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Abstract 

Techniques for solving constraint satisfaction problems (CSP) are of great interest 
in many areas, such as artificial intelligence, operations research, and hardware design. 
Network consistency algorithms aim at reducing the thrashing behavior of backtracking 
for constraint solvers by considering various local consistency information. The com­
plexity of consistency algorithms typically depends on n, the number of variables, e, 
the number of arcs, and d, the maximum size of the variable domains. Previous efforts 
include Mohr and Henderson's [5] arc consistency algorithm AC-4 which is of com­
plexity O(ed2 ), and their path con~istency algorithm PC-3, together with a corrected 
version PC-4 of Han and Lee [2], both of which have a complexity of O(n3 d3 ). 

A generic arc consistency algorithm AC-5 has been proposed by Deville and Van 
Hentenryck [1]. Algorithm AC-5 is parametrized so that it can be instantiated to O(ed) 
algorithms for specific classes of constraints. This complexity has been shown for 
functional constraints and monotonic constraints. 

In this paper, we continue the effort on unraveling more classes of constraints which 
can be specialized to obtain an O(ed) algorithm from the formulation of AC-5. We 
refine the instantiations for monotonic constraints, and introduce other classes of con­
straints, namely, anti-functional and piecewise (functional, anti-functional, and mono­
tonic) constraints. An approach similar to that for AC-5 is used to formulate a new 
generic path consistency algorithm PC-5, and its instantiations for functional and 
monotonic constraints are investigated. We also devise two generic incremental arc 
consistency algorithms for hierarchical networks, and present their instantiations for 
functional, anti-functional and monotonic constraints, with an attempt to generalize 
binary constraints to multi-variable constraints in the monotonic class. 
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1 Introduction 

A constraint satisfaction problem (CSP) is a set of constraints relating a finite set of variables 
over finite domains. Solving a CSP problem involves finding sets comprising of a value from 
each domain, so that by assigning the values to the corresponding variables, all constraints 
can be satisfied. Many tasks in artificial intelligence, operations research, and hardware 
design can be cast as CSP's. The primary technique for solving a CSP is backtracking over 
different combinations of values for the variables, and the problem is NP-complete in many 
cases. 

Consistency techniques [1, 3, 4, 5, 6, 9, 10] can be used to prune the problem space of 
a CSP before attempting to find a solution globally. By considering local consistency between 
variables, we can rule out values which are impossible to be part of any solution and thus 
reduce the search space for backtracking. Specifically, arc consistency makes sure that the 
values of each variable are consistent with respect to each individual constraint, while path 
consistency considers the consistency of pairs of variable labels across multiple constraints. 
The complexity of arc and path consistency algorithms typically depends on n, the number 
of variables, e, the number of arcs, and d, the maximum size of the variable domains. 

Various arc consistency algorithms have been proposed, and algorithm AC-4 of Mohr 
and Henderson [5] has been proved to be optimal with a complexity of O(ed?). While AC­
4 is applicable to all binary constraints, the generic arc consistency algorithm AC-5, by 
Van Hentenryck and Deville [1], parametrizes the processing in a way so that it can take 
advantage of the properties of specific classes of constraints in the network. By instantiating 
the parametric procedures in specialized ways, it has been shown that for functional and 
monotonic constraints, algorithm AC-5 runs in O(ed) time. 

Mohr and Henderson also gave a path consistency algorithm PC-3 [5] (later corrected 
by Han and Lee [2] as PC-4) which has a complexity of O(n3 d3 

). It is not clear whether the 
algorithms are optimal, and the high complexity limits the practicability 'of path consistency 
algorithms to small problems only. 

This paper is organized as follows. Section 2 defines the basic conventions and nota­
tions used in describing a CSP and its associated consistency algorithms. In Section 3 we 
investigate more classes of constraints which, by instantiating the parametric procedures of 
algorithm AC-5 according to specific properties of the constraints, can be specialized to give 
arc consistency algorithms with O(ed) complexity. We refine the instantiations for mono­
tonic constraints, and also show that an O(ed) complexity can be achieved for anti-functional 
as well as generalized piecewise (functional, anti-functional and monotonic) constraints. In 
Section 4, we present a new generic path consistency algorithm PC-5 formulated in a way 
analogous to algorithm AC-5. PC-5 contains two parametric procedures which can be in­
stantiated to give a path consistency algorithm with a complexity lower than that of PC-3. 
Specializations for functional and monotonic constraints are also given. In Section 5, we 
generalize binary constraints to multi-variable constraints. Then we construct incremental 
arc consistency algorithms for binary functional and anti-functional constraints as well as 
generalized monotonic constraints in hierarchical networks. We show that the algorithms are 
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optimal for constraints with limited number of variables, such as binary constraints. Lastly, 
section 6 concludes the discussion. 

2 Descriptives 

Throughout the paper, we assume that for a given esp, there are n variables, each taking on 
a natural number between 1 and n inclusive. A variable i has an associated finite domain Di , 

while D is the union of all domains and d is the maximum size of a domain. The constraint 
between two variables i and j (i < j) is denoted by Cij. We assume that there is at most 
one constraint between two variables and each constraint relates distinct variables. Only 
binary constraints are considered in Sections 3 and 4, but we will relax this requirement in 
Section 5. Cij (v, w) denotes a boolean value which indicates whether the constraint Cij is 
satisfied when i and j in the constraint are replaced by v and w respectively. 

In the graphical notation, a graph G of a esp contains n nodes, with node i represe'nting 
variable i. A constraint Cij (i < j) is denoted by two directed arcs, (i,j) and (j, i). Arc (i,j) 
denotes the constraint Cij , while arc (j, i) denotes Cji , the same constraint in reverse, so 
that CiAv,w) implies Cji(w,v) and vice versa for any values v in Di and w in Dj. The 
number of edges is denoted bye, which is twice the number of constraints in a binary 
constraint network. The set of arcs and the set of nodes in a graph G are denoted by arc(G) 
and node(G) respectively. 

In the specification of operations, we take the convention that a subscript 0 to a struc­
ture p, that is, Po, represents the value of p at the start of the call. 

3 More Specializations of Algorithm AC-5 

In this section, we continue from the results obtained in [1] and present a number of classes 
of constraints for which the parametric procedures can be instantiated to give O(ed) arc con­
sistency algorithms from AC-5. We also revise the instantiations for monotonic constraints 
so that a simpler data structure can be used. 

3.1 Previous Work 

First of all, we give an overview of the previous works on algorithm AC-5. Refer to [1, 9] 
for the details of the algorithm. In the rest of this section, we assume the domain structure 
of variables and the queue operations are the same as specified in [9]. 

Algorithm AC-5 is parametrized in two procedures, ARCCONS and LOCALARCCONS. 

We reproduce them here in Figures 1 and 2 from [9] as we will be referring to these spec­
ifications frequently. Procedure ARCCONS computes the set of values in Di which are not 
arc consistent with any value in D j • Procedure LOCALARCCONS computes the set of values 
in Di that becomes unsupported after the value w has been removed from Dj . 
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procedure ARcCoNs(in i, j, out ~) 

Pre: (i,j) E arc(G), Di =f 0 and Dj =f 0. 
Post: ~ = {v E Di IVw E Dj : --.Cij(V, wn. 

procedure LOCALARcCoNs(in i, j, w, out ~) 

Pre: (i,j) E arc(G), w ¢ Dj, Di =f 0 and Dj =f 0. 
Post: ~l ~ ~ ~ ~2, 

with ~l = {v E Di I Cij(V,W) and Vw' E Dj : --.Cij(V,W'n, 
~2 = {v E Di IVw' E Dj : --.Cij(V,W'n· 

Figure 1: Specification of the Procedures 

AlgorithIll AC-5 
Post: let Po = Dla X x Dna' 

P = D l x X Dn 

G is maximally arc-consistent wrt P in Po. 
begin AC-5 

1 INITQUEUE(Q) 
2 for each (i, j) E arc(G) do 
3 begin 
4 ARCCONS(i,j,~); 

5 ENQUEUE(i,~,Q); 

6 REMOVE(~,Dd 

7 end; 
8 while not EMPTYQUEUE(Q) do 
9 begin 
10 DEQUEUE(Q,i,j,w); 
11 LOCALARCCONS(i,j,w,~)j 

12 ENQUEUE(i,~,Q); 

13 REMOVE(~,Dd 

14 end 
end AC-5 

Figure 2: The Arc-consistency Algorithm AC-5 
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procedure ARcCoNs(in i, j, out A) 
begin 

1 A:= 0; 
2 for each v E D, do 
3 if f'j(v) rt. Dj then 
4 A := A U {v} 

end 

Figure 3: ARC CONS for Functional Constraints 

It has been shown that if the time complexity of procedure ARCCONS is O(d), and that 
of procedure LOCALARCCONS is O(~), where ~ is the set of values returned, then the time 
complexity of algorithm AC-5 is O(ed). Note that we take the convention that O(~) = 
O(max(l, I~I)). This O(ed) complexity is optimal for subclasses of constraints, and spe­
cific instantiations have been given for functional and monotonic constraints, utilizing the 
following conventions. 

Convention 1 If Gij is a functional constraint, we denote by iij(v) (resp. !ii(w)) the value 
w (resp. v) such that Gij (v, w). If such a value does not exist, the function denotes a value 
outside the domain for which the constraint holds. 

Convention 2 Since AC-5 is working with arcs, we associate with each arc (i, j) three 
functions iij, lastij, and nextij and a relation >-ij. Given a monotonic constraint Gij , the 
functions and relation for arc (i,j) are iij(W) = max{v I Gij(v,w)}, lastij = MAx, 
nextij = PRED, >-ij = > while those for arc (j,i) are !ii(V) = min{w I Gij(v,w)}, 
lastji = MIN, nextji = SUCC, >-ji = < . Moreover, since Procedures ARCCONS and 
LOCALARCCONS only use iij, lastij, nextij, and >-ij for arc (i, j), we omit the subscripts 
in the presentation of the algorithms. These functions are assumed to take constant time to 
evaluate. 

For convenience, we also reproduce the instantiations of the two parametric procedures 
for functional and monotonic constraints in Figures 3-4 and Figures 5-6 respectively. 

By utilizing amortized complexity analysis [7], we are able to obtain the same bounds for 
monotonic constraints without maintaining data structures on the successor and predecessor 
information of values. We also show that the same complexity can be achieved for other 
classes of constraints with proper instantiations of ARCCONS and LOCALARCCONS. These 
subclasses include anti-functional constraints and piecewise (functional, anti-functional, and 
monotonic) constraints. 

3.2 Monotonic Constraints Revisited 

Let us reconsider the ARCCONS procedure for monotonic constraints. We first show 
that the SUCC and PRED functions can always be applied on the initial domains (denoted 
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procedure LocALARcCoNs(in i, j, w, out A) 
begin 

1 if Jii(W) E Di then 
2 A := {Jii(W)} 
3 else 
4 A:= 0 

end 

Figure 4: LOCAL ARCCONS for Functional Constraints 

procedure ARcCoNs(in i, j, out A) 
begin 

1 A:= 0; 
2 v := last(D;); 
3 while v )- f(last(Dj )) do 
4 begin 
5 A:=AU{v}; 
6 v := next(v, Di) 
7 end 

end 

Figure 5: ARCCONS for Monotonic Constraints 

procedure LocALARcCoNs(in i, j, in w, out A) 
begin 

1 ARCCONS(i,j,A) 
end 

Figure 6: LOCALARCCONS for Monotonic Constraints 

procedure ARcCoNs(in i, j, out A) 
begin 

1 A:= 0; 
2 v := last(Di ); 

3 while v )- f(last(Dj)) do 
4 begin 
5 if v E D i then A := A U {v}; 
6 v := next(v, D;nit) 
7 end 

end 

Figure 7: Revised Procedure ARCCONS for Monotonic Constraints 
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procedure LocALARcCoNs(in i, j, in w, out .6.)
 
begin
 

1 .6. := 0;
 
2 if w >- last(Dj ) then
 
3 begin
 
4 v ;= last(Di); 
5 while v >- f(last(Dj)) do 
6 begin 
7 if v E D i then.6. :=.6. U {v}; 
8 v := next(v, D~nit) 

9 end
 
10 end
 

end
 

Figure 8: Revised Procedure LOCALARCCONS for Monotonic Constraints 

DInit), thus eliminating the need to update part of the data structure. The revised procedure 
ARCCONS is depicted in Figure 7. The only difference lies in lines 5 and 6, and thus obviously 
has no influence on the correctness of ARCCONS. 

