ZONE) ;
 

- currentTime 

double theTag=[currentNote timeTagl:
 
int month, day, theYear=year(theTag);
 
const char 'weekdayName[7l=('Sunday','Monday', 'Tuesday','Wednesday',
 

·Thursday~,~Friday·,·saturday·}; 

month_day(theYear,dayOfYear(theTag),&month,&day) ; 

printf('%s %i/%i/%i\n' ,weekdayName [weekday (theTag) 1,month,day, theYear):
 
[dateCurrentParameter setlntValue:theYear at:YEAR_PARl:
 
[dateCurrentParameter setlntValue:month at:MONTH_PARl:
 
[dateCurrentParameter setlntValue:day at:DAY_PARj;
 
[dateCurrentParameter setStringValue:weekdayName[weekday(theTag)l at:WEEKDAY_PAR]:
 
return self;
 

-inspect:sender 
( 

inspectedObject=[[sender superview]superviewl:
 
[self revert:selfl;
 
(inspectorPanel makeKeyAndOrderFront:self]:
 
return self:
 

-ok: sender 
( 

if (inspectedObject==nil)
 
return self;
 

else
 
( 

([inspectedObject statisticslsetBinCount: [binCountslider intValuell:
 
[inspectedObject update: [inspectedObject statisticsll;
 
return self;
 

); 

- realTimeMode:sender 

realTimeMode= !reaITimeMode; 



... 

return self; 

-revert: sender 

if(inspectedObject~~nil) 

return self;
 
else
 

( 
[binCountSlider setlntValue: [[inspectedObject statistics]binCountll;
 
[binCountTextField setlntValue:[[inspectedObject statisticslbinCount]];
 
return self;
 

1; 

- showError: (const char *lerrorMessage 

NXRunAlertPanel(NULL, errorMessage,"OK", NULL, NULL);
 
II TODO: add string table support
 
II NXRunAlertPanel(NULL, errorMessage,
 
II [stringSet valueForStringKey:"OK"J, NULL, NULL);
 
return self; 

- free 

(openPanel free];
 
[savePanel free];
 
[score free];
 
return [super free];
 

@end 

") 



.....•.•.. DeTel1llfuat6ftrtktriIrii .... 
.. - ..... 

/* 
Generated by the NeXT Interface Builder. 

*/ 

#import <stdlib.h> 
#import <appkit/Application.h> 

void main(int argc, char *argv[]) 
NXApp = [Application new]; 
[NXApp loadNibSection:"DeTerminator.nib" owner:NXApp]; 
[NXApp run]; 
[NXApp free]; 
exit (0); 



.... 

Hmport "Rule.h" 

@interface Rule (Distribution<unctions) 
II no new instance variables in category 

II additional methods 
- independentDistWithlnput: (const double *}valueX 

: (const double *lprobX 
: (const double *}valueY 
: (const double *)probY 
andOutput: (double *loutput; 

@end 

') 



.··:mpl1tIm.tFu.fi2ti(')fi§~~)· ••• U 

~I

······llilllt!w@t:t:K 
.import <objc/Object.h> 
.import <appkit/Application.h> 
.import "globals.h" 
.import "Input.h" 
.import "DeTerminator.h" 
.import "CAFNote.h" 

.define STDDEV_GENERAL 0.1 

@interface Input (InputInitFunctions) 
II no new instance variables in category 

II additional methods 
- zeroMeanForStatistics:someStatistics 

andDistribution:(const char *)distributionName; 
shortLinearRegressionForStatistics:someStatistics 

andDistribution:(const char *)distributionName; 
10ngLinearRegressionForStatistics:someStatistics 

andDistribution: (const char *)distributionName; 
fastMacdForStatistics:someStatistics 

andDistribution: (const char *)distributionName; 
slowMacdForStatistics:someStatistics 

andDistribution:(const char *)distributionName: 
volumeForStatistics:someStatistics 

andDistribution:(const char *)distributionName; 
10ngVolumeForStatistics:someStatistics 

andDistribution: (const char *)distributionName; 
onBalanceVolumeForStatistics:someStatistics 

andDistribution: (const char *)distributionName; 
volumeReversalSignalForStatistics:someStatistics 

andDistribution: (const char *)distributionName; 
volumeReversalPeriodForStatistics:somestatistics 

andDistribution: (const char *)distributionName; 
weeklyvolumeReversalSignalForStatistics:someStatistics 

andDistribution: (const char *)distributionName; 
weeklyVolumeReversalPeriodForStatistics:someStatistics 

andDistribution: (const char *)distributionName; 
volumeshortLinearRegressionForstatistics:someStatistics 

andDistribution: (const char *)distributionName; 
volumeLongLinearRegressionForStatistics:someStatistics 

andDistribution:(const char *)distributionName; 
highLoWSpreadForStatistics:someStatistics 

andDistribution: (const char *)distributionName; 
weeklyHighLoWSpreadForStatistics:someStatistics 

andDistribution: (const char *)distributionName; 
highLowspreadShortLinearRegressionForStatistics:someStatistics 

andDistribution:(const char *)distributionName; 
highLowspreadLongLinearRegressionForStatistics:someStatisties 

andDistribution: (const char *)distributionName; 
santaForStatistics:someStatistics 

andDistribution: (const char *)distribut1un~e; 

santaYearInfluenceForStatistics:somestatistics 
andDistribution: (const char *)distributionName; 

mondayForStatistics:someStatistics 
andDistribution:(const char *)distributionName; 

electionCycleForstatistics:someStatistics 
andDistribution:{const char *)distributionName; 

hussein:someStatistics 
andDistribution: (const char *)distributionName; 

@end 



'.. ... 

limport 'InputlnitFunctions.h'
 
limport 'preprocessing.h'
 

@implementation Input (InputInitFunctions) 

- zeroMeanForStatistics:someStatistics
 
andDistribution: (const char *)distributionName
 

DIST_IMP distInitFunction=(DIST_IMP) [somestatistics methodFor:sel_getUid((STR)distribu 
tionName)] ;
 

double stddev= STDDEV_GENERAL;
 
double mean=O.O;
 

distInitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev); 
return self; 

- shortLinearRegressionForStatistics:someStatistics
 
andDistribution: (const char *)distributionName
 

DIST_IMP distInitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid((STR)distribu 
tionName)] ; 

double stddev= STDDEV_GENERAL; 
double shortLinearRegr=[[[NXApp delegate) currentEntryJ 

linearRegressionCoefficientForDays:S 
andXPar:'index' 
andYPar:'close'); 

const double stddevShortLinearRegr=lS.98; 
double mean=sigrnoidLinearLowToHigh(shortLinearRegr,O.O,1.O/(2.O*stddevShortLinearRegr) 

) ; 

distInitPunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev);
 
return self;
 

- longLinearRegressionForStatistics:someStatistics 
andDistribution: (const char *)distributionName 

DIST_IMP distInitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid((STR)distribu 
tionName)] ; 

double stddev= STDDEV_GENERAL, 
double longLinearRegr=[[[NXApp delegate) currentEntry] 

linearRegressionCoefficientForDays:SO 
andXPar:'index' 
andYPar:'close']; 

const double stddevLongLinearRegr=S.29; 
double mean=sigrnoidLinearLowToHigh(longLinearRegr, 0.0, 1.0/(2.0 *stddevLongLinearRegr»; 

distInitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev);
 
return self;
 

- fastMacdForStatistics:someStatistics 
andDistribution: (const char *)distributionName 

DIST_IMP distInitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid((STR)distribu 
t ionName) ] ; 

double stddev= STDDEV_GENERAL; 
double mean=[[[NXApp delegate) currentEntry] 

macdDecisionForDays:3 
andShortMA:6 
andLongMA:19 
andParName:·close­
depreciated:O.OS) : 

distlnitFunction(someStatistics, sel_getUid((STR}distributionName), mean, stddev); 
return self; 

- slowMacdForStatistics:someStatistics
 
andDistribution: (const char *)distributionName
 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid«(STR)distribut 
ionName) J ;
 

double stddev= STDDEV_GENERAL;
 
double mean=[[ [NXApp delegate] currentEntry]
 

macdDecisionForDays:9 
andShortMA:19 
andLongMA: 39 
andParName:'close' 
depreciated:O.OSJ; 

distInitFunction(someStatistics, sel_getUid((STR)distributionName), mean, stddev); 
return self: 

