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Abstract 

c++ is an expressive language, but it does not allow software developers to say all the things about their 

systems that they need to be able to say. In particular, C+ + offers no way to express many important constraints 

on a system's design, implementation, and presentation. In this paper, we describe CCEL, a metalanguage 

for C+ + that allows software developers to express constraints on C+ + designs and implementations, and we 

describe Clean++, a system that checks C+ + code for violations of CCEL constraints. CCEL is designed for 

practical, real-world use, and the examples in this paper demonstrate its power and flexibility. 



1 Introduction 

c++ is an expressive language, but it does not allow software developers to say all the things about their 

systems that they need to be able to say. In particular, C+ + offers no way to express many important constraints 

on a system's design, implementation, and stylistic conventions. Consider the following sample constraints, 

none of which can be expressed in C++: 

•	 Design Constraint: The member function M in class C must be redefined in all classes derived from 

C. This applies to both direct and indirect subclasses, so declaring M as a pure virtual function in C 

does not satisfactorily enforce the constraint. This kind of constraint is common in general-purpose 

class libraries. For example, NIHCL [4] contains many such functions for the top-level Object class. 

•	 Implementation Constraint: If a class declares a pointer member, it must also declare an assignment 

operator and a copy constructor. Failure to adhere to this constraint almost always leads to incorrect 

program behavior [12, Item 11]. A number of similar constraints was presented at last year's USENIX 

C++ conference [13]. 

•	 Stylistic Constraint: All class names must begin with an upper case letter. Most software development 

teams adopt some type of naming convention for identifiers; violations are irritating at best, confusing 

and misleading at worst. 

Constraints such as these exist in virtually every system implemented in C+ +, but different systems require 

very different sets of constraints. As a result, it is unreasonable to ask that C++ compilers be augmented to 

handle these issues. Yet the issues remain, and their importance cannot be ignored. In this paper, we describe 

CCEL ("Cecil") - the C++ Constraint Expression Language - a metalanguage for C++ that allows software 

developers to express a wide variety of constraints on C+ + designs and implementations, and we describe 

Clean++, a system that checks C++ code for violations of CCEL constraints. 

We took as our original inspiration the lint tool, which reports a number of likely error conditions in 

C programs. However, the errors C programmers need to detect are qualitatively different from the errors 

that C++ programmers need to detect. lint concentrates on type mismatches and data-flow anomalies, but 

type mismatches are not an issue in C++ because the language is strongly typed, and data flow analysis is 

unrelated to the high-level perspective encouraged by the modular constructs of C+ +. C+ + programmers are 

concerned with higher-level concepts such as the structure of an inheritance hierarchy. Detection of errors 

in the inheritance hierarchy requires a tool that provides users with a way to check for programmer-defined 

constraints. 

Other important differences between the philosophy behind lint and that behind Clean++ are those of 

customizabilityand extensibility. The set of conditions detected by lint cannot be extended by programmers, 

nor is there an easy way to disable the detection of classes of errors for parts of source files. These are 

significant drawbacks, and both are overcome by CCEL, as the examples in the remainder of this paper will 

show. 
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2 The CCEL Language 

The requirements for a good constraint language are: 

•	 The language must be powerful enough to express the constraints important to the programmer. 

•	 The language must be intuitive and simple to learn. The look and feel must be familiar to the programmer 

to facilitate learning and use. Programmers need to be able to read a constraint and understand what it 

means in order to be able to correct a violation of a constraint, to write new constraints, and to modify 

existing constraints. 

CCEL is based on an object-oriented model where metaelasses represent the concepts of C++. The 

metaclasses are arranged in a multiple inheritance hierarchy (See Figure 1) and have member functions 

defined for them (See Table 1). We determined the metaelasses and their positions in the hierarchy by first 

examining in detail the concepts important to C++ programmers and the constraints they need to express. 

