
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-92-M12

"CCEL: A Metalanguage for C++

by

Carolyn Kay Duby

CCEL : A Metalanguage for C++

Carolyn Kay Duby

Brown University, Providence, RI 02912

Cadre Technologies, Inc., Providence, RI 02903

J

CCEL : A Metalanguage for C++

Carolyn Kay Duby

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements

for the Degree of Master of Science in the

Department of Computer Science at Brown University

May 1, 1992

This research project by Carolyn Kay Duby is accepted in

its present form by the Department of Computer Science at

Brown University in partial fulfillment of the requirements for

the Degree of Master of Science.

Sll/ZL

Abstract

c++ is an expressive language, but it does not allow software developers to say all the things about their

systems that they need to be able to say. In particular, C+ + offers no way to express many important constraints

on a system's design, implementation, and presentation. In this paper, we describe CCEL, a metalanguage

for C+ + that allows software developers to express constraints on C+ + designs and implementations, and we

describe Clean++, a system that checks C+ + code for violations of CCEL constraints. CCEL is designed for

practical, real-world use, and the examples in this paper demonstrate its power and flexibility.

1 Introduction

c++ is an expressive language, but it does not allow software developers to say all the things about their

systems that they need to be able to say. In particular, C+ + offers no way to express many important constraints

on a system's design, implementation, and stylistic conventions. Consider the following sample constraints,

none of which can be expressed in C++:

•	 Design Constraint: The member function M in class C must be redefined in all classes derived from

C. This applies to both direct and indirect subclasses, so declaring M as a pure virtual function in C

does not satisfactorily enforce the constraint. This kind of constraint is common in general-purpose

class libraries. For example, NIHCL [4] contains many such functions for the top-level Object class.

•	 Implementation Constraint: If a class declares a pointer member, it must also declare an assignment

operator and a copy constructor. Failure to adhere to this constraint almost always leads to incorrect

program behavior [12, Item 11]. A number of similar constraints was presented at last year's USENIX

C++ conference [13].

•	 Stylistic Constraint: All class names must begin with an upper case letter. Most software development

teams adopt some type of naming convention for identifiers; violations are irritating at best, confusing

and misleading at worst.

Constraints such as these exist in virtually every system implemented in C+ +, but different systems require

very different sets of constraints. As a result, it is unreasonable to ask that C++ compilers be augmented to

handle these issues. Yet the issues remain, and their importance cannot be ignored. In this paper, we describe

CCEL ("Cecil") - the C++ Constraint Expression Language - a metalanguage for C++ that allows software

developers to express a wide variety of constraints on C+ + designs and implementations, and we describe

Clean++, a system that checks C++ code for violations of CCEL constraints.

We took as our original inspiration the lint tool, which reports a number of likely error conditions in

C programs. However, the errors C programmers need to detect are qualitatively different from the errors

that C++ programmers need to detect. lint concentrates on type mismatches and data-flow anomalies, but

type mismatches are not an issue in C++ because the language is strongly typed, and data flow analysis is

unrelated to the high-level perspective encouraged by the modular constructs of C+ +. C+ + programmers are

concerned with higher-level concepts such as the structure of an inheritance hierarchy. Detection of errors

in the inheritance hierarchy requires a tool that provides users with a way to check for programmer-defined

constraints.

Other important differences between the philosophy behind lint and that behind Clean++ are those of

customizabilityand extensibility. The set of conditions detected by lint cannot be extended by programmers,

nor is there an easy way to disable the detection of classes of errors for parts of source files. These are

significant drawbacks, and both are overcome by CCEL, as the examples in the remainder of this paper will

show.

1

2 The CCEL Language

The requirements for a good constraint language are:

•	 The language must be powerful enough to express the constraints important to the programmer.

•	 The language must be intuitive and simple to learn. The look and feel must be familiar to the programmer

to facilitate learning and use. Programmers need to be able to read a constraint and understand what it

means in order to be able to correct a violation of a constraint, to write new constraints, and to modify

existing constraints.

