
BROWN UNNERSITY

Department of Computer Science

Master~ s Thesis

CS-93-M3

"Interactions Recovery System (IRS):

Rollback and Recovery for Multidatabases

in a Heterogeneous, Distributed Computing Environment"

by

Robert T. Baynes

Interactions Recovery System (IRS):

Rollback and Recovery for Multidatabases

in a Heterogeneous, Distributed Computing Environment

by

Robert T. Baynes

B.S., Jacksonville University (Fla.), 1979

Submitted in partial fulfillment of the requirements for the Degree of Master of

Science in the Department of Computer Science at Brown University.

March, 1993

This research project by Robert T. Baynes is accepted in its present form by the
Department of Computer Science at Brown University in partial fulfillment of the

requirements for the Degree of Master of Science.

--r, '-'C.A.JDate 4 /<g;;/93 5

Interactions Recovery System (mS):
Rollback and Recovery for Multidatabases

in a Heterogeneous, Distributed
Computing Environment

Robert T. Baynes

7 March 1993

1

Interactions Recovery System (IRS):

Rollback and Recovery for Multidatabases in a Heterogeneous, Distributed Computing

Environment

Robert T. Baynes

Brown University

Providence, Rhode Island 02912

Department of Computer Science

7 March 1993

Abstract

This document presents the Interactions' Recovery System that is part of the Interactions MultiDatabase
Project. The document presents a discussion of the rollback and recovery methods implemented for the
project. Rollback and recovery is a well understood area of study for the general database system.
However, when applying the paradigm to a multidatabase system rollback and recovery presents some
challenges in maintaining both consistency across the multidatabase system and the local database system.
This project attempts to make this application easier.

2

1 Introduction

The multidatabase architecture provides a system that allows for a number of heterogeneous, distributed

databases to be utilized for one application. The classic example used is that of a travel agent [NOD91].

The travel agent is required to plan a trip that uses various, but different, reservations databases (e.g. hotel,

car rental, airline, etc.). The travel agent can either access each database individually, or in the case of

Interactions, can create one task and have the system handle the interaction with each database.

The Interactions system design is treated like any other database system. Transaction consistency and

recoverability must be addressed. While issues such as serializability are well understood, the issue of

recoverability is not as straight forward. What complicates this area of design is the desire to optimize the

recoverability of interactions to speed up the execution of recovery by discarding items that do not have to

be recovered, while maintaining database integrity.

1.1 Multidatabases present unique rollback and recovery problems.

There are a number of issues that can be applied to multidatabase systems that are not necessarily required

in less complex systems. For example, rollback and recovery of single site databases is straight forward

and does not require knowledge or concern of a network. This is quite true for single user database systems

(such as those based on personal computers) and those based on a centralized systems (such as lal11:e main

frames). This means that when a transaction is required to be rolled back or recovered from some previous

state, the database does not have to consider the distributed environment of a multidatabase. Rather, it is

"allowed" to ignore the network, even if the user is on some type of network. for access and therefore there

are no independent actions that require the database to address.

On the other hand distributed database systems must take heed of the issue of network connectivity and

availability. The distributed system must have a mechanism to rollback and recover transactions without

regard to the fact that it is distributed. That is to say, even though the topology of the system is a distributed

topology, the database system must be designed in such a way that when a failure or other action requires

rollback or recovery of the database the system can handle the myriad of network problems that may be

introduced. To put it succinctly, the rollback and recovery system of a distributed database requires the

ability of that system to be able to deal with network problems, e.g. partitioning, intermittent failures, com

munication delays, etc., while insuring database integrity and consistency.

While the distributed nature requires one to be especially mindful of rollback and recovery of multidata

3

1.2

bases, heterogeneity is not an issue in the present context. The distributed multi-database, Interactions. is

homogeneous across the nodes of distribution. Each database on a specific node may (and in all likelihood

will) be different; the superset architecture of the distributed database that accesses all local databases is

homogenous. This allows the designer to not be required to have knowledge of specific database recovery

mechanisms when designing and implementing and rollback and recovery system for a multidatabase sys

tem such as Interactions. It does not preclude the need for knowledge of the local database system when

actually doing an undo of some transaction at the local level, but for the design of the distributed system

that knowledge is secondary.

Host autonomy is maintained throughout. The local databases do not actively cooperate to effect multidata

base consistency and recovery, Mongrel provides this support. Finally, host heterogeneity is an issue. Due

to the potential large number of possible hosts and operating system varieties on a network. Interactions'

Recovery System needs to be aware of these differences and, if at all possible, take advantage of them.

Interactions.

Interactions is a global transaction model that supports access to a multidatabase system [NOD91]. The

purpose of Interactions is to provide an environment to define and execute one task that spans more than

one database in a multidatabase system. The Interaction structure includes: steps, actions, events, and

strong and weak conflicts.

An Interaction consists of a partial ordered list of global transactions. Each global transaction is a set of

global subtransactions each of which executes on a single local database.

A step is a complete set of instructions (or operations) for a single database. A step cannot contain opera

tions for other databases or have unrelated operations for another step but the same database.

An action is a partial order of steps.

Events are those occurrences of database operations outside the realm of the particular Interaction we are

interested in. An event can take place from another interaction or a local database transaction. Events are

important as they can affect the operation of the interaction of interest, by accessing the same areas of the

database.

A strong conflict is a definition of an operation that cannot be intermixed with the Interaction. Strong con

flicts are enforced within individual atomic transactions on the local databases. When another transaction

4

1.3

attempts to execute some strongly connflicting operation, that is prevented by the local database's transac

tion manager (because it enforces serializability).

A weak conflict is defined as one that preserves the conditions in a database for a specific span of an Inter

action. It also provides what is required to recover if a weak conflict is violated [NOD91].

A task is a unit of multidatabase work that consists of one or more local database transactions. An example

of a task is the ubiquitous travel agent example [NOD92]. Each local database transaction consists of steps

and each step is a single executable entity on a local database. Each step is defined in a local database step

library. The step is translated into local database instructions and then passed to the local database for exe

cution.

Task recovery is the action taken by the multidatabase system to return the local database systems back to

a known state of consistency after some failure or exception and then proceeding onward with the task at

the point of recoverability. Task recovery does not need to go forward but can end the task after reinstating

local database integrity.

The multidatabase access assumptions include: non-atomic tasks, procedural tasks, cooperative tasks, and

compensation-based recoverable tasks. It is the recovery of tasks that the IRS is most interested.

Multidatabases.

The multidatabase system has two levels. The local level is that level that consists of all the local databases

and all of the those actions that would be contained at this level. At the local level one would observe steps

being converted to local database instructions, and those instructions being executed on the local database.

The global level is the level where the Interaction Manager interfaces with the Multidatabase application

(via Interactions) and the associated Agents (local level) that are assigned to the local database. At the glo

bal level, Interactions are defined, global transactions are created with subtransactions being dispatched to

various local databases.

For Interactions our multidatabase integration strategy includes:

Heterogeneity:

5

It is assumed that the local databases support: serializable, ACID transactions; no other assumptions ofhet

erogeneity are made.

Uniform Access:

There is a global interface provided to the multidatabase applications that effectively hides the local data

base manipulation language. This is accomplished by defining "step libraries". These libraries are defined

for each local database and contain step to local database instruction mapping. Additionally, the processes

of Interactions themselves enforce uniform access through standard interfaces. By applying the paradigms

of Object Oriented programming for data privacy and access of data via methods the processes maintain

the uniform access strategy.

Local Database Autonomy:

Design Autonomy: The assumption is that the local database's transactions are atomic, serializable and

recoverable.

Communication Autonomy: The local databases cannot communicate with each other. The communica

tions of the Interaction Manager are to each local database and provide no communications path that the

local databases can employ to communicate with each other

Execution Autonomy: For execution oftransactions the local databases are assumed to:

I. Execute their transactions in any way, not being dictated by Interactions.

2. Execute non-multidatabase transactions (that is local transactions) initiated outside of the

multidatabase architecture under the local database constraints. Interactions does not interfere

with these transactions.

There are no assumptions made about the distribution of the local databases; they can be distributed in any

way.

