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Abstract

We present a system for generating 3D textures in an exploratory fashion, using
genetic algorithms, distributed rendering, and the RenderMan Shader Language.
The 3D textures are generated in the form of RenderMan surface shaders and as
such can be applied to any surface shape.

Keywords: 3D textures, solid textures, RenderMan, genetic algorithms.



1 Introduction

A 3D texture is a function which maps all points in object space to points in a given
color space. 3D textures have also been called solid teztures. More generally, this
function is a mapping from one 3 space to another, and can be used to define other
object attributes such as opacity, surface normal, surface displacement, specular coef-
ficients, and even density. In this work, we have concentrated on 3D texture functions
that determine the color of an object by sampling the function at the object’s surface.

3D textures can greatly enhance the realism and interest of computer graphics
images and animations. 3D textures have several advantages over 2D textures applied
to surface representations. A 3D texture is defined over all of object space so that if an
object is cut or carved or sliced one will see the internal texture, not a re-mapping of
a 2D texture over the new surface. The visual effect is more interesting in animation,
where the shape of an object can be changed by getting cut or gouged or carved, and
the object’s internal texture structure will get re-displayed.

3D textures are a kind of procedural modeling, and as such, some renderers do not
support them. Any renderer which adheres to the RenderMan Interface [Ups85] allows
support for 3D textures by use of ”"shaders”. The generation of interesting shaders
to date has involved considerable effort (trial and error) and a reasonable level of 3D
graphics knowledge. Most are hand crafted with a specific effect in mind.

The set of all possible 3D textures is infinite. One of the challenges of generating
interesting 3D textures is in investigating large portions of this set rather than tiny
sections of it. Another challenge is to avoid generating textures that are axis-aligned
or have noticeable axis behavior. Both of these are quite difficult, and there is a need
for a means for a novice to generate 3D textures (or view existing 3D textures) and
save them in a re-usable form.

This paper describes a system whose purpose is to let the non-technical user rapidly
investigate large regions of texture space, by means of so-called “genetic algorithms”:
the user starts with some particular texture (or no texture at all) and selectively
mutates or combines it with other textures to generate new ones. By keeping around
textures that are “interesting” and discarding others from the population, the user
can guide the search for interesting textures without ever examining the details of the
procedure that created the textures.

2 Research Objectives

The goal of this system was to give the non-technical user a means to generate inter-
esting 3D textures which can then be saved and applied to objects in a still image or
an animation. Towards this goal, the research project had the following objectives:

Ease of use: The GUI should be appropriate for a non-technical user. .

Speed: The texture generation/selection iteration cycle should be fast enough that
interesting textures are generated before a user gets bored.



Flexibility: The design should be renderer-independent and the textures must be
able to be saved in a re-usable form.

Our approach was to combine genetics generation of s-expressions, distributed ren-
dering, a pick-and-choose GUI, a multi-image GUI, and an interface to a RenderMan
renderer which supports the RenderMan Shader Language. In order to explain this
more fully, we first provide references to the relevant literature, and then describe the
program, first from a user’s eye view, and then from an more internal view, indicating
design decisions with regard to the genetic exploration of 3D texture space.

3 Related Work

The fundamental notions that are used in this work are gathered from a number of
ideas presented elsewhere. They are solid texturing, genetic algorithms, and procedural
descriptions of textures for generic rendering. (This ignores the engineering issues
of design, and the use of distributed processing in doing the rendering work). We
therefore give a brief indications of the sources of these notions.

Peachy [Pea85] introduced the notion of solid texturing and created 3D textures
of wood grain and marble. Peachy also demonstrated the use of Fourier synthesis in
in generating solid textures. At about the same time, Perlin [Per85] introduced the
term and concept of solid texture and created some textures which resembled clouds,
marble, rock. Perlin also demonstrated the use of noise and turbulence as important
components of generating interesting 3D textures.

Perlin [Per89] expanded the use of 3D functions to describe geometry by using a
3D function to determine an objects density.