CCEL is based on an object-oriented model where metaelasses represent the concepts of C++. The

metaclasses are arranged in a multiple inheritance hierarchy (See Figure 1) and have member functions

defined for them (See Table 1). We determined the metaelasses and their positions in the hierarchy by first

examining in detail the concepts important to C++ programmers and the constraints they need to express.

Then we classified the concepts into metaclasses, such as C++ classes and member functions, and others into

properties of metaclasses, such as the protection level of a member function. We determined the metaelass

hierarchy by analyzing the features the metaelasses have in common. We added abstract metaelasses such as

NamedObject to represent the common features. We chose the object-oriented model because it is familiar

to users of C++, and because we can extend the model to add either new member functions or metaelasses as

new concepts need to be introduced.

While abstracting the concepts of C++ into CCEL metaelasses, we often had to decide if a concept was

a new metaclass or if it could be expressed as a member function of an existing metaelass. For example,

the only difference between a class and a struct is that the default protection for a class is private, while

the default protection for a struct is public. One possibility would be to put classes and structs in the same

metaclass with a boolean member function indicating whether the metaelass is a struct. A second possibility

is to put classes and structs in two different metaelasses, with their common functionality abstracted to a base

metaclass. In general, we combined concepts into one metaelass when the differences were trivial and the

additional complexity of having a new metaelass outweighed the increased functionality.

For example, we divided classes and structs into two metaeIasses because C++ programmers often wish to

draw a distinction between them. In particular, many users believe that structs should be "just like C," while

classes should be used whenever C++-specific features are employed. By separating the metaelass concepts

of classes and structs, it is straightforward to write CCEL rules that restrict the features that can be used inside

structs. On the other hand, we have not yet encountered a compelling reason for differentiating between

functions in general and global functions in particular (as opposed to member functions), to the current CCEL

metaclass hierarchy has no metaelass specifically devoted to global functions. This means that there is no

way to write a CCEL rule that applies only to global functions, but it would be simple enough to modify the

metaclass hierarchy if it were shown to be necessary.

CCEL constraints resemble expressions in predicate calculus, allowing the programmer to make asser­

tions involving existentially or universally quantified metavariables. Clean++ reports any combination of

metavariable values that cause the assertion to evaluate to false.

2

Figure I: CCEL Metaelass Hierarchy

Each constraint contains an assertion which must be met by some C++ source code. For example, a

constraint requiring that all class names begin with a capital letter can be written in CCEL as follows:

II Evel~ class name must begin with a capital letter
CapitalizeClassNames (

Class C; II C is a class

Assert(C.name() .matches("A[A-ZI"));
) ;

Capi tal i zeClassNames is the identifier which is used to refer to the constraint. As we will see later,

this identifier can be used to enable or disable the constraint. C is a metavariable whose domain is the set of

all C++ classes in the system. The body of the Capi tal i zeClassNames constraint takes the fonn of an

Assert expression, modeled loosely on the standard C assert macro facility. The assertion is that the string

representing the name of the class must match the UNIX regular expression "A[A_Z]". Class and Assert are

CCEL keywords; a complete list of keywords can be gleaned from the lex summary in appendix C.

As in C++, all metavariables must be declared before use. They are assumed to be universally quantified

unless explicitly existentially quantified. Existential quantification is indicated by the use of square brackets,

[...]. For example, in the constraint

II Evel~ base class must have a virtual destructor.
VirtualDestlnBases (

Class B, D;

if (D. is_descendant (B))
Assert ([MemberFunction B:: f1; I

((fl.name() == "-(B.name()}") && (fl.is_virtual())}]);
) ;

3

~ Metaclass Name I Metaclass Member Functions ~ Metaelass Name I Metaelass Member Functions ~

ArrayDimension Int valueO MemberVariable
Boolean Boolean operator&&(Boolean) NamedObject String nameO

Boolean operatorll(Boolean)
Boolean operator!O

Parameter Int positionO
Boolean has_defaulLvalueO

Boolean operator=(Boolean)
Boolean operator!=(Boolean)

String Boolean operator=(String)
Boolean operator<=(String)
Boolean operator>=(String)
Boolean operator«String)
Boolean operator>(String)
Boolean operator!=(String)
Boolean matches(String)