Format of the remainder of the paper.

Section 2 will discuss some of the literature on log based rollback and recovery. The discussion is not

exhaustive.

6

1.4

Section 3 will cover the implementation issues and discuss the design of the IRS.

Section 4 is a discussion of the operation of IRS.

Section 5 will provide several scenarios for IRS.

Section 6 will summarize the work.

2 Log based Rollback and Recovery.

2.1 Review of the literature.

Traditional Recovery Systems are based on utilizing some log of changes to insure consistent databases

when recovering from a failure [BHG87]. The storing of information for a committed database occurs on

stable store, but separate from the database. If a recovery is necessary the recovery manager must be able

to resolve the information in the stable store to restore the committed database to a known state before

recovery.

The recovery manager must be able to handle both the rollback (undo) of information and the re-execution

(redo) of certain transactions in order to restore the database. In the current study we under take to establish

a system that will be able to meet all of these needs.

Distributed database systems require a more extensive log and a system that is able to communicate to

many nodes. The issue of distribution is determining how to maintain a consistent global state across dis

tributed resources [LI91]. As [LI91] notes there is no clear algorithm for maintenance of this global state. It

is proposed by [LI91] that optimistic checkpointing schemes are not required and even produce negative

effects at the expense of the actual application.

2.2 Checkpointing.

While the argument bears merit in a tightly coupled multiprocessor system, for Interactions we look at a

loosely coupled, geographically distributed system. It is important to maintain an optimistic checkpointing

and recovery scheme. Optimistic checkpointing allows Interactions to be confident that at anytime during

the processing of any interaction a call to the recovery system will produce the correct results. Without the

optimistic system in place we do not have that same confidence. Further, given the distributed, loosely cou

pled nature of Interactions, recovery across a wide area network becomes extremely problematic without

the optimistic viewpoint.

7

3.1

This requires that the logs created and maintained by IRS be extensive and each node have its own autono

mous log and daemon for logging (this goes against [:LI91 D. In IRS we create a fully distributed system in

that the Interactions Manager (1M) has a logger daemon (Interaction Logger Daemon (ILD» at its host.

Each local database (or agent in Interactions parlance) has its own logger daemon and log. (See [MOH91]

for detailed discussions on these points).

The use of checkpoints to support a recovery system has been well documented ([K0087] , [GOL91],

[LONG91], [CRI91D. In our current application checkpoints present an important "fail safe" feature of

IRS. By maintaining checkpoints (in this work we utilize naive checkpoints [K0087D and logs in parallel

the system presents to Interactions a set of data points to maintain a consistent set of databases. In fact, this

design allows for a complete network failure between an agent and the 1M and the IRS would be able to

insure that the agent's database will be consistent with its known state prior to the network failure.

The checkpoints also provide for future expansion of the Interactions system to used enhanced recovery.

Enhanced recovery means the ability to maintain some in-between state of a transaction after the recovery

process. In this way, Interactions would no longer have to make an all or nothing decision on a transaction.

The application of write-ahead techniques for the log system of a multidatabase.

The write ahead protocol allows for the log to always be guaranteed to be more accurate then the stable

store database [MOH9l]. Write ahead writes the actions of the database to the log before committing them

to the stable store database. The Write ahead protocol does not require all of the databases to enter the final

vote (of a 2 PC protocol) for a commit. Therefore each local log reflects a current state of the database that

is better known then the Interactions database.

However, in Interactions we violate the write-ahead protocol. While it can be applied somewhat, Interac

tions is not aware of the various commit protocols for each of the potential database systems that it may

interact with. Therefore, a straight write-ahead would not be appropriate.

The write ahead techniques that we apply are used to maintain the checkpoint files. Commits of global

transactions go to the ILD, but all of the necessary information for any type of recovery is available in the

check point files.

Our write ahead protocol enhances the checkpointing mechanisms implemented for multidatabases as the

log entries after a checkpoint are used to restore the database to a higher state of consistency. But the

8

checkpoint is used in conjunction with the log entries to further validate the database integrity and present

the most current information possible in recovery.

3 Implementation of the Log Based IRS.

IRS utilizes a distributed log based schema for rollback and recovery. This type of architecture allows for

the system to be fully distributable and adaptable to additional local databases as Interactions develop and

expand. The components of this logged based system include:

1. Logger servers and clients: The servers and clients are used for all reading, writing and for

matting of log entries.

2. Logs: Logs maintain records for rollback and recovery operations. There are logs for all

local database systems and one log for the Interactions Manager.

3. Checkpoint Directories and Files: The checkpoint directories and files provide for determin

ing the state of the system during operations and during catastrophic failure recovery. The combination of

log records and checkpoints give IRS the information needed to abort, rollback, and redo transactions

while still maintaining database integrity.

The IRS writes log records out to a separate stable store environment (a log). These records contain the

necessary information for the recovery manager to determine what needs to be undone, redone or dis

carded.

The following sections develop these components and explain the operations of each in greater detail.

3.1 The Interaction's Recovery System Architecture.

The Interaction Recovery System fits into the multidatabase architecture as shown in Figure 3-1.

9

TAS
Interaction

Manager

IRS

~~:~~~t~~~t::~~:~:~:~:~~t~t~tt~~:~:~:~:~~r~~~~:~:~:~:~~~:~:~:~:~:~~~~~~~:::~:~~~~~~~~: :::::~r~:~:~:~:~:~:~:}~:~:~::·::::f~:::~:?~:~:~:::~:~~~?~

Agentn

::lil:iil~IIII!I~IIIII·III:I:I:illllll:l:i:!I.!I:llliiI

:-: "\.:::::::.::::::::;;:=::.: :::.::::"::::,::::~

Local Database Mgr

Interface Diagram/or the Interaction's Recovery System

FIGURE 3·1

10

There are two components of the global rollback and recovery utility (IRS). The Interactions Manager

(1M) will make a call to the IRS when it is necessary to either log an action or rollback/recover! some

action. When the 1M makes the call the interface is to a "frontend" process that sets the correct format and

calls the Interactive Logger Daemon (ILD). This utility is resident on the Interactions host and consists of:

Interaction Logger Daemon (ILD): A daemon that executes on the Interactions host. This daemon main

tains all log entries to the Interactions Log. In addition, it maintains the checkpoint directory structure for

the gtoballog. It maintains interfaces to the RRD for recovery.

Rollback and Recovery Daemon (RRD): A daemon that executes on the Interactions host. This daemon

controls all rollback and recovery processes. It is the process that evaluates and initiates the compensation

and replacement algorithms for rollback and redo.

While the IRS is a global logger system, there is a subcomponent of the logging system to maintain the

local database transaction that the Interactions system executes. This is at the agent (or local) level. this

component is the Agent Logger Daemon(ALD). This is the daemon that executes on the Agent's (local

database) host. It maintains the Agent Log and the files within the global transaction directory during exe

cution of the local database transactions, in much the same manner as the ILD.

As noted, this system has a two-level log. The logs are resident on the host that the respective logger dae

mon is executing.

Interactions Log: This log is resident on the Interactions host and is the global log for the Interactions Man

ager. It is updated by the ILD. The purpose of this log is to record all global information and provide the

necessary information to the RRD for rollback and recovery.

Agent Log: This log is resident on the Agent host and is the local log for the Agent and Local Database. It

is updated by the ALD. The purpose of this log is to record all local information and provide semantic

undo information required to properly rollback and recover transactions on the local database. There are as

many agent logs as there are local databases. The current work does not cover the details of the agent log

design or implementation. The concept and basic underlying theory is parallel to the ILD operation and

design.

1. When rollback/recovery is mentioned in this paper, it means the actions of either aborting, redoing or roll
ing back a global transaction. A global transaction is always the unit of rollback/recovery.

11

Compensation-based recovery will be used in Interactions. Further, optimized compensation-based recov

ery will use the Replacement Recovery Algorithm [NOD91-2]. These algorithms will be implemented and

executed in the RRD.

The Interaction's Recovery System needs to be distributed to take advantage of the architecture of Interac

tions and of the distributed network environment that Interactions runs under. Rollback and recovery infor

mation needs to be located at the node on which the recovery needs to take place (Le. the node that

executed the original subtransaction).