Then we classified the concepts into metaclasses, such as C++ classes and member functions, and others into 

properties of metaclasses, such as the protection level of a member function. We determined the metaelass 

hierarchy by analyzing the features the metaelasses have in common. We added abstract metaelasses such as 

NamedObject to represent the common features. We chose the object-oriented model because it is familiar 

to users of C++, and because we can extend the model to add either new member functions or metaelasses as 

new concepts need to be introduced. 

While abstracting the concepts of C++ into CCEL metaelasses, we often had to decide if a concept was 

a new metaclass or if it could be expressed as a member function of an existing metaelass. For example, 

the only difference between a class and a struct is that the default protection for a class is private, while 

the default protection for a struct is public. One possibility would be to put classes and structs in the same 

metaclass with a boolean member function indicating whether the metaelass is a struct. A second possibility 

is to put classes and structs in two different metaelasses, with their common functionality abstracted to a base 

metaclass. In general, we combined concepts into one metaelass when the differences were trivial and the 

additional complexity of having a new metaelass outweighed the increased functionality. 

For example, we divided classes and structs into two metaeIasses because C++ programmers often wish to 

draw a distinction between them. In particular, many users believe that structs should be "just like C," while 

classes should be used whenever C++-specific features are employed. By separating the metaelass concepts 

of classes and structs, it is straightforward to write CCEL rules that restrict the features that can be used inside 

structs. On the other hand, we have not yet encountered a compelling reason for differentiating between 

functions in general and global functions in particular (as opposed to member functions), to the current CCEL 

metaclass hierarchy has no metaelass specifically devoted to global functions. This means that there is no 

way to write a CCEL rule that applies only to global functions, but it would be simple enough to modify the 

metaclass hierarchy if it were shown to be necessary. 

CCEL constraints resemble expressions in predicate calculus, allowing the programmer to make asser­

tions involving existentially or universally quantified metavariables. Clean++ reports any combination of 

metavariable values that cause the assertion to evaluate to false. 
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Figure I: CCEL Metaelass Hierarchy 

Each constraint contains an assertion which must be met by some C++ source code. For example, a 

constraint requiring that all class names begin with a capital letter can be written in CCEL as follows: 

II Evel~ class name must begin with a capital letter 
CapitalizeClassNames ( 

Class C; II C is a class 

Assert(C.name() .matches("A[A-ZI")); 
) ; 

Capi tal i zeClassNames is the identifier which is used to refer to the constraint. As we will see later, 

this identifier can be used to enable or disable the constraint. C is a metavariable whose domain is the set of 

all C++ classes in the system. The body of the Capi tal i zeClassNames constraint takes the fonn of an 

Assert expression, modeled loosely on the standard C assert macro facility. The assertion is that the string 

representing the name of the class must match the UNIX regular expression "A[A_Z]". Class and Assert are 

CCEL keywords; a complete list of keywords can be gleaned from the lex summary in appendix C. 

As in C++, all metavariables must be declared before use. They are assumed to be universally quantified 

unless explicitly existentially quantified. Existential quantification is indicated by the use of square brackets, 

[...]. For example, in the constraint 

II Evel~ base class must have a virtual destructor. 
VirtualDestlnBases ( 

Class B, D; 

if (D. is_descendant (B) ) 
Assert ([MemberFunction B:: f1; I 

((fl.name() == "-(B.name()}") && (fl.is_virtual())}]); 
) ; 
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~ Metaclass Name I Metaclass Member Functions ~ Metaelass Name I Metaelass Member Functions ~ 

ArrayDimension Int valueO MemberVariable 
Boolean Boolean operator&&(Boolean) NamedObject String nameO 

Boolean operatorll(Boolean) 
Boolean operator!O 

Parameter Int positionO 
Boolean has_defaulLvalueO 

Boolean operator=(Boolean) 
Boolean operator!=(Boolean) 