- volumeForStatistics:someStatistics
 
andDistribution: (const char *)distributionName
 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid((STR)distribut 
ionName) ] ; 

double stddev= STDDEV_GENERAL; 
double volume=[[[NXApp delegate] current Entry] expMovingAverageForDays:3 andParName:'vo 

lume'] ; 
const double avgVolume=168.0; 
const double stddevVolurne=34.2; 
double mean=sigrnoidLinearLowToHigh(volume/1000000.0)-avgVolume,0,1.0/(2.0*stddevVolume 

}) ; 

distInitFunction(someStatistics, sel_getUid((STR)distributionName), mean, stddev);
 
return self;
 

- longVolumeForStatistics:somestatistics
 
andDistribution: (const char *)distributionName
 

DIST_IMP distInitFunction=(DIST_IMP) [somestatistics methodFor:sel_getUid((STR)distribut 
ionName)] ; 

double stddev= STDDEV_GENERAL; 
double volume=[[[NXApp delegate] currentEntry] expMovingAverageForDays:20 andParName:'v 

olume'] ; 
const double avgLongVolume=168.0; 
const double stddevLongVolume=22.2; 
double mean=sigrnoidLinearLowToHigh((volume/1000000.0)-avgLongVolume,0,1.0/(2.0*stddevLo 

ngVolume) ; 

distlnitFunction(someStatistics, sel_getUid((STR)distributionName), mean, stddev);
 
return self;
 

- onBalanceVolumeForStatistics:someStatistics
 
andDistribution: (const char *)distributionName
 

DIST_IMP distInitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid((STR)distribut 
ionName) ]; 

double stddev= STDDEV_GENERAL; 
double obv=[((NXApp delegate] currentEntry] onBalanceVolumeForParName:'close')/lOOOOOOO 

~<._~; 

~
 



\.:;1..... InputIriitFurtcti6tis;rrt ::::: ::. 

double mean.sigmoidLinearLowToHigh(obv,-.67,1.0/(2.0*2.910140564)); 

distlnitFunction(someStatistics, sel_getUid«STR)distributionName), mean, stddev); 
return self; 

volumeReversalSignalForStatistics:someStatistics
 
andDistribution: (const char *)distributionName
 

DIST_IMP distlnitFunction.(DIST_IMP) [someStatistics methodFor:sel_getUid«STR)distribu 
tionName)] ; 

double stddev. STDDEV_GENERAL; 
double mean=[[[NXApp delegate] currentEntry] volumeReversalDays:l depreciated:O.40J; 

distlnitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev); 
return self; 

- volumeReversalPeriodForStatistics:someStatistics 
andDistribution: (const char *)distributionName 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid«STR)distribu 
tionName)] ; 

double stddev= STDDEV_GENERAL; 
double mean=[[[NXApp delegate] currentEntry] volumeReversalDays:l depreciated:O.05]; 

distlnitFunction (someStatist ics, sel_getUid«STR)distributionName), mean, stddev); 
return self; 

- weeklyVolumeReversalSignalForStatistics:someStatistics 
andDistribution:(const char *)distributionName 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid«STR)distribu 
tionName)] ; 

double stddev= STDDEV_GENERAL; 
double mean=[[[NXApp delegate] currentEntry] volumeReversalDays:5 depreciated:O.40]; 

distlnitFunction(someStatistics, sel_getUid«STR)distributionName), mean, stddev);
 
return self:
 

- weeklyVolumeReversalPeriodForStatistics:someStatistics 
andDistribution:(const char *)distributionName 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid«STR)distribu 
tionName)] : 

double stddev= STDDEV_GENERAL; 
double mean.[[[NXApp delegate] current Entry] volumeReversalDays:5 depreciated:O.05]; 

distlnitFunction(someStatistics, sel_getUid«STRjdistributionNamej, mean, stddev);
 
return self;
 

volumeShortLinearRegressionForStatistics:someStatistics
 
andDistribution:(const char *)distributionName
 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid«STR)distribu 
tionNamel] : 

double stddev= STDDEV_GENERAL; 
double volShortLinRegr=[[[NXApp delegate] currentEntry] 

linearRegressionCoefficientForDays:3 

andXPar:" index" 
andYPar:"volume"J; 

const double stddevVolShortLinRegr=22.8; 
double mean.sigmoidLinearLowToHigh(volShortLinRegr/lOOOOOO.O,O.0,1.0/(2.0*stddevVolShor 

tLinRegrl) : 

distlnitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev);
 
return self;
 

- volumeLongLinearRegressionForStatistics:someStatistics 
andDistribution: (const char *)distributionName 

DIST_IMP distlnitFunction.(DIST_IMP) [someStatistics methodFor:sel_getUid«STR)distribut 
ionName)] ; 

double stddev. STDDEV_GENERAL; 
double volLongLinRegr=[[[NXApp delegate] currentEntryJ 

linearRegressionCoefficientForDays:20 
andXPar:"index" 
andYPar:"volume"j; 

const double stddevVolLongLinRegr=2.7; 
double mean.sigmoidLinearLowToHigh(volLongLinRegr/lOOOOOO.O,O.0,1.0/(2.0*stddevVolLongL 

inRegr)) ; 

distlnitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev);
 
return self;
 

- highLowSpreadForStatistics:someStatistics 
andDistribution:(const char *JdistributionName 

DIST_IMP distlnitFunction.(DIST_IMPj [someStatistics methodFor:sel_getUid«STRJdistribut 
ionName)); 

double stddev = STDDEV_GENERAL; 
const double avgHighLowSpread = 4.26; 
const double stddevHighLowSpread = 0.405; 
double mean = sigmoidLinearLowToHigh([[[NXApp delegate] currentEntry] 

highLowSpread:3]-avgHighLowSpread,0.0,1.0/(2.0*s 
tddevHighLowSpread)) ; 

distlnitFunction(someStatistics, sel_getUid( (STRjdistributionName), mean, stddev):
 
return self;
 

- weeklyHighLowSpreadForStatistics:someStatistics 
andDistribution:(const char *JdistributionName 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid«STR)distribut 
ionName)] ; 

double stddev = STDDEV_GENERAL; 
const double avgWeeklyHighLowSpread = 4.84; 
const double stddevWeeklyHighLowSpread = 0.404; 
double mean = sigmoidLinearLowToHigh([[[NXApp delegate] currentEntry] 

highLowspread:lO]-avgWeeklyHighLowspread, 
0.0, 
1.0/(2.0*stddevWeeklyHighLowSpread)) ; 

dist InitFunction (someStatistics, sel_getUid«STR)distributionName), mean, stddev);
 
return self;
 

- highLoWSpreadShortLinearRegressionForStatistics:someStatistics 
andDistribution: (const char *JdistributionName 



-
IhputMtFtitlcti6h§Gfi .....
 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid(STR)distribu 
tionName)] ;
 

double stddev = STDDEV_GENERAL;
 
const double stddevHighLowSpreadShortLin = 0.19327;
 
double mean, hI;
 
static id lastEntry=nil;
 

if(lastEntry!=[[NXApp delegate] lastEntry]) 
lastEntry=[[[NXApp delegate] lastEntry] ensureHighLowSpreadAvailableUpToNoteForDays: 

3J; 
hl=[[[NXApp delegateJ currentEntryJ linearRegressioncoefficientForDays:3 andXPar:"inde 

x" andYPar: "HLSpread_3 "J ; 
mean = sigmoidLinearLowToHigh(hl,0.0,1.0/(2.0*stddevHighLowSpreadShortLin»; 

distlnitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev); 
return self; 

highLowSpreadLongLinearRegressionForStatistics:someStatistics
 
andDistribution: (const char *)distributionName
 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid(STR)distribu 
tionNamel] ; 

double stddev = STDDEV_GENERAL; 
const double stddevHighLowSpreadLongLin = 0.04474; 
double mean, hI; 
static id lastEntry=nil; 

if(lastEntry!=([NXApp delegate] lastEntryJ) 
lastEntry=[[[NXApp delegate] lastEntryJ ensureHighLowSpreadAvailableUpToNoteForDays: 

