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Abstract 

This paper presents an algorithm for mapping between a 3D surface 
and a connected subset of the uv plane. The resulting mapping is of in­
terest because (1) it has a high level of continuity, (2) distinct surface 
points map to distinct points on the plane, (3) only at the discontinu­
ities do surface points map to more than one point on the plane, and 
(4) the' algorithm works on a wide range of surfaces regardless of their 
topology and connectivity. Several applications are discussed, including 
texture mapping a surface, wrapping a surface patch around an object, 
and transforming one surface into another. 

CR Categories and Subject Descriptors 

1.3.5 Computational Geometry and Object Modeling; 1.3.7 Three-Dimensional 

Graphics and Realism 

Keywords 

Surface Topology, Planar Graph, Texture Mapping, Surface Patch, Shape Trans­

formation, Metamorphosing 
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1 Introduction 

Algorithms that create mappings between points on a 3D surface and points on 

a 2D plane are useful for tezture mapping, patchifying, and metamorphosing. 

Tezture mapping adds detail to objects by mapping a 2D image onto a 3D 

surface [8]. The correspondence between points on the surface and points in 

the image is called the mapping function [2]. A useful mapping function is one 

that uses each part of the image exactly once (Le., it is bijective or one-te-one 

and onto) and maps adjacent 3D surface points to adjacent 2D image points 

(i.e., it is continuous) 1. These requirements cannot be satisfied for a surface of 

arbitrary topology, but a function can be created that minimizes discontinuities 

and maintains the one-te-one mapping everywhere except at the discontinuities. 

For example, if a surface is defined with a continuous parameterization, the uv 

coordinates of the surface define a mapping that is continuous and bijective 

except at the limits of the parametrization (where u = I, for example). 

For arbitrary polyhedra, however, most algorithms produce functions that 

are many-te-one, do not completely cover the image (not onto), or are discontin­

uous (see Figure 1). For example, Peachey [17] projects a surface point onto the 

plane by ignoring its z coordinate. Obviously, surface points having the same 

zy coordinates map to the same 2D coordinates, and parts of the image may 

not be used. This technique has been used to create the image in the center of 

1 We we the term imllg£ to refer to a continuow intemity function defined on a rectangular 
region and not to a finite 2D ArTay of intelity value. (pixw) 
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Figure 1. Note how the mapping in many-to-one (a mirrored image shows up 

on the bottom of the torus) and not onto. 

Figure 1: The results of using traditional methods to map the image on the top 
onto a two-holed torus. The image on the bottom left has been textured by pro­
jecting each surface point along the y-axis (i.e., the y-coordinate was ignored) . 

.The image on the bottom right has been textured by projecting each surface 
point along its normal onto an encasing sphere and using the uv coordinates of 
the intersection point. 

Bier and Sloan [3] produce a more evenly distributed mapping by first encas­

ing the surface inside an object that has a well defined parameterization, such 

as a sphere or cube. Surface points are then projected onto the encasing object 

and mapped to the corresponding uv coordinates. If the surface is convex or 
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star-shaped2 , it can be projected bijectively onto the encasing object. Other­

wise, many surface points project onto a single point on the encasing object, 

resulting in a mapping function that is many-to-one. This technique has been 

used to create the image on the right of Figure 1. Note how the mapping is 

many-to-one. 

If the inverse of the mapping function maps each 2D point to a single 3D 

point, then it can be used to map the control points of a surface patch onto 

an object (as explained in Section 4). The shape of the resulting surface patch 

approximates the shape of the original polyhedral object. We call this process 

pa.tchifying an object. The advantage of having a patch rather than a polyhedral 

object arises when the user wants to make local changes that preserve high-

order surface continuity. Moving a control point on a surface patch preserves 

this continuity; moving a vertex on a polyhedral object does not. 

By combining one mapping function with the inverse of another, a cone­

spondence can be made between the surface points of two distinct objects (see 

Figure 2). This correspondence can be used to smoothly transform from one 

3D shape to another 3D shape in a process called metamorpho"i". 3D meta.mor­

phosis is different from the 2D image "morphing" that has appeared recently in 

movies and television advertisements [12], but both have similar uses. 