String Boolean operator=(String) 
Boolean operator<=(String) 
Boolean operator>=(String) 
Boolean operator«String) 
Boolean operator>(String) 
Boolean operator!=(String) 
Boolean matches(String) 

C++Object Int beginJineO 
Int endjineO 
String fileO 

Class 
ClassOrStruct Boolean is_descendant(Class) 

Boolean is_virtual-descendant(Class) Struct 
Boolean is_public-descendant(Class) 
Boolean isJriend(Class) 

'TYPe Boolean convertibleJ:o('TYPe) 
Boolean operator=('TYPe) 
Boolean is_enurnO 
Boolean is_unionO 

FunctBody Boolean calls(String) 
Function Int num_paramsO 

Boolean is-inlineO 
FunctBody bodyO 
Boolean isJriend(Class) 

TypedObject Int numjndirectionsO 
Boolean is-pointerO 
Boolean is..staticO 
Boolean iSJeferenceO 
Boolean is_volatileO 
Boolean is..constO 
Boolean is....arrayO 
Boolean isjongO 
Boolean is..shortO 
Boolean is..signedO 
Boolean is_unsignedO 
Type typeO 

Indirection Int level() 
Boolean is_constO 

Int Boolean operator=(lnt) 
Boolean operator<=(lnt) 
Boolean operator>=(lnt) 
Boolean operator<(lnt) 
Boolean operator>(lnt) 
Boolean operator!=(lnt) 

Member Boolean is_privateO 
Boolean is_protectedO 
Boolean is_publicO 

Variable Boolean scope-isJocalO 
Boolean scope-isJileO 
Boolean scopejs_classO MemberFunction Boolean is_virtualO 

Boolean is_pure_virtualO 
Boolean redefines(MemberFunction) 

Table 1: CCEL Metaclass Member Functions 

the metavariables B and D are universally quantified, while the metavariable f 1 is existentially quantified. In 

English, this constraint reads, "For all classes B and D, if D is a descendant of B, then it must be true that there 

exists a member function fl in B such that fl's name is a tilde followed by B's name, and fl is virtual." 

The legal types for metavariables are the CCEL metaclasses shown in Figure 1. 

Metavariable declarations may have a condition attached to them, which is indicated by a vertical bar and 

a boolean expression following the variable name. For example, 

Class B; //domain is all classes 
Class 0 I (D.is_descendant(B)); //domain is only classes derived from B 

means, "for every class B and every class D such that D is a descendant of B". 
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By default, a constraint applies to all code in the system. This is not always desirable. For example, 

consider the case where a programmer has a set of naming conventions for a class library that differ from the 

naming conventions used for application classes. The ability to enable and disable constraint checking for 

named parts of the system is an important feature of CCEL. For example, ifwe wanted to limittheapplicability 

of Capi tali zeClassNarnes to the file "objects.C", we could declare a scopefortheconstraintas follows: 

II For every class C in file "objects.C", the class name must match the
 
II UNIX regular expression ~[A-Z].
 

File "objects. C" : CapitalizeClassNames (
 
Class Ci 

Assert (C .name () .matches (" A [A-Z] ")) i 

) i 

Sometimes it is more convenient to specify where an otherwise global constraint does not apply. If 

Capi tal i zeClassNarnes applies to every C++ class except example, we could di sable 

Capi tal i zeClassNames for that class as follows: 

II Do not report violations of CapitalizeClassNames in c++ class 
II "lowercaseNames". 
Class lowercaseNames : DontCapitalizeInLowercaseNames 

disable CapitalizeClassNamesi 
) ; 

Individual constraints may be grouped together into constraint classes. Suppose there are several con­

straints enforcing naming conventions. They could be grouped together in a constraint class called 

NamingConventions as follows: 

ConstraintClass NamingConventions 
II For every class C, the class name must match the UNIX regular expression 
II ~ [A-Z] . 
CapitalizeClassNames 
( 

Class C; 

Assert(C.name() .matches("~[A-Zl"))i 

) i 

II For every function F, the function name must begin with
 
II a lower case letter.
 