The Interaction host provides a global Interaction's Recovery System that encompasses the following:

1. Methods to access the local database logs (the agent log) for compensating step recovery of

transactions.

2. A general log of Interactions (the Interactions Log).

3. Methods to perform the compensation-based recovery on a complete Interaction or parts of

an Interaction.

Rollback and recovery will utilize semantic undo (compensation) to maintain a consistent database (both

local and global databases). Semantic undo information must be provided by the agent for the local data

base to the Interaction Logger for later use. The actual undo information for local databases will be main

tained in the local Agent Log.

Rollback or recovery can be initiated by either Interactions or anyone of the Interaction Agents. Recovery

can be initiated locally with the Interaction Manager providing Agent requested information from the

Interaction Log. However, a more typical action is for the Interaction Manager to initiate the recovery of a

global transaction, at the request of the specifier of that Interaction.

Checkpointing is supported in Interactions. While this places an added layer on the logging utilities, it is

used to guarantee that a database, requiring a rollback and recovery has its integrity maintained.

The ArChitecture of the Interaction and Agent Loggers.

The Interaction Manager is the interface to the Interaction Logger for all Interaction task logging. The ILD

is the heart of the rollback and recovery mechanisms for Interactions. The Interaction Logger is a daemon

12

3.2

that is called via an RPC when required to accomplish some task. The Interaction Logger is implemented

on the Interactions host and all local database hosts that have an Agent running.

The Interaction Logger's functions include the following:

1. Verify all information for logging contains the information required to accomplish to roll

back and recovery of a database.

2. Log all information in the Interaction Log, giving writes to the log priority over reads.

3. Provide information (in the correct order) to the RRD during rollback and recovery. During

this time the Interaction Logger gives reads priority over writes.

The Interaction Agents interface with both the Agent Logger and the Interaction Manager to record needed

information about tasks and transactions. Section 4.2 details the files associated with the IRS. The follow

ing is a general description of the overall architecture.

During rollback and recovery phases the Interaction Logger does a single pass through the log (that is, the

Interaction Logger does not do random reads to obtain rollback and recovery information).

Every instance of a logging action is flushed to stable store, either to the checkpoint directory, or to the log,

immediately after each action. The Interaction Manager has the ability to direct the ll..D to write items

directly to the 10g.This by passes the checkpointing scheme but, the ILD does verify instructions from the

1M by reviewing the check pointing directories and initiating the correct action to maintain its consistency.

Therefore, even though the 1M can "circumvent" the intended design, the ILD insures its consistency

throughout the logging process.

The ILD reads a state and execution order file to determine the order and dependency of each transaction

when a rollback/recovery is initiated. This file contains information on the order of a particular transaction

to its peers within the Interaction. An execution order defines where the transaction falls within the execu

tion stream of the Interaction. State order is the definition of a transaction'sorder based on the state of

another transaction. Both state and execution order must be analized to properly recover transactions. This

state and execution order information is provided to the ILD from the 1M. The 1M receives its information

from the command interpreter (TASL)[NOD91]. The ll..D will pass host and compensation log record

information (typically log record numbers) that the RRD will use to undo database information at the Inter

13

3.3

actions or Agents level. The SE order infonnation is used by both the ILD (to construct the correct order of

Global Transactions) and the RRD (for use during the compensation/replacement process of rollback and

recovery).

The Interfaces.

The Interaction Manager is the main interface agent with the ILD. It will provide the following infonnation

to the ILD:

1. General infonnation of all Interaction.

2. Read/write infonnation for each committed Global Transaction of the Interaction, provided

by the Agents, via the 1M.

3. A delimiter/date-time stamp for entry into the log.

4. Rollback and recovery requests for Interactions and the local databases.

The ILD will maintain the following interfaces:

1. Acknowledgment of infonnation received from the Interactions Manager.

2. Read and Write access to the log. The read and write access priorities change depending on

the required actions.

3. The ILD will provide the log records necessary to undo Interaction tasks, local database

interactions and dependency trees as rollback and recovery execute.

The Local Agent will interface with the ALD and provide the following infonnation:

1. Semantic undo records for possible rollback and recovery.

2. Log Record numbers associated with each semantic undo record in the ALD.

3. A delimiter/date-time stamp for each entry into the log.

The ALD will not interface directly with any other Logger Daemon (neither the ILD nor another ALD).

The ALD will only maintain the following interfaces:

14

1. An interface with the Local Agent to provide information requested by the Local Agent or

the Interaction Manager. The information provided will be either the actual undo information to execute

the undo or record information used for the ILD process.

2. Read and Write access to the log. The read and write access priorities change depending on

the required actions.

3. A delimiter/date-time stamp for each entry into the log.

4 The Operation of the Logger.

4.1 Initiation of the Logger Daemons.

The ILD is initiated at boot time for the Interactions Manager as a daemon process that is awakened by

RPC calls. The records written to the log at the start of the ILD will be the following:

DELIMITER RECORD.

ERROR/EXCEPTION RECORD: This record will contain the initiation message (considered

an exception) from the Interactions Manager.

The ALD is initiated by its Agent at boot time of the Agent. The records written to the log at the start of the

ALD will be the following:

DELIMITER RECORD

ERROR/EXCEPTION RECORD: This record will contain the initiation message (an excep

tion) from the Interactions Manager.

Both the ILD and ALD are initiated as daemon processes of the IRS (for the ILD) and the Agent process

(for the ALD). The processes is awakened when required to perform some task by an RPC from the IM or

agent.

Error checking takes place AFTER the initiation of the logger daemons to prevent confusing initiation

problems that might occur prior to log attempts. No logging will take place until after all error checking

has been completed. If errors are discovered the respective logger (ILD or ALD) logs the error in an

ERROR/EXCEPTION record and returns an error to its caller.

15

4.2 The active files of the Logger Daemons.

The Logger File System is set up to provide both a consistent method for all databases to maintain current

operations and an easy interface for the logger to receive the necessary information for logging in the Mul

tidatabase logs2. Figure 4-1 is an illustration of the file system structure.

2. The reader is reminded that there are two levels of logs: l)the master log written to by the ll..D, and 2) the
agent log written to by the ALDS.

16

•••

•••

IRS Checkpoint Filesystem Structure

.IILD.log

I
/IA(ID#) ••• .IIAn(ID#) .IIAn(ID#)

/GT# /GTn IA(ID#).depinfo

stfilel ••• stfilen

FIGURE4·j

This structure is created at the IRS initialization time and maintained throughout the logger lifetime. The

log daemon will execute and create the structure as follows:

ILD.log (or agentn.log): This is the actual log kept of all Interactions, transactions and subtransactions. It

is always re-created at boot time of the log daemon. The log daemon will append to the existing log, or if

there is no log the daemon will create a new log.

17

/IA.(ID#): This directory is a specific temporary directory for each Interaction. The directory is created at

the time the Interaction commences. It is removed after the final Global Transaction has committed and the

information has been written to the log.

/GTn: This is a directory for a particular Global Transaction. It is created at the time the Global Transac

tion starts executing. In this directory are files that designate each subtransaction (sm). Each subtransaction

file contains a log of all operations that have taken place up to the time one might examine the file. As the

subtransaction is completed and written to the log, the file is then deleted. When all of the subtransactions

have completed the Global Transaction directory is deleted.

JIA(ID#).depinfo: This is the file that contains all of the state and execution order (SE order) information

for the specific Interaction. It resides at the Interaction directory level and is deleted when the Interaction is

committed to the lLD log. This file is written to the log for future use during recovery.

The log daemon utilizes this type of file system structure for a number of reasons.

By using directories for the major transactions of an Interaction the multidatabase system is given the flex

ibility to have the Global Transactions on different compute nodes. For instance, if a particular Interaction

had two Global Transactions executing, each Global Transaction log directory could be resident on the

actual database node that the Global Transaction starts processing from. Figure Three is an illustration of

this distributed property.

The structure presented provides an easy system to troubleshoot in case of failures. This becomes very

important if a particular node fails in the middle of a large Interaction. The programmer can traverse the

Logger file system tracing the progress of the Interaction through the existence of the various subdirecto

ries and files present. In addition, the files for each subtransaction contain ASCII information that provides

a trace of the progress of the subtransaction.