Procedure LOCALARCCONS could use ARCCONS, but a revised version is presented in 
Figure 8. The correctness of LOCALARCCONS is a consequence of the preceding version, 
computing the set ~2 of its specification, and the fact that when w :::5 last(D j ), then ~l is 
empty by the monotonicity of Cij . It is possible to compute ~I,l but this would prevent the 
reduction of domains as early as possible. 

Theorem 3 With the revised implementation depicted in Figures 7 and 8, Procedure AC-5 
is O(ed) for monotonic constraints wrt D. 

Proof This proof requires the use of amortized complexity [7] to show that LOCALARCCONS 

is O(d) amortized. The number of iterations for a cal1 to the revised version of LOCAL ARC­

CONS is not O(~) in the worst case, since some elements may have been removed from the 
domain. However, we can associate, to each arc (i, j), d credits that are used each time a 
test in line 5 (ARCCONS) or in line 7 (LOCALARCCONS) is executed for arc (i,j) and no 
element is inserted. The total number of credits is thus O(ed). To prove the amortized O(d) 
complexity, we show that a test in line 5 (ARCCONS) or in line 7 (LOCALARCCONS) is done 
at most once per value in the domain. Suppose that such a test is done on some v'. Then, 
after the execution of the fol1owing REMOVE, we have v' ~ last(Di ), and this value is thus 
never considered any more, since in each execution of ARCCONS and LOCALARCCONS, the 
first execution of the test always succeeds. Hence, it fol1ows from the number of credits and 
the complexity of the first algorithm that we still have an optimal AC-5 algorithm. 0 

lIn line 4 in Figure 8, replace f(last(Dj)) by f(w) 
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procedure ARcCoNs(in i, j, out ~) 

begin 
1 8 := SIZE(Dj ); 

2 WI := MIN(Dj); 
3 if 8=1 then 
4 ~:={fji(wd} n Di 
5 else 
6 ~:= 0 
7 end 

end 

Figure 9: Procedure ARCCONS for Anti-Functional Constraints 

procedure LocALARcCoNs(in i,j,w, out ~) 

begin 
1 ARCCONS(i,j,~) 

end 

Figure 10: Procedure LOCALARCCONS for Anti-Functional Constraints 

3.3 Anti-Functional Constraints 

When the negation of a constraint is functional (for instance, the inequality relation x i= y), 
an optimal algorithm can also be achieved. . 

Definition 4 A constraint Cij is anti-junctional wrt a domain D iff -,Cij is functional wrt 
D. 

With an anti-functional constraint, for each value in the domain there is thus at most one 
value for which the constraint does not hold. Procedures ARCCONS and LOCALARCCONS 

are shown in Figures 9 and 10. We use the same convention as for functional constraints. 
Instead of considering each element of Di , which would yield a complexity O(d), the 

result of ARCCONS is here achieved by considering the size of Dj • It is clear that ARC CONS 

fulfills its specification: for D j = {w}, the resulting set should contain hi(w) only if it is 
an element of Di . The complexity of ARCCONS is 0(1). This allows the implementation of 
LOCALARCCONS through ARC CONS, leading to the same 0(1). In this case, the value w is 
not considered and LOCALARCCONS computes the set L\2 of its specification.2 

Theorem 5 Algorithm AC-5 is O(ed) for anti-functional constraints wrt D. 

2The set ~I can also be computed in 0(1) since one can show that ~I = ~2 \ {hi(W)}. 
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function NBGRouP(in i, j): Integer
 
Post: NBGROUP =1 S;j I -1.
 

function SIzEOFGRouP(in i, j, k): Integer
 
Pre: 0 ~ k ~ NBGROUP(i,j)
 
Post: SIZEOFGROUP = Is;,j n D; I
 

function EMPTYGRouP(in i, j, k): Boolean
 
Pre: 0 ~ k ~ NBGROUP(i,j)
 
Post: EMPTYGROUP {:} ,si/ n D; = 0
 

procedure EXTEND(in i, j, k, inout ~)
 

Pre: 0 ~ k ~ NBGROUp(i,j)
 
Post: ~ = ~o U (,sij n D;)
 
Status-pd[(i,j),k] = true
 

function GROuPOF(in i, j, v): Integer
 
Pre: v E D;nit
 
Post: GROUPOF = k such that v E ,si/
 

function FIRSTGRouP(in i, j): Integer
 
Post: FIRSTGROUP = min{k I ,si/ n D; =1= 0}
 

function LAsTGRouP(in i, j): Integer
 
Post: LASTGROUP = max{k I ,si/ n D; =1= 0}
 

function SIzE(in i, j): Integer
 
Post: SIZE = I {k I ,si/ n D; =1= 0} I
 

Figure 11: The PIECEWISE DECOMPOSITION Module 

3.4 Piecewise Constraints 

The functional, anti-functional and monotonic constraints are generalized to the case when 
the domain can be partitioned into groups such that elements of a group behave similarly 
with respect to a given constraint. 

Convention 6 Let S, P be sets, and C be a constraint. C(S, P) denotes Vv E S, Vw E P : 
C(v,w). -,C(S,P) denotes Vv E S,Vw E P: -,C(v,w). We also use C(S,w) for C(S, {w}). 

Definition 7 The partitions S = {So, ... , Sn} of Di and P = {Po, ... , Pm} of Dj are a 
piecewise decomposition of Di and Dj wrt C iff for all Sk E S, Pkl E P : C(Skl Pkl) or 
-,C(Sk, Pkl) holds. 

Representation of Piecewise Constraints 
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Let Sij = {,sic! , ... ,S;n with n 2:: 0 

Syntax
 
Sij .group : array [L.n] of sets
 
Sij .nbgroup : integer
 
Sij .size : integer
 
Sij .sizegroup : array [L.n] of integers
 
Sij .first : integer
 
Sij .last : integer
 

Semantics 
Sij .group[k] = ,si~ 
Sij .nbgroup = n 

Sij.size = I {k l,si~ nDi 1= 0} I 
Sij.sizegroup[k] = I ,si/. n Di I 
Sij.first = min{k ISot' n Di 1= 0} 
Sij .last = max{k I ,si~ n Di 1= 0} 

Figure 12: PIECEWISE DECOMPOSITION Data Structure 

Before presenting the implementation of ARCCONS and LOCALARCCONS for constraints 
having some particular piecewise decomposition, we show in Figure 11 operations on piece­
wise decompositions. For ease of implementation, we assume that elements in groups of a 
piecewise decomposition are never removed during the e~~cution. The piecewise q.ecomposi­
tion of Di and Dj with respect to Gij is denoted 5 ij = {S~J, . .. , S:!} and 5 ji = {S6~, . .. , S~}. 
We also introduce a new data structure Status-pd which is a two-dimensional array, the first 
dimension being on arcs (associated with a piecewise decomposition) and the second on 
group numbers. Its semantics is the following: 

s~j n Di 1= 0 => Status-pd[( i, j), k] = false 

Thus, Status-pd must be false when the corresponding group is not empty. 
The primitive operations on a piecewise decomposition are assumed to take constant 

time, except that the complexity of EXTEND is assumed to be O(s), where s is the size of 
S i j 

k • 

A simple data structure that enables us to achieve these results is given in Figure 12. 
Its space complexity is O(d) per piecewise decomposition. This data structure cannot be 
updated by the REMOVEELEM primitive in constant time since an element in a domain can 
belong to different groups in different piecewise decompositions. The update can easily be 
performed by the ENQUEUE primitive, however, without affecting its complexity. 

It is not difficult to initialize the data structure in O(d) under the realistic assumption 
that it takes O( s) to find the s elements in Dj (resp. D;) supporting a value v (resp. w) in 
Di (resp. Dj ). In addition, the construction of the data structure assigns a group number to 
each value, so that the GROUPOF operation trivially takes constant time. In the following, 
we assume that the data structure has already been built. 
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3.5 Piecewise Functional Constraints 

Intuitively, a piecewise functional constraint Cij is a constraint whose domains can be de­
composed into groups such that each group of Di (resp. Dj ) is supported by at most one 
group of D j (resp. Di ). 

Definition 8 A constraint Cij is piecewise junctional wrt domains Di, Dj iff there exists a 
piecewise decomposition S = {So, ... , Sn} and P = {Po, ... , Pm} of Di and Dj wrt Cij such 
that for all Sk E S (resp. Pkl E P), there exists at most one Pkl E P (resp. Sk E S), such 
that Cij(Sk, Pkl). 

Examples of functional piecewise constraints are the modulo (x = y mod z) and integer 
division (x = y div z) constraints. The element constraint of the CHIP programming 
language [8] is a piecewise constraint as well. Finally. note that functional constraints are a 
subclass of piecewise constraints, in which the size of each group in the partition is exactly 
one. 

Obviously, in a piecewise functional constraint Cij , if all the unsupported elements of 
Di (resp. Dj) are in the same group (e.g. So and Po), then the piecewise decompositions 
S = {So, ... , Sn} and P = {Po, ... , Pn} have the same number of groups and the groups can 
be renumbered such that the following hold: 

PFI -,Cij(So, Dj) and -,Cij(Di, Po) 

PF2 Cij(Sk, Pk) (1:::; k :::; n) 

PF3 -,Cij(Sk, Pkl) (1:::; k, k' :::; nand k =J k') 

The implementation of ARCCONS and LOCALARCCONS for piecewise functional con­
straints assumes a piecewise decomposition that satisfies PFI-3. The following property 
states necessary and sufficient conditions for a piecewise functional constraint. 

Property 9 A constraint Cij is piecewise functional wrt Di and Dj iff there exists a parti­
tion S = {So, . .. ,Sn} of Di such that 

(1) Cij(Sk, w) or -,Cij(Sk, w) (for all w E Dj and 0:::; k :::; n) 
(2) Cij(Sk, w) => -,Cij(Skl, w) (for all w E Dj and 0:::; k, k' :::; nand k =J k') 

Proof The "only if" part is straightforward. For the "if" part, let us assume that there is 
some unsupported element in Di and in Dj and that all the unsupported element in Di are 
in So (otherwise groups can be merged and renumbered without affecting conditions (1) and 
(2). We construct P = {Po, . .. ,Pn} in the following way: 

Pk = {w E Dj l:3v E Sk: Cij(v,w)} (1:::; k:::; n) 
Po = Dj \ U PI 

l::;I:::;n 
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function UNsuPPoRTED(in i, j, k): Boolean
 
Pre: 0 ::; k ::; NBGROUP(i, j)
 
Post: UNSUPPORTED ¢:> EMPTYGROUP(j, i, k) 1\ .., Status-pd[(i, j), k]
 

Figure 13: The UNSUPPORTED Function 

procedure ARcCoNs(in i, j, out .6.)
 
begin
 

1 .6. := 0;
 
2 EXTEND(i,j,O,.6.);
 
3 for k:=l to NBGROUP(i, j) do
 
4 if UNSUPPORTED(i, j, k) then
 
5 EXTEND(i,j,k,.6.)
 

end 

Figure 14: ARCCONS for Piecewise Functional Constraints 

It is sufficient to prove that P is a partition and that Sand P satisfy PFI-3. 
(P is a partition). (A) Pk n Pkl = 0 (k =I k'). This holds for k = 0 or k' = O. For 

k =I 0 =I k', let w E Pk. By definition of Pk, we have ::lv E Sk : Ci,j(v, w). Hence by (1), 
Ci,j(Sk,W). By (2) we have -,Ci,j(Sk"W), that is Vv' E SkI: -,Cij(v',w). Hence w rt Pkl. (B) 
Suppose that Pk = 0 (k > 0). Then Sk = 0 (impossible since S is a partition), or Sk contains 
unsupported elements (impossible by hypothesis). Hence Pk =I 0. 