10J; 

hl=[[[NXApp delegateJ currentEntryJ linearRegressioncoefficientForDays:20 andXPar:"ind 
ex" andYPar:"HLSpread_10"J; 

mean = sigmoidLinearLowToHigh(hl,0.0,1.0/(2.0*stddevHighLowSpreadLongLin»; 

distlnitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev);
 
return self;
 

- santaForStatistics:someStatistics 
andDistribution: (const char *)distributionName 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid«(STR)distribu 
tionName)] ; 

double stddev= STDDEV_GENERAL; 
double mean=[[[NXApp delegateJ' currentEntryJ santaClaus]; 

distlnitFunction(someStatistics, sel_getUid((STR)distributionName), mean, stddev);
 
return self;
 

- santaYearlnfluenceForStatistics:someStatistics 
andDistribution: (const char *)distributionName 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid((STR)distribu 
tionName)J; 

double stddev= STDDEV_GENERAL; 
double mean=(double) [[[NXApp delegateJ currentEntryJ santaClausYearlnfluenceForParName 

:"close"J; 

distlnitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev);
 
return self;
 

( 

- mondayForStatistics:someStatistics 
andDistribution: (const char *)distributionName 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid«STR)distribut 
ionName) J ; 

double stddev= STDDEV_GENERAL; 
double mean=linearLowToHigh( (double) [([NXApp delegateJ currentEntryJ weekday], (double)S 

UNDAY, (double) SATURDAY) ; 

distlnitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev);
 
return self;
 

- electioncycleForStatistics:someStatistics 
andDistribution: (const char *)distributionName 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid«(STR)distribut 
ionName)J; 

double stddev= STDDEV_GENERAL; 
double mean=linearLowToHigh( (double) ([[[NXApp delegate] currentEntry] yearJ % 4),0.0,3. 

0) ; 

distlnitFunction(someStatistics, sel_getUid( (STR)distributionName), mean, stddev);
 
return self;
 

- hussein:someStatistics 
andDistribution: (const char *)distributionName 

DIST_IMP distlnitFunction=(DIST_IMP) [someStatistics methodFor:sel_getUid((STR)distribut 
ionName)J; 

double stddev= STDDEV_GENERAL; 
double biModality=0.8; 

double fromTime=timeTag(91,1,13,EST_ZONE), toTime=timeTag(91,1,21,EST_ZONE);
 
double currentTime=[[[NXApp delegate] currentEntryJ timeTagJ;
 

if((currentTime<fromTime) I I (currentTime>toTime» 
[self zeroMeanForStatistics:someStatistics andDistribution: "fillWithMean:stdDev: "J ; 

else 
( 

distlnitFunction{someStatistics, sel_getUid( (STR)distributionName), biModality, std 
dey) ; 

) 

return self; 

@end 

) 



Input-h·········
 
~import "StatisticsView.h" 

typedef id (*INPUT_IMP) (id, SEL, id, const char*): 
typedef id (*DIST_IMP) rid, SEL, double, double): 

@interface Input:StatisticsView 
( 

id dependentRulesIdentifiers: //matrix of Buttons 
id inputInitFunctionNameField: 
id distributionInitFunctionNameField: 

- forceUpdate:sender:
 
- performClick:sender:
 
-(BOOL)dependentRules:
 
-lid) outputUpdated:
 
-lid) batchModeUpdated:
 
- propagateChange:sender:
 
- batchMode:sender:
 
- batchMode:sender:
 
-(BOOL)isprocessedChangeSignificant:sender;
 
-lid) write: (NXTypedStream ')stream;
 
-lid) read: (NXTypedStream *lstream:
 
//-(id)awake;
 

@end
 



"Input.h" 
·statistics.h­
<appkit/Matrix.h> 
<objc/List. h> 
<stdlib.h> 

IIiptit.m . 
[[ [dependentRulesldentifiers cellListJobjectAt:i]performClick:selfJ; 
[[ [dependentRulesldentifiers cellList]objectAt:i]batchMode:self], 
[[ [dependentRulesIdentifiers cellListlobjectAt:i]performClick:selfJ; 

@implementation Input 

- forceUpdate:sender 

return [self propagatechange:self]; 

- performClick:sender 

return self; 

-(BOOL)dependentRules 
(
 

unsigned int i=O;
 
int numCells=(dependentRulesldentifiers cellCount];
 
BOOL dependentRules=NO;
 

whilelldependentRules==NO) && (i<numCells»
 
(
 

if I [((dependentRulesldentifiers cellListJ objectAt:i] target] !=nil)
 
dependentRules=YES;
 

iff; 

)
 
return dependent Rules;
 

-rid) outputUpdated 
( 

unsigned int i; 
int numCells=[dependentRulesldentifiers cellCount]; 

(self update: [self statistics]];
 
forli=O;i<numCells;i++)
 

( 
[[(dependentRulesldentifiers cellList]objectAt:i]performclick:selfJ; 
(([dependentRulesldentifiers cellList]objectAt:iJpropagatechange:selfJ; 
[[[dependentRulesldentifiers cellList]objectAt:i]performClick:self]; 

) 

return sel f; 

-lid) batchModeUpdated 
( 

unsigned int i; 
int numCells=[dependentRulesldentifiers cellCount]; 

if([self dependentRules]==NO) 
( 

printf ('%s \tmean %f \tstddev H\n', [self title). [[self statistics] mean], [[sel 
statistics] standardDeviationJ); 

} 

else 
( 

for(i=O;i<numCells,i++)
 
(
 

ret urn sel f ; 

- propagateChange:sender 

if([self isProcessedChangesignificant:sender]) 
( 

Ilif there are significant changes, promote them 
[self outputUpdated] ; 

) 

return self; 

- batchMode:sender 
( 
II ifl[self isProcessedChangeSignificant:sender]) 
II ( 
II Ilif there are significant changes, promote them 
II (self batchModeUpdated]; 
II ) 

(self batchModeUpdated]; 
return self; 

-(BOOL)isProcessedChangeSignificant:sender 
( 

SEL inputlnitFunctionSelector=sel_getUid«STR) [inputlnitFunctionNameField stringValue 
J) ; 

INPUT_IMP inputlnitFunction; 

Iitest if the selectors are valid 
if(! ([self respondsTo:inputlnitFunctionSelectorJ 

&& 
[[Statistics class] instancesRespondTo:sel_getUid(STR) [distributionlnitFunction 

NameField stringValue])]» 
( 

char ·tempString=NXZoneCalloc[[self zone), 1023, sizeof(char»; 

sprintf[tempstring, 'Either your Input Init Function (IIF) and/or \nDistributi 
on Init Function (DIF) \nis/are invalid in %s.\nCheck spelling!', [self title]); 

[self showError:tempString]; 
NXZoneFreel[self zone], tempString); 
return NO; 

) 

inputlnitFunction=(INPUT_IMP) [self methodFor:inputlnitFunctionSelectorJ; 
lido updates 
inputInitFunction(self, inputInitFunctionSelector, [self statistics], (const char .) [di 

stributionlnitFunctionNameField stringValueJ); 

Iitest for significance for speed up 
Ilcan use variable in future implementations to have different 
Iispeed vs. precision trade-offs 
Ilreturn if changes were significant 
IIYES for the time being 
return YES; 

-lid) write: (NXTypedStream ·)stream 
.'.-'--, 

: ----) 



Input.Ill
 
[super write:stream] ;
 
NXWrite0bjectReference(stream, dependentRulesldentifiers);
 
NXWrite0bjectReference(stream, inputlnitFunctionNameField);
 
NXWrite0bjectReference(stream, distributionlnitFunctionNameField);
 
return self;
 

-lid) read: (NXTypedStream *)stream 
( 

[super read:stream];
 
dependentRulesldentifiers = NXReadObject(stream);
 
inputlnitFunctionNameField = NXReadObject(stream);
 
distributionlnitFunctionNameField = NXReadObject(stream);
 
return self;
 

II-(id)awake 
II( 
II 
II 
I/J 

[super 
return 

awake]; 
sel f; 

@end 



...
 

