
BROWN UNNERSITY

Department of Computer Science

Master's ll.esis

CS-92-M8

"Two Phase Conunit"

by

Chih-Yung Huang

Two Phase Commit

Chih-Yung Huang

Department of Computer Science
Brown University

Submitted in partial fulfillment of the requirements for
the degree of Master of Science in the Department of

Computer Science at Brown University

April 1992

Date 4/Z7/q2., ~'z t3. :(£.mj L
Stanley Bodonuf
Advisor

~

Two Phase Commit

Chih-Yung Huang

April, 1992

1 Introduction

In a distributed database system consists of a collection of sites, each of which maintains its local
database and may participate in the execution of transactions that access data at one site, or sev­
eral sites. In order to ensure atomicity which keeps the whole database consistent, all the sites in
which a transaction T executed must agree on the final outcome of the execution. T must either
conunit at all sites or abort at all sites.

Lets elect one site of all sites which get involved with the execution of T as coordinator
and the other sites as participants. An atomic conunitment protocol(ACP) is an algorithm for the
coordinator and participants such that either the coordinator and all participants conunit T or they
all abort it. The two-phase conunit protocol(2PC) is one of the simplest and most widely used
ACP.

2PC is not a new algorithm at all; actually, it has been part of some commercial products
in the world. Why bother doing this project? By abstracting this piece of code away from the cor­
rectness algorithm, we come up with a few advantages which make this package unique. First, the
code will be easier to maintain because the complicated issues of distribution are isolated from the
sophisticated topics of correctness. Moreover, when the underlying hardware of communication
platform changes, the effects will be localized. And the most obvious advantage is that such a
facility allows independent experimentation with synchronization and correctness algorithms.
Also, C++ plays a big role in the contribution since this project not only makes any module easily
specialized by using the object oriented language, but it also explores some ways to integrate the
new C++ programs with the existed library functions written in C.

In this paper, I first outline several key modules of the system and the interaction between
each other. Next, I discuss the 2PC algorithm and the corresponding components in my imple­
mentation. Then, some features are shown together with the ways of using them. The implementa­
tion issues are also included. Finally, there is some future work which is nice to be done.

2 Modules

The system consists of two parts, tserver and tclient. The later simply takes simulation data from
test files and starts the commit protocol by sending the initial message to coordintor3 of the later.
That is, tclient is like the front end of tserver, so I upgrade it into a graphical user interface(GUI),
which is covered in section 4.

The tserver is composed of a few key modules; namely, participantl, responder2, coordi­
nator3, decider4, TwopcVoteRequest, TwopcGetVotes, TwopcFinalRequest, TwopcDecisionRe­
quest and TerminationProtocol. More details are presented in Fig.2.1. Those arrows cross dotted
lines indicate where RPC calls take place.

Fig. 2.1 Module Specification

coordinator participantj

~ not always

TerminationProtocol

responder2

participantj

TwopcDecisionRequest

resopnder2

2

3 Algorithm

In this section, I put the standard 2PC algorithm in the left hand side and the relative component
of my program in the right hand side. The purpose is to remind the reader of the algorithm as well
as to go into some depth of the implementation details. The algorithm is composed of four parts;
namely, coordinator's, participant's, initiator's and responder's. Figure 3.1 .. 3.4 present all the
algorithms, respectively. By reading the last and this section, the reader should have a clear idea
about how each part coordinates with one another.

The names in the implementation part are the exact function names in the program, while
the two arrows indicate message flow between different modules in the server. Specifically, "A->
B" means A sends a message to B, and "A <- B" means A request a message from B.