(PFl). Hold by definition of So and Po. 
(PF2). Let w E Pk. By definition of Pk, ::lv' E Sk such that Ci,j(v', w). By (1), Cij(Sk, w), 

that is Vv E Sk : Cij (v, w). Hence Ci,j(Sk, Pk). 
(PF3). Let w E Pk. Since Pk n Pkl = 0 (k =I k'), w rt Pkl. By definition of Pk" we have 

Vv' E SkI: -,Ci,j(v,w). Hence -,Ci,j(Sk,Pkl). 0 

The procedures ARCCONS and LOCALARCCONS for piecewise functional constraints are 
given in Figures 14 and 15. Line 2 handles the group s~j containing all the unsupported 

procedure LocALARcCoNs(in i, j, w, out .6.)
 
begin
 

1 .6. := 0;
 
2 k := GROUPOF(j, i, w);
 
4 ifUNsuPPoRTED(i,j,k) then
 
5 EXTEND(i,j,k,.6.)
 

end 

Figure 15: LOCALARCCONS for Piecewise Functional Constraints 
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procedure ARcCoNs(in i, j, out .6.)
 
begin
 

1 .6. := 0;
 
2 8 := SIZE(j, i);
 
3 k := FIRsTGROUP(j, i) ;
 
4 if 8=1 and k f. 0 and not EMPTYGROUP(i,j, k) then
 
5 EXTEND(i,j, k,.6.)
 

end 

Figure 16: Procedure ARCCONS for Piecewise Anti-Functional Constraints 

elements of the initial domain Di . The procedures use the boolean function UNSUPPORTED 
specified in Figure 13. The correctness of these procedures is an immediate consequence of 
the correctness of procedures for functional constraints. One can also easily see that the 
semantics of Status-pd is an invariant at lines 2 and 8 in AC-5, assuming it holds initially. 

The time complexity is analyzed globally within AC-5. If the complexity of all the 
execution of ARCCONS and LOCALARCCONS for a given arc (i,j) is bounded by O(d), then 
AC-5 is O(ed). The complexity of execution of ARCCONS and LOCALARCCONS depends 
mainly on the number of executions of the EXTEND procedure. For an arc (i,j), by the 
specification of UNSUPPORTED and EXTEND (on status-pd), at most one EXTEND operation 
is made per group, and hence the complexity is bounded by O(d). If we use amortized 
complexity as in the case of monotonic constraints, it follows that we have an optimal 
algorithm. 

Theorem 10 Procedure AC-5 is O(ed) for piecewise functional constraints. 

3.6 Piecewise Anti-Functional Constraints 

We now turn to piecewise anti-functional constraints such as x i- y mod 3. A piecewise 
anti-functional constraint is a constraint whose domains Di and Dj can be decomposed into 
groups such that each group of Di (resp. D j ) is not supported by at most one group of D j 

(resp. Di ). 

Definition 11 A constraint Cij is anti-functional wrt Di , D j iff -,Cij is piecewise functional 
wrt Di , D j • 

With the same notations as in the preceding section, procedures ARCCONS and Lo­
CALARCCONS for anti-functional constraints can easily be extended in the piecewise frame­
work (see Figures 16 and 17). Note the test for k i- 0, since group 0 supports all groups. By 
a complexity analysis similar to that of the preceding section, one can show that in AC-5 
there will be at most one execution of EXTEND per group. Hence the following result. 

Theorem 12 Algorithm AC-5 is O(ed) for piecewise anti-functional constraints. 
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procedure LocALARcCoNs(in i,j,w, out ~)
 

begin
 
1 ARCCONS(i,j,~)
 

end
 

Figure 17: Procedure LOCALARCCONS for Piecewise Anti-Functional Constraints 

procedure ARcCoNs(in i, j, out ~) 

begin 
1 ~:= 0; 
2 k := last( i, j); 
3 while k )- f(lastU, i)) do 
4 begin 
5 if not EMPTYGROUp(i, j, k) then EXTEND(i,j, k, ~); 

6 k := next(k) 
7 end
 

end
 

Figure 18: Procedure ARCCONS for Piecewise Monotonic Constraints 

3.7 Piecewise Monotonic Constraints 

Monotonic constraints are finally generalized to piecewise monotonic constraints, for example 
x ~ y div 5. 

Definition 13 A constraint Cij is piecewise monotonic wrt Di, Dj iff there exists a piecewise 
decomposition S = {So, ... , Sn} and P = {Po, ... , Pm} of Di and Dj wrt Cij·. such that 
Cij(Sk, Pd '* Cij(Sk l , PI') for 0 ~ k' ~ k ~ nand 0 ~ 1~ l' ~ m. 

Convention 14 As for monotonic constraints, we associate to each arc (i,j) three func­
tions Iij, 1astij , and nextij and a relation ';-ij. Given a piecewise monotonic constraint Cij , 
the functions and relation for arc (i,j) are: Iij(k) = max{{-I} U {k' I CiAS/, S~!)}}, 
1astiJ(a, b) = LAsTGRouP(a, b), nextiAk) = k -1, ';-ij = >, while those for arc (j, i) are 
Jii(k) = min{{ NBGRoUP(j, i)+I}U{k'l Cij(S~, S~i)}}, 1astji(a, b) = FIRSTGRoUP(a, b), 
nextji(k) = k +1, ';-ji = <. 

The definition of Iij requires ;ome sophistication to handle the case when S~ (or S~i) 
is unsupported. The above functions are assumed to take constant time to evaluate. As 
for monotonic constraints, subscripts are omitted in the algorithms presented in Figures 18 
and 19. Their correctness is an immediate consequence of the correctness of ARCCONS and 
LOCALARCCONS for monotonic constraints. The complexity analysis is also similar to that 
for monotonic constraints. In all the executions of ARCCONS and LOCALARCCONS for a 
given arc (i,j), a test in line 5 (ARCCONS) or line 8 (LOCALARCCONS) is made at most 
once per group. Hence we have an optimal algorithm. 
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procedure LocALARcCoNs(in i, j, in w, out .6.)
 
begin
 

1 .6. := 0;
 
2 kw := GROUPOF(i,j, w);
 
3 if kw >- last(j, i) then
 
4 begin
 
5 k := last(i,j);
 
6 while k >- f(last(j, i» do
 
7 begin
 
8 if not EMPTYGROUP(i,j,k) then EXTEND(i,j,k,.6.);
 
9 k := next(k)
 
10 end
 
11 end
 

end
 

Figure 19: Procedure LOCALARCCONS for Piecewise Monotonic Constraints 

Theorem 15 Algorithm AC-5 is O(ed) for piecewise monotonic constraints. 

4 A Generic Path Consistency Algorithm 

In this section we present a new generic path consistency algorithm PC-5 which can be 
parametrized in a way similar to that of the arc consistency algorithm AC-5. The time com­
plexity of PC-5 depends on the time complexity of the two procedures PATHCONS and Lo­
CALPATHCONS. It can be instantiated to give algorithm PC-2 [3] of complexity O(n3d5

) 

and also algorithm PC-4 [2] of complexity O(n3~). We show that the parametric procedures 
can be specialized to give path consistency algorithms of a lower complexity for functional 
and monotonic constraints. 

4.1 Constraint Tuples 

We start by giving an alternate definition of constraints. 

Definition 16 A constraint tuple over D is a tuple (v, w), where v, wED. 

Definition 17 A constraint Cij over D i , D j is a set of constraint tuples such that 'Vv E 
Di , W E Dj , (v, w) E Cij iff Cij is satisfied when i and j in the constraint are replaced by v 
and w respectively. 

The pairs of values admissible for a constraint C are represented as tuples in C. Here 
we can draw a parallel between path and arc consistency algorithms. A path consistency 
algorithm removes path inconsistent tuples from the constraints and returns a subset of 
tuples for each constraint. Similarly, an arc consistency algorithm removes arc inconsistent 
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values from the domains of variables and returns a subset of values for each domain as a 
result. We will use this definition of constraints with path consistency in this section. 

4.2 Preliminaries 

Before presenting the generic algorithm, let us first review some of the basics in the area of 
path consistency. 

Definition 18 Let (io, i1), ••. , (im - b im ) E arc(G) and Vio E D io , Vim E Dim' Vio is path con­
sistent with Vim wrt the path (io, ... , im ) in D io ' .•. , Dim iff (Vio' Vim) E Cioim , and ::JVill •.• , Vim_ l 
such that 

1. ViI E D il , ... , Vi E Dim_I'm _ l 

2. (Vio,Vil) E Cioil"",(Vim_I,Vim) E Cim_Iim' 

Definition 19 Let io, i m E node(G) and Vio E D io , Vim E Dim' Vio is path consistent with Vim 

wrt D io , Dim iff Vio is path consistent with Vim wrt all paths (io, ... , im ). We also say that Vio 

is path consistent with node i m iff ::JVim E Dim such that Vio is path consistent with Vim' 

Definition 20 Let (io, id, ... , (im-l, im ) E arc(G). A path of length m (io, ... ,im ) is path 
consistent wrt D io ' ... , Dim iff VVio E D io , ::JVim 
wrt (io, ... ,im ) and vice versa. 

E Dim such that Vio is path consistent with Vim 

Definition 21 Let 'P be Do x 
(io, ... , im ), m > 0 and (io, i1), 

x Dn . A gr
, (im-l, im ) 

aph G is path consistent wrt'P iff for all paths 
E arc(G), (io, ... , im ) is path consistent wrt 

D io "'" Dim' 

Definition 22 Let 'P be Do x ... x D n . Let 'P' be D~ x ... x D~ and 'P' ~ 'P. G is maximally 
path consistent wrt pI in 'P iff G is path consistent wrt 'P' and there is no other 'P" with 
'P' c 'P" ~ 'P such that G is path consistent wrt 'P". 

The purpose of a path consistency algorithm is to compute, given a graph G and a set P, 
a set pI such that G is maximally path consistent wrt pI in P. 

Theorem 23 Let 'P be Do x ... x Dn . A complete graph G is path consistent wrt 'P if 
Vio, iI, i2 E node(G), (io, ill i2) is path consistent wrt D io , Dill D i2 • 

Theorem 23, due to Montanari [6], states that a complete graph is path consistent if 
all paths of length two are path consistent. The proof could be constructed easily by an 
induction on the length of paths in the graph. 

Definition 24 Let 'P be Do x ... x Dn • Two graphs G and G' are equivalent iff a path 
consistency algorithm gives the same solution set for G and G' wrt 'P. 
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Corollary 25 Let P be Do x ... x Dn. A graph G is path consistent wrt P iff G can be 
transformed into an equivalent complete graph G' and V io, i l , iz E node(G') : (io, i l , iz) is 
path consistent wrt Dio ' Di1 ,Di2 in G'. 

Since Theorem 23 holds for complete graphs only, the above will be the operational 
definition for our path consistency algorithm. There are various ways of completing a graph, 
as we will see in the following sections. 

4.3 Basic Operations 

We introduce here some primitive operations and structures relating to constraints, domains, 
and the queue for use with algorithm PC-5. 

Constraints 

We express domain constraints as single variable constraints such that for each value v 
in the domain of node i, we have a tuple (v, v) in Cii . This allows the algorithm to be 
uniform and simplifies the presentation. Note that we can derive Di from Cii since v E Di 
implies (v, v) E Cii and vice versa. 

We denote by cftt the original set of constraint tuples between nodes i and j, and by D~nit 

the given set of domain values of node i. The output of a path consistency algorithm can be 
defined in terms of the domain constraints. Specifically, given a graph G, the solution of a 
path consistency algorithm is a set of constraints Cii ~ Cfr-it for each node in node(G) such 
that G is maximally path consistent wrt Db, . .. ,D~, where D~ = {v I (v, v) E Cid. 

The operations on constraints are depicted in Figure 20. Function MEMBER checks 
whether a tuple is in a constraint. SUPPORT returns a set of values w with a tuple (v, w) 
in Cij , while MIN and MAX returns the minimum and maximum values of this set, and SIZE 
gives its size. Procedure PRUNEELEM removes a tuple (v, w) from Cij . We modify a copy 
of cftt to give the current Cij so that we can always have access to the initial tuples. We 
assume that all these basic operations take constant time. 

A data stucture supporting such operations is shown in Figure 21, assuming that D 
consists of consecutive integer values. For a constraint Cij , the fields element, support, 
min, max and size corresponds to the functions MEMBER, SUPPORT, MIN, MAX and SIZE 
respectively. Procedure PRUNEELEM updates the fields in constant time when a tuple (v, w) 
is removed from Cij . This assumes that we can access the element win Cij.support[v] directly 
from the pair v-w, which can easily be achieved by keeping a link from Cij.element[vHw] to 
the corresponding set element. The space complexity of the data structure is O(d2) for each 
constraint. 