>··prepr6cessWg.h 
limport "globals.h" 

double linearLowToHighldouble value, double minValue, double maxValue); 
double sigmoid (double value, double threshold, double slope); 
double sigmoidLinearLowToHighldouble value,double height ,double slope); 
double depreciateldouble prevSignal, double percentage); 

( 
-~1 



.·p1"ept"ocessing~c
 
timport "preprocessing.h" 
timport <math.h> 

double linearLowToHigh(double value, double minValue, double maxValue) 
(
 

const double low=(double)LOW;
 
const double high=(double)HIGH;
 

return (value - minValue) / (maxValue - minValue) * (high - low) + low; 

double sigmoid(double value, double threshold, double slope) 
( 

return 1.0/(1.0+exp(-(value*slope*4.0-threshold*slope*4.0))); 

/* results in -1 -> +1 output */
 
double sigmoidLinearLowToHigh(double value,double height,double slope)
 
(
 

return sigmoid(value, (-height) *(l.O/slope) ,slope)*((double) (HIGH - LOW))+(double)LOW 

double depreciate(double prevSignal, double percentage) 
( 

double mean=((double)HIGH) - ((double) (HIGH - LOW))/2.0; 

return (mean - prevSignal) * percentage + prevSignal; 



Ittil&Fiirlcti6h.s,h
 

.... 

#import <appkit/nextstd.h> 1* MAX defined *1
 
hmport 'Rule.h"
 
limport "globals.h"
 

#def ne MONDAY_SIGNIFICANCE 0.1
 
Idef ne ELECTION_SIGNIFICANCE 0.1
 
Idef ne FAST_MACD_SIGNIFICANCE 0.3
 

@interface Rule IRuleFunctionsl
 
II no new instance variables in category
 

II additional methods
 
- identical: (double *linputA withReserved: (double *)inputB andOutput:(double *)output;
 
- negate: (double *linputA withReserved:(double *)inputB andOutput: (double *)output;
 
- absolute: (double *linputA withReserved: (double *)inputB andOutput: (double *)output;
 
- heighten: (double *linputA by: (double *)percentage andOutput: (double *)output;
 
- lower: (double *)inputA by, (double *)percentage andOutput: (double *)output;
 
- adjust: (double *)inputA by: (double *)inputB andOutput: (double *)output;
 
- mondayWithInput: (double *)inputA andWeekday: (double *)squashedWeekday andOutput: (doubl
 
e *)output;
 
- electionCycleWithInput:(double *)inputA andElectionYear: (double *)squashedElectionYear
 
andOutput: (double *)output; 

- weightEquallyWithInputs: (double *) inputA : (double *)inputB andOutput:(double *Ioutput; 
- weightTwoThirdsInput: (double *linputA withOneThirdInput: (double *)inputB andOutput: (do 
uble *)output; 
- weightHighlySignificantInput:(double *)inputA withLessSignificantInput: (double *)input 
B andOutput: (double *Ioutput; 
- weightEquallyAndNegateWithInputs:(double *linputA : (double *)inputB andOutput: (double 
*)output; 
- absoluteDifferenceOfInputs: (double *)inputA : (double *)inputB andOutput: (double *)outp 
ut; 

@end 

~) 



...................
 

RuleFundiohs.ih .... ······················.··I]~i!il!~~:(~::::::\\::::ii;ji~!~~l 
limport "RuleFunctions.h" 
limport "preprocessing.h" 

@implementation Rule (RuleFunctions) 

- identical: (double ')inputA withReserved: (double ')inputB andOutput: (double ')output 

II probability of reserved should be uniformly distributed 
II for LDW inputA=normVolShortLinRegr 
II normVolShortLinRegr=sigmoidLinearLowToHigh (volShort LinR egr/1000000.0,O,l.01 

(2.0'22.8) ) 
II volShortLinRegr=(aNote linearRegressionCoefficientForDays:3 andXPar:"index" 

andYPar:"volume")) 
II 
II for LDC inputA=normalizedVolLongLinRegr 
II normVolLongLinRegr=sigmoidLinearLowToHigh(volLongLinRegr/lOOOOOO.O,O,l.0/(2 

.0'2.7» 
II volShortLinRegr=[aNote linearRegressioncoefficientForDays:20 andXPar:"index 
andYPar:"volume") 
II 
II for VSW inputA=normHLSpread 
II normHLSpread=sigmoidLinearLowToHigh([aNote highLowSpread:3}-4.26,O.O,l.0/(2 

.0'0.405» 
II 
II for VSC 
II normWeeklyHLSpread=sigmoidLinearLowToHigh([aNote highLowSpread:10)-4.84,0.0 

,1.0/(2.0'0.404) ) 
II 
II for VDW 
II normHLSpreadShortLin=sigmoidLinearLowToHigh(HLSpreadShortLin,1.0/(2.0'O.193 

27» 
II HLSpreadShortLin=[aNote linearRegressionCoefficientForDays:3 andXPar:"index 

" andYPar:"HLSpread-3"]) 
II must ensure that parameter HLSpread_3 exists: [lastNote ensureHighLowSpread 

AvailableUpToNoteForDays:3] 
II 
II for VDC 
II normHLSpreadLongLin=sigmoidLinearLowToHigh(HLSpreadLongLin,1.0/(2.0'O.04474 

) 

II HLSpreadLongLin=[aNote linearRegressionCoefficientForDays:20 andXPar:"index 
" andYPar:"HLSpread_10"]) 

II must ensure that parameter HLSpread_3 exists: [lastNote ensureHighLowSpread 
Avai lableUpToNoteForDays: 10] 

('output) = 'inputA; 
return self; 

- negate: (double ')inputA withReserved:(double ')inputB andOutput: (double ')output 

II probability of reserved should be uniformly distributed 
II for PDW.1, PDC.l: inputA=OBV 
II OBVa=[aNote onBalanceVolumeForParName:"close"]/100000000.0); 
II OBV = sigmoidLinearLowToHigh( OBVa - 12.27, 0.0, 1.0/(2.0'9.101» 

('output)=«'inputA)
 
- (double)LOW - «double) (HIGH - LOW»/2.0)
 
, (-1.0)
 
• «double) (HIGH - LOW»/2.0 • (double) LOW;
 

return self;
 

- absolute: (double ')inputA withReserved:(double ')inputB andOutput: (double ')output 

II probability of reserved should be uniformly distributed 
II for LSW.1 inputA=volumeReversalHD 
II volumeReversalHD=depreciate(prevVolRev,0.40) II high depreciation 
II thisVolumeReversal=[aNote volumeReversalDays:1] 
II 
II for LSC.1 inputA=weeklyVolumeReversalHD 
II weeklyVolumeReversalHD=depreciate(prevWeeklyVolRev, 0.4 0) II high depreciation 
II thisWeeklyVolumeReversal=[aNote volumeReversalDays:5) 

if«'inputA) < ((double) (HIGH - LOW»)/2.0)
 
[self negate:inputA withReserved:inputB andOutput:output);
 

return self;
 

II for now, we will have very simple rules that we expand upon having the 
II framework set up. 
- heighten: (double ')inputA by: (double ')percentage andOutput: (double ')output 

const double high= (double) HIGH; 

('output) = (high- ('inputA» , ('percentage). ('inputA) ;
 
if«'output» HIGH)
 

('output) = HIGH;
 
return self;
 

- lower: (double ')inputA by: (double ')percentage andOutput: (double ')output 

const double low=(double) LOW; 

('output) = (low-('inputA») , ('percentage) • ('inputA);
 
if«'output)< LOW)
 

('output) = LOW;
 
return sel f;
 

- adjust: (double ')inputA by: (double ')inputB andOutput: (double ')output 

II for PSW: inputA=shortLinear, inputB=santa 
II short Linear ranges from low to high 
II shortLinear=sigmoidLinearLowToHigh([aNote linearRegressionCoefficientForDays:5 
II andXPar:-index­
II andYPar:"close"] , 
II 0.0,1.01 (2 .0'15.98)); 
II santa, when positive should be about 0.3 
II santa, when no influence should be about 0 
II santa=[aNote santaClaus] 
II 
II for PSC.3: inputA=output of PSC.2 inputB=santaYearly
 
II santaYearly=[aNote santaClausYearInfluenceForParName:"close"] ,
 
II 
II for PDW.2: inputA=PDW.1 inputB=factmacd
 
II fastmacd=depreciate(prevFactMacd,O.05)
 
II thisMacd=[aNote
 
II macdDecisionForDays:3
 
II andShortMA:6
 
II andLongMA:19
 
II andParName:"close") ;
 
II
 
II for PDW.3: inputA=PDW.2 inputB=volumeReversal
 
II volumeReversa1=depreciate(prevVolRev, 0.05)
 
II thi sVol umeReversa 1= [aNote volumeReversalDays:1)
 
II for PDW.4: inputA=PDW.3 inputB=santa
 



....·f{Ul~FtiftCHbffs.ffi> <\(}> >< »\j
 

... 