Sims [Sim91] a variation of the genetic search algorithm was used to generate 2D
images, 3D plants and solid textures. This was based on the manipulation of symbolic
lisp expressions. For those unfamiliar with the notion of genetic algorithms, we give a
brief review and description in Section 6.1.

Upstill [Ups85] describes the RenderMan Shader Language support for the concept
of 3D textures. Example surface shaders are described for modeling marble and wood.

4 TX :a 3D Texture Synthesizer

Our 3D texture synthesizer is named “TX,” and allows a user to generate 3D textures
by simply using the mouse to choose between a few operations. After TX is started
it presents the user with a 4x5 matrix of blank image windows along with a menubar
and a text input area with some buttons. See Figure 1.

The first thing a user has to do is to specify the host(s) on which the rendering is to
done. These hosts are called rones. This selection is done by selecting “Drones” from
the menubar. The user has two choices: read a list of hosts or start them individually.
If the user chooses to specify them individually, he is given two options: naming a
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Figure 1: User’s Initial View



host explicitly or having the Quahog [Baz93] program pick one for him. If the user
chooses to name a drone/host explicitly, a pop-up text widget appears. If the drone
is started successfully it will appear in a scrolled list.

The next thing the user has to do is to create a 3D texture function. This can
be done by typing one directly, reading a saved one, or creating one randomly. To
create one randomly the user selects “Edit” from the menubar. The user then selects
“Mutate.”

This will create a number 3D texture functions and send them off to the drones to
be rendered. (The number of 3D texture functions generated can be set by selecting
“Num Children” from the “Edit” pulldown.) Each texture function is associated with
a specific iimage window. If the user wants to display the s-expression associated with a
window, the user selects that window with the left mouse button, and the s-expression
gets displayed in the text field at the bottom (see Figure 2).

When each drone is finished rendering a texture, it sends the image back to the
GUI and the image is displayed in an image window. Note that the user does not
have to wait for any or all of the images to be rendered before interacting further or
initiating other operations from the GUI

Once some or all of the rendered images are displayed, it is the time for the user to
judge the fitness of the associated 3D texture functions. If the user is satisfied with an
image, he can save the s-expression. If the user is not satisfied with an image, he can
either clear it or modify it. If the user want to modify (propagate) a function, he can
do so in any of three ways: mutating, crossing, and blending. Mutation involves the
modification of a single s-expression (function), while crossing and blending require
two. To mutate the user must select a window with the left mouse button. This puts
a red border around the image and this defines the current window.

To cross or blend the user must select two ”parent” images by pressing the middle
mouse button. This puts a green border around the image windows. The user then
selects “Cross” or “Blend” from the the “Edit” menu (see Figure 3). Selecting an
image window with the right mouse button holds/saves the image, which allows the
user to clear all the “unheld” windows. This “holding” of an image is indicated by
a purple border around the image window. Selecting the image again with the right
button “unholds” the image and removes the purple border.

In each image window is a text string like "rgb mapa”. This indicates the final
mapping of the 3D texture function into color space. The user can select a mapping
for an individual window by selecting “Mapping” from the menubar. The user can
select from color or space mapping. The space mapping maps the result of the 3D
texture function into a space limited to 0.0 to 1.0. Color mapping maps this limited
3-space into a color space. These mappings must be done BEFORE the 3D texture
function is rendered. The choice of these two mapping functions can greatly change
the appearance of an image,

After a few iterations of mutating, blending, crossing, and clearing, the user can
save the s-expressions for later input. The user can also save the 3D texture as a
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RenderMan shader file.

5 Design Approach

The approach we took was to take the Sims’s artificial evolution concept and extend it
to generate and manipulate 3D textures in the form of s-expressions and RenderMan
shaders. The requirements for our system were as follows:

The GUI had to be point-and-click for the novice user.

The GUI had to support the display of multiple images so that the user could
judge their fitness easily.

The user had to be able to select image(s) to save, clear, or evolve (apply genetic
operators) .

The user had to be free to initiate other operations while rendering is taking place
(asynchronously).

Given that the RenderMan shader language supports the concept of 3D textures,
we had to generate a “shader” from an artificially evolved arbitrary s-expression and
apply it to a object for rendering.