The Queue 

The queue operations required for PC-5 are shown in Figure 22. INITQUEUE and EMP­
TYQUEUE both take constant time. For each tuple in .6., procedure ENQUEUE puts on the 
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function MEMBER(in (v,w),Di,Dj ): boolean 
Post: MEMBER ¢? ((v,w) E Cij). 

function SUPPoRT(in v, Cij ): set of values 
Post: SUPPORT = {w 1 (v,w) E Cij}. 

function MIN(in v, Cij): value 
Post: MIN = min{w 1 (v,w) E Cij }. 

function MAx(in v, Cij ): value 
Post: MAX = max{w I (v, w) E Cij}. 

function SIzE(in v, Cij): set of values 
Post: SIZE = I SUPPORT(v, Cij) I· 

procedure PRUNEELEM(in (v, w), Cij) 
Post: Cij = Cijo \ {(v,w)}. 

Figure 20: The CONSTRAINT module for PC-5 

Let D = {b, ... , B}. 
Let Cij = {(VI, VI)' ' (vm , vm )} if i =j, where VI, ... , vm ED, VI; < V/:+I and m> O. 

= {(v~, wD, , (v:,., w:,.)} if i '# j, where vi: E Di , wi: E Dj . 

Syntax 
Cij .element: array [b ..B][b ..B] of boolean. 
Cij .support: array [b ..B] of set of integers ~ D. 
Cij .min: array [b ..B] of integer. 
Cij .max: array [b .. B] of integer. 
Cij.size: array [b ..B] of integer. 

Semantics 
Cij.element[v][w] ¢? (v, w) E Cij.
 
Cij.support[v] = {WI, ... ,wp }, where (v, WI;) E Cij,WI; < W/:+I for 1:S k :Sp.
 
Cij.min[v] = WI.
 
Cij.max[v] = wp .
 

Cij.size[v] = p.
 

Figure 21: The CONSTRAINT Data Structure 
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procedure INITQUEUE(out Q)
 
Post: Q = n.
 

function EMPTYQuEuE(in Q): Boolean
 
Post: EMPTYQUEUE {:} (Q = n ).
 

procedure DEQUEuE(inout Q, out i, k, j, (v, u})
 
Post: (i,k,j,(v,u}) E Qo and Q = Qo \ {(i,k,j, (v,u})}.
 

procedure ENQUEUE(i, j, Ll, inout Q)
 
Pre: Ll ~ Cij.
 
Post: Q = Qo U {(i, j, k, (v, w)}, (j, i, k, (w, v)} IkE node(G) and (v, w) ELl}.
 

Figure 22: The QUEUE Module for PC-5 

queue all length-two paths involving either (i,j) or (j, i) as the first arc. Procedure DE­
QUEUE returns an element from the queue. We require that procedure ENQUEUE takes O(s) 
time, where s is the size of ~, and procedure DEQUEUE takes constant time. 

To achieve the bounds, the queue elements can be grouped together as tuples of the form 
(i,j, E, (v, w)) for each (v, w) in ~, and E is initially node(G). Procedure DEQUEUE inspects 
an element (i,j, E, (v, w)) in the queue, detaches a node k from E, and returns (i,j, k, (v, w)). 
We assume that an element (i, j, E, (v, w)) is removed from the queue when E becomes empty. 
Using this organization, procedure ENQUEUE takes O(s) time and all other operations take 
constant time. 

4.4 A Generic Path Consistency Algorithm 

Now, we are ready to present the generic path consistency algorithm PC-5 with two para­
metric procedures, the implementations of which are left open. 

Parametric Procedures 

First of all, let us define extensions of constraints and constraint graphs by the queue Q. 

Definition 26 Let Q be the queue containing elements to be processed and Qij denote the 
set of tuples {(v,w) I (i,j,k,(v,w)) E Q}. A constraint Gij/ Q is an extended constraint 
from Gij and Q such that Gij/ Q = Gij U Qij. A graph G/Q is an extended graph from G 
and Q where each constraint Gij in G is extended to Gij / Q . 

The extended constraint graph takes the original constraint graph and augments each con­
straint with the tuples that have been removed but are pending in the queue. 

The specifications of two parametric procedures, PATHCONS and LOCALPATHCONS, for 
the generic path consistency algorithm PC-5 are depicted in Figure 23. Procedure PATH­
CONS computes the set ~ of tuples in Gij that are not path consistent wrt the path (i, k,j). 
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Let PGiI,j(G,v,w) = 3u E Dk : (v,u) E Gik and (u,w) E Gkj. 

procedure PATHCoNs(in i, k, j, out ~)
 

Pre: i,k,j E node(G).
 
Post: ~ = {(v,w) E Gij I...,PGikj(G,v,w)}.
 

procedure LOCALPATHCoNs(in i, k, j,(v, u), out ~) 

Pre: i, k,j E node(G), and (v, u) ¢ Gik. 
Post: ~l ~ ~ ~ ~2, with 

~l = {(v,w) E Gij I...,PGikj(G/Q,v,w)}, 
~2 = {(v',w') E Gij I...,PGikj(G,v',w')}. 

Figure 23: Specifications of Parametric Procedures 

Procedure LOCALPATHCONS returns in ~ a set of tuples of Cij that are path inconsistent 
wrt (i, k,j) after the tuple (v, u) has been removed from the constraint Cik • 

The size of ~ computed by procedure LOCALPATHCONS can vary. ~1 contains the 
tuples in Cij that become path inconsistent wrt (i, k,j) due to the removal of the tuple (v, u) 
from Cik . Specifically, we can construct an extended constraint graph G/Q from G, and a 
tuple (v, w) is included in ~1 if v and ware not path consistent wrt (i, k,j) in G/Q. It is the 
minimal set required by the path consistency algorithm. In some cases, it is possible, but 
not always desirable, to prune a larger set of tuples. On the extreme, ~2 prunes all tuples 
in Cj that are path inconsistent wrt (i, k,j) at the point of calling, regardless of whether 
they can be supported by (v, u). The specification of procedure LOCALPATHCONS takes 
advantage of this fact and allows for both flexibility and efficiency. 

Algorithm PC-5 

The algorithm for the generic path consistency algorithm PC-5 is depicted in Figure 24. 
Here procedure PRUNE(~,C ij ) makes use of procedure PRUNEELEM to remove from Cij 

each tuple (v, w) in ~. 

The structure of the algorithm basically mimics that of algorithm AC-5. In the loop on 
lines 2-7, procedure PATHCONS identifies the path inconsistent tuples with respect to each 
path of length two. Note that by considering paths of the form (i, k, i), values in node i 
that are not path (and arc) consistent with any value in node k are removed from Cii , and 
hence from Di . The inconsistent tuples are queued up and processed in the second loop, on 
lines 8-14, where procedure LOCALPATH CONS is used to prune tuples of C ij which become 
inconsistent after the removal of a tuple from Cik • For ease of specification, we assume that 
the algorithm stops as soon as any domain becomes empty, since we can conclude that the 
graph is not path consistent at that point. 
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Algorithm PC-5
 
Post: let Po = Dlo X x Dno ,
 

P = D I x x Dn
 

G is maximally path consistent wrt P in Po.
 

begin 
1 INITQUEUE(Q)j 
2 for all i,k,j E node(G) do 
3 begin 
4 PATHCONS(i,k,j,~); 

5 ENQUEUE(i,j,~,Q); 

6 PRUNE(~,Cij) 

7 end; 
8 while not EMPTYQUEUE(Q) do 
9 begin 
10 DEQUEUE(Q,i,k,j,(v, u)); 
11 LOCALPATHCONS(i,k,j,(v, u),~); 

12 ENQUEUE(i,j,~,Q); 

13 PRUNE(~,Cij) 

14 end 
end 

Figure 24: The Path Consistency Algorithm PC-5 

Correctness 

The correctness of algorithm PC-5 follows from the correctness of algorithm PC-4 [2]. 
Algorithm PC-4 is the baseline case of algorithm PC-5, where the implementation of Lo­
CALPATHCONS does not use node j but relies on explicit data structures to determine which 
paths and tuples are to be reconsidered, and ~1 is computed in every call. Obviously, a 
larger ~ of PC-5 would only increase the efficiency but not affect the correctness of the 
algorithm. 

Note that algorithm PC-2 [3] can also be derived from PC-5 by specific instantiations 
of the parametric procedures. The implementation of algorithm PC-2 does not make use of 
the tuple (v, u) in LOCALPATHCONS, but computes ~2 every time. 

Complexity Bounds 

We associate a data structure Status[i,k,v,u,j] with each i,k,j E node(G),v,u ED. The 
semantics of Status[i, k, v, u,j] is as follows. 

Status[i,k,v,u,j] = present iff (v,u) E Cik, 
= slispendediff(v,u} f/-Cik & (i,k,j,(v,U}}E Q, 
= rejected iff (v,u) f/- Cik & (i,k,j,(v,u}) f/- Q. 

20 



procedure INITQUEUE(out Q)
 
Post: Vi,k,j E node(G), Vv,u ED: Status[i,k,v,u,j] = present if (v,u) E Cik,
 

= rej ected otherwise.
 

function EMPTYQuEuE(in Q)
 
Post: EMPTYQUEUE = Vi, k, j E node(G), Vv, u ED: Status[i, k, v, u,j] :f; suspended.
 

procedure DEQuEuE(inout Q, out i, k, j, (v, u))
 
Pre: Status[i, k, v, u, j] = suspended.
 
Post: Status[i, k, v, u, j] = rej ected.
 

procedure ENQuEuE(in i, j, .6., inout Q)
 
Pre: V k E node(G), V(v, w) E .6. : Status[i, j, v, w, k] =Status[j, i, w, v, k] =present.
 
Post: V k E node(G),V(v,w) E.6.: Status[i,j,v,w,k] =Status[j,i,w,v,k] = suspended.
 

Figure 25: Manipulations of Structure Status 

The data structure is manipulated according to Figure 25. We now proceed to prove some 
properties of algorithm PC-5. 

Property 27 Algorithm PC-5 has the following properties. 

1.	 PC-5 preserves the semantics of Status on lines 2 and 8. 

2.	 PC-5 enqueues and dequeues at most O(n3cP) elements. 

3.	 If SI, ••• ,Sp are the numbers of new elements in Q after successive lterations of line 12, 
then SI +... + Sp :::; O(n3 d2 

). 

Proof 

1.	 Property 1 holds initially after INITQUEUE. Line 5 changes the status of the ele­
ments (i,j, v, w, k) for each (v, w) in ~ from present to suspended and line 6 removes 
the tuples in ~ from Cij immediately after they are put onto the queue. Thus, prop­

. erty 1 holds on line 2 and still holds when the execution first reaches line 8. Line 10 
changes the status of the element dequeued from Q from suspended to rej ected. 
Line 12 and 13 have similar effects on Status as lines 5 and 6. Thus, property 1 holds 
on line 8 also. 

2.	 Each element in Status can assume each of the three values present, suspended, 
and rejected at most once. Thus, there can be at most O(n3cP) enqueues, where 
the status of an element changes from present to suspended, and at most O(n3cP) 
dequeues, where the status of an element changes from suspended to rej ected. 
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3.	 Property 3 follows from Property 2 and the preconditions of procedure ENQUEUE. An 
element is not enqueued again if it is already in the queue. 

CI 

Theorem 28 Given a time complexity of O(tP) for procedure PATHCONS and a time com­
plexity of O(~) for procedure LOCALPATHCONS, algorithm PC-5 is bounded by O(n3 £l2). 

Note that if the complexity of PATHCONS is O(t), the loop at lines 2-7 takes O(n3
) ·O(t) 

time. Also, if LOCALPATHCONS takes O(~) time, the loop at lines 8-14 has a complexity 
of O(q), where q is the total number of elements that can be enqueued throughout the 
execution of PC-5. These observations will become helpful when we consider functional 
constraints. 

4.5 Functional Constraints 

Let us consider path consistency for functional constraints. We can formulate the definition 
of a functional constraint in terms of constraint tuples. 

Definition 29 A constraint C is a functional constraint wrt D iff Vv (resp. w) ED, there 
exists at most one value w (resp. v) E D such that (v, w) E C. 