The multidatabase concept is based on many distinct databases dispersed throughout a network. The lLD

maintains control over the master multidatabase log. It accepts input from various agents via the Interac

tion Manager and logs the necessary messages. The ALD, on the other hand, is concerned with the specific

local issues of the Global Transaction and all of the subtransactions involved with it. Because the majority

of the information is local it is only logical that a record of that information be kept at the client site.

The development of a significant portion of code to support such a structure is not required. The develop

18

4.3

ment assumes that some Server/Client architecture is in place at the time of the Logger initialization.

Because we are dealing with a distributed database environment this assumption is well within reason. At

the time of the building (compilation and installation) of the Logger system, various local parameters will

be set to insure that the appropriate pathnames are created and the code is compiled with this information

(see the Logger design section for more details). In this way, local database administrators can move the

various directories to the correct nodes. It also allows the notion that a database administrator would not be

required to distribute the directories as previously discussed; they could all remain on one system.

One system is not required to arbitrate I/O traffic from various distributed databases to one central logging

system. Rather, each system supports its local logging requirements and only when an actual write to the

inter.log file takes place is the Server node required to arbitrate I/O. This load will be significantly less than

with a non-distributed logging system.

In a non-distributed logging system the server node is required to do a number of jobs. First, it is required

to maintain communications to all of its clients, thereby increasing communication processing overhead.

Second, it must spend time arbitrating several accesses to the one log from several different sites. This is

not communications intensive, the communication has already been received, rather it is I/O intensive

because of the arbitration required between reads and writes to the log. Finally, processing time is required

to handle the processing of the log during rollback and recovery phases. It must be able to decipher the

type of record, the destination of the record and the contents of the record.

The log format.

The ILD writes various records to the log during the duration of its life. All records are variable length.

The fields are delimited by a space in order to ease parsing of the log during Rollback and Recovery Oper

ations.(The records are easily parsed because of the use of C++ I/O functions). The following are the

record types and formats that are in the ILD log. Figure 4-2 provides a view of what is logged and at what

level.

19

IRS Log information

ILDLOG
IA • lAID and dependency information

GT • GTID, <hostid and GTID pairs>

stfilel • GSTID (also LSN), steps
Compensating steps
Read/write information

ALDLOG

FIGURE 4·2

20

ERRORlEXCEPTION RECORD: This record is maintained for error detection and resolution. The fol

lowing fields are written by the ILD:

1. FIELD 1: TIME STAMP and RECORD TYPE (E).

2. FIELD 2: HOST ID (of the host raising the error or exception).

3. FIELD 3: ERROR CODE and TEXT INFORMATION.

DELIMTER RECORD: This record provides for sectioning of the ILD log. There is only one field in this

record:

1. FIELD 1: RECORD TYPE (D) and TIME STAMP.

TRANSACTION RECORD: This record keeps track of all transactions that occur. The following fields

are maintained:

1. FIELD 1: RECORD TYPE and TIME STAMP.

GT: Global Transaction ID

GST: Global Subtransaction ID

2. FIELD 2: HOST ID (of the host associated with the transaction).

3. FIELD 3: TRN (A Unique global record number PLUS Compensation log record number

from local host)

INTERACTION: This is the Interaction that is a complete set of all transactions that are to be

accomplished.

1. FIELD 1: RECORD TYPE (IT) and TIME STAMP.

2. FIELD 2: TRN.

3. FIELD 3: Transaction information:

{All global transactions associated with this task}

21

The ALD writes various records to the log during the duration of its life. All records are variable length.

The fields are delimited by a special character in order to ease parsing of the log during Rollback and

Recovery Operations. The ALD contains similar transaction information as the ILD Log, but for every

transaction that it logs the ALD log record also contains the semantic undo information required to return

the local database to a consistent state during a rollback and recovery operation.

Figures 4-3 and 4-4 illustrate the log record format for both the ILD and ALD.

/

22

InterActions Master Log

IA#; TIMESTAMP; BEGIN At IA Begin
IA#; TIMESTAMP; {GT#, GT#, GT#, . . . }
IA#; COMMIT

IA#GT#; TIMESTAMP;
IA#GT#; TIMESTAMP;
IA#GT#; TIMESTAMP;
IA#GT#; TIMESTAMP;

At 2PC START

BEGIN
<{GST#:HOST:r/w INFO}; DEP. IN!
COMMIT --or-- At 2PC Commit
ABORT/REDO

IA#; TIMESTAMP;
IA#; TIMESTAMP;
IA#; TIMESTAMP;

IA#; TIMESTAMP;
IA#; TIMESTAMP;
IA#; TIMESTAMP;
IA#; TIMESTAMP;
IA#; TIMESTAMP;

EXCEPTION CODE;
EXCEPTION CODE;
EXCEPTION CODE;

ERROR CODE; TEXT
EXCEPTION
EXCEPTION
EXCEPTION
EXCEPTION

CODE;
CODE;
CODE;
CODE;

ROLLBACK GT#
REVERSE GT# COMPo
GT# SENT TO 1M

OF REAL PROBLEM
ABORT GT#
SYSTEM INIT
SYSTEM TEST OK
SYSTEM INIT COMPo

FIGURE 4·3

23

InterActions Agent Log

GST#; TIMESTAMP;
GST#; TIMESTAMP;
GST#; TIMESTAMP;
GST#; TIMESTAMP;
GST#; TIMESTAMP;

GST#; TIMESTAMP;
GST#i TIMESTAMPi
GST#i TIMESTAMPi
GST#i TIMESTAMPi
GST#i TIMESTAMPi

BEGIN
<{CSTl, r/w}, {CST2, r/w} ... >
COMMIT --or-- After 2PC Commit
ABORT /REDO --if REDO-
<{CSTl, r/w}, {CST2, r/w} ... >

ERROR CODE; TEXT OF REAL PROBLEM
EXCEPTION CODEi ABORT GST#
EXCEPTION CODEi AGENT INIT
EXCEPTION CODEi AGENT TEST OK
EXCEPTION CODEi AGENT INIT COMPo

FIGURE 4·4

24

4.4 A typical logging scenario.

The typical scenario for logging follows an Interaction from invocation by a user to the final write to the

master log.

The flow of a Global SUbTransaction (GST) is from the Interaction Manager to the target local database

agent. The GST traverses through an agent step library that will translate each step of the GST into local

database transaction instructions.

The Agent creates a Transaction Record Number (TRN) for the GST. The Agent writes the GST informa

tion into the ST file at the BEGIN instruction of the GST.

The information in the subtransaction file includes all the local database instructions and the compensating

local database transaction instructions.

The following is a typical flow of a Global Transaction and its subtransactions. (NOTE: When something

is sent to the ILD from the 1M, it is assumed to be logged at that time.)

(
GT BEGINS: A directory is made for the global transaction

GT EXECUTES: A record is written to the file system with contents similar to: {[GST IDj HOST IDJ,

[GTID, lAID], Dependency information, R/W information}

GT BEGINS COMMIT: The file system collects the commit information; it will be logged at commit time

in the master log.

GST VOTE PHASE:

(1)	 1M sends to ILD: "RECORD: INITIATING VOTING PHASE"

(2)	 1M sends to AGENTS: "READY TO COMMIT? ".

(3)	 AGENTS: YES/NO

(4)	 1M sends to ILD: "RECORD: (if all AGENTS sent YES to 1M) COMMIT
DECIDED.

(5)	 1M ACK (YES/NO) from AGENTS.

(6)	 1M sends to AGENTS: "COMMIT".

(7)	 AGENTS ACK COMMIT.

(8)	 The log records are moved from the file system to the master log. The
ILD makes one entry for the entire operation just completed.

25

At commit time a specification for a complete compensating transaction is written, via the ALD, to the

Agent log. This information also includes projected R/W information for the compensating transaction.

The Agent sends the TRN, also known as the compensation log record number, back with the execute mes

sage to the Interaction Manager.