The rendering (s-expression evaluation) had to be quick enough to keep the user
interested.

The evolution of functions had to produce interesting images in a small number of
iterations.

The design had to be renderer-independent or adaptable.

Given the above requirements, the TX design has the following components: GUI,
Network Controller, Genetic Engine, RenderMan Interface, and Stand-alone Renderer.
The TX design is master-slave with the GUI, Network Controller, Genetic Engine
making up the master process and either the RenderMan Interface or Stand-alone
Renderer being the slave process. See Figure 4.

5.1 GUI

The most important aspect of the GUI is the display of multiple images for fitness
judgement and evolution operations. The fitness criterion in the genetic system is
the user’s aesthetic sense and preference. The user can clear individual windows or
can pick some to keep and clear the rest. The user can select an individual texture
function for editing or mutation. The user can select a pair of texture functions for
crossing and blending.

When the user initiates a mutate, cross, or blend operation the s-expression(s) are
sent to the Genetic Engine for processing. The Genetics Engine will réturn a user
selectable number of results. These are then sent to the Network controller. The
Network controller sends the s-expression(s) to the slave processes and returns the
rendered images to the GUI for display.
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The GUI also controls the following: the saving and reading of 3D textures func-
tions and images, the reading of genetic parameters for the Genetic Engine, the reading
of slave host names for the Network Controller.

5.2 Genetic Engine

Since the user is to have little input into the details of the 3D textures generated, we
use a genetic algorithm to generate 3D texture functions in the form of s-expressions.
S-expressions can be represented as a tree structure and as such can be manipulated
and combined with other trees in many ways. There are a number of input parameters
which effect the manipulation of the s-expressions, we describe in section 6.4.

See Figure 5.
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5.3 RenderMan Interface

The rendering of a 3D texture involves converting the s-expression into some form the
renderer can handle, and then binding or applying the texture to some object in some
scene, and finally rendering.

The RenderMan Interface supports the concept of procedural modeling (of which
3D textures are a subset) through the use of “shaders” and their shading language.
Surface shaders are used to calculate the color and/or opacity during rendering at
points on the surface on an object. There are numerous global variables that can
be used in calculating the color and opacity. The most important variables for our
purposes are the x, y, and z values of the current surface point being rendered in object
space. Knowing this point is what makes 3D textures possible.

We want to construct a shader based on an arbitrary symbolic lisp expression which
will determine the surface color based on the available x, y, and z values in object space.
We also want to include some of the “normal” factors used in calculating the surface
color, ambient, diffuse, and specular factors.

We must translate a s-expression to the RenderMan shader language. The s-
expression functions must be somewhat polymorphic, because their arguments can
be either scalars, vectors, or the output of any other function. All our functions
return either a scalar or a vector. The RenderMan shader language supports some
polymorphic functions but most of its functions are not polymorphic. In order to work
around this, we constructed functions to handle all the possible types of arguiments.
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5.4 Network Controller

Several requirements made a master-slave design appealing. The master-slave design
allows for asynchronous operation, renderer independence, and simultaneous rendering
of images. The Network Controller is used to distribute the s-expressions to remote
machines to be renderered by a slave process.

The “master” process starts and controls “slave” processes (drones), which do
the evaluation (expression) of a genotype into a phenotype. These drones are sent a
symbolic lisp expression. They create an image based on this expression and send the
image back to the master process.

The master process and the slave rendering process must be robust enough to
handle each other starting and stopping. We use Quahog to control the master-slave
interaction, which helps us address these difficulties [Baz93]. Quahog will kill processes
it has started if it detects that the load on the remote host is over some level. 1t is a
very “nice” program.

The number and names of the remote hosts to be used are user configurable. The
user should be able to kill drones/slaves and start new ones at any time from the GUIL
When master process dies, the drones/slaves must be killed. Quahog deals with these
aspects of master/slave control automatically.