II 
II for PDC.2: inputA=PDC.1 inputB=slowrnacd 
II slowrnacd=depreciate(prevSlowMacd,O.05) 
II thisMacd=[aNote 
II macdDecisionForDays:9 
II andShortMA:19 
II andLongMA:39 
II andParName:·close-]; 
II 
II for PDC.3: inputA=PDC.2 inputB=weeklyVolumeReversal 
II weeklyVolumeReversal=depreciate(prevWeeklyVolRev, 0.05) 
II thisWeeklyVolumeReversal=[aNote volumeReversalDays:5] 
II 
II for LSW.2: inputA=volume inputB=LSW.1 
II volume=sigmoidLinearLowToHigh«volume3d/1000000.0)-168.0 ,0,1.0/(2.0*34.2) 
II volume3d=[aNote expMovingAverageForDays:3 andParName:'volume'] 
II 
II for LSC.2: inputA=volume inputB=LSC.1 
II volume=sigmoidLinearLowToHigh(volume20d/1000000.0)-168. 0,0,1.0/(2.0*22.2» 
II volume20d=[aNote expMovingAverageForDays:20 andParName:'volume') 
const double mean= «(double)HIGH) - (double) (HIGH - LOW))/2.0; 
double negB= -(*inputB); 

if«*inputB»= mean)
 
[self heighten:inputA by:inputB andOutput:output];
 

else
 
[self lower:inputA by:&negB andOutput:output];
 

return self; 

- mondayWithInput:(double *)inputA andWeekday: (double *)squashedWeekday andOutput: (doubl 
e *)output 

II for PSC.1: inputA=longLinear 
II longLinear=sigmoidLinearLowToHigh([aNote linearRegressionCoefficientForDays:50 
II andXPar:'index' 
II andYPar:'close'], 
II 0.0,1/(2.0*5.29)); 
II weekday (output Sun=O to Sat=6) is linearly mapped low to high by: 
II weekday=linearLowToHigh(weekday, (double) SUNDAY, (double) SATURDAY) 
double tuesday = linearLowToHigh(double)TUESDAY, (double) SUNDAY, (double) SATURDAY) ; 

if«*squashedWeekday) < tuesday)
 
(
 

double adjust Percentage = (double) MONDAY_SIGNIFICANCE;
 

[self adjust:inputA by:&adjustPercentage andOutput:output]; 
) 

else
 
*output = *inputA;
 

return self;
 

- electionCycleWithInput: (double *)inputA andElectionYear: (double *)squashedElectionYear 
andOutput: (double *)output 

( 
II for PSC.2: inputA=PSC.1 
II electionYear (output ... ,88,89, ... ) is linearly mapped low to high by according to 

election cycle: 
II electionYear=linearLowToHigh(year % 4,0,3); 0,3 are election years 
II 
II for PDC.3: inputA=PDC.2 electionYear 
double midPeriodBegin = linearLowToHigh(1,0,3); 
double midPerio~~Dd = linearLowToHigh(2,0,3);

( 

double adjust Percentage = (double) ELECTION_SIGNIFICANCE; 

if( ((*squashedElectionYear) < midPeriodBegin) && ((*squashedElectionYear) > midPeriodE 
nd) ) 

[self adjust:inputA by:&adjustPercentage andOutput:output); 
else 

(
 
adjust Percentage = - adjustPercentage;
 
[self adjust:inputA by:&adjustPercentage andOutput:outputj;
 

) 

return sel f ; 

- weightEquallyWithInputs: (double *)inputA : (double *)inputB andOutput: (doUble *)output 

const double weight2nd=0.5; 

(*output)=(1.0-weight2nd) * (*inputA) + weight2nd * (*inputB);
 
return sel f ;
 

- weightTwoThirdsInput:(double *)inputA withoneThirdInput: (double *)inputB andOutput: (dou 
ble *)output 
( 

const double weight2nd=1.0/3.0; 

(*output)=(1.0-weight2nd) * (*inputA) + weight2nd * (*inputB);
 
return self;
 

- weightHighlysignificantInput:(double *)inputA withLessSignificantInput:(double *)inputB 
andOutput: (doUble *)output 

( 
const double weight2nd=0.2; 

(*output) = (1.0-weight2nd) * (*inputA) + weight2nd * (*inputB);
 
ret urn sel f ;
 

- weightEquallyAndNegateWithInputs:(double *)inputA : (double *)inputB andOutput: (double * 
)output 
( 

const double weight2nd=0.5; 

(*output)=(1.0-weight2nd) * (*inputA) + weight2nd * (*inputB); 

[self negate:output withReserved: (double *)NULL andOutput:output);
 
return self;
 

- absoluteDifferenceOfInputs: (doUble *)inputA : (doUble *)inputB andOutput: (doUble *)outpu 
t 
( 

double diff = (*inputA) - (*inputB); 

(*output) = LOW + MAX ( diff, -diff ); 
return self; 

@end 

..~ 

) 



'Input .h' 

Rule,h 

typedef id ('RF_IMPl (id, SEL,const double',const double', double');
 
typedef id ('JDF_IMP) (id, SEL,const double',const double',const double',const double', d
 
ouble');
 
//typedef id ('MOD_IMP) (id, SEL, id, const double', double');
 

@interface Rule:Input
 
( 

id inputRulesIdentifiers; //matrix of Buttons 
id inputRules[2] ; 
id jointDistributionFunctionNameField; 
id ruleFunctionNameField; 

- propagateChange:sender;
 
- batchMode:sender;
 
-(BOOL)isProcessedChangeAtlnput: (unsigned intlinputNumber significant:sender;
 
-rid) write: (NXTypedStream ')stream;
 
-rid) read: (NXTypedStream ')stream;
 
//-(id)awake,
 

@end
 



Ru.le.riJ.· .
 
Hmport "Rule.h"
 
.import "Statistics.h"
 
.import <appkit/Matrix.h>
 
.import <objc/List.h>
 
.import <stdlib.h>
 

@implementation Rule 

propagateChange:sender 

lido first what is necessary to update output if anything 
if([self isProcessedchangeAtlnput:[inputRulesldentifiers selectedRow] significant:se 

nder]) 

Ilif there are significant changes, promote them
 
[self outputUpdated];
 

) 

return self; 

- batchMode:sender 
( 
II lido first what is necessary to update output if anything 
II if([self isProcessedChangeAtlnput: [inputRulesldentifiers selectedRow] significant: 
sender]) 
II ( 
II Ilif there are significant changes, promote them 
II [self outputUpdated], 
II ) 

II only propagate if not one of the input has already been propagated.
 
if«inputRules[O]!:nil) && (inputRules[l]!:nil»
 

[self batchModeUpdated];
 
inputRules[[inputRulesldentifiers selectedRowl] : nil;
 
return sel f;
 

-(800L)isProcessedchangeAtlnput: (unsigned int)inputNumber significant:sender 
( 

SEL ruleFunctionSelector:sel_getUid( (STR) [ruleFunctionNameField stringValuel);
 
RF_IMP ruleFunction,
 
SEL jointDistributionFunctionSelector:sel_getUid«STR) (jointDistributionFunctionName
 