SmallFunctNames
 

Function Fi 

Assert(F.name() .matches("~[a-z]")) i 
\ . 
I' 

) i 

Notice that constraint classes are demarcated by brackets {...}, while individual constraints use parenthe­

ses (...). Constraint classes may be disabled by having a constraint such as this: 

5
 



NamingConventionsOff ( 
disable NamingConventions; 

) ; 

Like all CCEL constraints, this one is implicitly globally applicable. A particular constraint in a constraint 

class can be disabled by using the C++ scoping operator("::"): 

SomeNamingConventionsOff ( 
disable NamingConventions::CapitalizeClassNames; 

) ; 

If the assertion condition for a constraint is complex, the constraint designer may want to create two or 

more simpler constraints. The following example is a set of constraints that reports undeclared assignment 

operators for classes that contain a pointer member or are derived from a class containing a pointer member: 

II If a class contains a pointer member, it must declare an assignment operator. 
AssignmentMustBeDeclaredCondl ( 

Class C; 
MemberVariable C: :v; I I v is a member variable of C 

if (v.is-pointer())
 
Assert ( [MemberFunc ti on C:: f; I
 

(f.name() == "operator=")]);
 
) ; 

II If a class inherits from a class containing a pointer member, the derived
 
II class must declare an assignment operator.
 
AssignmentMustBeDeclaredCond2 (
 

Class B; 
Class D I D.is_descendant(B); 
MemberVariable B: :bv; I I bv is a member variable of class B 

if (bv.is_pointer())
 
Assert((MemberFunction D::df; I
 

(df.name() == "operator=")]);
 
) ; 

The": :" notation in the metavariable declaration of v in the first constraint indicates that v is a metavariable 

whose domain is the member variables of class C. To be a member of a class means that a member variable 

or member function is declared in this class, i.e. is not inherited. The redefines member function of the 

Class metaclass (see Figure 1) can be used to find out if a class defines a function with the same parameters 

and name as the given member function, i.e. if C++ would view it as a virtual redefinition. In the first 

constraint, the existentially quantified metavariabIe f is used to detennine if an assignment operator is defined 

for classes containing a pointer member variable. In the second constraint, the existentially quantified variable 

df is used to check if the descendants of a base class containing a pointer member define an assignment 

operator. 

The Member, MemberVariable, and Parameter metaclasses have special conditions attached to 

them similar to the MemberFunction object. A :: in a MemberVariable or Member variable 

declaration separates the class name from the member variable name. Examples: 
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Class C; II C is a class 
Member c: :Ml; II Ml is a member of class C 
Function F; II F is a function 
Parameter F(P); II P is a parameter of F 
Variable V; II V is a variable with local, file, or class scope 

Any combination of the C++ relational and logical operators can be used inside Assert clauses. As 

with C++, only types for which comparison has been defined can be used in comparison operations. The 

types of the items being compared must be the same, and the arguments to the boolean predicates must be 

boolean expressions. 

3 Error Messages 

Since constraints are user-defined and not hardcoded, the CCEL evaluator cannot form a meaningfui error 

message describing what the error condition is. The best the evaluator can do is print the constraint violated 

and the current values of the metavariables that violated the assertion. Therefore, we decided to allow the 

user to optionally associate a message to be reported with every constraint. The programmer-defined error 

messages enables the user to word the error message in familiar terms and also allows users who do not know 

CCEL to use Clean++ to find program errors. IfCCEL did not allow users to define their own error messages, 

the only way for a user to determine the error condition would be to interpret the assertion and understand 

what needs to be changed to correct the violation. This would force every user of Clean++ to be proficient in 

CCEL. 