Fig.3.1 Coordinator's Algorithm

Algorithm Implementation

send VOTE_REQ to all participants

write START_2PC in log

wait for vote(YES or NO) from all participants
on timeout begin

let Sy be all sites from which YES came
write ABORT in log

send ABORT to all sites in Sy

return

end

if all votes were YES and I vote YES begin
write COMMIT in log
send COMMIT to all participants

else begin

let Sy be all sites from which YES came

write ABORT in log
send ABORT to all sites in Sy

end

return

TwopcVoteRequest
coordinator3 -> participant1

TwopcGetVotes

TwopcFinalRequest
participant1 <- decider4

TwopcGetVotes

TwopcFinalRequest

participant! <- decider4

TwopcFinalRequest

participantl <- decider4

3

Fig. 3.2 Participant's Algorithm

Algorithm

wait for VOTE_REQ from coordinator
on timeout begin

write ABORT in log
return

end
if I vote YES begin

write YES in log
send YES to coordinator
wait for decision(COMMIT or ABORT)

from coordinator
on timeout initiate initiator's algorithm

write decision in log
end
else begin

write ABORT in log
send NO to coordinator

end
return

Implementation

participant!

coordinator3 <- participant!
TwopcFinalRequest

participant! <- decider4
call TerminationProtocol

coordinator3 <- participant!

Fig. 3.3 Initiator's Algorithm

Algorithm Implementation

start: send DECISION_REQ to all sites TerminationProtocol
participant! -> responder2

wait for decision from any site TwopcDecisonRequest
on timeout goto start II blocked

if decision is COMMIT then

write COMMIT in log
else

write ABORT in log

return

4

r

Fig. 3.4 Responder's Algorithm

Algorithm Implementation

wait for DECISION_REQ from any site Sj

if responder hasn't voted YES or has decided to ABORT

send ABORT to Sj

else if responder has decided to COMMIT

send COMMIT to Sj

else II responder is in its uncertainty period
skip

return

participant! <- responder2

participant! <- responder2

4 System Overview

In order to show the user what this package does and how it works, I offer the system overview by
presenting the following four parts. The libraries I utilized are described first, fol~owed by the
directory hierarchy and a brief description of the contents of those directories. Then, I show the
effects of the system by three sample simulations. Finally, the aUI is discussed.

4.1 Libraries

I build my program on top of three existed libraries developed in C. They are SUN RPC, Brown
Threads package and Brown Augmented Utilities for Motif(BAUM).

4.1.1 Remote Procedure Call

To use RPC or go lower to the transport level interface programming(TLn was the main concern
during the first phase of this project since 2PC is a communication-prone algorithm. Certainly,
there is some way to implement it by TLI because it supercedes the socket-based interprocess
communication mechanisms as the standard means of gaining direct access to transport services.
Also we can get good performance by using the lower level TLI as long as enough time is spent
for experiment.

In the other hand, RPC keeps us away from all those tedious details in transport services as
well as provides a lot of nice routines such as xdc*. It means much less work by taking RPC.
After some study and investigation, we were positive to the RPC approach although nobody could
expect the performance yet.

5

Basically, there are two components, client and server, in RPC model. The server is usu­
ally a background process which just sits there and waits for request from the client. The client
makes a procedure call which sends requests to the server as necessary. When these requests
arrive, the server calls a dispatch routine, perfonns whatever service is requested, sends back the
reply, and the procedure call returns to the client.

In my model, things are not so simple. First, The tserver is not a standard server which
only takes requests. It is a client as well, i.e., it also makes requests to other tserver's in the net­
work. Besides, there are multiple tserver's in the whole system although there is only one tclient.
Therefore, a lot of requests may arrive a tserver from other tserver's. We cannot ignore any
request since it breaks the algorithm. Neither can we force clients to wait because this approach
deteriorates perfonnance. The decision we made is to create as many threads as possible for every
single tserver, and use share data together with monitor to achieve the correctness. The number of
threads within a tserver is not fixed, each thread is started as needed. In the other words, various
threads are started based on the corning requests.

To make all these happen, I provide TwopcMySvcRun instead of using the svc_run rou­
tine provided by SUN. Nevertheless, they are very similar except the fonner allows multiple
threads to coexist in a tserver without conflict. The other change I made to threads package is the
header file, thread.h, due to the conflict between the old style definition and the new C++ pro­
gram. The new header file resides in my local source directory.