The metamorphosis of one object into another can suggest a development 

process, such as the growth of a tadpole into a frog [13]. By interpolating 

2 A atu.abaped object ia one in which there exiata.&I1 interior point p auch that a line from 
p to any other interior point ia contained entirely within the object [16J. 
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between two shapes, interesting objects can be created that can spark design 

ideas. Chen [4], for example, attempted to obtain an aerodynamic-looking car 

by interpolating between a car and a teardrop. He also used shape interpola­

tion to identify design trends by averaging many similar designs. Several 3D 

metamorphosis algorithms have been presented, but they usually work on only 

a limited set of polyhedra [16, 13,4]. 

m 

•
Figure 2: The mapping, m, from object A, a sphere, to object B, a cube, is 
a composite of the mapping, I, from A to the plane and the inverse of the 
mapping, g, from B to the plane. 

This paper introduces a new method for mapping a polygonal surface in 

3-space onto the uv plane. The resulting mapping maintains a high level of 

continuity while mapping distinct surface points to distinct points on the plane, 

and it works on a variety of surfaces. Most polygonal surfaces encountered in 

computer graphics can be mapped, as long as they are closed and connected3 • 

Thus, the method can work on simple surfaces, such as spheres and tori, as 

well as more complex surfaces, such as ducts, volume data isosurfaces [9], and 

surfaces of objects built with constructive solid geometry (CSG) [14, 1l.]. The 

3 Each .urlace muat be a.n embedding of a finite, clo.ed, co:r:mected••implici&12.mani!old [7]. 
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algorithm has been used to map a texture onto an object continuously and bi­

jectively except at the image borders, to patchify objects, and to metaIJ:lorphose 

between any two of the objects described above. 

The algorithm maps a surface by unfolding it onto the plane so that no 

two faces overlap. The surfaces described above, however, cannot be unfolded 

without being torn. Therefore, the first step of the algorithm is to cut the 

surface so that it can be unfolded: The actual unfolding can then be done 

directly; howeve"r, instead of unfolding in the intuitive manner by mapping the 

center and then flattening out toward the boundary, we first map the boundary 

and then flatten the rest of the surface. Our approach is different from the way 

Samek et aI. [19] unfold a surface. Their algorithm first glues a single face onto 

the uv plane, and then unfolds outward from that face, resulting in a mapping 

that is many-to-one since faces can overlap. 

The next section introduces the new algorithm, and Sections 3, 4, and 5 

describe the application of the algorithm to texture mapping, patchifying, and 

metamorphosing respectively. Finally, conclusions and future work are pre­

sented. 

2 Going From 3D to 2D 

A bicontinuous one-to-one mapping cannot be constructed between one of the 

surfaces described above and a subset of the plane. The usual uv mapping of a 
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sphere, for example, where u is latitude and v is longitude, has a discontinuity 

where the lines u = 0 and u = 1 meet. This discontinuity arises because 

the sphere and the uv plane have different topologies. In this paper, the term 

topology refers to the topology of the underlying surface, not to the specific 

organization of the faces, vertices, and edges of a polyhedral approximation to 

the surface. 

Our strategy is to find a collection of edges along which to cut the surface 

so that the resulting surface can be mapped continuously onto a subset of the 

plane. If the surface is cut along these edges, the resulting surface will have the 

topology of a closed disc. A closed disc is a connected subset of the plane that is 

bounded by a single closed loop and that contains its bounding edges [7]. (This 

is as opposed to an open disc which does not contain its bounding edges.) The 

cut-apart surface can be mapped continuously and bijectively onto any other 

surface with the topology of a closed disc (the filled unit square, for example) [7]. 

The algorithm presented in the next section finds such a cut. 

2.1 Finding a Place to Cut 

The algorithm for finding a place to cut is simple to implement. It starts by 

identifying a small subset of the surface having the topology of an open disc 

and repeatedly enlarges this subset until it contains all of the surface except for 

a few edges. These excluded edges form the boundary of the subset, and if the 

original surface is cut along these edges, the resulting surface can be unfolded 
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onto the plane. 

Because the subset is an open surface, it does not contain the lines along 

its border. (Likewise, in this paper, faces are open surfaces and do not contain 

their bounding edges.) This subset is recorded as a collection of vertices, edges, 

and faces. Its boundary, which it does not contain, is stored as a list of edges 

ordered cyclicly around the faces in the subset. 