An error message is an interpreted string which may contain references to bound metavariables and to the 

builtin variables Constraintld, ConstraintFile, and ConstraintLine which print the unique 

identifier, file, and line that the constraint violated is defined at. Variables are denoted by { ... }. For 

instance, when using NIHCL[4], a programmer would want require that every class derived from II Obj ect II 

declare the isA function with the constraint: 

II The member function Object: :isA must be redefined in all 
Ii subclasses of class Object 
RedefineisA( 

Class B I (B.name() == "Object"); 
Class D I (D.is_descendant(B)); 
MemberFunction B::fl I (fl.name() "isA"); 

Assert(D.redefines(fl)); 
) "(D.file())(line (D.begin_line{))) constraint (Constraintld) in 
\" (ConstraintFile) \": \n 
Class (D.name{)} does not define function isA."; 

If class MySubclas s does not declare the i sA function, the violation message reported is: 

mysubclass.h(Line 5) constraint RedefineisA in "constraints.ccel" 
Class MySubclass does not define function isA. 
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Figure 2: Clean++ Architecture 

If the programmer does not define an error message for the constraint, a standard error message showing 

the value of the metavariables that caused the assertion to be violated and the identifier, line number and file 

of the constraint violated is reported. The default error message for the previous example is : 

constraint RedefineisA in "constraints.ccel" (line 36): 
Class B = Object on line 20 of file "Object.h" 
Class D = MySubclass on line 5 of file "MySubclass:h" 
MemberFunction f1 = isA on line 23 of file "Object.h" 

Prototype Architecture 

There are two possible approaches to implementing Clean++. The first approach takes the constraints and 

generates a custom program that reads the C+ + source and checks for violations of the constraints. The second 

approach extracts data from the C++ program and stores it in a database. The constraints are then converted 

into queries over the database. If a constraint is violated, its corresponding query will have a non-null result 

containing information about the violations. 

The first approach requires generation ofa custom constraint-checking program for each set of constraints, 

but forthe second approach, a single constraint-interpreter suffices. As a result, we chose the second approach, 

because only one program is needed to apply multiple sets of constraints to the same system. 

Figure 2 shows the components of Clean++. Clean++ constraints can be specified in one or more files or 

within a C+ + program by embedding them in C+ + comments. (This is similar to the way lint error messages 

can be controlled from within C source.) All features of CCEL can be used inside the C++ source, but 

we expect programmers will use it primarily to specify constraints specific to a class or file within the C++ 

source, Le. to associate a constraint with the C+ + source to which it applies. By associating constraints with 

C++ source, developers who want to derive a new class from a base class or create an instance of a class 

can see any constraints that apply to a class. For example, a constraint stating that all subclasses of a class 

must redefine a particular member function would be best put in the C++ source file for the class so that 

programmers know that they will need to define that member function. A more generic constraint, such as 
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every class name must begin with an upper case letter, might go in a file containing style constraints. 

The Clean++ architecture is made up of the following independent components: ccel....strip, ccel_compiler, 

ccel_evaluator, and capture. The ccel-strip program is a simple preprocessor that searches the C++ source 

files and extracts any constraints embedded in comments. The constraints from the C++ source and any 

constraint files are passed to ccel_compiler, which uses the C preprocessor to process any macros or file inclu­

sions. ccel-compiler then translates the constraints into queries over the C++ database. The ccel-evaluator 

program executes the queries and outputs any violations of the constraints. 

The capture program parses the C++ files and places their semantic structure in the C++ repository. 

There are several existing systems that can capture the structure and semantics of C++ programs. Such 

systems include REPRISE[l4J, CIA++[5], and XREFDB[7]. Of these, REPRISE seems most suited for use 

with CCEL, and our prototype implementation uses REPRISE for the database portion of Clean++. 

For comparison purposes, the dotted lines in Figure 2 enclose the functionality of the lint tool for C 

programs. As is clear from the diagram, Clean++ gives the programmer more control by allowing the 

programmer to access the inner architecture of the checker and customize which constraints are checked. In 

particular, CCEL users can modify the CCEL source (Le., the set of constraints to be enforced), while users 

of lint are unable to modify the conditions detected by lint. 