4.1.2 Brown Threads Package

This package is a system for the efficient support of concurrency. The idea is that a number of
concurrent threads are executing in a single shared address space and share a common view of
which files are open. Thus threads may communicate very efficiently through this shared memory
and all threads may participant in I/O on any file.

In the implementation, I create a thread and make it independent on its parent whenever
the service required might take a while to finish so that I reduce the chance which makes the client
wait to minimum. One of the typical example is the execution of TerrninationProtocol, which may
cause the server to be blocked if it cannot get decision from any other sites. By creating a thread to
deal with this specific function, the server can keep receiving requests and offering services even
though that TerrninationProtocol thread gets blocked. Lots of other functions, which never result
in blocked server but takes some time to complete are handled by independent threads.

Shared data are needed because different threads may try to reach some common data such
as the log. However, serious problems would have been seen if we did not monitor those share
data. Imagine that two threads try to write something into log simultaneously, then we cannot
expect what the result will be, let alone the correctness. By making enough data sharable and
enforce the monitor appropriately, we get the best performance. And this is where the trick is.

6

4.1.3 Brown Augmented Utilities for Motif

BAUM is a library of C++ classes intended to simplify interface design. This set of classes use
inheritance to parallel and enhance the widgets provided by Motif. Actually, it encapsulates the
Motif widget hierarchy into a C++ class hierarchy.

A C++ programmer who uses Motif must has noticed that the callback function cannot be
the member function of a class that he created - it has to be a regular global C-style function. In
the mean time, we always expect everything to be object-oriented(OO) while programming in an
00 language like C++. How do I elegantly integrate those callbacks with my beautiful 00
design? The solution is to ask the widget to pass a pointer to my class structure to the global C­
style function which calls the appropriate function in the class that really handles the event. Thus,
the C-style function is just a "passthrough" point so that I get a clean 00 design.

How about the interface to RPC and Threads package? They are similar to Motif in the
sense that they are all written in C before any 00 language really became popular. The other sim­
ilar characteristic is they all break 00 style at some point For instance, the function argument of
THREADcreate cannot be anything else but a global C-style function. The same situation hap­
pens in the XDR routine argument of svc~etargs provided by SUN RPC. Therefore, it will be a
big distribution to offer the class library for RPC and Threads so that the 00 programmers can
have a really clean 00 design.

4.2 Directory Hierarchy

There are five directories; namely, src, bin, log, data and doc, related to this project. Currently,
they can be found in "/u/cyh/work!masters/current/C".

4.2.1 src Directory

All the source codes, including C++ files and header files, reside here. Two kinds of header files
exist They are old style C header ending by ".h" and new style C++ header ending by ".H". A list
of all files and a brief explanation of their functions are followed.

Makefile
thread.h the header file for threads package in C++ application.
msg.h definition of message format passed through network by RPC.
defs.h language extensions.
twopc.H class definitions for the whole thing except Gill.
gui.H all definitions for gui.C including class, resources, menus, callbacks and more.
tools.C all member functions of the class TwopcTools, the utility for all other classes.
rpc.C : all member functions of two classes, TwopcLog and TwopcRpc, the parent of

TwopcRpcClient and TwopcRpcServer.
client.C all member functions of the class TwopcRpcClient, the RPC client.
clientinit.C : the simulation front end in Text UI mode.

7

••~ 0"

server.C all member functions of the class TwopcRpcServer, a RPC server as well as client.
verify.C the program to check the consistency of all logs.
gui.C the graphical user interface.

4.2.2 bin Directory

All the executable files are here together with a resource file, bosts, and a convenient file,
myalias. The names of all hosts participating in the distributed database system should be in the
file, hosts. It begins with the total number of hosts and follows by a series of host names. A sam­
ple file is shown in FigA.I.

There ought to be exactly one tserver running in every host, and the tclient starts in whichever
host to trigger the simulation process. The user may start gui and follow the online instruction
instead of tclient. In myalias, I define a shorthand, c1, for tclient. The last file, verify, can be
started at any time in whichever host to check whether there is any inconsistent or undecided
transactions in logs.