Convention 30 We denote by fij(v) the value w, if it exists, where w E D~nit and (v, w) E 
Cij . The function returns a non-existent value outside D;nit if there does not exist a tu­
ple (v, w) in Cij, or if v is outside the domain D~nit. 

Theorem 31 There is an implicit functional constraint relating two nodes i and j if there 
is a path between i and j which consists of only functional constraints. 

Suppose there is no arc (i, j) but there is a path (i, ko, . .. ,km , j) between i and j where 
Ciko ' ... ,Ckmj are all functional constraints. Suppose there exists a value v in Di such that v 
is consistent with two distinct values wand w' in Dj • Then, we have two distinct values U m 

and u~ in Dkm such that (um , w), (u~, w') E Ckmj (since Ckmj is functional). Unrolling 
through km-I, ... ,ko, we have uo,u~ E Dko,uo I: u~ and both (v,uo) and (v,u~) E Ciko' 
which contradicts the defintion of functional constraints. 

Representation 

We can devise a strategy for completing a connected functional graph in accordance to the 
implicit functional constraints between the nodes. This can be easily done in O(n2 d) time 
by considering pairs of nodes in increasing order of the distance (path length) between them. 
If there is no arc between i and j, we can assign to Cij the set {(v,w) I v E Di,w E Dj, 
and w = fkj(fik(v))} where (i, k,j) is the first encountered functional path. Before any pair 
of nodes i and j which are connected by an (m + I)-length path (i, ... , k,j) is considered, 
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procedure PATHCoNs(in i, k, j, out ~) 

begin 
1 ~:= 0; 
2 "Iv E D~nit do 

t 

3 begin 
4 w := fij(V); 
5 u := fik(V); 
6 ifu ¢ Dk and (v, w) E Gij then ~:= ~ U {(v, w)} 
7 else 
8 begin 
9 w' := fkj(U);
 
10 if w f. w' and (v, w) E Gij then ~ := ~ U {(v, w)}
 
11 end
 
12 end
 

end 

Figure 26: Procedure PATHCONS for Functional Constraints 

all arcs for nodes of distance m apart must have been completed, and thus arc (i, j) can be 
made functional by considering (i, k), which is of path length at most m, and (k,j), which 
is of path length one. 

We only need to consider a complete functional graph in which there is a functional 
arc between each pair of nodes. If the graph is not complete to start with, we can derive 
an equivalent complete subgraph for each connected component in the graph by using the 
preprocessing technique described above. Since unconnected parts cannot interfere with each 
other, we can then apply the path consistency algorithm on each of the connected complete 
subgraphs and then return as the solution the union of the results obtained from each of the 
subproblems. 

Instantiation of Parametric Procedures 

The instantiations of procedures PATHCONS and LOCALPATHCONS for functional con­
straints are given in Figures 26 and 27 respectively. Only one value needs to be checked 
on each arc, since the constraints are functional. In procedure LOCALPATHCONS, we can 
remove (v, !ij (V )} immediately after (v, u) is removed from Cik because we are sure that the 
only value, if any, in ninit that is consistent with (v, !ij(v)} is u. 

Complexity Analysis 

It is clear that the two procedures satisfy their specifications, with LOCALPATHCONS com­
puting .6.]. The complexity of PATHCONS is O(d) while that of LOCALPATHCONS is 0(1). 
Note that the number of enqueues is bounded by 0(n3 d), since for a functional constraint, 
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procedure LocALPATHCoNs(in i, k, j, (v, u), out A) 
begin
 

1 if (v, fij(V)) E eij then A := A U {(v, fij(V))}
 
2 else A := 0
 

end 

Figure 27: Procedure LOCALPATHCONS for Functional Constraints 

there can be at most one tuple involving v in Cij for each v E Djnit. Therefore, LOCAL­
PATH CONS is bounded by O(n3 d) globally. 

Theorem 32 Algorithm PC-5 is of complexity O(n3 d) for functional constraints. 

4.6 Monotonic Constraints 

Now let us consider path consistency of monotonic constraints. Again we first define mono­
tonic constraints in terms of constraint tuples. 

Definition 33 A constraint C is monotonic wrt D iff there exists a total ordering on D such 
that, for any value v,w in D, (v,w) E C implies that (V',W' ) E C for all values V',W' E D 
and Vi ::; v, Wi ~ W. 

We also make the following observations. 

Property 34 Monotonicity of arcs does not imply monotonicity of paths. 

That is, given a monotonic constraint Cij , we cannot guarantee that Vi is path consistent 
with Wi even if v is path consistent with w, where Vi ::; v and Wi ~ W. 

A counter example suffices to prove this property. Given the constraints 

Cij : i::; j, 
Cik : i ~ k, 
Ckj : k ~ j, 

each v in Di is consistent with at most one value of node j wrt the path (i, k,j), namely, v 
itself, which does not comply with monotonicity. However, we can derive a weaker property 
for path consistency. 

Property 35 Let Si, ...,j(v) and Si, ... ,j(Vi) be the sets of values in D j which are path con­
sistent with v and Vi of Di , v > Vi, respectively wrt the path (i, ... ,j). Then, we have 
max(Si, ...,j (v)) ~ max(Si, ... ,j (Vi)) and min(Si, ...,j (v)) ~ min(Si, ...,j (Vi)). 
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The proof can be formulated as an induction of the path length, starting by observing 
that this property holds initially for a path of length one, which is the monotonic constraint 
itself. Now, assume that the property holds for all paths of length n or less, n ~ 1. A length­
(n + 1) path (i, ... , k,j) is the concatenation of a length-n path (i, ... , k) and a length-one 
path (k,j). Suppose ::Jv,v' E Di,v > v' and w,w' E Dj,w < w', where w = max(Si.....k.j(V)), 
w' = max(Si.....k.j(V')). Then, we can infer that for any u' E Dk supporting (v',w'), (v,u') ¢ 
Cik . Thus, we have the contradicting conclusion that max(Si.....k(V)) < max(Si.....k(V')), since 
ifmax(Si.....k(v)) ~ max(Si.....k(V')), u' will be in Si.....k(V). A similar argument can be applied 
to the minimum values. Hence by induction, the property holds for all paths. 

Property 36 Given two consecutive values v and v' in Di, v > v', and their respective 
sets of support Si....,j(V) and Si, ...,j(v') in Dj wrt the path (i, ... ,j), a value w E Dj is not 
consistent with any value in Di wrt (i, ... ,j) if max(Si,...,j(V')) < w < min(Si,....j(v)). 

Corollary 37 Any value w E Dj which is not consistent with v E Di wrt a path (i, k,j) 
falls into one of the following ranges. 

1.	 w < min(Skj(umin)) where Umin = min(Sik(v)). 

2.	 max(Skj(U')) < w < min(Skj(u)) where u',u E Sik(V),U' < U and f-1u" E Sik(V) such 
that u' < u" < u. 

3.	 w > max(Skj(Umax )) where Umax = max(Sik(V)). 

This is trivially true since if w is not consistent with v wrt (i, k,j), then w ¢ Skj(U) for 
any U E Sik(V). The above three ranges constitute the complementary set of values to the 
set S = UUESik(V)Skj(U). 

Representation 

Now we introduce T RUE constraints to complete a monotonic constraint graph. 

Convention 38 We denote by T RUEij a dummy relation which allows all combinations of 
values between i and j, i.e., Vv E Di,Vw E Dj : (v, w) E T RUEij . 

Convention 39 Given a graph G, we can transform G into an equivalent complete graph G' 
such that CIj is Cij if (i, j) E arc(G) and T RUEij otherwise. 

We can insert dummy arcs T RUEij between every pair of nodes i and j where Cij does not 
exist already. The graph G' so obtained gives the same arc and path consistency results as 
graph G, since the T RUEij relations do not have any effect on the original arcs. From now 
on, we will take the graph G to be G'. 

Property 40 A T RUE constraint is a monotonic constraint. 
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Let i, k,j E node(G).
 
We take the convention that min(0) =+00 and max(0) = -00.
 

Let SPGikj(V,W) = {u I (v,u) E Gik and (u,w) E Gkj }.
 

function FUNCTIONAL(Gij ): boolean
 
Post: FUNCTIONAL ¢} Gij is a functional constraint.
 

function EMPTYSUPPORT(i, k,j, v, w): boolean 
Post: EMPTYSUPPORT ¢} SnS' = 0, where S = {u I (v,u) E Gid and S' = {u' I (w,u') E Gjd· 

function PREVSUPPORT(V, i, k, j, u): value
 
Post: PREVSUPPORT = max{u' Iu' < u, 3w: u' E SPGikj(V, wH.
 

function NEXTSUPPORT(V,i,k,j,u): value
 
Post: NEXTSUPPORT = min{ u' Iu' > u, 3w : u' E SPGikj(V, wH.
 

function UNSUPPORTED(v, w, w', i, j): set of tuples
 
Post: UNSUPPORTED = {(v, x) E Gij Iw < x < w'}.
 

Figure 28: The Monotonic Constraint Module for Path Consistency 

No special arrangement is needed for incorporating T RUE constraints into a monotonic 
constraint network. We can express a constraint Cj = T RUEij as a monotonic constraint 
where (max(D i ), min(Dj )) E Cij . All other combinations of values allowable in T RUEij 
follow from this tuple with the definition of monotonic constraints. Thus, T RUEij can be 
denoted by {(v, w) Iv E Di , W E D j } without violation of monotonicity. 

Property 41 Let Cii be a domain constraint. We have (1) Cii is not a monotonic constraint, 
(2) Cii satisfies property 35, and (3) Cii is a functional constraint. 

Domain constraints should not cause a problem since although they are not monotonic, 
they satisfy the weaker property described earlier. However, to make the algorithm more 
general, we devise the instantiations of the parametric procedures so that both monotonic and 
functional constraints can be incorporated at the same time. Note that domain constraints 
are also functional constraints. 

The operations required for monotonic constraints are depicted in Figure 28. Func­
tion FUNCTIONAL states whether a given constraint is functional. Function EMPTySUPPORT 

checks whether there is any value u in domain k which supports the tuple (v, w) in Cij wrt 
the path (i, k,j). PREVSUPPORT and NEXTSUPPORT return respectively the predecessor 
and succssor of u in the domain of k which support any tuple involving v in Cij wrt (i, k,j). 
Function UNSUPPORTED returns the set of tuples (v, x) with x in between wand w'. 

Function EMPTySUPPORT can be computed in constant time by comparing the maximum 
and minimum values of the sets of support. Note that for functional constraints, the support 
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Let i, k, j E node(G) and v, u, wED.
 
We take the convention that min(0) = +00 and max(0) = -00.
 

Let SPCikj(V,W) = {u I (v,u) E Cik and (u,w) E Ckj}.
 

Syntax
 
next[i, k, v, u, j]: value.
 
prev[i,k,v,u,j]: value.
 
checked[i, k, v, u, j]: boolean.
 

Semantics
 
next[i, k, v, u,j] = min{u' Iu' > u and 3w: u' E SPCikj(V, wH.
 
prev[i, k, v, u,j] = max{u' Iu' < u and 3w: u' E SPCikj(V, wH.
 
checked[i, k, v, u, j] ::} UNSUPPORTED(V, MAx(n, Ckj), MIN(n', Ckj), i, j) =0, where
 

n = PREVSUPPORT(V,i,k,j,u), and n' = NEXTSUPPORT(V,i,k,j,u). 

Figure 29: Data Structure for Monotonic Constraints 

set consists of only one element. We assume that all operations in Figure 28 take constant 
(amortized) time to execute except function UNSUPPORTED which takes 0(8) (amortized) 
time, where 8 is the size of the set returned. The bounds can be achieved by employing 
an 0(n3 d2 ) data structure as specified in Figure 29. The structures next[i, k, v, u,j] and 
prev[i, k, v, u, j] return respectively a successor and a predecessor of u such that for any 
value x between u and u', x is not supporting any tuples (v, w) E Gij wrt the path (i, k, j). 
Note that next contains +00 and prev contains -00 if there is no value in the domain 
of DLnit that satisfies the requirements. The element checked[i, k, v, u, j] marks that the 
tuple (v, u) cannot possibly prune any more tuples in Gij wrt (i, k,j), as reflected in the null 
set returned by UNSUPPORTED. The structure is maintained with next and prev so that 
checked[i, k, v, x,j] is set to T RUE for any x where next[i, k, v, u,j] = u' and u < x < u',

I 

or prev[i, k, v, u,j] = u' and u' < x < u. 