5.5 Renderer Independence

An alternative to using RenderMan was to develop a extremely limited stand-alone
renderer, for a fixed shape that could evaluate the s-expression at each visible surface
point. This would demonstrate renderer-independence, and would also potentially
be faster than the RenderMan render. It would also provide independence from the
RenderMan-compliant renderer in case it was not available. in some environment. It
would, however, be much less flexible than the RenderMan renderer. Nonetheless. we
implemented an alternate renderer to work on the standard object in the TX window
(a cube).

6 Texture Space

One can view an individual 3D texture function in s-expression form as a sample (test)
point in the space of all 3D textures. Theoretically a s-expression can represent any
possible real-valued function. Sampling of texture space by s-expression generation is
controlled by the development rules (genetic operations) used in combining a finite set
of functions with variables and constants.

6.1 Genetics-Artificial Evolution

Sims in [Sim91] used a genetic algorithm based on Artificial Evolution which manipu-
lated symbolic lisp expressions (s-expressions) to generate plant structures, 2D images,
and solid textures. A genetic algorithm is a searching technique that generates test

11



points by “evolution” (random variation and selection). Artificial Evolution has as its
components genotype, expression, phenotype, and a selection-fitness criterion.

A genotype is the encoded genetic information; in our work the genotype is a s-
expression. Ezpression is the process by which the phenotype is generated from the
genotype. For us, expression is the rendering of the s-expression applied to some
object. A phenotype is the form that results from the development rules and the
genotype and which for us is the resulting image. The selection-fitness criterion is
the process that determines the likelihood of survival; for us this is human aesthetic
opinion.

Normally a genetic algorithm is used to search for a global optimum in a very large
search space. It is an iterative process, with the generation of new test points from old
ones. Usually there are several “parallel test paths - multiple test points.” In the case
where human opinion is used as the selection criteria there is no single global optimum
to be found. So the genetic algorithmn should be “geared” toward traversing the search
space and finding all local optima (interesting solutions) while avoiding getting caught
in any particular local area of search space. However one would hope also to be able
to explore local areas sufficiently to “refine” an interesting solution.

The generation and display of 3D textures involves the following steps, s-expression
generation, color mapping of the s-expression into a 3D texture, and sampling of the
3D texture. Figure 6 shows these steps.

The following describes the design decisions we made in the following areas based
on our experience with TX :

the genetics operations

the s-expression language

the genetic parameters effecting how the first two interact

the mapping of an s-expression 3 space into a 3D texture (color)
the sampling of our 3D texture

how we start the search

6.2 Genetic Operations

In order to avoid getting caught in a region of search space on must be able to make sub-
stantial changes to the s-expression. We support three operations on an s-expression:
mutation, crossing, and, blending. For each genetic operation the s-expression is con-
verted into a tree structure which is then manipulated. Each of these operations use
some random operation to generate a new s-expression from an existing s-expression(s).
Changing the root function is the most obvious way of making large jumps in search
space. This is not always the case if the new root’s range and domain are similar to
the previous root’s. Generally changes higher in the tree (closer to the root) cause the
more drastic change in search space sampling.

12
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Mutation modifies a single node in a s-expression by replacing a function with
another, changing a value, or replacing a variable. Replacing a function can change
the nodes subtree considerably if the arity of the functions are not the same.

Crossing takes two existing s-expression and selects randomly some point in each
tree and swaps sub-trees. Crossing can also change the subtrees considerably if the
arity of the nodes are not the same. Arguments may have to be generated or dropped.

Blending takes two existing s-expression and selects randomly a function with 2
arguments to be the parent function of the two selected.

The genetic operations mutate, cross, and blend traverse the search space in dif-
ferent manners. Each is really more than a single method: there are several ways to
mutate, cross, and blend. Each has some random element and some parameters to
provide some control to the user. These parameters often specify the weights of the
possible random choices.

13



An important consideration in using a particular method is whether it will make
a local change or global change (new local space). Another is whether it adds to the
length of the s-expression (number of nodes) - this is a performance consideration.
The longer the s-expression, the slower will be its evaluation, since this “function” is
evaluated many times over the surface of an object. In all operations, if a new node
is needed it is chosen randomly based on some user input or default weights.