The algorithm starts with a subset containing a single face of the original 

surface-any face can be used. The edges around that face form the initial 

boundary, and to enlarge the Bubset, faces are added and the boundary is ex­

tended (see Figure 3). A face can be added only if it shares a bounding edge 

with the subset. When a face is added, the shared edge is also added to the 

subset (and deleted from its boundary), and the other edges that border the 

face are added to the boundary. If a face touches the boundary along multiple 

edges, only one is added to the subsetj the remaining edges are added to the 

boundary. Thus, edges can appear on the boundary twice. 

Figure 3: Two faces, Tn and n, being merged with the subset S. Note that only 
one edge bordering n is added to the subset. The final boundary, labeled on the 
bottom figure, contains, in order, edges a, b, b, c, d, e, and f. Edge b appears 
twice in the list. 

The enlarging process stops when no more faces can be added to the subset­
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that is, any face that touches the boundary is already in the subset. Since the 

original surface is connected, this occurs only when every face on the original 

surface is contained in the subset-the only surface points not contained in the 

subset are those along its boundary. 

The merging operation does not change the topology of the subset. Thus, 

the subset always has the topology of an open disc and can be unfolded onto 

the plane. The final boundary of this subset contains the edges we are looking 

for: if the original surface is cut along these edges, the resulting surface can be 

unfolded onto the plane. 

However,our goal is to produce a mapping that is highly continuous. Since 

the discontinuities arise along the boundary, it is advantageous to reduce the 

length of the final boundary before cutting the surface. One operation that can 

considerably shorten the boundary is the removal of edges whose two occurrences 

along the boundary are consecutive, as illustrated in Figure 4(a). Another 

shortening operation involves switching the boundary from one side of a face 

to the other, as illustrated in Figure 4(b). Since these operations maintain the 

topology of the bounded subset, the final, "shortened", boundary still contains 

a set of edges along which to cut the original surface. Figure 5 shows the lines 

of the cut found by this algorithm on the surface of a torus. 

There is one problem with these shortening operations. If the surface has 

the same topology as a sphere (genus 0), the resulting boundary will become 

empty. (This makes sense, since a sphere minus a single vertex has the same 
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(a) (b) 

Figure 4: The boundary can be simplified by (a) removing edges whose two 
occurrences are consecutive, and (b) switching the boundary from one side of a 

Figure 5: Front'~n ack views of a cut torus with areas on and near the cut 
highlighted in red. 

ace to the other. . 

_......~...--..--

topology as a disc-no edges need be cut.) To unfold the surface as described 

below, however, a boundary with at least 3 vertices is needed. Therefore, if the 

surface is a topological sphere, any two edges that share a single vertex can be 

used as the boundary. Cutting the original surface along these two edges gives 

a surface with the same topology as a disc. 

To determine if the original surface is sphere-like, Euler's equation can be 

used: G = 1 - (F + V - E)/2, where G is the genus of the object (number 
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of holes in the object) and F, V, and E are the number of faces, vertices, and 

edges, respectively, of the surface. If F +V - E = 2, the surface has the same 

topology as a sphere, and any cut along two neighboring edges yields a surface 

that can be unfolded onto the plane. The algorithm checks this initially and 

treats it as a special case. 

2.2 Unfolding Onto the Plane 

The 8keleton of a polyhedral surface is the set of vertices and edges of the 

surface and can be thought of as a graph. An embedding of a graph in the 

plane specifies the cyclic order of the edges around each vertex and face without 

specifying the 2D coordinates of the verticesj a drawing of a graph on the plane 

specifies these 2D coordinates. If a graph can be embedded in the plane with 

no edge crossings, the graph is planar and the embedding is called a planar 

embedding [18]. Likewise, a drawing of a graph in the plane without any edge 

crossings is called a planar drawing. In this section, we show that if a surface 

has the topology of a disc, planar drawing algorithms can be used to map the 

surface continuously and bijectively to the plane. 

Remember that a surface with the topology of a disc can be mapped con­

tinuously and bijectively onto a subset of the plane. Therefore, there exists a 

planar embedding of the skeleton of the surface, and the skeleton is a planar 

graph. 