Related Work 

Support for formal design constraints in the form of assertions or annotations was designed into Eiffel [10], 

has been grafted onto Ada in the language Anna [9], and has been proposed for C++ in the form of A++ [2,1]. 

This work, however, has grown out of the theory of abstract data types [8], and has tended to limit itself 

to formally specifying the semantics of individual functions and/or collections of functions (e.g., how the 

member functions within a class relate to one another). CCEL has a different focus. It has little concern 

for the semantics of functions;1 however, it allows programmers to express constraints involving virtually 

any kind of declaration. As such, it is able to constrain relationships between classes,. which Eiff~l, A++, 

and Anna are unable to do. CCEL can also express constraints on the concrete syntax of C++ source code 

(e.g., metaclass-specific naming conventions); this is also outside the purview of semantics-based constraint 

systems. 

GENOA [3] is a language-independent application generator that can be used to generate a wide variety 

of code analysis tools. GENOA specifications consist of actions to be performed at nodes of an attributed 

parse tree. Unlike CCEL, which is specifically designed for C++ programmers, GENOA is designed for 

compiler writers. GENOA users must know the structure of the programming language parse tree, because 

applications based on GENOA are actually custom-designed traversals of this tree. CCEL hides this kind of 

grammatical detail, and is hence much easier to learn and use. The downside, of course, is that CCEL cannot 

be as expressive as applications taking full advantage of the generality of the GENOA approach. 

lIn fact, the current version of CCEL cannot express anything at all about function definitions. However, enhancing it so that it can 
is the next logical extension to the language. 
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6 Status 

To date, our work on Clean++ has focused on developing a workable architecture for the system and on the 

design and implementation of CCEL. We have implemented a parser for CCEL and have completed the bulk 

of semantic analysis. Currently, we are concentrating on the implementation of a constraint evaluator for the 

internal representation of CCEL constraints; we are using REPRISE as the source of information about C++ 

source code. We expect to have a fully functional prototype for Clean++ before this research is presented at 

the USENIX C++ conference. 
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A	 Additional Examples 

The constraints that follow supplement the examples given in the body of the extended abstract. They serve 

to help demonstrate not only the expressiveness of the CCEL language itself, but also the kinds of constraints 

that C++ programmers might well want to enforce. 2 

II Subclasses must not redefine an inherited non-virtual member function. 
NoNonVirtualRedefines ( 

Class B, D; 
MemberFunction B: :M; 

if (D. is_descendant (B) && D.redefines(M))
 
Assert(M.is_virtual() );
 

"Class IB.name()) redefines an inherited non-virtual member function.";
 

II The return type of the assignment operator must be a reference to the class 
ReturnTypeOfAssignrnentOp ( 

Class Cl; 
MemberFunction Cl: :ml; 

if (ml.name() == "operator=") 
Assert ( ((ml.is_reference()) && (ml.type() == Cl))); 

"The assignment operator for class ICl.name ()} does not return a reference 
to class (Cl.name()}."; 

II If a class contains a pointer member, the copy constructor must be defined. 
CopyConstructorDefined 

Class C; 
MemberVariable C: :vl; 

if (vl.is-pointer())
 
Assert (
 

[ MemberFunction C: :fl;
 
Parameter fl (pI); I
 

((fl.name() == C.name()) && \fl.num-params() == 1) &&
 

2Although the grammar does not allow newlines in error message text, the error messages were separated for presentation purposes. 
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(pI.type() == C) && (pI.is_reference()))]); 
) "A copy constructor should be defined for class (C.name()) because it contains 
the pointel- member {vI.name())"; 

II Members should be declared in the order public, protected, private
 
MemberDeclOrdering (
 
Class C;
 