Instantiation of the Parametric Procedures 

Now we are ready to present the parametric procedures for monotonic constraints. Pro­
cedures PATHCONS and LOCALPATHCONS are depicted in Figures 30 and 31 respectively. 
Note that there is no special treatment for TRUE relations, since T RUE constraints are 
inherently monotonic constraints. For simplicity, we assume that the functions MAX(v, Gij ) 

and MIN(v,Gij ) return -00 and +00 respectively when v is not in D~nit. 

For each tuple (v, w) in Gij , procedure PATHCONS checks whether there is any value 
in domain k which supports (v, w), and removes the tuple if it is unsupported wrt the 
path (i, k,j). In procedure LOCALPATHCONS, lines 2-3 remove the tuple (v, fkj(U)) since 
the value u can be the only value in k which is consistent with fkj( u) in j wrt the functional 
constraint Gkj . Similarly, lines 4-5 remove all tuples involving v in Gij since v is not consistent 
with any value in k other than u wrt the functional constraint Gik . Line 6 checks the 
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procedure PATHCoNs(in i, k,j, out ~) 

begin 
1 ~:= 0; 
2 V(v, w) E Gij do 
3 ifEMPTYSuPPoRT(i,k,j,v,w) then ~:= ~U{(v,w)} 

end 

Figure 30: Procedure PATHCONS for Monotonic Constraints 

procedure LocALPATHCoNs(in i, k, j, (v, u), out ~) 

begin 
1 ~:= 0; 
2 if FUNCTIONAL(G1jit) then 
3 ~ := {(V,/kj(U)) I (V'/kj(U)) E Gij} 
4 else if FUNCTIONAL(Gfk it ) then 
5 ~ := {(v, w) I (v, w) E Gij} 
6 else if -,checked[i, k, v, u, j] then 
7 begin 
8 n:= PREVSUPPORT(V,i,k,j,u); 
9 n':= NEXTSUPPORT(V,i,k,j,u); 
10 ~:= UNSUPPORTED(V, MAx(n, Gkj), MIN(n', Gkj),i,j) 
11 end 

end 

Figure 31: Procedure LOCALPATHCONS for Monotonic Constraints 

structure checked[i, k, v, u, j] where both Gik and Gkj are monotonic, and proceeds only 
if checked is not T RUE, since we are sure that the L). computed will be empty for those 
elements with checked being T RUE. We compute the values nand n' which are respectively 
the closest value below and above u supporting any tuple in Gij with v. Line 10 removes all 
tuples (v, x) where x falls in between but is not covered by the support ranges of nand n' 
in domain j. 

Complexity Analysis 

The formulation of procedure PATHCONS is derived directly from the definition of path 
consistency. The correctness of procedure LOCALPATHCONS follows from the property of 
functional constraints for the first two cases and from Corollary 37 for monotonic constraints 
in the last case. 

The complexity of procedure PATH CONS is 0(J2), since there can be at most 0(J2) tuples 
in a constraint. For procedure LOCALPATHCONS, the first case takes constant time, while 
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the second takes O(~) time (line 5). For the last case, lines 8-9 can be computed in constant 
amortized time, and line 10 is of complexity O(~) amortized. Therefore, the procedure has 
an overall complexity of O(n3 £l2). 

Theorem 42 Algorithm PC-5 is of complexity O(n3 £l2) for functional and monotonic con­
straints combined. 

5	 Incremental Arc Consistency Algorithms for Hier­
archical Networks 

Arc consistency can be maintained incrementally in hierarchical constraint networks. Specific 
data about the constraints are kept to reflect the state of the network. By updating these 
data during each insertion and deletion of constraints3 , we can derive and maintain arc 
consistency dynamically. 

In this section, we specify two generic incremental arc consistency algorithms for insertion 
and deletion of constraints. Specializations for functional, anti-functional and monotonic 
constraints are discussed, with an attempt to relax the binary requirement of constraints to 
allow for three or more variables in monotonic constraints. 

5.1 Generalized Constraints 

Until now, we only deal with binary constraints, but we can extend binary constraints 
to constraints with arbitrary number of variables. First of all, let us fix the notation for 
expressing multi-variable constraints. 

Definition 43 A constraint C(lit, , in]' [jI, ,jm]) is an (n + m)-variable generalized 
constraint between the variables iI, , in,jI, ,jm' 

Note that a binary constraint can also be expressed in its equivalent generalized form, namely, 
Cij =	 C([i], [j]). 

Convention 44 There are (n +m) edges associated with each (n +m)-variable constraint 
C([il , ... , in]' [jI,'" ,jm]), each supporting a variable from the set {iI, ... , in,jI, ... ,jm}' 
We denote by (x, C(lit, , in]' [jl' ... ,jm])) the edge associating variable x with the con­
straint C([il , ... , in]' [jI, ,jm]), where x E {i}, ... , in,jl, ... ,jm}' 

Convention 45 Let C(h, ... , in]' [jl"" ,jm]) be a generalized constraint and c be the edge 
(x, C([iI, ... , in]' [jI, ... ,jm])), X E {iI,' .. , in,j}, ... ,jm}' For ease of notation, we will omit 
the arguments for C and denote c by (x, C) when it is clear from the text which constraint 
the edge c is associated with. 

3The algorithms for the insertion and deletion of constraints can easily be extended to similar operations 
on variables and domain values in the network. 
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Definition 46 Let C([il, ... ,in]'[jI, ... ,jm]) be a generalized constraint. Let (k,C) be 
the edge associating node k and constraint C, where k E {il, ... ,in,jI, ... ,jm}. Then 
trend( k, C) is descending if k E {iI,' .. , in}, and ascending if k E {jI, ... , jm}. 

Definition 47 We define a relation between the variables in a constraint so that for a 
constraint C([iI, ... , in]' [jI, ... ,jm]), we have 

il < jI, il < j2' ... ,il < jm, 

in <jI,in <h,···,in <jm' 

A hierarchical constraint network is a constraint network in which the above relation imposes 
a partial ordering on the variables, or, in other words, there does not exist a sequence 
Xl < X2 < ... < Xl where Xi are variables in the network. 

Intuitively, in the graphical representation, a hierarchical constraint network is a directed 
graph without cycles. There can be multiple edges or paths between two nodes, but they 
have to be directed from the same node to the other. 

5.2 Basic Structures 

Now, we look at the structures of a domain and the queue for use with the incremental arc 
consistency algorithms. 

The Domain 

We employ the same data structure for the domains as described in [9]. Note that in order 
to keep track of the additional data required for updating the arc consistency information, 
we have to distinguish between the two versions of a domain, D~nit and D i . In D~nit, we keep 
the values that have been assigned to the domain of node i regardless of their status, so that 
values that have been removed by the addition of a constraint can later be reactivated by 
some deletion operations. The values which are currently "active", or supported, in domain 
i are represented in Di . When a value in domain i becomes unsupported, it is removed 
from D i , but not from D~nit, while when a new value is introduced into the domain, it is 
added to D~nit and also D i if it can be supported under the current state of the constraint 
network. The space complexity for this structure is O(d) for each domain. 

The Queue 

The queue operations required are depicted in Figure 32. The operations are similar to those 
for AC-5 except that the elements in the queue are of the form ((i, C),j, w), where (i, C) is 
an edge supported by j and w is a value that has been removed from Dj . We assume that 
INITQUEUE, EMPTYQUEUE and DEQUEUE each takes constant time, and procedure EN­
QUEUE takes 0(1 D. I) time. 
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procedure INITQUEUE(out Q) 
Post: Q = n. 

function EMPTVQuEuE(in Q): Boolean
 
Post: EMPTVQUEUE {:} (Q = n ).
 

procedure DEQuEuE(inout Q, out (i,e),j,w)
 
Pre: ((i,e),j,w) E Qo.
 
Post: Q = Qo \ {((i,e),j,w)}.
 

procedure ENQUEUE((j, e), A, inout Q) 
Pre: A ~ D j .
 

Post: Q =Qo U {((i, e'), j, w) Iw E A and trend(i, e') = trend(j, e), trend(j, e') =F trend(j, en·
 

Figure 32: The Queue Module for Incremental Arc Consistency Algorithms 

5.3 The Generic Algorithms 

Now we present two generic arc consistency algorithms for inserting and deleting edges in­
crementally. Each algorithm contains two parametric procedures which can be implemented 
in different ways for different classes of constraints. 

Insertion 

The generic incremental arc consistency algorithm INSERTEDGE for edge insertion is shown 
in Figure 33. Note that the insertion of a constraint C([iI, ... , in], [iI, ... ,jm]) corresponds 
to the insertion of (n + m) edges in the form (k,C) with k E {iI, ... ,in,jI, ... ,jm}. The 
specifications for the parametric procedures ARCINS, LOCALARCINS, given in Figure 34, 
make use of extended domains and the extended graph which are defined as follows. 

Definition 48 Let Q be the queue containing elements pending to be processed and (i, C) 
be a generalized constraint. Let Dj/Q(i, C) be the extended domain from Dj with Q and 
(i,C) such that Dj/Q(i,C) = Dj U {w I ((i,C),j,w) E Q}. Let G/Q(i,C) be the extended 
graph from G with Q and (i, C) where each domain Dj in G is extended to Dj/Q(i, C). 

Procedure ARCINS takes a newly inserted edge (i, C) and puts in ~ all values in Di that 
should be pruned. Procedure LOCALARCINS returns in ~ all values of Di which become 
unsupported after the removal of the value w from Dj • Again, we define ~ in terms of ~l 

and ~2 which are the minimal and maximal sets that can be computed by LOCALARCINS. 
Algorithm INSERTEDGE contains two main steps. The first step takes the newly inserted 

edge (i, C) and checks on line 3 whether it prunes the currently active domain of node i. If 
so, all edges that are constrained by node i are enqueued on line 4. Lines 6-12 remove an 
element from the queue and applies LOCALARCINS to it which may put more elements onto 
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Algorithm INsERTEDGE(in (i, C)) 
begin 

1 INITQUEUE(Q); 
2	 edge(G) := edge(G) U Hi, C)}; 
3 ARCINS((i, C), ~);
 

4 ENQUEUE((i, C),~, Q);
 
5 REMOVE(~, D;);
 
6 while --,EMPTYQUEUE(Q) do
 
7 begin
 
8 DEQUEUE(Q,(i',C'),j,w);
 
9 LOCALARCINS((i', C'), j, W, ~);
 

10 ENQUEUE((i', C'),~, Q)
 
11 REMOVE(~, Di l );
 
12 end
 

end
 

Figure 33: Algorithm INSERTEDGE 

Let C([i1 , ... , in], [il,·.· ,jmD be a generalized constraint. 
Let (i, C) be an edge associating node i with the constraint C. 
Let AC(G, (i, C), v) = 3Vil E Di1 , ... ,Vi" E Di", Wil E Djll"" Wjm E Djm 

such that Vi =V and C([Vill"" Vi,,], [Wil"'" WjmD· 

procedure ARcINs(in (i, C), out ~) 

Post: ~ = {v E Di I--,AC(G, (i, C), v)}. 

procedure LocALARCINs(in (i, C),j, w,~) 

Pre: W ¢ D j . 

Post:	 ~l ~ ~ ~ ~2, with
 
~l = {v E Dj I--,AC(G/Q(i, C), (i, C), v)},
 
~2 = {v E Dj I--,AC(G, (i, C), v)}.
 

Figure 34: Specifications of Parametric Procedures for INSERTEDGE 
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Algorithm DELETEEDGE(in (i, C))
 
begin
 

1 INITQUEUE(Q);
 
2 edge(G) := edge(G) \ Hi, C)}; 
3 ARCDEL((i, C), .:l); 
4 ENQUEUE((i,C),.:l,Q); 
5 INSERT(.:l, D;); 
6 while ...,EMPTYQUEUE(Q) do 
7 begin 
8 DEQUEUE(Q, (i', C'), j, w); 
9 LOCALARCDEL((i', C'),j, w, .:l); 
10 ENQUEUE((i', C'),.:l, Q) 
11 INSERT(.:l, D;/); 
12 end 

end 

Figure 35: Algorithm DELETEEDGE 

the queue. The loop is repeated until the queue is empty. Procedure REMOVE is used on 
lines 5 and 11 to remove the values in ~ from the corresponding domain. 