If a planar graph is tri-connected, that is, at least 3 edges must be cut to 
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split the graph, then it has a unique planar embedding given the cyclic order 

of the edges around the outer face [6]. For a tri-connected graph, all planar 

drawings that have the same boundary edges (in the same order) have the 

same embedding. If the skeleton of a surface is tri-connected, then the planar 

drawing produced by mapping the surface to the plane continuously and one­

to-one has the same embedding as all other planar drawings that have the 

same boundary edges as the surface. Vertices, edges, and faces on the surface 

correspond to vertices, edges, and faces in the planar drawings. Therefore, 

every planar drawing that has the same boundary edges as the surface specifies a 

continuous and bijective mapping between the surface and a subset of the plane. 

This means that planar-drawing algorithms can be used to map a surface to the 

plane if the skeleton of the surface is tri-connected. To ensure tri-connectivity, 

the original surface should be triangulated. 

Planar-graph drawing has been thoroughly examined in graph theory [6]. 

Which solution to use depends on the application. Many of the algorithms, 

addressing the desire for a visually pleasing graph layout, try to maximize the 

aesthetics of the drawing. Some place vertices on an integer lattice to avoid 

precision problems. Some add bends to the edges to achieve a more evenly 

distributed layout. Unfortunately, no polynomial-time algorithms are known 

for many of the desired properties of a drawing: uniform edge lengths, even 

vertex distribution, and uniform face areas [6]. Therefore, which algorithm 

produces the "best" layout can be as dependent on the particular graph as it is 
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on the application. 

For surface unfolding an even distribution of vertices, in a geometric sense, 

1S often desirable. If two faces on the original surface have the same area, 

then the corresponding faces on the unfolded surface should have areas that 

are the same or similar. Keeping edge-length ratios the same is also desirable, 

as is minimizing how much the surface is stretched. While these are unsolved 

problems, some algorithms do better than others. 

Here is a survey of four algorithms that find a planar drawing of a graph, 

and so can be used to unfold the cut-apart surface. Figure 6 shows the results 

of applying these algorithms to the same graph. 

1.	 Tutte [21]: This algorithm places each vertex in the center of its neighbors 

by solving a system of linear equations. Because it involves matrix inver­

sion, it runs in O(n3 ) time and uses O(n2
) space. Although this algorithm 

is slow, it gives an even layout that does not cause irregular stretching of 

the original surface. Unfortunately, however, the ratio of the area of the 

largest face to the area of the smallest face can be exponential with re­

spect to the number of vertices in the graph [6]. Therefore, even if all the 

faces on the original surface are of the same size, the faces on the unfolded 

surface could be of drasticalIy different sizes. The algorithm can also run 

into precision problems because it works in the space of real numbers. 

2.	 Chiba et al. [5]: This algorithm gives layouts similar to those achieved 

by Tutt~, but in linear time. The layouts, however, are not as symmetric 
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and evenly distributed as the Tutte layouts. This algorithm is easy to 

code, but it also works in the space of real numbers and thus has precision 

problems. 

. 3. Relaxation [6]: This method treats the vertices as mass points and the 

edges as springs. The border vertices are fixed in place, and the dynamics 

of the system are simulated until the springs stabilize. If the springs are 

of the same strength, the final layout places each vertex in the center of 

its neighbors-just like Tutte's algorithm. However, the strength of each 

spring can be made proportional to the original edge length to get a more 

even vertex distribution. If the initial positions of the vertices are close 

to the final ones, this method can run a lot faster than Tutte's. Chiba's 

algorithm can be used to provide a good first guess. 

4.	 Battista, Tamassia and Tollis [1]: This linear-time algorithm works only 

on directed acyclic graphs (DAGs). Converting a nondirected graph to 

a DAG is simple. First a planar drawing of the graph is produced using 

another algorithm. Then directions are assigned to edges on the basis of 

their slope: edges are directed upward and to the right. This algorithm 

places vertices on an integer lattice and so does not run into precision 

problems. It also splits some of the edges so that they can be bent. Of 

the four algorithms considered, this one seems consistently to generate 

the most evenly distributed drawings, but the bent edges cause irregular 

stretching of the unfolded surface. 
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Figure 6: Planar drawings of the same graph produced by (from left to right) 
Tutte's, Chiba's, and Battista's algorithms. 