C++Object Int beginJineO
Int endjineO
String fileO

Class
ClassOrStruct Boolean is_descendant(Class)

Boolean is_virtual-descendant(Class) Struct
Boolean is_public-descendant(Class)
Boolean isJriend(Class)

'TYPe Boolean convertibleJ:o('TYPe)
Boolean operator=('TYPe)
Boolean is_enurnO
Boolean is_unionO

FunctBody Boolean calls(String)
Function Int num_paramsO

Boolean is-inlineO
FunctBody bodyO
Boolean isJriend(Class)

TypedObject Int numjndirectionsO
Boolean is-pointerO
Boolean is..staticO
Boolean iSJeferenceO
Boolean is_volatileO
Boolean is..constO
Boolean is....arrayO
Boolean isjongO
Boolean is..shortO
Boolean is..signedO
Boolean is_unsignedO
Type typeO

Indirection Int level()
Boolean is_constO

Int Boolean operator=(lnt)
Boolean operator<=(lnt)
Boolean operator>=(lnt)
Boolean operator<(lnt)
Boolean operator>(lnt)
Boolean operator!=(lnt)

Member Boolean is_privateO
Boolean is_protectedO
Boolean is_publicO

Variable Boolean scope-isJocalO
Boolean scope-isJileO
Boolean scopejs_classO MemberFunction Boolean is_virtualO

Boolean is_pure_virtualO
Boolean redefines(MemberFunction)

Table 1: CCEL Metaclass Member Functions

the metavariables B and D are universally quantified, while the metavariable f 1 is existentially quantified. In

English, this constraint reads, "For all classes B and D, if D is a descendant of B, then it must be true that there

exists a member function fl in B such that fl's name is a tilde followed by B's name, and fl is virtual."

The legal types for metavariables are the CCEL metaclasses shown in Figure 1.

Metavariable declarations may have a condition attached to them, which is indicated by a vertical bar and

a boolean expression following the variable name. For example,

Class B; //domain is all classes
Class 0 I (D.is_descendant(B)); //domain is only classes derived from B

means, "for every class B and every class D such that D is a descendant of B".

4

By default, a constraint applies to all code in the system. This is not always desirable. For example,

consider the case where a programmer has a set of naming conventions for a class library that differ from the

naming conventions used for application classes. The ability to enable and disable constraint checking for

named parts of the system is an important feature of CCEL. For example, ifwe wanted to limittheapplicability

of Capi tali zeClassNarnes to the file "objects.C", we could declare a scopefortheconstraintas follows:

II For every class C in file "objects.C", the class name must match the

II UNIX regular expression ~[A-Z].

File "objects. C" : CapitalizeClassNames (

Class Ci

Assert (C .name () .matches (" A [A-Z] ")) i

) i

Sometimes it is more convenient to specify where an otherwise global constraint does not apply. If

Capi tal i zeClassNarnes applies to every C++ class except example, we could di sable

Capi tal i zeClassNames for that class as follows:

II Do not report violations of CapitalizeClassNames in c++ class
II "lowercaseNames".
Class lowercaseNames : DontCapitalizeInLowercaseNames

disable CapitalizeClassNamesi
) ;

Individual constraints may be grouped together into constraint classes. Suppose there are several con­

straints enforcing naming conventions. They could be grouped together in a constraint class called

NamingConventions as follows:

ConstraintClass NamingConventions
II For every class C, the class name must match the UNIX regular expression
II ~ [A-Z] .
CapitalizeClassNames
(

Class C;

Assert(C.name() .matches("~[A-Zl"))i

) i

II For every function F, the function name must begin with

II a lower case letter.