Fig.4.1 hosts file

delay ftanger4 fi~le rev\
\ host 1 hI4

host 2 ~st3number of hosts

4.2.3 log Directory

All logs belonged to the hosts defined in hosts file are here. They can be easily distinguished by
the corresponding host name. A log is a sequence of entries recording the history of transactions.
Each entry is composed of two parts, transaction ill and status. Only five different statuses are
found there: START_2PC, YES, COMMIT, ABORT and CHECK_PT. The last status always comes
together with the transaction ill O. Some sample logs will be shown in section 4.3.

4.2.4 data Directory

There are three test files available: test.Fiddle, test.Delay and test.Reverb. Lets take test.Fiddle as
an example. A sample file, test.Fiddle, is shown in FigA.2. The coordinator ill and participant ill
are given according to the hosts file in bin directory.

8

Fig.4.2 A test file, test.Fiddle

~ number of transactions ill of participant 2

'\
1 7 2 2 3
1 20 1 3
1 23 2 3 2
1 25 2 2 3
I 28 . 1 2
1 77 1 3
I 78 2 2 3
1 611 2 3 2
1 699 2 3 2

ID+of participant 1:
\ jsaction ID 3 means delay

coordinator ID:
I means fiddle number of participants

4.2.5 doc Directory

The document of this project is created by framemaker. twopc.doc is the filename.

4.3 Simulations

There are two ways to start a simulation according to the test files. Here I describe the fully sup­
ported method first, and the other method controlled by gui is covered in next section. Due to the
effectiveness of explanation by examples, I presents three sample log results reflecting different
situations. The log files can be found in the subdirectory of the log directory.

The first sample happened when all three servers, fiddle, reverb and delay, kept alive dur­
ing the whole simulation process which is fired by a sequence of test files one after another. Only
a single host was used to start tclient. The logs are in the subdirectory samplel.

The second sample occurred without any server failure, too. However, I started three sim­
ulation from three distinct hosts almost simultaneously, so we found transactions belonging to
those three test files interleave one another in logs. The name of a host which started a tclient run­
ning a test file reflects the test file name. A snap shot is in Fig.4.3 and the whole logs are in the
subdirectory sample2.

Finally, I intentionally made one of the host failed and started it again to show the strength
of recovery. Three tserver's were initiated as usual, then test.Fiddle and test.Reverb were started

9

almost at the same time from the machines, fiddle and reverb, respectively. Before finishing that, I
killed the server in delay. At this point, there was no decision for transaction 7 in log.delay. Now I
started the tserver in delay again, and it checked the log, sent out the needed requests to the other
servers, and got the decision for transaction 7 eventually. I execute another tclient in delay to fire
those transactions in test.Delay anyway. The result is everything in logs is consistent and there is
no undecided transaction in any log. Fig.4.4 shows a snap shot of the log states right before and
after delay failed. Detailed can be found in the subdirectory sample3.

Two things are beyond these three sample simulations. First, if too many, say 30, requests
come to a single tserver almost simultaneously, so that the server cannot handle all requests even
though a lot of threads are created. In this circumstance, some transactions will be aborted but
everything in the logs will still be consistent. I made this decision because the consistency is the
key point of 2PC while good performance should be gained whenever possible. The other reason
is that heavy traffic will happen some time no matter how well you distribute the load.

The other situation is the only weakness of 2PC, and the motivation of creating Three
Phase Corrunit Protocol(3PC). That is, some server S in the system may fail while processing
some transaction T such that there is no decision for T in its local log yet. In the mean time, there
is no other server who has gotten a decision for T. After S recovers from failure, it sends out
requests in order to get a decision for T; however, the thread which deals with this Termination­
Protocol gets blocked since there is none decision for T in the whole system. I did notice the
occurrence of this problem. Fortunately, it is scarce.