When a random node in a tree is selected, a downward mutate probability is used
to determine approximately how far down the tree will be the node selected. A user

input parameter is used to specify the downward probability type: low, middle, or
high.

When arandom node needs to be created, the first random choice is what node type
it will be (function, variable, scalar, vector), and then a random choice is made within
that node type. User input parameters are used to specify the node type weights.

Mutation

There are many ways to mutate an s-expression. We support the following: adjust
constant, replace a function, rotate vector values, promote a subtree, demote a subtree,
replace a subtree.

If mutation is called on a null expression then a random tree is generated. This
is covered more under “Getting Started” below. A user input parameter is used to
specify the method of mutation or whether it is to be randomly determined.

Each of the mutation methods randomly determines where in a tree a mutation is
to take place. The random selection of a node involves traversing the tree and at each
node randomly determining if this is the node to be mutated.

The adjust constant mutation alters a scalar value or vector value by adding a
percentage of its value. Replacing a function randomly choses a function and replaces
it with a new function while adding or deleting arguments as necessary. Rotating
rotates the values of a vector. Replacing a subtree randomly chooses a node and re-
places it with a new node and generates arguments as necessary. Demotion involves
adding/inserting a new function somewhere in a tree. It starts at the root and recur-
sively walks the tree until the function is inserted based on the mutation probability.
Promotion involves removing a function somewhere in a tree and promoting its children
to become arguments to its parent.

Crossing

There are many ways to cross two s-expressions. We support the following: close and
crude.

A user/default specified parameter is used to determine which method is used.
If random selection is chosen then one of the methods is chosen randomly based on
user/default weights. A user/default specified parameter is used to determine if is
mutation is to occur during crossing.

14



C'ross crude picks a random node in each tree based on a depth first numbering
of nodes. The subtrees at those node are swapped to produce two new s-expressions.
Cross close picks randomly which parent gives (donates) a function node recursively. If
either of the parents are not function nodes the chosen parent is copied. This produces
one result at a time.

Blending

Blending randomly chooses a new parent function of arity two and sets the two s-
expressions as its arguments. This method will result in an s-expression with length
equal to the lengths of the “parents” + 1.

6.3 S-Expression Language

A 3D texture function in the form of an s-expression calculates the color given any
point in object space. The artificial evolution process creates texture functions by
randomly combining a finite set of functions and variables with scalar and vector
values.

The 3D texture “language” includes the following:

Functions: finite set of functions
Variables: z,y, 2z, and P - the point (2,y, 2)
Scalars: real numbers

Literals: vector of 3 scalars (e.g., [1.0,2.0,3.0] )

The functions in the language need to be polymorphic since they can be combined
in any way. Generally every function must be able to take a scalar or a vector of size 3
as its arguments. In some cases the type of the arguments can only be determined in
a recursive manner by determining the types of the arguments arguments and so on.
In some cases the output type of a function may be independent of the types of its
arguments. In some cases what the functions behavior is for a given type of argument
may not be obvious and needs to be defined.

Since the functions can be combined in any way and the argument values are a
function of the object space sampling (shape) argument, range checks need to be added
and default values assigned to some functions.

One wants a small but powerful set of functions. One thing to consider is that many
basic arithmetic and trigonometric functions have particularly distinctive behavior
around 0.0. Many have +/- symmetry, or result in 0 or infinite values. This may
or may not be desirable. Since the 3D texture is usually defined in object space the
object’s surface will probability surround the origin. Some functions were developed
so that they would not have distinctive behavior around the origin or axis.
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Our function set contains the following arithmetic functions : mult(x,y), add(x,y),
sub(x,y), div(x,y), mod(x,y).

Our function set contains the following vector functions : length(x), normalize(x),
distance(x,y), rotate(x), dot(x,y), vec(x,y,z).

Our function set contains the following trigonometric functions : periodic(x,y,z),
sin(x), asin(x), acos(x), cos(x), atan(x), tan(x).

Our function set contains the following mathematical functions : sqrt(x), exp(x),
In(x), pow(x,y).