SmallFunctNames

Function Fi

Assert(F.name() .matches("~[a-z]")) i
\ .
I'

) i

Notice that constraint classes are demarcated by brackets {...}, while individual constraints use parenthe­

ses (...). Constraint classes may be disabled by having a constraint such as this:

5

NamingConventionsOff (
disable NamingConventions;

) ;

Like all CCEL constraints, this one is implicitly globally applicable. A particular constraint in a constraint

class can be disabled by using the C++ scoping operator("::"):

SomeNamingConventionsOff (
disable NamingConventions::CapitalizeClassNames;

) ;

If the assertion condition for a constraint is complex, the constraint designer may want to create two or

more simpler constraints. The following example is a set of constraints that reports undeclared assignment

operators for classes that contain a pointer member or are derived from a class containing a pointer member:

II If a class contains a pointer member, it must declare an assignment operator.
AssignmentMustBeDeclaredCondl (

Class C;
MemberVariable C: :v; I I v is a member variable of C

if (v.is-pointer())

Assert ([MemberFunc ti on C:: f; I

(f.name() == "operator=")]);

) ;

II If a class inherits from a class containing a pointer member, the derived

II class must declare an assignment operator.

AssignmentMustBeDeclaredCond2 (

Class B;
Class D I D.is_descendant(B);
MemberVariable B: :bv; I I bv is a member variable of class B

if (bv.is_pointer())

Assert((MemberFunction D::df; I

(df.name() == "operator=")]);

) ;

The": :" notation in the metavariable declaration of v in the first constraint indicates that v is a metavariable

whose domain is the member variables of class C. To be a member of a class means that a member variable

or member function is declared in this class, i.e. is not inherited. The redefines member function of the

Class metaclass (see Figure 1) can be used to find out if a class defines a function with the same parameters

and name as the given member function, i.e. if C++ would view it as a virtual redefinition. In the first

constraint, the existentially quantified metavariabIe f is used to detennine if an assignment operator is defined

for classes containing a pointer member variable. In the second constraint, the existentially quantified variable

df is used to check if the descendants of a base class containing a pointer member define an assignment

operator.

The Member, MemberVariable, and Parameter metaclasses have special conditions attached to

them similar to the MemberFunction object. A :: in a MemberVariable or Member variable

declaration separates the class name from the member variable name. Examples:

6

Class C; II C is a class
Member c: :Ml; II Ml is a member of class C
Function F; II F is a function
Parameter F(P); II P is a parameter of F
Variable V; II V is a variable with local, file, or class scope

Any combination of the C++ relational and logical operators can be used inside Assert clauses. As

with C++, only types for which comparison has been defined can be used in comparison operations. The

types of the items being compared must be the same, and the arguments to the boolean predicates must be

boolean expressions.

3 Error Messages

Since constraints are user-defined and not hardcoded, the CCEL evaluator cannot form a meaningfui error

message describing what the error condition is. The best the evaluator can do is print the constraint violated

and the current values of the metavariables that violated the assertion. Therefore, we decided to allow the

user to optionally associate a message to be reported with every constraint. The programmer-defined error

messages enables the user to word the error message in familiar terms and also allows users who do not know

CCEL to use Clean++ to find program errors. IfCCEL did not allow users to define their own error messages,

the only way for a user to determine the error condition would be to interpret the assertion and understand

what needs to be changed to correct the violation. This would force every user of Clean++ to be proficient in

CCEL.

An error message is an interpreted string which may contain references to bound metavariables and to the

builtin variables Constraintld, ConstraintFile, and ConstraintLine which print the unique

identifier, file, and line that the constraint violated is defined at. Variables are denoted by { ... }. For

instance, when using NIHCL[4], a programmer would want require that every class derived from II Obj ect II

declare the isA function with the constraint:

II The member function Object: :isA must be redefined in all
Ii subclasses of class Object
RedefineisA(

Class B I (B.name() == "Object");
Class D I (D.is_descendant(B));
MemberFunction B::fl I (fl.name() "isA");

Assert(D.redefines(fl));
) "(D.file())(line (D.begin_line{))) constraint (Constraintld) in
\" (ConstraintFile) \": \n
Class (D.name{)} does not define function isA.";

If class MySubclas s does not declare the i sA function, the violation message reported is:

mysubclass.h(Line 5) constraint RedefineisA in "constraints.ccel"
Class MySubclass does not define function isA.