Field stringValue]); 
JDF_IMP jointDistributionFunction; 
unsigned int inputRuleCount:[inputRulesldentifiers ceIICount]; 
id *inputStatistics:NXZoneCalloc([self zone), inputRuleCount, sizeof(id»; 
double *binSize:NXZoneCalloc([self zone], inputRuleCount, sizeof(double); 
double *counter:NXZoneCalloc([self zone], inputRuleCount, sizeof(double»; 
double *upperBound:NXZoneCalloc([self zone], inputRuleCount, sizeof(double»; 
double binSizeSelf:( (double) (* [[self statistics] range]) .size.width) I ((double) [[self 

statistics] binCount]);
 
unsigned int i;
 
800L completelylnitializedSources:YES;
 

Iitest if the selectors are valid 
iff! ([self respondsTo:jointDistributionFunctionSelector]&&[self respondsTo:ruleFunct 

ionSelector]» 
( 

char *tempString:NXZoneCalloc((self zone], 1023, sizeof(char»; 

sprintf(tempString, "Either your Rule Function (RF) and/or \nJoint Distributi 
on Density Function (JDF) \nis/are invalid in ~s.\nCheck spelling ' ", [self title); 

[self showError:tempstring]; 
return NO; 

ruleFunction:(RF_IMP) [self methodFor:ruleFunctionSelector]; 
jointDistributionFunction:(JDF_IMP) [self methodFor:jointDistributionFunctionSelector] 

Ilcache the sender in the inputRules, this is necessary, since we always get
 
Iionly the pointer to the object that was updated, however not to the other
 
Ilinput, thus by caching, we have all pointers, when all inputs have changed
 
Ilat least once (i.e have at least been initialized)
 
inputRules[inputNumber]:sender;
 
Ilcalculate the neccesary binSizes, a binSize of 0.0 indicates that the
 
Ilappropriate sender is unusable for use as input statistics provider
 
for(i:O;i<inputRuleCount;i++)
 

( 
if((inputRules[i] !:nil)&&((inputRules[i] respondsTo:@selector(statistics)]» 

( 

inputStatistics[i]:[inputRules[i] statistics]; 
upperBound [i] : ( (double) (* ( [inputStatistics [i] range]» .size. widt h) + ( ( 

double) (* ( [inputStatistics [i] range]». origin. x) ; 
binSize [i] : ( (double) (* (input Stat istics (i] range]). si ze. width) I ( (doubl 

e) [inputStatistics [i] binCount]); 
) 

else 
( 

inputStatistics[i]:nil; 
binSize[i]:O.O; 
completelylnitializedSources:NO; 

)
 
if (completelylnitializedSources)
 

( 
lido updates: 
Ilfirst save some time by preventing a constant update of the distribution 
IIATTENTION: calls to 10ckDistribution have to be balanced 
II with calles to unlockDistribution similar 
II to calls to 10ckFocus and unlockFocus ... 
([self statisticsllockDistribution]; 
Iithen clear out the current output, since summing for integration has to 
Iistart out with a zero value 
[[self statistics]zeroOut]; 
Iinow integrate: 
Iishould be done at some point in the future by means of a recursive 
Ilversion of forI) i.e should be a inputRuleCount deep nested loop 
Iithat calls at the innermost loop a function that takes inputRuleCount+1 
Ilarguments (i.e. all inputRuleCount inputs plus the output value) etc. 
Ilfor now we Use only two inputs and thus hardcode that ... 
for(counter(O]:( «double) (* [inputStatistics[OJ range]) .origin.x) +(O.s*binSize 

[0]) ) ; 

counter[O] <upperBound[O] ; 
counter[O]+:binSize[O] ) 
( 

for(counter[l]:( «double) (* [inputStatistics[l] range]) .origin.x) +(0.5 
*binSize[l]» ; 

counter[l] <upperBound[l] ; 
counter[l]+:binSize[l] ) 
( 

double ruleFunctionResult, jointProbabilityDensity; 

ruleFunction(self, 
ruleFunctionSelectar, 
&counter[O] , 
&counter[l] , 
&ruleFunctionResult) ; 

jointDistributionFunction(self, 
jointDistributionFunctionSelector, 
&counter[O] , -) 



~,*=:""i:m®"""'~ . ,i:lttlr~~1&1fmm 

Rule.fu ···I~lllt11ii~~;'~~~1'il 
[inputStatistics[OJ densityAt,coun 

ter[Ol J, 
&counter [1] , 
[inputStatistics[l] densityAt:coun 

ter[l] ], 
&jointProbabilityDensitYI; 

[[self statistics]add: ((jointProbabilityDensity'binSize[Oj'b 
inSize[IJl/binSizeSelf) toDensityAt,ruleFunctionResultj; 

} 
)
 

Ilunlock the distribution and sync it with the new density function
 
[[ [self statisticsJunlockDistributionJupdateDistributionJ;
 
Iitest for significance for speed up
 
Ilcan use variable in future implementations to have different
 
Iispeed vs. precision trade-offs
 

Ilreturn if changes were significant
 
IIYES for the time being
 
return YES;
 

) 

else
 
return NO;
 

-lid) write, (NXTypedStream ')stream 
I 

[super write:streamJ ;
 
NXWriteObjectReference(stream, inputRulesldentifiersl;
 
NXWriteObjectReference(stream, jointDistributionFunctionNameField);
 
NXWriteObjectReferencelstream, ruleFunctionNameField);
 
return self;
 

-lid) read'INXTypedStream ')stream 
( 

[super read,stream]; 
inputRulesldentifiers = NXReadObject(stream); 
jointDistributionFunctionNameField = NXReadObject(stream); 
ruleFunctionNameField = NXReadObject(stream); 
return self; 

11-(id) awake 
III
 
II [super awake];
 
II return sel f:
 
III 

@end 



Statisticsview~h
 
#import <objc/Object .h> 
#import <appkit/Box.h> 
#import <appkit/graphics.h> 

@interface StatisticsView:Box 
{ 

id bins; 
id binButtons; 
id displayModeButton; 
id inspectorButton: 
id valueForm: 
id statistics, 

- (id)initFrame: (const NXRect *)frameRect;
 
- (id)initFrame: (const NXRect *)frameRect withStatistics: (id)someStatistics;
 
- (id)update: (id)someStatistics;
 
- showError: (const char *)errorMessage;
 
- displayValue:sender:
 
- changeDisplay:sender;
 
-{id)statistics;
 
-(id)freeStatistics;
 
-(id)write: (NXTypedStream *)stream;
 
-(id)read: (NXTypedStream *)stream:
 
//-(idJawake:
 

@end
 

~
 



· .. - ' . 

SiatisticsView.m·· . 
• import 'StatisticsView.h' 
.import <objc/Storage.h> 
.import <appkit/Application.h> 
.import <appkit/Cell.h> 
.import <appkit/Matrix.h> 
.import <appkit/Button.h> 
.import <appkit/Form.h> 
.import <appkit/Panel.h> 
.import <objc/List.h> 
.import 'Statistics.h' 
• import 'BinButtonCell.h' 
.import 'BinMatrix.h' 

@implementation StatisticsView 

- (id)initFrame: (canst NXRect *)frameRect 

[super initFrame:frameRect];
 
statistics=[[Statistics allocFromZone: [self zone]]init];
 
bins=[statistics bins];
 
return [self update:statistics];
 

- (id)initFrame: (canst NXRect *)frameRect withStatistics: (id)someStatistics 

[self initFrame:frameRect];
 
[self freeStatistics];
 
statistics=someStatistics;
 
return [self update:statistics];
 

1* 
*- (id)update: (id) someStat istics 
* ( 

NXRect originalFrameSize;
 
unsigned int i;
 

statistics=someStatistics;
 
bins=[statistics bins];
 
Iidue to strange behaviour of the NeXTstep system, I can't use nested message passi
 

ng and one single NXRect ... 
II send bug report as soon as possible 
((binButtons getBounds:&originaIFrameSize]display]; 
[[binButtons renewRows:1 cols:[bins count]]display]; 
[[binButtons sizeToCells] display] ; 
[[binButtons sizeTo:originaIFrameSize.size.width:originaIFrameSize.size.heightldisp 

lay]; 
for(i=O;i<[bins count];i++) 

( 
[[binButtons putCell: 

[[[[BinButtonCell allocFromZone: [self zone]linit] 
setBinValue:*(double ") [bins elementAt:i])] 
setMaXGraphValue: ("[statistics range]) .size.heigpt] 

at: 0: i J 
free]; 
[[binButtons setAction:@selector(displayValue:)at:O:iJsetTar~et:selfat:O:i] 

) 

* II sprint f (windowTitle, 'Connections from H to H',tag, (tag+l»; 
*	 II [self setTitle:windowTitle]; 

NXPing(); 
return self; 

* } 
*1 

- (id)update: (id)someStatistics 

NXRect originalFrameSize;
 
unsigned int i;
 

statistics=someStatistics;
 
bins=[statistics bins];
 
Iidue to strange behaviour of the NeXTstep system, I can't use nested message passing
 

and one single NXRect ...
 