For simplicity, we assume that an edge would be rejected by the system if its insertion 
would result in an empty domain. This requires additional back up information which can 
be easily stored as a stack. 

Deletion 

The incremental arc consistency algorithm DELETEEDGE for edge deletion is shown in Fig­
ure 35 and the specifications of its two parametric procedures are depicted in Figure 36. The 
notion of contracted domains and a contracted graph is defined below. 

Definition 49 Let Q be the queue containing elements pending to be processed and (i, C) 
be a generalized constraint. Let Dj\Q(i, C) be the contracted domain from Dj with Q and 
(i,C) such that Dj\Q(i,C) = Dj\{w I ((i,C),j,w) E Q}. Let G\Q(i,C) be the contracted 
graph from G with Q and (i, C) where each domain Dj in G is contracted to Dj\Q(i, C). 

The structure of algorithm DELETEEDGE is similar to that of INSERTEDGE. Proce­
dure ARCDEL takes an edge and returns in ~ all values in D:nit which can be reactivated. 
Procedure LOCALARCDEL computes the set of values which can be restored into Di after w 
is restored into Dj • Procedure INSERT inserts the values in ~ back into the corresponding 
active domain. Again to delete an (n+m)-variable constraint, we have to delete all (n+m) 
edges associated with it. 
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Let G ([iI, ... , in], [il, ... ,imD be a generalized constraint.
 
Let (i, G) be an edge associating node i with the constraint G.
 
Let AG(G,(i,G),v) = 3Vil E Di l ,·· .,Vin E Din' Wit E Djll" .,Wjm E Djm
 

such that Vi = V and G([Vi l ,···, ViJ, [Wit,···, WjmD. 

procedure ARcDEL(in (i, G), out ~)
 

Post: ~ = {v ¢ Di I 'v'(i, G') E edge(G), AG(G, (i, G), v)}.
 

procedure LocALARcDEL(in (i,G),i,w,~) 

Pre: wE Dj. 
Post: ~l ~ ~ ~ ~2, with 

~l = {v ¢ Di I 'v'(i, G') E edge(G), AG(G\Q(i, G), (i, G), v)}, 
~2 = {v ¢ Di I 'v'(i, G') E edge(G), AG(G, (i, G), v)}. 

Figure 36: Specifications of Parametric Procedures for DELETEEDGE 

Correctness 

The correctness of the algorithms follows from the correctness of algorithms AC-4 and AC­
5, which allows us to conclude that the algorithms are correct for any single execution. 
However, we also have to show that the data structures which are used to keep the arc 
consistency information of the network are always updated properly after each execution so 
that the network can be built incrementally. 

The latter property depends on the hierarchical nature of the network. First observe that 
each edge is considered at most once for each execution of INSERTEDGE or DELETEEDGE 

because there is no cycle in the network. The information is propagated in one direction 
only and there is no node which constrains itself through a loop. It is clear that after the 
execution of ARCINS or LOCALARCINS on an edge, it is arc consistent. Since each edge 
is only visited at most once, the edge and its supporting data structure will remain intact 
throughout the rest of the execution of INSERTEDGE. 

For DELETEEDGE, we can prove the correctness by a simple induction on the distance 
of a node from the deleted edge (i, C). The node i is made arc consistent after the initial 
execution of ARCDEL. Thus, all nodes of distance 0 from (i, C) are arc consistent. Now, 
assume that all nodes of distance k are arc consistent. If the active domain of a node i' 
at distance k is altered, all nodes at distance k + 1 which are constrained by node i' will 
be reconsidered by LOCALARCDEL as the edges between the two nodes are put onto the 
queue. Thus, by induction, all arcs in the network are made arc consistent when the queue 
is exhausted. 

Thus, if we can show that the data structures we use for each class of constraints adhere to 
their semantics after each execution of the parametric procedures ARCINS, LOCALARCINS, 

ARC DEL and LOCALARCDEL, we can conclude that the algorithms are correct. 
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procedure ARcINs(in (i, C([i], [j])), out .6.)
 
begin
 

1 . .6. := 0;
 
2 'Vv E D~nit do
, 
3 if fij(V) f/. Dj then
 
4 begin
 
5 unsupported[i, v] := unsupported[i, v] + 1;
 
6 if v E Di then .6. := .6. U {v}
 
7 end
 

end 

Figure 37: Procedure ARcINS for Functional Constraints 

5.4 Functional Constraints 

In this section, we consider functional constraints with two variables only, although for 
uniformity, we use the notation for generalized constraints here also. 

Convention 50 Let C([i], [j]) be a functional constraint. We use the convention that Iij (v) 
(resp. /ii(W)) denotes the value W (resp. v) such that C([v], [w]). 

We assume that I takes constant time to evaluate for binary functional constraints. 
A data structure unsupported can be used for keeping arc consistency information for 

functional constraints. For each value v in the domain D:nit, we have unsupported[i, v] =1 S I, 
where S = Hi, CUi], [j])) 1 Iij(v) rt Dj }. The data structure can be initialized by assigning 0 
to every element. The overall space complexity and time complexity for initialization of 
unsupported are both O(nd). 

Insertion 

The instantiations of procedure ARcINS and LocALARcINS are depicted in Figures 37 
and 38 respectively. Procedure ARcINS checks every value v in D:nit and increments the 
data structure unsupported[i, v] if v is not arc consistent wrt the edge (i, CUi], [j])). We 
only need to check one value in Dj for each v since the constraints are functional. Also note 
that the structure unsupported is updated even if v is not in the active domain Di since the 
value might later be reactivated. 

Procedure LocALARcINS increments the count unsupported[i, /ii(w)] and removes the 
value /ii(w) if it is currently in the active domain Di, since w can be the only value sup­
porting /ii(W) wrt the edge (i, C([i], [j])). 

Deletion 

The instantiations of procedure ARC DEL and LOCALARCDEL are depicted in Figures 39 
and 40 respectively. Procedure ARCDEL checks every value in D~nit and decrements the 
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procedure LocALARcINs(in (i, C([i], [j])),j, w, out Ll) 
begin 

1 Ll := 0; 
2 if !;i(W) E D;nit then 
3 begin 
4 unsupported[i, !;i(w)] := unsupported[i, !;i(w)] + 1;
 
5 if !;i(W) E Di then Ll := {!;i(W)}
 
6 end
 

end 

Figure 38: Procedure LOCALARCINS for Functional Constraints 

procedure ARcDEL(in (i, C([i], [j])), out Ll)
 
begin
 

1 Ll := 0;
 
2 't/v E D!nit do
•
3 if lij(v) ¢ Dj then 
4 begin 
5 unsupported[i, v] := unsupported[i, v] - 1; 
6 if unsupported[i, v] = 0 then Ll := Ll U {v} 
7 end 

end 

Figure 39: Procedure ARC DEL for Functional Constraints 

counter unsupported[i, v] if a value v outside the active domain Di was unsupported by the 
edge (i, C([i], [jD) before the edge was removed from the network. If the count reaches zero, 
we know that the value v is well supported by all existing edges, and hence we can restore the 
value into the active domain Di • Procedure LOCALARCDEL does the same for the specific 
value Jii(W) after W has been restored into D j • 

Correctness and Complexity 

It is clear that the semantics of the data structure unsupported holds after each execu­
tion of INSERT EDGE or DELETEEDGE since each time an edge is visited, the parametric 
procedures update the corresponding counter. 

The complexity of algorithm INSERT EDGE is analysed globally over multiple insertions 
of binary edges. Each execution of procedure ARCINS is of complexity O(d). Procedure Lo­

CALARCINS can be executed at most O(ed) times for multiple insertions, and each execution 
takes constant time. Thus, the overall complexity for the algorithm INSERTEDGE is O(ed). 

Theorem 51 Algorithm INSERTEDGE is O(ed) for the insertion of multiple binary func­
tional constraints in a hierarchical network. 
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procedure LocALARcDEL(in (i, C([i], [j])),j, w, out ~) 

begin 
1 ~:= 0; 
2 if lii(W) E D~nit then 
3 begin 
4 unsupported[i,fji(W)] := unsupported[i,fji(W)] - 1; 
5 if unsupported[i,fji(W)] = 0 then ~ := {fji(W)} 
6 end 

end 

Figure 40: Procedure LOCALARCDEL for Functional Constraints 

A similar argument holds for algorithm DELETEEDGE, observing that procedure AR­

CDEL takes O(d) time per execution and procedure LOCALARCDEL can be executed at 
most O(ed) times over multiple deletions of edges, where each execution takes constant 
time. 

Theorem 52 Algorithm DELETEEDGE is O(ed) for the deletion of multiple binary func­
tional constraints in a hierarchical network. 

5.5 Anti-Functional Constraints
 

We now consider another class of constraints, anti-functional constraints.
 

Convention 53 Let C be an anti-functional constraint. We denote by !ij(v) (resp. !ii(w)) 
the value w (resp. v) where ...,C([v], [w]). 

We assume that f can be accessed in constant time for binary constraints. 
A data structure for use with anti-functional constraints is shown in Figure 41. The 

element unsupported[i, v] stores the number of edges (i, C([i], [jD) which do not support the 
E D1nitvalue v . The structure last[i, j] stores the value in D1nit that has been removed 

because it is not supported by any value in Dj • It gives the value 00 which is not in 
any domain if every value is supported by Dj • The data structure can be initialized by 
assigning 0 to every element in unsupported and 00 to every element in last. The overall 
space complexity and time complexity for initialization are O(nd) for unsupported and O(d?) 
for last. 

Insertion 

The instantiations of procedures ARC INS and LOCALARCINS are depicted in Figures 42 
and 43 respectively. Procedure ARCINS removes a value from Di only when Dj consists of 
a single value, since if there are two or more values, every value in D i is consistent with at 
least one value in Dj . Note again that the data structures are updated even if the value v 
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Syntax
 
unsupported[i, v]: integer.
 
last[i, j]: value.
 

Semantics
 
unsupported[i,v] =1 S 1where S = ((i,C([i],[j])) 1fij(V) f/. Dj}.
 
last[i,j] = v where Dj = {fij(V)}.
 

Figure 41: A Data Structure for Anti-Functional Constraints 

procedure ARcINs(in (i, C([i], [j])), out ~) 

begin
 
1 v := /ji(MIN(Dj));
 
2 if SIZE(Dj) = 1 and v E D;nit then
 
3 begin
 
4 ~ := {v} n Di ;
 

5 unsupported[i, v] := unsupported[i, v] + 1
 
6 last[i, j] := v
 
7 end
 
8 else ~ := 0
 

end
 

Figure 42: Procedure ARCINS for Anti-Functional Constraints 

has already been removed from a previous iteration. In procedure LOCALARCINS, since each 
edge C([i], [j]) can remove at most one value from domain i, we do not have to reconsider 
an edge if there is already a value removed from Di which is not consistent wrt this edge 
(line 1). Otherwise, LOCALARCINS calls ARCINS to remove the arc inconsistent value, if 
any (line 2). 

procedure LocALARcINs(in (i, C([i], [j])),j,w, out ~) 

begin
 
1 if last[i, j] E D;nit then ~ := 0
 
2 else ARCINS((i, C([i], [j])),~)
 

end 

Figure 43: Procedure LOCALARCINS for Anti-Functional Constraints 
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procedure ARcDEL(in (i, C([i], [j])), out ~) 

begin 
1 ~:= 0; 
2 if last[i, j] E D;nit then 
3 begin 
4 unsupported[i, last[i, j]] := unsupported[i, last[i, j]] - 1; 
5 ifunsupported[i,last[i,j]] = 0 then ~:= {last[i,j]}; 
6 last[i,j] := 00 

7 end
 
end
 

Figure 44: Procedure ARCDEL for Anti-Functional Constraints 

procedure LocALARcDEL(in (i, C([i], [j])),j,w, out ~)
 

begin
 
1 ARCDEL((i, C([i], [j])),~)
 

end
 

Figure 45: Procedure LOCALARCDEL for Anti-Functional Constraints 

Deletion 

The instantiations of procedures ARCDEL and LOCALARCDEL are depicted in Figures 44 
and 4? respectively. Procedure ARCDEL checks last[i, j] to see whether there is a value in 
domain i which is not arc consistent with D j (line 1), and if so, decrements the counter 
unsupported. The value last[i,j] can be restored into Di if the counter reaches zero, indi­
cating that it is well supported by all edges. Again, procedure LOCALARCDEL makes use 
of procedure ARCDEL to restore additional values. 