7

4

1------------------1
I 1
I 1
I I
I 1
I 1
I L
I

I

I

I

I

I

I ee-L.valuator)--------1-------1
1 C++ DB

: . IL_____ _ ~

Figure 2: Clean++ Architecture

If the programmer does not define an error message for the constraint, a standard error message showing

the value of the metavariables that caused the assertion to be violated and the identifier, line number and file

of the constraint violated is reported. The default error message for the previous example is :

constraint RedefineisA in "constraints.ccel" (line 36):
Class B = Object on line 20 of file "Object.h"
Class D = MySubclass on line 5 of file "MySubclass:h"
MemberFunction f1 = isA on line 23 of file "Object.h"

Prototype Architecture

There are two possible approaches to implementing Clean++. The first approach takes the constraints and

generates a custom program that reads the C+ + source and checks for violations of the constraints. The second

approach extracts data from the C++ program and stores it in a database. The constraints are then converted

into queries over the database. If a constraint is violated, its corresponding query will have a non-null result

containing information about the violations.

The first approach requires generation ofa custom constraint-checking program for each set of constraints,

but forthe second approach, a single constraint-interpreter suffices. As a result, we chose the second approach,

because only one program is needed to apply multiple sets of constraints to the same system.

Figure 2 shows the components of Clean++. Clean++ constraints can be specified in one or more files or

within a C+ + program by embedding them in C+ + comments. (This is similar to the way lint error messages

can be controlled from within C source.) All features of CCEL can be used inside the C++ source, but

we expect programmers will use it primarily to specify constraints specific to a class or file within the C++

source, Le. to associate a constraint with the C+ + source to which it applies. By associating constraints with

C++ source, developers who want to derive a new class from a base class or create an instance of a class

can see any constraints that apply to a class. For example, a constraint stating that all subclasses of a class

must redefine a particular member function would be best put in the C++ source file for the class so that

programmers know that they will need to define that member function. A more generic constraint, such as

8

5

every class name must begin with an upper case letter, might go in a file containing style constraints.

The Clean++ architecture is made up of the following independent components: ccel....strip, ccel_compiler,

ccel_evaluator, and capture. The ccel-strip program is a simple preprocessor that searches the C++ source

files and extracts any constraints embedded in comments. The constraints from the C++ source and any

constraint files are passed to ccel_compiler, which uses the C preprocessor to process any macros or file inclu­

sions. ccel-compiler then translates the constraints into queries over the C++ database. The ccel-evaluator

program executes the queries and outputs any violations of the constraints.

The capture program parses the C++ files and places their semantic structure in the C++ repository.

There are several existing systems that can capture the structure and semantics of C++ programs. Such

systems include REPRISE[l4J, CIA++[5], and XREFDB[7]. Of these, REPRISE seems most suited for use

with CCEL, and our prototype implementation uses REPRISE for the database portion of Clean++.

For comparison purposes, the dotted lines in Figure 2 enclose the functionality of the lint tool for C

programs. As is clear from the diagram, Clean++ gives the programmer more control by allowing the

programmer to access the inner architecture of the checker and customize which constraints are checked. In

particular, CCEL users can modify the CCEL source (Le., the set of constraints to be enforced), while users

of lint are unable to modify the conditions detected by lint.

Related Work

Support for formal design constraints in the form of assertions or annotations was designed into Eiffel [10],

has been grafted onto Ada in the language Anna [9], and has been proposed for C++ in the form of A++ [2,1].

This work, however, has grown out of the theory of abstract data types [8], and has tended to limit itself

to formally specifying the semantics of individual functions and/or collections of functions (e.g., how the

member functions within a class relate to one another). CCEL has a different focus. It has little concern

for the semantics of functions;1 however, it allows programmers to express constraints involving virtually

any kind of declaration. As such, it is able to constrain relationships between classes,. which Eiff~l, A++,

and Anna are unable to do. CCEL can also express constraints on the concrete syntax of C++ source code

(e.g., metaclass-specific naming conventions); this is also outside the purview of semantics-based constraint

systems.