Once the vertices and edges of the original surface have been mapped to the 

plane using one of the above algorithms, any point on the original surface can 

be mapped. The 2D coordinates of a point are computed by interpolating the 

2D coordinates of the vertices on the border of the face that contains the point4 
• 

For Tutte's and Chiba's algorithms and the relaxation methods, the user 

specifies not only the edges that will be on the boundary, but also the positions 

of the boundary vertices. It is crucial that the boundary is a convex polygon 

with no internal angle 2 1800 since, otherwise, internal edges that connect 

boundary vertices might overlap or extend beyond the boundary. To satisfy 

this requirement, the vertices can be placed around the circumference of a circle. 

The unfolded surface will be a disc in the plane. 

For texture mapping and patchifying, however, it is more useful if the un­

folded surface has the shape of a square. To prevent internal edges that connect 

tBarycentric coordinates can be ll.Ied for non-triangulM face•. 

16 



boundary vertices from overlapping the boundary, any such edge and the faces 

on either side of it are split (as illustrated in Figure 7). The vertices are then 

distributed evenly around the edges of a square with one vertex at each corner, 

and the rest of the surface is unfolded. 

Figure 7: If the graph on the upper left is mapped to the unit square, the edge 
between band e will overlap the boundary of the resulting graph (on the upper 
right). To avoid this overlap, the edge and the two faces it borders are split, 
and the resulting graph (on the lower left) is mapped to the unit square. The 
final graph drawing in shown on the lower right. 

For Battista's algorithm, the user can control which edges appear on the 

boundary, but not their final positions. This lack of control makes it more diffi­

cult to use the mappings created by this algorithm. However, it often produces 

graphs with square boundaries, and we believe that it can be modified to always 

produce such graphs. 
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3 Texture Mapping 

The cutti~g and unfolding algorithm described above can provide the correspon­

dence between points on the surface of an object and points in a 2D image. The 

uv coordinates that result from the mapping can be used as indices into the 2D 

texture map. Using this method, each point on the surface maps to a unique uv 

point I and the mapping is continuous except at the border. The result is that 

the texture is literally wrapped around the object, as illustrated in Figure 8. 

Figure 8: The image from Figure 1 mapped onto a two-holed torus by cutting 
and unfolding the torus onto the plane. 

As with most mapping functions, the resulting texture is distorted because of 

the stretching that occurs when the surface is flattened. To minimize distortion, 

the unfolding algorithm should minimize how much the surface is stretched and 

avoid stretching the surface in irregular or abrupt ways. 

A uv mapping is also useful for direct WYSIWYG painting and textur­

ing [10]. 'WYSI'WYG methods allow the user to directly manipulate the surface 
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4 

properties of points and sets of points on an object. The changes can be stored 

in a 2D map. The painted figures and textures may be distorted on the map, 

but the distrotion does not matter since the map need only record the changes 

made to each point of the surface. The uv mapping introduced in this paper is 

particularly useful because it generates a one-to-one mapping. (If the mapping 

is many-to-one, changing one part of the surface affects other parts.) 

For WYSIWYG painting and texturing, the algorithm that unfolds the sur­

face should maintain the ratios of face areas. If not, given two equal-area faces, 

one might cover only a few pixels in the 2D map, and the other might cover 

many pixels; this could lead to aliasing problems and different levels of detail 

on the two faces. 

Patchifying 

Surface patches are extremely useful in modeling objects that require continuity 

along their surfaces. When the position of a control point is changed, the surface 

deforms continuously. Surface patches, however, are not ideal in modeling all 

types of objects. Objects of arbitrary topology, for example, are often easier to 

build with CSG or by sculpting volumetric data [9] (although S-patches may help 

build these types of objects [15]). These methods are sometimes more natural 

and intuitive than surface-patch modeling because they manipulate volumes 

rather than surfaces. The panel of a car door, for example, is well suited to 

19
 



surface modeling, while the Venus de Milo is well suited to volume modeling. 

With CSG and other volume methods, however, it is often difficult to make 

local changes that maintain surface continuity. An obvious compromise is to 

model the basic shape of the object using volume methods, and then cover the 

object with patches and continue modeling using surface methods. The mapping 

presented in this paper can be used to wrap a surface patch around an object. 

First both the surface and the patch are mapped to the filled unit square. 

Then point-location techniques [18] are used to determine into which face of the 

unfolded surface each control point has been mapped. The 3D coordinates of 

the vertices around a containing face are interpolated to get the 3D coordinates 

of a control point. Figure 9 shows the results of wrapping a patch around the 

surface of an object sculpted with volume data [9]. 