II send bug report as soon as possible
 
[binButtons getBounds:&originaIFrameSize];
 
(binButtons renewRows:1 cols: [bins count]];
 
[binButtons sizeToCells];
 
[binButtons sizeTo:originaIFrameSize.size.width:originaIFrameSize.size.heightl;
 
for(i=O,i<[bins count] ,i++)
 

(
 
[[binButtons putCell:
 

[[[[BinButtonCell allocFromZone: [self zone]]init] 
setBinValue:*«(double ") [bins elementAt:i])] 
setMaxGraphValue: ("[statistics rangel) .size.height} 

at: 0: i] 
free] , 
[[binButtons setAction:@selector(displayValue:)at:O:ilsetTarget:self at:O:il; 

} 

I I sprint f (windowTitle, 'Connections from H to H', tag, (tag+!» ; 
II [self setTitle:windowTitle]; 

return [self update]; 

- showError: (canst char ")errorMessage 

NXRunAlertPanel(NULL, errorMessage,'OK', NULL, NULL);
 
II TODO: add string table support
 
II NXRunAlertPanel(NULL, errorMessage,
 
II [stringSet valueForStringKey:'OK'], NULL, NULL);
 
return self;
 

- displayValue:sender 

(valueForm setDoubleValue:" ((double ") [bins elementAt: (sender selectedCol]])]; 
return self; 

- changeDisplay:sender 

Ilfor pop-up lists:
 
II [statistics setDensityActive:[[sender selectedCell]tagl];
 
Ilfor toggle buttons:
 
[statistics setDensityActive: [sender intValuel];
 
return [self update:statistics];
 

- (id) statistics 
( 

return statistics; 

- (id) freeStatistics 
( 

if (statistics != nil)
 
(
 

[statistics free];
 



•·· ••··.st~ti~tid§vie\V.1l1
 
statistics = nil;
 

) ;
 

return self;
 

-lid) write: (NXTypedStream ')stream 
( 

[super write:streaml ;
 
NXWrite0bject(stream, statistics);
 
NXWrite0bjectReference(stream, bins); II not necessary, see awake
 
NXWrite0bjectReference(stream, binButtons);
 
NXWrite0bjectReference(stream, displayModeButton);
 
NXWrite0bjectReference(stream, inspectorButton);
 
NXWrite0bjectReference(stream, valueForm);
 
return self, 

-lid) read: (NXTypedStream ')stream 
( 

[super read:stream); 
statistics=NXReadObject(stream); 
bins=NXReadObject(stream) , II not necessary, see awake 
binButtons=NXReadObject(stream); 
displayModeButton=NXReadObject(stream) , 
inspectorButton=NXReadObject(stream) , 
valueForm=NXReadObject(stream) ; 
return self, 

II-(id)awake 
II{
 
II [super awake);
 
II bins=[statistics bins] ;
 
II return [self update:statisticsl;
 
II) 

@end 

-'-') 



....··Statistics.h
 
_import <objc/Object.h>
 
_import <appkit/graphics.h>
 

Iitodo:
 
II add support for updating the distribution slots
 

@interface statistics:Object
 
( 

id densityBins; IIStorage object 
id distributionBins; IIStorage object 
NXRect densityRange; 
NXRect distributionRange; II the orlg1n.x and size.width part 

II always should be the same as for the 
II densityRange, also for all purposes, 
II origin.y should be 0.0 

double binSize; 
BOOL densityActive; 
BOOL distributionLocked; 

-lid) init;
 
-(id) initWithBins: lunsigned int)count;
 
-lid) initNonmaIWithMean:ldouble)aMean
 

stdDev; Idouble)aStdDeviation 
andBins: (unsigned int)count; 

-lid) fiIIWithMean:(double)aMean 
stdDev:(double)aStdDeviation; 

-lid) fillWithBiModality: (double)aBiModality 
stdDev:(doublelastdDeviation; 

-lid) zeroOut; 
-lid) lockDistribution; 
-lid) unlockDistribution; 
-lid) distributionBins; 
-lid) densityBins; 
-lid) bins; 
-lid) setBinCount: (unsigned int)count; 
-(unsigned intI binCount; 
-(NXRect *) densityRange: 
-(NXRect *) distributionRange; 
-(NXRect *) range; 
-lid) setDensityActive:(BOOL)aBool; 
-(BOOL) densityActive; 
-lid) setDensityAt:(double)x to: (double)y; 
-lid) setDistributionAt: (double) x to: (double)y; 
-lid) add: (double)deltaY toDensityAt:(double)x; 
-(double *) densityAt: (double)x; 
-(double *) distributionAt:(double)x; 
-lid) updateDistribution; 
-(double)probabilityAt:(double)x; 
-(double)mean; 
-(double)variance; 
-(double)standardDeviation; 
-lid) free; 
-lid) write: (NXTypedStream *)stream; 
-lid) read: (NXTypedStream *)stream; 
-lid) awake; 

@end 



·....•...•···.···.···.·SfutiStic$.fu
 
#import "Statistics.h·
 
#import <math.h>
 
#import <objc/Storage.h>
 
#import ·StatisticsView.h"
 
#import <float.h>
 

#define DEFAULT_BINS 50 
#define X_RANGE_ORIGIN -1.5 
#define X_RANGE_SIZE 3.0 
#define Y_RANGE_SIZE_DENSITY 3.0 

@implementation Statistics 

double normalDistributionDensity(double x,double aMean,double aStdDeviation) 
{ 

return (1.0/(exp(pow(-aMean+x,2)/(2*pow(aStdDeviation,2»)*sqrt(2*M_PI)*aStdDeviatio 
n») ; 
} 

double biModalDistributionDensity(double x,double aBiModalitY,double aStdDeviation) 
( 

return «1.0/(exp(pow(-aBiModality+x,2)/(2·pow(aStdDeviation,2)))*sqrt(2*M_PI)*aStdD 
eviation» + 

(1.0/(exp(pow(aBiModality+x,2)/(2*pow(aStdDeviation,2)))*sqrt (2*M_PI)*aStdDev 
iation) ) I 2; 
) 

- (id)	 init 
( 

return [self initNormalWithMean:O.O stdDev:.5 andBins:DEFAULT_BINS]; 

-lid)	 initWithBins: (unsigned int)count 
(
 

[super init];
 
densityBins=[[Storage allocFromZone: [self zone]]
 

initCount:count 
elementSize:sizeof(double) 
description: "d"] ; 

distributionBins=[[Storage allocFromZone: [self zone]]
 
initCount : count
 
elementSize:sizeof(double)
 
description:"d·] ;
 

densityActive=YES;
 
densityRange.origin.x=(X_RANGE_ORIGIN) ;
 
densityRange.origin.y=O.O;
 
densityRange.size.width=(X_RANGE_SIZE) ;
 
densityRange.size.height=(Y_RANGE_SIZE_DENSITY) ;
 
distributionRange=densityRange;
 
distributionRange.size.height=1.0;
 
binSize=(double)densityRange.size.width) I (double)count;
 
return self;
 

-(id)initNormalWithMean: (double)aMean stdDev: (double)aStdDeviation andBins:(unsigned int 
)count 
( 

return [[self initWithBins:count]fillWithMean:aMean stdDev:aStdDeviation]: 

-(id)fillWithMean: (double)aMean stdDev: (double)aStdDeviation 
( 

unsigned i( ", binCount=[densityBins count]; 