GENOA [3] is a language-independent application generator that can be used to generate a wide variety

of code analysis tools. GENOA specifications consist of actions to be performed at nodes of an attributed

parse tree. Unlike CCEL, which is specifically designed for C++ programmers, GENOA is designed for

compiler writers. GENOA users must know the structure of the programming language parse tree, because

applications based on GENOA are actually custom-designed traversals of this tree. CCEL hides this kind of

grammatical detail, and is hence much easier to learn and use. The downside, of course, is that CCEL cannot

be as expressive as applications taking full advantage of the generality of the GENOA approach.

lIn fact, the current version of CCEL cannot express anything at all about function definitions. However, enhancing it so that it can
is the next logical extension to the language.

9

6 Status

To date, our work on Clean++ has focused on developing a workable architecture for the system and on the

design and implementation of CCEL. We have implemented a parser for CCEL and have completed the bulk

of semantic analysis. Currently, we are concentrating on the implementation of a constraint evaluator for the

internal representation of CCEL constraints; we are using REPRISE as the source of information about C++

source code. We expect to have a fully functional prototype for Clean++ before this research is presented at

the USENIX C++ conference.

References

[1]	 Marshall P. Cline and Doug Lea. The Behavior of C++ Classes. In Proceedings of the Symposium on

Object-Oriented Programming Emphasizing Practical Applications (SOOPPA),pages 81-91, September

1990.

[2]	 Marshall P. Cline and Doug Lea. Using Annotated C++ . In Proceedings of c++ at Work - '90, pages

65-71, September 1990.

[3]	 Premkumar T. Devanbu. GENOA - a customizable, 1anguage- and front-end independent code analyzer.

In Proceedings ofthe International Conference on Software Engineering, May 1992.

[4]	 Keith E. Gorlen, Sanford M. Orlow, and Perry S. Plexico. Data Abstraction and Object-Oriented

Programming in C++. John Wiley & Sons, 1990.

[5]	 Judith E. Grass and Yih-Farn Chen. The C++ Information Abstractor. In USENIX C++ Conference

Proceedings, pages 265-277, 1990.

[6]	 Moises Lejter, Scott Meyers, and Steven P. Reiss. Adding Semantic Information To C++ Development

Environments. In Proceedings of c++ at Work-'90, pages 103-108, September 1990.

[7]	 Moises Lejter, Scott Meyers, and Steven P. Reiss. Support for Maintaining Object-Oriented Programs.

In Proceedings of the Conference on Software Maintenance, October 1991. This paper is largely drawn

from two other papers [11, 6].

[8]	 Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. The MIT

Press, 1986.

[9]	 D. Luckham, F. von Henke, B. Krieg-Bruckner, and O. Owe. Anna, A Languagefor Annotating Ada

Programs: Reference Manual, volume 260 of Lecture Notes in Computer Science. Springer-Verlag,

1987.

[10] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall International Series in Computer

Science. Prentice Hall, 1988.

10

[11] Scott Meyers. Working with Object-Oriented Programs: The View from the Trenches is Not Always

Pretty. In Proceedings of the Symposium on Object-Oriented Programming Emphasizing Practical

Applications (SOOPPA), pages 51-65, September 1990.

[12] Scott Meyers.	 Effective C++: 50 Specific Ways to Improve Your Programs and Designs. Addison­

Wesley, 1992.

[13]	 Scott Meyers and Moises Lejter. Automatic Detection of C++ Programming Errors: Initial Thoughts

on a lint++. In USENIX C++ Conference Proceedings, pages 29-40, April 1991.

[14] David S. Rosenblum and Alexander L. Wolf.	 Representing Semantically Analyzed C++ Code with

Reprise. In USENIX C++ Conference Proceedings, pages 119 -134, April 1991.

A	 Additional Examples

The constraints that follow supplement the examples given in the body of the extended abstract. They serve

to help demonstrate not only the expressiveness of the CCEL language itself, but also the kinds of constraints

that C++ programmers might well want to enforce. 2

II Subclasses must not redefine an inherited non-virtual member function.
NoNonVirtualRedefines (

Class B, D;
MemberFunction B: :M;

if (D. is_descendant (B) && D.redefines(M))

Assert(M.is_virtual());

"Class IB.name()) redefines an inherited non-virtual member function.";

II The return type of the assignment operator must be a reference to the class
ReturnTypeOfAssignrnentOp (