Figure 9: An object created with volumetric data and a 70 X 70 B6zier surface 
patch wrapped around that object. 

The distribution of the control points across the surface should be even and 

fairly regular. If it is not even, large surface protrusions and dents might be 
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completely missed. If it is chaotic and not regular, moving a control point affects 

remote parts of the surface. The unfolding algorithm is wh~t determines this 

distribution, and so should be chosen with care. 

Turk [20] describes an algorithm for distributing n points somewhat regu­

larly around a surface. His method could be modified to create a more even 

distribution of the control points over the surface of the object. 

5 Metamorphosing 

Metamorphosing can be divided into two parts: finding correspondences and 

interpolating. The first part involves establishing correspondences between the 

surface elements of one object and those of the other. The second part involves 

interpolating between corresponding surface elements [16]. 

5.1 Finding Correspondences 

Most of the literature on 3D metamorphosis deals with the correspondence 

problem and not the interpolation problem. Chen [4] slices each object into 

a finite number of parallel slices and uses 2D techniques to find correspondences 

between the border vertices of matching slices. His method works on only a 

limited set of objects because the border of each slice must be a single loop. 

Parent [16] breaks each surface into sheets of connected faces and metamorphs 

between corresponding sheets. His algorithm, however, requires the user to 

..-----­intervene for objects with genus greater than zero. Kent et Ill. citekent:topo­
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merging, use a method similar to Bier and Sloan's [3]: they project the surface 

elements of each object onto a surrounding sphere and find correspondences on 

the sphere. Although the authors claim that their method can be extended 

to nonconvex, non-starshaped objects, they provide no indication of how this 

might be done. 

Our cutting and unfolding algorithm can be used to create a mapping be­

tween two closed, connected surfaces of arbitrary genus. The mapping will be 

continuous and bijective except along a single closed loop on each surface (where 

the surface is cut). 

The technique used to map the vertices of one surface onto the other surface 

is the same as that used to wrap a patch around an object (in Section 4): both 

objects are mapped to the unit square, point-location techniques are used to 

determine into which face of one surface each vertex of the other surface has 

been mapped, and the 3D coordinates of the vertices around a containing face 

are interpolated to get the 3D coordinates of a contained vertex. 

If the vertices of one object (objA) are transformed onto the surface of 

another object (objB), then the shape of objA will approximate the shape of 

objB, but the two objects will not match exactly. Discrepancies arise because 

the mapping function does not map surface details of objA one-to-one onto 

surface details of objB. Sharp edges and other details (like the tip of a cone) of 

objB may not show up on the transformed objA. 

So as not to lose any surface details when metamorphosing, all the vertices 
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and edges of objB are mapped onto objA (on the plane), and objA is modified 

(by splitting its faces and edges) to include these elements. Likewise, all the 

vertices and edges of objA are mapped onto objB (on the plane), and objB is 

modified to include these elements. This gives us two objects (modified-objA 

and modified-objB) that have the same number of faces, vertices, and edges 

connected in the same way. Linearly interpolating between the positions of the 

vertices metamorphs one surface into the other. Figure 10 shows several frames 

of a metamorphosis produced using our method. 

Figure 10: These frames are taken from an animation of the torso and head of 
a robot metamorphosing into the body of a race car. 
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5.2 Interpolating 

Once the composite object has been created, its vertices can be linearly interpo­

lated between the surface of objA and the surface of objB. The vertex normals, 

however, cannot be linearly interpolated because they might not correctly follow 

the movements of nearby faces (see figure 11). The interpolation must take into 

account the movements of the faces surrounding each vertex. Instead of using 

world-space normals, each vertex normal is described relative to the average of 

the normals of the surrounding faces. This is done by creating a basis out of 

the average face normal, an edge touching the vertex, and the cross product of 

the two. Each vertex normal is projected into the space defined by this basis. 

To compute a world.space vertex normal at any stage of the metamorphosis, 

the relative vertex normals are linearly interpolated, the new basis is found, and 

the interpolated vertex normal is projected into world space. Often, however, 

linear interpolation is good enough, at least for a first pass. 

------~ = vertex normal 
-.. = face norma 1 

Figure 11: If vertex normal interpolation does not take face movements into 
account, the normal might swing behind the face. 
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