Assert(!([Member C::pub_mem I (pub_mem.is-public()); 
Member C:: non-pub_mem I (! non-pub_mem. i s_publ i c ( ) ); I 

(pub_mem.begin_line() > non-pub_mem.begin_line())] II 

[Member C:: prot_mem I (prot_mem. is-protected () ) ; 
Member C::priv_mem I (priv_mem.is_private()); I 

(prot_mem.begin_line() > priv_mem.begin_line())] II 

[Member C::priv_mem I (priv_mem.is-private()); 
Member C: :non-priv_mem I (!non-priv_mem.is-private()); I 

(non-priv_mem.begin_line() > priv_mem.begin_line())])); 

"Class {C.name()) has members that are not declared in the order
 
public, protected, private.";
 

II Derived classes should not redefine an inherited default parameter
 
II of a virtual function.
 
NoRedefineOfDefaults (
 

Class B, D;
 
MemberFunction D::df, B::bf;
 
Parameter df(pI), bf(p2);
 

if ((D.is_descendant(B)) && (df.is_virtual()) &&
 
(df.redefines(bf)) )
 
Assert(((pI.position() == p2.position()) &&
 

(pI.is_default() == p2.is_default())) II
 
(p2 . posi tion () ! = pI. position ( ) ) ) ;
 

) "Member function {D.name()): :{df.namel)} redefines member function 
{B.name()): :{bf.name()) but parameters {pI.name()) of function {df.name()} and 
{p2.name()) of function {bf.name()) have different defaults."; 

II Multiple inheritance hierarchies should not be diamond-shaped. 
HierarchyStructure ( 

Assertl! [ Class A, BI, B2, C; I 
((BI.is_descendant(A)) && (B2.is_descendant(A)) && 

(C. is_descendant (BI) && 
(C.is_descendant(B2)) && (BI.name() != B2.name())))]); 

) "Class {A.name()) is a ancestor of (BI.name()} and {B2.name()} which are 
ancestors of {C .name () } ." ; 

B CCEL Grammar 

What follows is the YACC grammar for the CCEL prototype; semantic actions have been excluded. 

'bunion { 
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char *cval;
 
int ivaI;
 

%token <cval> STRING IDENT CONSTRAINT_CLASS KEY CLASS_KEY FILE_KEY 
%token <cval> C_PLUS_PLUS_OBJECT_KEY FUNCTDEF_KEY TYPEDOBJECT_KEY TYPE_KEY 
%token <cval> PARAMETER_KEY MEMBERVARIABLE_KEY MEMBERFUNCTION_KEY ASSERT_KEY 
%token <cval> ENABLE_KEY DISABLE_KEY IF_KEY MEMBER_KEY VARIABLE_KEY INTEGER 
%token <cval> FUNCTION_KEY ARRAY_DIM_KEY NAMEDOBJECT_KEY INDIRECTION_KEY 
%token <cval> CLASSORSTRUCT_KEY STRUCT_KEY 
%type <cval> var_name 
%% 

constraint_file	 constraint_file constraint_group 
constraint_group ; 

constraint_group	 constraint_class 
constraint_list ; 

constraint_class	 CONSTRAINT_CLASS_KEY constraint_class_ident '{' 
constraint_list 'J' ';'; 

constraint list	 constraint list constraint 
constraint 

constraint:	 opt_constraint_scope constraint ident '(' 
constraint_body';' 'J' 
opt_message ';' 

constraint_body :	 variable_decls constraint_condition 
select_constraint; 