II removed by agm: double *binValue; 

for(i=O;i<binCount;i++)
 
(
 

double x=(double) «double)densityRange.origin.x+« «double)densityRange.size. 
width) I «double) [densityBins count]»)* «(double)i) + (double)0.5»); 
II removed by agm: binValue=[densityBins elementAt:i]; 

(* Idouble *) (densityBins elementAt:i])=normalDistributionDensity(x,aMean,aStd 
Deviation) ; 

) ; 

Ilhere init the distribution ....
 
return [self updateDistributionl;
 

-lid)	 fillWithBiModality: (double)aBiModality 
stdDev: (double)aStdDeviation 

unsigned int i, binCount=[densityBins count); 

for(i=O;i<binCount:i++) 
( 

double x=(double) «double)densityRange.origin.x+« (double)densityRange.size. 
width) ( (double) [densityBins count J ) ) * « (double) i) + (double) 0.5) ) ) ; 

(*(double *) [densityBins elementAt:i])=biModalDistributionDensity(x,aBiModali 
ty,aStdDeviation): 

);
 

Ilhere init the distribution ....
 
return [self updateDistribution];
 

- (id)	 zeroOut 
( 

unsigned int count=[self binCount];
 
unsigned int i;
 

for(i=O;i<count;i++)
 
*( (double *) [densityBins elementAt:i])=(double)O.O;
 

return [self updateDistribution];
 

-lid)	 lockDistribution 
( 

distributionLocked=YES; 
return sel f: 

-(id)	 unlockDistribution 
( 

distributionLocked=NO;
 
return self;
 

-(id) distributionBins 
( 

return distributionBins; 

-lid) densityBins 
( 

return densityBins: 
.'-	 '), 



> xtIE. 
... 

·····Statistics.rn 
-lid) bins 
{ 

if (densityActive)
 
return densityBins;
 

else
 
return distributionBins;
 

-lid) setBinCount: (unsigned	 int)count 
( 

unsigned int i; 
double newBinSize= (double)densityRange.size.width/(double) count; 

id newDensityBins=[[Storage	 allocFromZone: [self zone]]
 
initCount:count
 
elementSize:sizeof(double)
 
description: "d"J ;
 

id newDistributionBins=[ [Storage allocFromZone: [self zoneJJ
 
initCount:count
 
elementSize:sizeof(double)
 
description: "d"J ;
 

for(i=O;i<count;i++) 
{ 

*( (double *) [newDensityBins elementAt:i])= 
*«(self densityAt: ((double) (densityRange.origin.x») 

+(( (double)i)*newBinSize) 
+ (O.S*newBinSize) )J); 

(* (double *) (newDistributionBins elementAt :iJ) = 
(*[self distributionAt:(((double) (distributionRange.origin.x) 

+ «( (double) i) *n 
ewBinSize) 

+ (O.S*newBinSiz 
e)]) ; 

}
 
[densityBins free];
 
densityBins=newDensityBins;
 
[distributionBins free];
 
distributionBins=newDistributionBins;
 
binSize=newBinSize;
 
return self;
 

-(unsigned int)binCount 
{ 

return [[self binsJcount]; 

-(NXRect *}densityRange 
{ 

return &densityRange; 

-(NXRect *)distributionRange 
{ 

return &distributionRange; 

-(NXRect *)range 
{ 

if (densityActive) 
return &densityRange; 

else 

return &distributionRange; 

-lid) setDensityActive: (BOOL)aBool 
( 

densityActive=aBool; 
return sel f; 

-(BOOL)densityActive 
{ 

return densityActive; 

-lid) setDensityAt: (double)x to: (double)y 
( 

int bin=floor( (x-(double)densityRange.origin.x)/binSize); 

if((bin>=O)&&(bin«self binCount))) 
( 

*( (double *) (densityBins elementAt: (unsigned int)binJ)=y; 
) 

return self; 

-lid) setDistributionAt: (double) x to: (double)y 
( 

int bin=floor«x-(double)distributionRange.origin.x)/binSize); 

if((bin>=O)&&(bin<[self binCountJ) 
{ 

*( (double *) [distributionBins elementAt: (unsigned int)binJ)=y; 
) 

return self; 

-lid) add: (double)deltaY toDensityAt: (double)x 
( 

int bin=floor( (x-(double)densityRange.origin.x)/binSize); 

if((bin>=O)&&(bin«self binCount]» 
{ 

*( (double *) [densityBins elementAt: (unsigned int)binJ)+=deltaY; 

return (self updateDistributionJ; 

-(double *) densityAt: (double) x 
{ 

int bin=floor( (x-(double)densityRange.origin.x)/binSize); 

if((bin>=O)&&(bin«self binCount]»
 
return (densityBins elementAt: (unsigned int)binl;
 

else
 
return NULL;
 

-(double *) distributionAt: (double)x 
{ 

int bin=floor«x-(double)distributionRange.origin.x)/binSize); 

if«bin>=O)&&(bin<[self binCount])
 
return [distributionBins elementAt: (unsigned int)bin];
 

else
 



return NULL; 

-lid) updateDistribution 
( 

if (distributionLocked)
 
return sel f;
 

else
 
{
 

unsigned int i;
 

(*[double *) (distributionBins elementAt:O])=(*(double *) [densityBins element 
At:O])*binSize; 

for(i=l;i<[distributionBins count] ;i++) 
( 

(*(double *) [distributionBins e1ementAt:i])=((*(double *) [densityBin 
s e1ementAt:i])*binSize)+(*(doub1e *) [distributionBins e1ementAt: (i-1)]); 

); 

return self; 

-(doub1e)probabilityAt: (doub1e)x 
( 

double *distAtX= (double *) ([self distributionAt :x»); 
double *distBeforeX= (double *) ([self distributionAt: (x - binSize)]); 

if (distBeforeX==NULL)
 
return (*distAtX);
 

else
 
return (*distAtX) - (*distBeforeX);
 

-(doub1e)mean 
( 

II mean=sum( pIx) * x ) 

double mean=O.O;
 
double probSum=O.O;
 
unsigned int i, binCount=[densityBins count];
 

double x=distributionRange.origin.x + (0.5 * binSize); 

for(i=O;i<binCount;i++)
 
(
 

double probOfX=[self probabilityAt:x];
 

mean+= probOfX * x;
 
probSum+=probOfX;
 
x+=binSize:
 

)
 
II ideally, probSum should be 1.0, but in case it's not, adjust it.
 
mean = mean I probSum;
 

return mean; 

-(double)variance 
( 
II sum ( ( x - mean )~2 ) 

double mean=[self mean];
 
double varSum=O.O, probSum=O.O;
 
unsigned int i, binCount=[densityBins count];
 

double x=distributionRange.origin.x + (0.5 * binSize); 

for(i=O;i<binCount;i++)
 
{
 

double probOfX=[self probabilityAt:x];
 

varSum+= probOfX * ((x - mean) * (x - mean));
 
probSum+=probOfX;
 
x+=binSize;
 

) 
II ideally, probSum should be 1.0, but in case it's not, adjust it. 

II printf("probSum variance: %f\n",probSum); 
varSum = varSum I probSum; 

return varSumi 

-(double)standardDeviation 
( 

return sqrt([self variance]): 

- (id) free 
( 

[densityBins free];
 
[distributionBins free];
 
return [super free];
 

-lid) write: (NXTypedStream *)stream 
( 

[super write:stream]; 
NXWriteobject(stream, densityBins); 
NXWriteobject(stream, distributionBins); 
NXWriteRect(stream, &densityRange); 
NXWriteRect(stream, &distributionRange); 
NXWriteTypes(stream, "dc", &binSize, &densityActive); 
return self; 

-lid) read: (NXTypedStream *)stream 
( 

[super read: stream] ; 
densityBins=NXReadObject(stream) ; 
distributionBins=NXReadObject(stream) ; 
NXReadRect(stream, &densityRange); 
NXReadRect(stream, &distributionRange); 
NXReadTypes(stream, "dc", &binSize, &densityActive); 
return self; 

-lid) awake 
( 

[super awake];
 
distributionLocked=NO;
 
return sel f;
 

@end 

( )
 