After the commit of the Global Transaction the information of the GT will be stored in the respective logs

and look similar to the following:

ALD: <TRN:CSTI :CST2:...COMTRN>

ILD: <lATRN: {GSTl,TRN1:GST2,TRN2:... }COMIATRN>

Special entries of the Logger into the log.

The delimiter/date-time stamp is a special symbol/record that is periodically placed in the log.

The assumption in the above scenario is one in which everything goes according to plan. See the section

titled "Handling Events from the Event Manager for logging of events.

4.5 Flushing the log.

The log will be periodically flushed in a similar way as a standard garbage collection utility would work.

The criterion for flushing the log is that the Interaction has completely committed and all Global Transac

tions can now be purged from the master log.Summary.

5 IRS Scenarios.

5.1 A Typical Rollback/Recovery Scenario.

A recovery operation typically consists of two steps. First is the undo of a particular Global Transaction

and then the execution of new GSTs. These GSTs could be the same as before, but typically they will differ

from the original GST.

The Interaction Manager receives the message that a recovery needs to take place. Th~ 1M sends the Trans

action ID of the global transaction to be undone to the ILD. It then checks to see if the transaction is active

or committed. If it is active it calls a routine within 1M to abort the transaction. No further rollback is

needed at this point. However, if the transaction is committed the ILD retrieves the necessary log record

26

5.2

infonnation using the Global Transaction number and passes it on to the Rollback and Recovery Daemon

(RRD) for possible rollback and recovery.

The Interaction Manager recognizes that this "new" GT is actually a recovery operation and sends the

infonnation directly to the designated Local Agent. However. during recovery. the 1M iterates through the

new list of CSTs and sends them out serially.

The Local Agent receives the infonnation (which is basically the log record number in the agent log that

contains the Compensating Subtransaction infonnation) and calls the ALD to retrieve the log record. The

log record is retrieved and passed back to the Agent which parses it into a set of steps. The step library will

use these steps to create the local database instructions.

Once the step library receives the compensating steps the process is treated as any other subtransaction.

The step library parses the steps into local database transaction instructions. These instructions are passed

to the local database for execution. New compensating steps (for future UNDO operations) are generated

and logged as before. This treatment allows the logs to maintain a record of all subtransactions and their

undo/redo actions on each of the subtransactions.

Introduction to Termination Scenarios.

The Interactions system has the ability to cause a Global Transaction (GT) or an Interaction (IA) to be can

celled at anytime up to the point the Interaction commits.

An abort in the context of this system is the actual tennination of a transaction. Within the action of an

abort the system may have to reverse local database transactions. This action is accomplished through

semantically undoing that transaction at the local database level.

An abort can occur when the TASL interpreter encounters an abort instruction during the execution of a

TASL program. Aborts can also occur when the 2PC protocol fails at some point. Finally aborts can be ini

tiated from some event being raised be the Event Manager (EM).

The action of an abort has one main effect - the dissolution of the specified GT or IA. The tennination can

be executed on both uncommitted and committed objects. The actions of the Interaction Recovery System

(IRS) will be different. dependent only upon the status of the targeted object of tennination.

Abort does have side effects. at times. that cause the whole process of tennination and cancellation to

27

quickly become an exercise of complication. The key side effect caused by the abort process is the termi

nation, cancellation and possibly undoing of other OTs. This side effect is blatant when the designated

object of termination (DOT) has a large tree of objects that have been created after the DOT (this will be

referred to as the designated object order list or DOT-L). As we shall see shortly, this list will consist of

uncommitted and committed objects that are either dependent upon the DOT, are a member of the group of

objects that are directly descendent from the DOT, and/or are objects that have some specified dependency

on a member of the DOT-L.

Scenarios for Termination.

Let us assume for this discussion that we have an ordered set of OTs that are represented graphically as

follows:

GTa

+

GTb

/"x

.GTg GTe
~
;
I

I
I

I +
I
;

I

GTd

{
;

/"x
\... GTe GTf

/'~.......... +
,/

...... .,"

GTh

FIGURES-I

Figure 5-1 illustrates a tree of OTs such that OTa occurs before OTb and OTb occurs before OTc or its

28

dependents, or before OTg. From this illustration we can construct a dependency information structure.

This structure consists of the parent OT node and a set of OT nodes that have some dependency ordering

information associated to the parent OT node. Note that the set of OT nodes are not necessarily children of

the parent. The dependency information for the Figure One is:

GTa 0, The set is empty because GTa is the root of the IA.

GTb {GTa}, GTb occurs after and is a descendent ofGTa.

GTe {GTb}

GTg {GTb, GTf} GTg reads from GTf

GTd {GTe}

GTe {GTd}

GTh {GTe}

GTf {GTd, GTg}

(The dependency information is now complete. The information is provided by the TASL interpreter to the

IRS via the 1M. The IRS creates a dependency file (see Figure 4-1) in the IA(ID#) directory so that it is

readily available for termination and cancellation operations. The format of the dependency information

then is:

current OT {previous OT, dependent OTn,... }

With the dependency information computed, we can now abort designated 01'8 and follow the complete

action of the IRS during an abort

Table I is a complete log for the Interaction illustrated in Figure 5-1.

Table 1: Facsimile Log

Record
DATE ID#	 Text

Type

HHMMDDYY IA## IA BEGINIA

29

DATE ID#

HHMMDDYY IA##GTa

HHMMDDYY IA##GTa

HHMMDDYY IA##GTa

HHMMDDYY IA##GTb

HHMMDDYY IA##GTb

HHMMDDYY IA##GTb

HHMMDDYY IA##GTc

HHMMDDYY IA##GTg

HHMMDDYY IA##GTc

HHMMDDYY IA##GTc

HHMMDDYY IA##GTd

HHMMDDYY IA##GTd

HHMMDDYY IA##GTd

HHMMDDYY IA##GTe

HHMMDDYY IA##GTf

HHMMDDYY IA##GTe

HHMMDDYY IA##GTe

HHMMDDYY IA##GTf

HHMMDDYY IA##GTf

HHMMDDYY IA##GTg

HHMMDDYY IA##GTg

HHMMDDYY IA##GTh

HHMMDDYY IA##GTh

HHMMDDYY IA##GTh

Table 1: Facsimile Log

Record
Type

Text

GTa BEGINGT

GT COMMITTED

GT GST#,Host, GST#, Host, ...

GT BEGINGT

GT COMMITTED

GT GST#,Host, GST#, Host, ...

GT BEGINGT

GT BEGINGT

GT COMMITTED

GT GST#,Host, GST#, Host, ...

GT BEGINGT

GT COMMITTED

GT GST#,Host, GST#, Host, ...

GT BEGINGT

GT BEGINGT

GT COMMITTED

GT GST#,Host, GST#, Host, ...

GT COMMITTED

GT GST#,Host, GST#, Host, ...

GT COMMITTED

GT GST#,Host, GST#, Host, ...

GT BEGINGT

GT COMMITTED

GT GST#,Host, GST#, Host, ...

30

·

Scenario One.

TASL sends the message ABORT(GTh) to the IA. The IA recognizes that this is an abort and passes the

message directly to the IRS. The IRS receives the message from the lA, parses it and, at recognizing that it

is an abort, enters the tennination code.

The tennination code reads in the dependency infonnation. It makes a one-pass read through the file and

constructs the dependency ordering infonnation (the DOT-L) for GTh (the DOT). In our example the DOT

L would be {} for the DOT and the tree would have only the GTh node on it.

We now call the ILD to search the log for GTh. We are faced with two possibilities. First is that the GT has

not committed and therefore is considered an active GT. In this case the IRS returns to the 1M instructing

the 1M to abort GTh. The 1M removes the GTh object and returns "success" to the IRS and the IRS then

cleans up the IA(lD#) checkpointing directory.

The IRS clean-up of a checkpointing file is accomplished by first removing the GTh from the dependency

infonnation file; second deleting the contents of the /lA/GTh directory and deleting the GTh directory

itself and, lastly, writing a GTh ABORT record to the ILD log. (The IA must pass to all agents the instruc

tion to delete all of the Global Subtransactions (GSTs) associated with the aborted GT. The IA only returns

success to the IRS after it has received success from the agents.) Once the ABORf record has been written

to the ILD log. the IRS passes "success" back to the IA and the abort is complete.