Fig.4.3 log.fiddle in sample2

28 START_2PC.... from test.Fiddle
from test.DelaY"-6 YES

16 YES .. from test.Reverb
28 COMMIT
6 COMMIT

from test.Fiddle.-77 START_2PC
18 YES .. from test.Reverb
16 ABORT
18 COMMIT
77 COMMIT

Fig.4.4 log.Delay in sample3

11 YES
11 COMMIT
7 YES

delay was killed -'7° COMMIT----..the first thing after

CHECK_PT recovery
tserver idle befor~° CHECK_PT
test.delay got started

10

history

~1111111'!'['if'IIII!'j'i'I'IIII'll'~'llllljl'i!'iiiil·;:l·::I·l·!·:)j·!·!·[:i[·[·[·iil·!·i:·j·il·j·i/:I:ii.:iiiii!l::iiii~~!::i[·~I:~!·/:;[~~~j·I~·!!!.!
tsy!telrr,niti~lii~.C.1Li;.~...~.••.•. i47J".~"'AR-'- __2P~<··· ... ,~
§~qrtSe~~r:!:(Ci~Je) .. . ·',.l/ff?,i..~~9~Ml'r

•••••;::~ •• ·~:i~:~~ .••~~v,~nb ·.···.··· ··.,·.·..·.1. · ·...••••·•••g~:~:Ja~l~ltP.A .••••••••••
Dis)'a . Tai' itl Defa .

4.4 Graphical User Interface

The user can do whatever mentioned in the previous simulation section by this aUI except start­
ing several test files from various machines at the same time. aUI is pretty easy understood once
you try it, so I would only present two snap shots in the following figures. FigA.5 shows the tail
portion of log.delay. The tail portion of a log is a collection of entries after the last active
CHECK_Yr which is the CHECK_Yr immediately before the last effective CHECK_PT which is
either the end of the log or a CHECK_PT after which there is nothing but CHECK_Yr. In Fig.4.6, I
show all entries which has transaction ill 7 in all logs.

Fig. 4.5 GUI state 1

pull down
menu

message

currently alive servers

Fit!. 4.6 GUI state 2

f. r I.••.•{..l,,1..1..•,5, {.l.,.!•••·".'•••i.,.!:.', '•.,?,.•..·•. ,? 1.••• '",1.."..A.,.,•.•i",'".,.:'.. ,..('.,•.(,."..·.:•.~,::,: ,.;..•:. }Jl.l•.. :,.:::..,:...•. :.,:~ ..zg~:M.!.! ..;].:.,.: ; ;;I ,J
':~:~I_~i~:II:_i:~_':I:!;J: __i:I·!~JI~~t.li··.:::.:.;.· ..·:..:··[..•::·:··· ··::::..:·.::.1·.:::::·:[:·.·.:.:•...:::::: ;.: ..::..•:.•.: ::.:.•[:[::.::.:.:::['::::[

11

http:�.(,."..�.:�
http:l.,.!����".'���i.,.!:.','�.,?,.�..��

5 Future Work

There are a few things which will make life easier. First, detect the point where 2PC breaks and
terminate the blocked thread by aborting the relative transaction and roll it back. This idea may
lead to 3PC; however, the sophistication of 3PC is what we try hard to avoid. Thus, it would be
wonderful if we can come up with something between those two protocols.

Second, I notice that it's so great to program in BAUM instead of Motif, and it results in a
very clean C++ program for the Gill. How nice it would be if we build similar kind of C++ inter­
face for both threads package and RPC, and write our program on top of them.

Last but not least, a fully supported Gill should be built. Two important features are
needed to make it complete. One is the ability to start up several test files from different hosts
simultaneously. The other is to start a tserver by executing a remote command in the specified
host and keep track of the life span of all tserver's. This idya raised the issue of modelling a dis­
tributed system by a single GUI running in a single machine in the system. This kind of Gill, or
system monitor, will benefit two groups of people a lot. The programmers who are developing
distributed software can use it to debug their programs. And the system administrators of LAN
may figure out the system performance and do some tuning.

6 Acknowledgments

Thanks to Dave Langworthy for helping me start up, to professor Tom Doeppner for all the
prompt answers to my questions, and to all the people around me who offered technical opinions
and experiences. Thanks to my family for all the support and to my girl friend, wen-chih, who
makes my life rich.

12