'. , 

obj_name :	 filename 
IDENT ; 

filename : STRING	 ; 

opt_message : STRING 

variable_decls variable_decl 
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'., , 

type	 C_PLUS_PLUS_OBJECT_KEY 
FUNCTDEF_KEY 
TYPEDOBJECT_KEY 
TYPE_KEY 
VARIABLE_KEY 
MEMBER_KEY 
FUNCTION_KEY 
CLASS_KEY 
PARAMETER_KEY 
MEMBERVARIABLE_KEY 
MEMBERFUNCTION_KEY 
ARRAY_DIM_KEY 
NAMEDOBJECT_KEY 
INDIRECTION_KEY 
CLASSORSTRUCT_KEY 
STRUCT_KEY; 

var_name_list ',' var_name 
var_name 

var name- IDENT ' .' '. , IDENT 
IDENT ' (' IDENT ') , 
IDENT ' [' IDENT '] , 
IDENT; 

optional_cond : 'I' expression 

constraint_condition	 IF_KEY' (' expression ')' ASSERT_KEY' (' expression ')' 
ASSERT_KEY' (' expression ')' 

expression_list 

expression_list ' expression 
expression; 

expression	 simple_expression I 
simple_expression '=' , simple_expression 
simple_expression' !' , simple_expression 
simple_expression '<' simple_expression 
simple_expression '>' simple_expression 
simple_expression '<' '=' simple_expression 
simple_expression '>' '=' simple_expression 

simple_expression : 
term I 
simple_expression 'I' 'I' term; 

factor I
 
term '&' '&' factor;
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factor	 STRING I 
INTEGER I 
IDENT function_list 
, !' factor I 
• (. expression .) • 
• [' variable_decls 'I' expression .]. i 

function_list function_list' • IDENT • (. param_Iist .). 

select constraint : on_or_off constraint selector 

ENABLE_KEY I
 
DISABLE_KEY i
 

constraint selector	 selected_constraint I 
constraint_class ident 

selected_constraint	 constraint_class ident •.••.• constraint_identi 

C CCEL Tokens 

What follows is the LEX source for the CCEL prototype. 

ws [ \n\t]
 
letter [A-Za-z]
 
digit [0-9)
 
integel­ (digit]+
 
punt [_1
 

(ws) {skip_whitespace(};}
 
{integer} {sscanf (yytext. "%d". yylval. ivaI) ;
 

return (INTEGER) i) 
11// II (skip_comment() i) 
"ArrayDim" {return (ARRAY_DIM_KEY) i) 
"C()11straint(~lassll {return (CONSTRAINT_CLASS_KEY) i) 

IlClass l1 {return (CLASS_KEY) i) 

"File" {return (FILE_KEY) i] 
IIFunction li {return (FUNCTION_KEY] i) 

"Variable" {return (VARIABLE_KEY) i) 
"C++Object" (return(C_PLUS_PLUS_OBJECT_KEY]i] 
"FunctBody" {return (FUNCTBODY_KEY) ;] 
"TypedObject" {return (TYPEDOBJECT_KEY) ;] 
11 Type II {return (TYPE_KEY) i] 
"Member" {return (MEMBER_KEY) i) 

"Parameter" {return (PARAMETER_KEY) i] 
"MemberVariable" {return (MEMBERVARIABLE_KEY) i) 
"MemberFunction" {return (MEMBERFUNCTION_KEY) i) 
"Namec10bject" {return (NAMEDOBJECT_KEY) i} 

"Im'lirection" {return (INDIRECTION_KEY) i} 

"ClassOrStruct" {return (CLASSORSTRUCT_KEY) i) 
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"Struct" {return (STRUCT_KEY) ,} 
"Assert" (return (ASSERT_KEY) , ) 
"if" (return ( IF_KEY) , } 
"enable" (return (ENABLE_KEY) ,} 
"disable" {return (DISABLE_KEY) ,} 
{letter} ((letter) I (digit) I {punt}} * 

(yylval. eval = 
new ehar[strlen(yytext}+l) , 

strepy(yylval.eval, yytext); 
return (IDENT) , } 

\".*\" (yylval.eval = 
new ehar[strlen(yytext)+l] , 

strcpy(yylval.eval, yytext) , 
return (STRING) ,} 

(return (yytext [0] ),} 
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