Class Cl;
MemberFunction Cl: :ml;

if (ml.name() == "operator=")
Assert (((ml.is_reference()) && (ml.type() == Cl)));

"The assignment operator for class ICl.name ()} does not return a reference
to class (Cl.name()}.";

II If a class contains a pointer member, the copy constructor must be defined.
CopyConstructorDefined

Class C;
MemberVariable C: :vl;

if (vl.is-pointer())

Assert (

[MemberFunction C: :fl;

Parameter fl (pI); I

((fl.name() == C.name()) && \fl.num-params() == 1) &&

2Although the grammar does not allow newlines in error message text, the error messages were separated for presentation purposes.

11

(pI.type() == C) && (pI.is_reference()))]);
) "A copy constructor should be defined for class (C.name()) because it contains
the pointel- member {vI.name())";

II Members should be declared in the order public, protected, private

MemberDeclOrdering (

Class C;

Assert(!([Member C::pub_mem I (pub_mem.is-public());
Member C:: non-pub_mem I (! non-pub_mem. i s_publ i c ()); I

(pub_mem.begin_line() > non-pub_mem.begin_line())] II

[Member C:: prot_mem I (prot_mem. is-protected ()) ;
Member C::priv_mem I (priv_mem.is_private()); I

(prot_mem.begin_line() > priv_mem.begin_line())] II

[Member C::priv_mem I (priv_mem.is-private());
Member C: :non-priv_mem I (!non-priv_mem.is-private()); I

(non-priv_mem.begin_line() > priv_mem.begin_line())]));

"Class {C.name()) has members that are not declared in the order

public, protected, private.";

II Derived classes should not redefine an inherited default parameter

II of a virtual function.

NoRedefineOfDefaults (

Class B, D;

MemberFunction D::df, B::bf;

Parameter df(pI), bf(p2);

if ((D.is_descendant(B)) && (df.is_virtual()) &&

(df.redefines(bf)))

Assert(((pI.position() == p2.position()) &&

(pI.is_default() == p2.is_default())) II

(p2 . posi tion () ! = pI. position ())) ;

) "Member function {D.name()): :{df.namel)} redefines member function
{B.name()): :{bf.name()) but parameters {pI.name()) of function {df.name()} and
{p2.name()) of function {bf.name()) have different defaults.";

II Multiple inheritance hierarchies should not be diamond-shaped.
HierarchyStructure (

Assertl! [Class A, BI, B2, C; I
((BI.is_descendant(A)) && (B2.is_descendant(A)) &&

(C. is_descendant (BI) &&
(C.is_descendant(B2)) && (BI.name() != B2.name())))]);

) "Class {A.name()) is a ancestor of (BI.name()} and {B2.name()} which are
ancestors of {C .name () } ." ;

B CCEL Grammar

What follows is the YACC grammar for the CCEL prototype; semantic actions have been excluded.

'bunion {

12

char *cval;

int ivaI;

%token <cval> STRING IDENT CONSTRAINT_CLASS KEY CLASS_KEY FILE_KEY
%token <cval> C_PLUS_PLUS_OBJECT_KEY FUNCTDEF_KEY TYPEDOBJECT_KEY TYPE_KEY
%token <cval> PARAMETER_KEY MEMBERVARIABLE_KEY MEMBERFUNCTION_KEY ASSERT_KEY
%token <cval> ENABLE_KEY DISABLE_KEY IF_KEY MEMBER_KEY VARIABLE_KEY INTEGER
%token <cval> FUNCTION_KEY ARRAY_DIM_KEY NAMEDOBJECT_KEY INDIRECTION_KEY
%token <cval> CLASSORSTRUCT_KEY STRUCT_KEY
%type <cval> var_name
%%

constraint_file	 constraint_file constraint_group
constraint_group ;

constraint_group	 constraint_class
constraint_list ;

constraint_class	 CONSTRAINT_CLASS_KEY constraint_class_ident '{'
constraint_list 'J' ';';

constraint list	 constraint list constraint
constraint

constraint:	 opt_constraint_scope constraint ident '('
constraint_body';' 'J'
opt_message ';'

constraint_body :	 variable_decls constraint_condition
select_constraint;