The action of the ILD is different when the GT has been committed. When the IRS discovers that GTh is in

the ILD log as committed it reads the complete log record of GTh into memory. The Rollback Recovery

System (RRS) is then called to prepare the record for an "UNDO". It is at this point where, if we are using

a commutation scheme for optimization of the compensating GT we run our commutation routines.

The RRD packages the log record into sequentially ordered GSTs. It passes this package (now a global

transaction (GTun» to the 1M. The 1M recognizes this as a compensating GT and passes the correct GST

(which is actually a log sequence number) to the designated host. (The reader is reminded that the ILD log

record consists of GST/HOST pairs.) The agent receives the message from the lA, recognizes it as an

UNDO record and immediately passes it to the ALD.

31

The ALD searches its log for the designated compensating record. This record contains the compensating

steps and associated data for the GST. The record has already been reversed so that the compensating steps

have been written to the log in the order in which they will be undone. (This is accomplished at the time of

the local commit of the transaction. The ALD will log all of the associated compensating steps of a com

mitted transaction at the time of commit.) The ALD packages this record up as a list of steps and returns it

to the AGENT. The agent then executes the steps as if they had been received from the IA. From this point

on the action of the agent on this GST is like any other GST. The compensating steps are step library calls

that generate local database instructions and are executed on the local database. New compensating steps

are created and logged as any other set of compensating steps. Once the agent has finished the GST it

awaits the 2PC protocol for the GT as any nonnal GT commit.

The ILD logs two records for this type of cancellation. First, the ILD logs an ABORT record for GTh. This

can be considered purely a housekeeping record. In case of serious failures, where human intervention is

required, the log can be interpreted by system programmers for debugging purposes. Second, because the

UNDO is treated as a new GT, it is logged as any other GT with its member GSTs being logged as a normal

operation at the AGENT level.

Scenario Two.

Please refer to Figure 5-1 for the partial tree of this scenario. The dependency infonnation would look like

the following:

GTe {...}

GTh {GTe}

Now TASL wants to abort GTe. In this scenario, any GT "below" GTe must also be aborted; GTh now is

marked for an abort. This can be considered a side effect, as noted previously.

The ILD constructs the dependency information from the infonnation stored in the IA check pointing

directory. The one-pass read of the file produces the set (the DOT and DOT-L):

GTe {GTh}

For each GT, the ILD now must either get its record from the ILD log (if committed) or determine that the

global transactions are not yet committed. (The ILD actually determines the correct place to obtain the

32

infonnation for each individual GT. Also, if GTe is not yet committed, GTh will not be committed and

therefor the infonnation would be located in the directory structure) GTh must be terminated first, to guar

antee database consistency at the level of occurrence of the GTe termination.

The tennination of the GTs (both the DOT and the members of the DOT-L) follows the same operation

flow as the tennination flow detailed in Scenario One. The deletion of objects, the logging of the aborts,

and where the global transactions have been committed, the logging of the new compensating global trans

actions is consistent with what has already been described.

Scenario Three.

In Scenario Three TASL requests to ABORf(GTd) (refer to Figure 5-1). The dependency infonnation is as

follows:

GTd {GTe}

GTe {GTd}

(GTh {GTe}

GTf{GTd}

GTg {GTf, GTd, GTe, GTe}

The ILD's resulting DOT-L is:

GTd {GTe, GTf, GTg,GTh}

Because there is some state/execution ordering dependency between GTf and GTg, GTg must be included

in the DOT-L for the complete list of GTs that will be terminated, cancelled or aborted from the single

TASL instruction ABORT(GTd). While at first glance this may seem like overkill for an ABORf, the

objective of any rollback scheme is to maintain a consistent set of databases. In order to meet this objec

tive, IRS must ensure that any GT that is affiliated with any other GT within the parent IA be treated as

dependent to the that GT. Thus our DOT-L contains not only those G1'8 that are direct descendents of the

DOT but also must contain at GTs that have any associated dependency (typically some state/dependency

infonnation internal to the Interaction).

As before, with the DOT-L defined, the IRS follows the same routine as previous scenarios. It calls the ILD

33

which then retrieves the records for the GT that will be terminated. If the GT is not committed, it passes the

infonnation back to the IA to destroy the GT. Because the DOT-L contains more then one member, the pro

cess iterates through the members until the DOT-L is exhausted, but in inverse order of the DOT-L.

Scenario Four.

For this scenario, the 1M has received instructions to ABORT an IA. This can occur when exceptions have

been raised to the GTs that make running the IA fruitless, the inability of GTs to commit, or effective can

cellation of the IA by human inteIVention. When the 1M receives the command abortlA(IAID) it is passed

to the IRS.

The IRS receives the abort instruction and commences the process of constructing the DOT-L. Because the

IA is passed (not a GT) to the IRS, the IRS uses the first GT (in our example GTa) as the DOT. The DOT-L

membership then is comprised of all other GTs within the IA. The complete set of dependency members is:

GTa {GTb, GTc, GTd, GTe, GTf, GTg,GTh}

If the IA has already been committed it must go to the ILD log for the needed information. A fully commit

ted IA has two records associated with it in the ILD log. First, is the COMMITTED record; second is a

copy of the state/execution dependency file for the complete IA.

(
\

6 Summary.

This paper is a report on the development and design of a logging system for the multidatabase project,

Interactions.

While this paper presented the idea of a distributed logging system is necessary in a specific multidatabase,

it can be expanded to include other distributed systems and applications. One of the major sticking points

on distributed processing is the ability to checkpoint and rollback/recover processes. Applications that use

the client/seIVer architecture where one process arbitrates the general operations of the application, but the

client application is internally different across all of the clients require specifically tailored checkpointing

systems to interface with. While the seIVer may be able to initiate a recovery to a specified point within the

local application it would be impossible for the seIVer to know HOW to recover from that given point. It is

therefore desirable to have distributed checkpointing systems, as the one described herein, to improve upon

checkpointing and subsequent recovering of local applications.

34

Redo, in the context of Interactions, is not a typical redo. Because of the commutativity properties with the

Rollback and Recovery algorithm used in Interactions, redo is considered a re-execution of an interaction

from the point of failure or an abort. Because of flexible transactions, re-execution may attempt something

quite different from the original transaction. This re-execution is accomplished in the commuted order pro

vided by the Rollback and Recovery algorithm, if commutation is initiated from this particular Global

Transaction.

Of special interest is the recovery of some undefined position of the process. This paper only address the

concept of a clean break. We either abort a process (global transaction) and start over or we rollback a com

pleted process and start over. It would be of interest to expand the ideas presented here to a more generic

method of rollback/recovery which would include restoring a process to a known past state, without loss of

integrity.

IRS is a full system that is being implemented by several individuals. The author of this paper was charged

with an overall conceptual design and the implementation of the ILD. While it can be reported that the ILD

functions, as described herein, there are no present test beds that have the other parts (RRD, 1M, Agent,
(and ALD) to test a full system. This leads to a concern about response time and bottlenecks.

Some improvements or enhancements to the current system could include the following. First the RPC

mechanism anticipates synchronisity for all of its client/server interactions. The RPC mechanism could

easily be re-worked to utilize the asynchronous paradigm. With this change, both processing time, that is

currently time expended on waiting for RPC returns, could be improved. With the umber of RPC waits

decreased, more access to the logs would be available.

.The checkpoint files are now on each local system. This requires network traffic and the local system

answering requests for access to the checkpoint files. If the checkpoint files were resident on a distributed

file server, the speed of access could be improved and therefore less network. traffic would probably result.

The local processor would have more time to do database work. and the logging functions would be han

dled by the file server.

35

BIBLIOGRAPHY

[BHG87] Bernstein, P.A., Hadzilacos, V., Goodman, N. Concurrency Control and Recovery
in DataBase Systems. Addison-Wesley Publishing Company. 1987.

[B0091] Booch, G. Object Oriented Design with Applications. The Benjamin/Cummings
Publishing Company, Inc. 1991.