Correctness and Complexity 

The data structures unsupported and last adhere to their semantics after each execution of 
INSERTEDGE or DELETEEDGE, since we take care to update the fields even when a value is 
not in the active domain. 

The complexity of procedure ARcINS and therefore also procedure LOCALARcINS is 0(1). 
For multiple insertions of edges, LOCALARcINS can be executed at most O(ed) times, hence 
the overall complexity of INSERTEDGE is O(ed). 

Theorem 54 Algorithm INSERTEDGE is O(ed) for the insertion of multiple binary anti­
functional constraints in a hierarchical network. 

Similary, each execution of procedures ARC DEL and LOCAL ARC DEL takes constant time. 
Procedure LOCALARCDEL can be executed at most O(ed) times for multiple deletions of 
edges. Thus, the overall complexity of DELETEEDGE is O(ed). 
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Theorem 55 Algorithm DELETEEDGE is O(ed) for the deletion of multiple binary anti­
functional constraints in a hierarchical network. 

5.6 Monotonic Constraints 

Now let us consider monotonic constraints. We first generalize two-variable monotonic con­
straints to incorporate multi-variables. 

Generalization 

Definition 56 A constraint C([il , ... , in], [jl"" ,jm]) is an (n + m)-variable generalized 
monotonic constraint between ill"" in,jl, ,jm iff there exists a total ordering on the 
domain D such that, for any Vi}, ... , Vin,wi}, ,wim ED, 

C([Vi} , ... , Vin], [wi}' ... ,wim]) ::::} C([v~}, . .. , vU, [wi}, ... ,wim])' 

for all vi}, ... , vIn, wi}, . .. , wim E D, where vik :::; Vi k for 1 :::; k :::; n, and W}k l ~ Wjk' for 
1 :::; k':::; m. 

An example of a generalized monotonic constraint is C([i,j], [k, 1]) : i +j < k + 1. 

Representation 

The relation conventions and primitive operations required for the incremental algorithms of 
monotonic constraints are shown in Figure 46. Function f returns the maximum or minimum 
value of the node k as constrained by the arc (k, C). The result might be a value outside 
the active domain Dk if another edge is more constraining on k than (k, C). Function CONS 

gives the set of edges constraining k with the same trend as (k, C), including (k, C) itself. 
Function f is assumed to take time linear to the number of variables in the constraint, and 
is constant for binary constraints4 

. Function CONS requires O(s) time, where s is the size 
of the set of edges returned by the function. 

A data structure for use with the monotonic constraints is given in Figure 47. The space 
complexity of the whole data structure is O(n + e). M i stores the minimum and maximum 
values of the currently active domain Di , as well as the number of edges supporting such 
values. In support[i, C] we keep the maximum or minimum value of D~nit, depending on 
the trend of the edge, that is currently supported by edge (i, C). The data structures can 
be initialized for each node i and each edge (i, C) as follows. Mi.minValue = min(D~nit), 

Mi.maxValue = max(D~nit), Mi.minCount = 0, Mi.maxCount = 0, and support[i, C] = 
UNDEF. Here UNDEF denotes a special value which is not in any domain. The initialization 
can be done in O(n + e) time for the whole network. 

4In fact, we can assume that f takes constant time for any n-ary constraints, where n is fixed. 
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Let G([i l , ... , in]' [il, ... ,im]) be a monotonic constraint.
 
Let (k, G) be the edge associating node k and constraint G, k E {iI, ... , in, il, ... ,im}.
 

Relation >-k C 

descending '-- { >if trend(k: G) is { rkC­ascending , ,- < 

Relation >-k C 

descending >- _ { ~ if trend(k: G) is { ascending , _k,C- < 

Relation extremumk,c 

{ max'f d(k G)' descending
1 tren , IS d' , extremumk,C = minascen mg { 

function f(in k, G): integer 
Post: f = extremumk,c{Vk IG([Vi 1 ,"" Vin], [ViI,"" vim])}, 

where Vii E Dil for 1 ::; I ::; n, and vii' E Dill for 1 ::; I' ::; m. 

function CONs(in k, G): set of edges 
Post: CONS = {(k, G') I trend(k, G') = trend(k, G)}. 

Figure 46: The Generalized Monotonic Module 

Let G([il , ... , in], [iI, ... , im]) be a monotonic constraint. 
Let (i, G) be an edge associating node i and constraint G. 

Syntax 
Mi .minValue: value. 
Mi.maxValue: value. 
Mi.minGount: value. 
Mi.maxGount: value. 
support[i, G]: value. 

Semantics 
Mi·minValue =min(Dd·
 
Mi.maxValue = max(Dd·
 
Mi·minGount = lSI where S = {G I extremumi,C =min and support[i, C] =Mi.minValue}.
 
Mi.maxGount = lSI where S = {G I extremumi,c =max and support[i,C] =Mi.maxValue}.
 
support[i, G] =extremumi,c(S), where S = {Vi IG([Vi 1 ,"" Vin]' [ViI,"" Vim])},
 

Vii E Dil for 1 ::; I ::; n, and vii' E Dizl for 1 ::; I' ::; m. 

Figure 47: A Data Structure for Monotonic Constraints 
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procedure ARclNs(in (i, C), out ~) 

begin
 
1 ~:= 0;
 
2 oldsupport := support[i, C];
 
3 support[i, C] := f(i, C);
 
4 if M; .extremeValue = support[i, C] then
 
5 if support[i, C] # oldsupport then
 
6 M;.extremeCount := M;.extremeCount + 1
 
7 else if M; .extremeValue h,c support[i, C] then
 
8 begin
 
9 "Iv s.t. M;.extremeValue ~;,c v >-;,c support[i, C] do
 
10 if v E D; then ~:= ~ U {v};
 
11 M;.extremeValue := support[i, C];
 
12 M;.extremeCount := 1
 
13 end
 

end 

Figure 48: Procedure ARCINS for Generalized Monotonic Constraints 

Convention 57 Let (i, C) be an edge associating node i and constraint C. We adopt 
the convention that extremeValue stands for maxValue (resp. minValue) in the fields of 
array M i if trend( i, C) is descending (resp. ascending). Similarly, we use extremeCount to 
denote the field maxCount (resp. minCount) if trend(i, C) is descending (resp. ascending). 

Insertion 

The instantiations of procedure ARCINS and LOCALARCINS for generalized monotonic con­
straints are depicted in Figures 48 and 49 respectively. Procedure ARCINS updates the 
array Mi and support[i, C] to reflect how the domain i is constrained by the edge (i, C). 
Lines 2-3 get the current maximum or minimum value of node i as constrained by (i, C) 
and saves it in support[i, C]. This value is compared to Mi.extremeValue on lines 4 and 7. 
The count is incremented if the two values are equal (line 6), or it is reset to one and 
Mi.extremeValue is set to the new value if it is more restricting (lines 11-12). In the latter 
case, the change is equivalent to narrowing the range of active values in the domain, and 
all values that become outside the active domain are put into .6. (lines 9-10). Note that in 
the case where the constraining value is looser than Mi.extremeValue, ARCINS returns an 
empty .6., and we do not have to alter any information in the network beyond the addition 
of the edge itself. 

Deletion 

Specifications of procedure ARCDEL and procedure LOCALARCDEL are shown in Figures 50 
and 51 respectively. Procedure ARCDEL checks whether domain i can be expanded due to 
a relaxation on the edge (i, C). The new value of i as constrained by (i, C) is compared 
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procedure LocALARcINs(in (i, C), j, w, out .6.)
 
begin
 

ARCINS(i, C,.6.)
 
end
 

Figure 49: Procedure LOCALARcINS for Generalized Monotonic Constraints 

to Mi.extremeValue on line 4, and the count is decremented if they are equal. A zero 
count indicates that there are no more edges that constrain the active domain of i at this 
value. Thus, we can recompute the new Mi.extremeValue and Mi.extremeCount informa­
tion (lines 9-20). This corresponds to relaxing the currently active domain, and the values 
that are to be restored into the domain are put into ~ on lines 21-22. Note again that we 
do not have to make any changes to the data structure if the value constrained by (i, C) is 
looser than Mi.extremeValue. 

Correctness and Complexity 

The correctness of the algorithms follows from the fact that each time anyone of the para­
metric procedures is applied on an edge, we update the data structures M and support of 
the edge correspondingly. 

The complexity of procedure INSERTEDGE is analysed globally over multiple insertions 
of edges. Each execution of procedure ARcINS takes O(v) time (line 3), where v is the 
maximum number of nodes connected by an edge. Each edge can be considered O(vd) times 
in procedure LOCAL ARC INS over multiple insertions. Each execution of LOCALARcINS also 
takes O(v) time, since it just makes use of procedure ARcINS. Thus, the complexity of 
procedure INSERTEDGE is O(v2ed). 

For binary constraints, the maximum number of variables allowable in a constraint is 
two, therefore the complexity becomes O(ed), and we have an optimal algorithm, since we 
have to look at each edge for each domain value at least once. Also, since v is bounded 
upwards by n, we have a complexity of O(n2 ed) for constraints with arbitrary number of 
variables. 

Theorem 58 Algorithm INSERTEDGE is O(n2 ed) for the insertion of multiple generalized 
monotonic constraints and O(ed) for binary monotonic constraints in a hierarchical network. 

A similar argument holds for procedure DELETEEDGE. Note also that each iteration of 
the loop at lines 10-20 of ARC DEL takes O(v) time and it can be executed at most eid times 
for each node, where ei is the degree of node i, since the active domain becomes larger with 
each execution. Thus, the loop is executed at most L:ienode(G) eid times, which takes O(ed) 
time for binary constraints. 

Theorem 59 Algorithm DELETEEDGE is O(n2 ed) for the deletion of multiple generalized 
monotonic constraints and O(ed) for binary monotonic constraints in a hierarchical network. 
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procedure ARcDEL(in (i, G), out ~) 

begin 
1 ~:=0; 
2 oldsupport := support[i, C]; 
3 support[i, C] := f(i, G); 
4 if Mi.extremeValue = oldsupport and oldsupport =P support[i,C] then 
5 begin 
6 M;.extremeGount := Mi.extremeGount - 1; 
7 if M;.extremeGount = 0 then 
8 begin 
9 Mi .extremeValue := extremumi,e(D;nit); 
10 \I(i, G') E CONs(i, G) do 
11 begin 
12 support[i, G1 := f(i, G'); 
13 if M; .extremeValue h,e support[i, G'l then 
14 begin 
15 Mi.extremeValue:= support[i,G'l; 
16 M; .extremeGount := 1 
17 end 
18 else if support[i, G'l = Mi.extremeValue then 
19 Mi.extremeGount := Mi.extremeGount + 1 
20 end 
21 \Iv s.t. Mi.extremeValue !:::i,e v h,e oldsupport do 
22 if v E D; then ~ := ~ U{v} 
23 end 
24 end 

end 

Figure 50: Procedure ARCDEL for Generalized Monotonic Constraints 

procedure LocALARcDEL(in (i, G), j, w, out ~) 

begin 
ARCDEL(i, G,~) 

end 

Figure 51: Procedure LOCALARCDEL for Generalized Monotonic Constraints 
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6 Conclusion 

The generic arc consistency algorithm AC-5 can be instantiated to give O(ed) algorithms for 
anti-functional constraints and the piecewise counterparts to functional, anti-functional and 
monotonic constraints. The same approach to AC-5 is applied to formulate a generic path 
consistency algorithm PC-5 which can be instantiated to PC-4 as well as algorithms with 
lower complexity for functional and monotonic constraints. Generic incremental arc consis­
tency algorithms are constructed in the framework of generalized multi-variable constraints 
in a hierarchical network. Instantiations are given for binary functional, anti-functional 
constraints, and also generalized monotonic constraints. The incremental algorithms have 
a complexity of O(ed) for constraints with fixed number of variables, which is optimal for 
these constraint subclasses. 
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