'. ,

obj_name :	 filename
IDENT ;

filename : STRING	 ;

opt_message : STRING

variable_decls variable_decl

13

'., ,

type	 C_PLUS_PLUS_OBJECT_KEY
FUNCTDEF_KEY
TYPEDOBJECT_KEY
TYPE_KEY
VARIABLE_KEY
MEMBER_KEY
FUNCTION_KEY
CLASS_KEY
PARAMETER_KEY
MEMBERVARIABLE_KEY
MEMBERFUNCTION_KEY
ARRAY_DIM_KEY
NAMEDOBJECT_KEY
INDIRECTION_KEY
CLASSORSTRUCT_KEY
STRUCT_KEY;

var_name_list ',' var_name
var_name

var name- IDENT ' .' '. , IDENT
IDENT ' (' IDENT ') ,
IDENT ' [' IDENT '] ,
IDENT;

optional_cond : 'I' expression

constraint_condition	 IF_KEY' (' expression ')' ASSERT_KEY' (' expression ')'
ASSERT_KEY' (' expression ')'

expression_list

expression_list ' expression
expression;

expression	 simple_expression I
simple_expression '=' , simple_expression
simple_expression' !' , simple_expression
simple_expression '<' simple_expression
simple_expression '>' simple_expression
simple_expression '<' '=' simple_expression
simple_expression '>' '=' simple_expression

simple_expression :
term I
simple_expression 'I' 'I' term;

factor I

term '&' '&' factor;

14

factor	 STRING I
INTEGER I
IDENT function_list
, !' factor I
• (. expression .) •
• [' variable_decls 'I' expression .]. i

function_list function_list' • IDENT • (. param_Iist .).

select constraint : on_or_off constraint selector

ENABLE_KEY I

DISABLE_KEY i

constraint selector	 selected_constraint I
constraint_class ident

selected_constraint	 constraint_class ident •.••.• constraint_identi

C CCEL Tokens

What follows is the LEX source for the CCEL prototype.

ws [\n\t]

letter [A-Za-z]

digit [0-9)

integel­ (digit]+

punt [_1

(ws) {skip_whitespace(};}

{integer} {sscanf (yytext. "%d". yylval. ivaI) ;

return (INTEGER) i)
11// II (skip_comment() i)
"ArrayDim" {return (ARRAY_DIM_KEY) i)
"C()11straint(~lassll {return (CONSTRAINT_CLASS_KEY) i)

IlClass l1 {return (CLASS_KEY) i)

"File" {return (FILE_KEY) i]
IIFunction li {return (FUNCTION_KEY] i)

"Variable" {return (VARIABLE_KEY) i)
"C++Object" (return(C_PLUS_PLUS_OBJECT_KEY]i]
"FunctBody" {return (FUNCTBODY_KEY) ;]
"TypedObject" {return (TYPEDOBJECT_KEY) ;]
11 Type II {return (TYPE_KEY) i]
"Member" {return (MEMBER_KEY) i)

"Parameter" {return (PARAMETER_KEY) i]
"MemberVariable" {return (MEMBERVARIABLE_KEY) i)
"MemberFunction" {return (MEMBERFUNCTION_KEY) i)
"Namec10bject" {return (NAMEDOBJECT_KEY) i}

"Im'lirection" {return (INDIRECTION_KEY) i}

"ClassOrStruct" {return (CLASSORSTRUCT_KEY) i)

15

"Struct" {return (STRUCT_KEY) ,}
"Assert" (return (ASSERT_KEY) ,)
"if" (return (IF_KEY) , }
"enable" (return (ENABLE_KEY) ,}
"disable" {return (DISABLE_KEY) ,}
{letter} ((letter) I (digit) I {punt}} *

(yylval. eval =
new ehar[strlen(yytext}+l) ,

strepy(yylval.eval, yytext);
return (IDENT) , }

\".*\" (yylval.eval =
new ehar[strlen(yytext)+l] ,

strcpy(yylval.eval, yytext) ,
return (STRING) ,}

(return (yytext [0]),}

16