[CRI91] Cristian, E, Jahanian. A TImestamp-based Checkpointing Protocol for Long-Lived
Distributed Computations. IEEE Symposium on Reliable Distributed Systems,
1991.

[ECU88] L'Ecuyer, P., Mallenfant, J. Computing Optimal Checkpointing Strategies for
Rollback-Recovery Systems. IEEE Transactions Computing. Vol. 37, April, 1988.

[GOL91] Goldberg, AP., Gopal, A, Lowry, A, Strom, R. Restoring Consistent Global
States of Distributed Computations. In Proceedings ofthe ACMIONR Workshop on
Parallel and Distributed Debugging. Pages 144 - 154, May, 1991.

[K0087] Koo, R., Toueg, S. Checkpointing and Rollback-Recovery for Distributed
Systems. IEEE Transactions on Software Engineering, Vol. SE-13 (1), January,
1987.

[LI91] Li, Kai, Naughton, 1. E, Plank, J.S. Checkpointing Multicomputer Applications.
IEEE Proceedings, Tenth Symposium on Reliable Distributed Systems. September
30 - October 2, 1991

[LONG91] Long, 1., Fuchs, W.K., Abraham, 1.A Implementing Forward Recovery using
Checkpointing in Distributed Systems. Proceedings 2nd IFIP Working Conference
on Dependable Computing for Critical Applications. February, 1991.

[MOH91] Mohan, C. Inderpal, N., Palmer, J. A case Study of Problems in Migrating to

Distributed Computing: Data Base Recovery Using Multiple Logs in Shared Disks
Environment. ffiM Research Report. Almaden Research Center, San Jose, CA

[MOH89] Mohan, c., Haderle, D., Lindsay, B., Pirahesh, H., Schwartz, P. ARIES: A
Transaction Recovery Method Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging. ffiM Research Report RJ6649, January,
1989. Almaden Research Center, San Jose, CA.

[NOD91] Nodine, Marian H. Interactions: Multidatabase Support for Planning Actions.
Brown University Technical Report CS-91-64. December, 1991. Computer

36

Science Department, Brown University, Providence, RI.

[NOD91-2]	 Nodine, Marian H. Supporting Reactive Planning Tasks on an Evolving
Multidatabase. Brown University Technical Report 92-59, December, 1992.
Computer Science Department, Brown University, Providence, RI.

37

8£

)

VXI<IN3ddV

Design Specifications of the Interaction's Recovery System
(IRS) for InterActions: A Multidatabase System Approach

Robert T. Baynes,

Department of Computer Science

Brown University, Providence, Rhode Island

7 March 1993

27 March 1993 Page A- 1 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

CLASS DIAGRAM OF IRS

I~Ji[:::lii~i::~i:~:~:~~~~:~::~~f~:::::r~::~t.~:fJff4i¥".111~E$,},ilil~1IllMMt@:IM;ttK~Y'!1Itjl~~l~I::l
~f~Il!
~~:::::::::::::

Interactions Logger Daemon Class

~J~~:::::::::::::::::::::~~::~::~::::::'::~~:~~:::~~::::::::$:~:~:::::t:"~~::~$"::::::::::-J'::::::::--::::::::-':=.$::x ..:::=2.:? ::":::=w«~:»?.:::::::::~::.:::.::.::::.: ...m..=::=:'::':::::..·-:·xrx..·~:;.::::~:~:~":::;t:::::~~::::-::::::~~:«~~~.:::

::::~:

~11~II ialog Class

I gtlog Class

w.dllli~:~~::::~%~%@ffim::'i<@:.i.w ..
:.;::

.;;:-:
~::

t.{

·~~m..~:::::~~$~~:::m~~:

Page A-2 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

SUMMARY OF PUBLIC METHODS AND PARAMETERS

METHOD PARAMETERS

abortIA lAID
retryIA lAID
abortGT GTID, lAID
retryGT GTID, lAID
logIMexception errno, II text"
logIAbegin lAID
logIAcornmit lAID
logIAabort lAID
logGTbegin GTID, lAID
logGTcornmit GTID, lAID
logGTabort GTID, lAID

Syntax for call1rs with parameters:

callirs(method, PI' P2" 'Pn)

Types for parameters:

lAID - integer
GTID - integer
errno - integer
I' text II - string

27 March 1993 Page A-3 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

SUMMARY OF PRIVATE METHODS AND PARAMETERS

METHOD PARAMETERS

verifyGTstatus lAID, GTID

SUMMARY OF PROTECTED METHODS AND PARAMETERS

METHOD

time_stamp
writeLog
checkFile
readLog
delActiveEntry
createDir
deleteDir
GTabort
readSEorderlnfo

(PARAMETERS

lAID, GTID, type, log_entry
file name
lAID, GTID
lAID, GTID
lAID, GTID
lAID, GTID
lAID, GTID, dot-I
lAID, GTID

Page A-4 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

Description of Classes

CLASS ILD

This class is the parent class of the Interactions Logger Daemon. It pro
vides the interface between the Interactions Manager and the log
classes.

Data Members:

private:

struct SEINFO liThe structure for seorderlnfo
{

SEDEP se_type;
int pred;
int next;
struct SEINFO *next_se;
struct SEINFO *prev_se;

} se_info;

struct dotl
{

int lAID; II The lAID for this DOTL
int DOT; II The start point of the reconstruction
struct SEINFO *seinfo;

} ;

struct Log_rec { II The log record

int recent; Iinumber of records

27 March 1993 Page A-5 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

int record_time [MAXREC] ; Iitime stampe
int lAID; IIIAID for this entry
int GTID; IIGTID for this entry
int record_type [MAXREC] ; IlIA, GT, Exception
char *log_entry[:MAXREC]; IIText of the entry
int count [MAXREC] ; IILength of the entry

} ;

struct Active_rec { IIAn active log record
int record_time;
int lAID;
int GTID;
char *text;

} ;

public:

int iaerr_sys; Ilerror number
char * log_name; Illog file name

Member Functions:

private:
int verifyGTstatus(int lAID, int GTID)

protected:

int time_stamp() { return (time (NULL));}

int writeLog(int lAID, int GTID, REC type, char *log_entry)

int checkFile (char* name)

Log_rec *readLog(int lAID, int GTID)

int delActiveEntry(int lAID, int GTID)

int createDir(int lAID, int GTID)

int deleteDir(int lAID, int GTID)

int GTabort(int lAID, int GTID, dotl *rollbck)

dotl *readSEorderlnfo(int lAID, int GTID)

public:

ild () ;

int abortla(int lAID)

int retryla(int lAID)

int abortGt(int lAID, int GTID)

Page A.:.6 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

int retryGt(int lAID, int GTID)
int logIMException (int lAID, int GTID, REC rectype, Err_Code
err_code)
int logDEpendency (int lAID, int GTID, char *dep_info)
int quickAbort(int lAID, int GTID)
int rollBckGtRrd(dotl *rollb)
int quickAbortIA(int lAID)
-ild()

27 March 1993 Page A-7 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

CLASS iaLog

This class is a log class of the Interactions Logger Daemon. It provides
all methods and data members for the Interaction (IA) logging re
quirements.

Data Members:

public:

char iadir_name[255]; liThe IA directory Name
int lAID; liThe interaction ID
int * GTLOG; liThe ptr to the GT object
iaLog* next_ia; II the link to the next IA

Member Functions:

public:

iaLog (); II The constructor for the lA_log

int logIABegin(int lAID); II logIABegin logs a Begin record to
II the ILD log

int logIACommit(int lAID); II logIACommit logs a Commit record
II to the ILD log

int logIAAbort(int lAID); II logIAAbort logs an Abort record
II to the ILD log

~iaLog (); II The destructor for the lA_log

Page A-8 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

1M I callirs_l (params)
IRS

TORRD
return

ILD I
call to method

parser

I~

/

.. abortlA abortGT
retrylA retryGT

~
10giAbegin 10gGTbegin
10giAcommit 10giMexception 10gGTcommit
10glAabort 10gGTabort

•

to log file

lIustration of Flow of Calls to/From IRS Methods

27 March 1993 Page A-9 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

CLASS gtLog

This class is a log class of the Interactions Logger Daemon. It provides
all methods and data members for the Global Transaction (GT) log
ging requirements.

Data Members:

public:

char gtdir_name[255] i liThe GT directory Name
int GTIDi liThe global transaction ID
int * GTLOGi liThe ptr to the GT object
gtLog* next_gti II the link to the next IA
int gterr_sysi IIGT error code

/
!

Member Functions:

public:

gtLog ()i	 II The GT constructor

int 10gGTBegin(int lAID, int GTID, char *depinfo)illlogGTBegin
II logs a Begin record to the ILD log

int 10gGTCommit(int lAID, int	 GTID, char *gst_info) illlogGTCommit
II logs a Commit record to the ILD
II log

int 10gGTAbort(int lAID, int GTID)i IllogGTAbort logs an
II Abort record to the ILD log

~gtLog() i	 II The GT destructor

Page A-1 0 of 28	 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

INTERFACE DEFINITION FOR Interaction's Recovery System

INTERFACE:

PURPOSE:

LOCATION:

IMPLEMENTATION:

RETURNS:

InterActionManager to Interaction Recovery
System

The InterAction Manager (1M) provides the key
interface to the InterAction's Recovery System (IRS).
It sends and receives information for logging
and recovery.

Global Level

(Parameters: commands to the ILD for

logging and recovery)

These commands conform to the methods
defined in the following pages. The 1M does not call
or interface directly to the RRD.
Parameters are passed via RPC calls to the II~S (via

callirs_1 call). The command line is passed as a
parameter and the ILD method is activated.The 1M
receives status information from the
ILD or Rollback/Recovery record numbers from the
RRD. 1M must recognize what it is receiving.

Status/Error returns from the ltD methods.

27 March 1993 Page A- 11 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

INTERFACE DEFINITION FOR InterAction's Recovery System

INTERFACE:

PURPOSE:

LOCATION:

IMPLEMENTATION:

RETURNS:

ILD to File System

The ILD to File System Interface provides for direct access
to the 1M log and to the temporary file structure.

Global Level

(Parameters: file/directory descriptors
for logging. Once established, data for
logging.)

By utilization of standard system calls the file system
will be created as any other file system or directory
would be created. These calls are used via the I/O
streams facilities of C++.

Status/error returns from the file status/system routines.
Error returns from the methods invoked.

Page A-12 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

(PARAMETERS:

INTERFACES:

RETURNS:

(PUBLIC)

callirs_l

This method calls the IRS for some procedure to
be performed by the IRS

Ir~s

Procedure to be invoked and its arguments

The 1M calls the IRS
The IRS parses the arguments and calls the required
method with the given parameters

SUCCESS or FAILUr~E, upon failure, an error code

27 March 1993 Page A-13 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(c procedure)

parseIRS

This method parses the parameter line from callirs_1.
It then calls the IId_Cmd routine that will call the
method to be performed by the IRS

II~S

Procedure to be invoked and its arguments

The 1M calls the IRS
parselRS parses the arguments and callslld_Cmds which
then invokes the required
method with the given parameters

SUCCESS or FAILUI~E, upon failure, an error code

Page A-14 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(c procedure)

Ild_Crnds

This procedure calls the method to be performed by
the II<S

IRS

Procedure to be invoked and its arguments

The 1M calls the IRS
parselrs parses the arguments and calls ILD_Cmds which
in turn invokes the required
method with the given parameters

SUCCESS or FAILUI<E, upon failure, an error code

27 March 1993 Page A-15 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PUBLIC)

abort IA (lAID)

This method is called to abort an IA

IRS

lAID, to be aborted

The 1M calls the IRS
The II~S parses the arguments and starts the abort
process

SUCCESS or FAILURE, upon failure, an error code

Page A-16 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PUBLIC)

abortGT (GTID, lAID)

This method is called to abort a GT

II,<S

GTID (that is to be aborted)
lAID (of the affected GTID)

The IA calls the IRS using the method callirs
The IRS parses the arguments and starts the abort
process

OK if committed; ACTIVE if active

27 March 1993 Page A- 17 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PUBLIC)

retryGT (GTID, lAID))

This method is called to retry FROM the passed GT

IRS

(GTID
\

lAID

The IA calls the IRS using the method call1rs
The IRS parses the arguments and starts the retry
process using comutation where appropriate. The
retry assumes that the GT passed is the DOT from

which it will try to redo.

SUCCESS/FAILURE, upon failure, an error code

Page A-18 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PRIVATE)

verifyGtStatus

This method veri'fies a given GT status:
active
committed

II~S

GTID

The II~S calls this method when doing any type of
termination of a GT

STATUS/FAILURE, upon failure, an error code

27 March 1993 Page A-19 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINIl'ION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PUBLIC)

logIMException (errno, "text")

Write Error/Exception records to the 1M Log.

ILD

Etype: error code and text information
exception information

Called internally within the ILD, information
(parameter data) passed from 1M to ILD.

OK
ERRORS:

write failure: ACTION: inform 1M, 1M dies
write conflict: ACTION: wait

Page A-20 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

(
[

\

PARAM ETERS:

INTERFACES:

RETURNS:

(PUBLIC)

logIAbegin (lAID)

logIAcornmit (lAID)
logIAabort (lAID)

Write InterAction records to the 1M Log.

ILD

Pl: lAID

Called internally within the ILD, information
(parameter data) passed from 1M to ILD.

OK
ERRORS:

write failure: ACTION: inform 1M, 1M dies
write conflict: ACTION: wait

27 March 1993 Page A-21 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR InterAction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PUBLIC)

LogGTbegin (lAID, GTID)

LogGTcommit (lAID, GTID)
LogGTabort (lAID, GTID)

Write GT records to the 1M Log.

ILD

Pl: GTID

\
(P2: lAID

Called internally within the ILD, information
(parameter data) passed from 1M to ILD.

OK
ERRORS:

write failure: ACTION: inform 1M, 1M dies
write conflict: ACTION: wait

Page A-22 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PRIVATE)

createIADir

Create interaction temporary directory

ILD

Pl: lAID

Called internally by ILD
Uses standard system calls for directory

creation.

OK
ERROR: directory creation failed: ACTION:

abort IA

27 March 1993 Page A-23 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PRIVATE)

createGTDir

Create global transaction temporary
subdirectory

ILD

Pl: lAID
P2: GTID

Called internally by ILD
Uses standard system calls for directory

creation.

OK
ERROR: directory creation failed: ACTION:

abort IA

Page A-24 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAM ETE RS:

INTERFACES:

RETURNS:

(PRIVATE)

deleteIADir

Delete temporary directories when all GT and
lAs are committed.

ILD

Directory file descriptor

Called internally by ILD, parameters received
bylM.

OK
ERROR: Directory not empty: ACTION: clean

directory before deletion
Directory not found: ACTION: information

only.

27 March 1993 Page A-25 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PRIVATE)

deleteGTDir

Delete temporary directories when all GTs
are committed.

ILD

Directory file descriptor

Called internally by ILD I parameters received
by 1M.

OK
ERROR: Directory not empty: ACTION: clean

directory before deletion
Directory not found: ACTION: information

only.

Page A-26 of 28 27 March 1993

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

(PARAMETERS:

INTERFACES:

RETURNS:

(PRIVATE)

readLog (lAID, GTID)

Read records from the 1M or Agent log, This provides
a complete structure of log records for the GT.

ILD and ALD

Log record number:
IA#
GT#
GST#

Called by the ILD or ALD after receiving
request from 1M or Agent.

Address in memory of structure containing all records
for GTID

ERROR: record not found.

27 March 1993 Page A-27 of 28

Design Specifications of the Interaction's Recovery System (IRS) for InterActions:

METHODS DEFINITION FOR Interaction's Recovery System

METHOD NAME:

PURPOSE:

LOCATION:

PARAMETERS:

INTERFACES:

RETURNS:

(PRIVATE)

readSEorderlnfo

This method reads the state/execution information
file and constructs the DOT-L

ILD

IA; GT to be terminated

The II{S calls this method when doing any type of
termination of a GT. It is called prior to any termination
procedure beginning.

DOT-L

Page A-28 of 28 27 March 1993