Our function set contains the following discrete functions : abs(x), min(x,y),
max(x,y ), round(x).

Our function set contains the following random functions : noise(x), invnoise(x).

While some of the functions chosen are supported in RenderMan Shader Language,
shader functions had to written to handle the range checks, and type conversions (i.e.,
some semantic interpretation). These support functions are pre-compiled and visible to
the s-expression-based shader function. Note that we make use of RenderMan’s noise
function in our RenderMan rendering and our own noise function in the stand-alone
renderer. These will not give identical results.

6.4 Genetic Parameters

Through much use of TX we have developed some insights into what kind of s-
expressions lead to the evolution of interesting patterns and therefore what values
for some of the input parameters work well. There are genetic parameters for the
following;:

Node Type Weights
Function Weights
Downward Probability
Mutate Rate
Mutate Method Choice
Mutate Method Weights
Cross Method Choice
Cross Method Weights
Mutate When Crossing Flag
As will be described in “Getting Started”, sometimes there are conflicting require-

ments that make picking the node type weights difficult. We prefer to weight node
types function and variable higher to get the user off to a good start.

16



We have some function weight preferences for periodic and noise functions (see
“Sampling”). Since a 3D texture in defined in object space, the objects surface will
probability surround the origin. Periodic and noise functions won’t have a noticeable
origin behavior if evaluated at values much greater than one. We added a periodic
function that would not have distinctive behavior around the origin or axis and be a
little more high level than the trigonometric functions.

periodic(al,a2,a3) = 0.5 % sin(al.a2 + a3).

An example of an interesting texture produced from noise and periodic functions
is

vec(periodic( [k1 k2 k3]. noise([nl n2 n3] * [x y 2]) + c),
periodic( [k1 k2 k3]. noise([n1 n2 n3] * [x y 2]) + c),
periodic( [k1 k2 k3]. noise([n1 n2 n3] * [x y 2]) + c))

with color mapping RGB and space mapping mod(z,1.0).
See Figure 7.

6.5 Mapping 3-Space to Color Space

At this point we have a s-expression that is a function from one 3 space to another 3
space. It is not yet a 3D texture. For this to be a 3D texture each point in this new
3 space needs to be mapped or assigned a color value.

The output of such a s-expression from the above set of functions could have any
range of values. Most color spaces are only defined in the range 0.0 to 1.0, and most
systems then map this to discrete RGGB values. Therefore, one must map the output
of the s-expression into some limited range like 0.0 to 1.0; This can be thought of as
four step calculation.

3-space to 3-space: given (z,y,z)in 3-space, use the 3D texture function to calcu-
late a new (z,y, 2)-point.

3-space to 0.0-1.0 3-space: map the new (z,y, z) into limited 3-space.
limited 3-space to color space: map this limited (z,y, z) point into color space.
color space to RGB: map from a given color space to discrete RGB.

The third step for RGB color space would be red = z, green = y, blue = z. The

third step for HSV color space would be hue = z, saturation = y, value = z. The last
step is system dependent.

Notice that in order to avoid the object’s z-dimension controlling the red through
the third step in a RGB color space, the texture’s z-dimension should be a function of
z,¥y, and z. This would make red a function of the object’s surface z,y, and z, not just
x. More generally, we want [r,g,b] = [f(z,y,2),9(z,¥y, 2), h(z,y, z)]. We were lacking
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Figure 7: A Periodic Noisy Texture
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a function which took three arguments and produced a vector output. This is why we
added the vee() function.

We use this as the parent of all null mutations. A null mutation will then generate
random subtrees for each argument. This does not guarantee that each component
will be a function of z,y, z but it is a start (see “Getting Started” below).

We have provided the user with control over the space and color mapping. The
user may want to be able to view the same 3D texture in different color spaces. A
space mapping could be any function which is has infinite domain and range limited
to 0.0 to 1.0. Our selection of space mappings include:

abs(z)/(1.0 + abs(z))
mod(z,1.0)

abs(z)

0.5 % (sin(xz) + 1.0)

noise(z)

See Figure 8.

Some observations about the space mappings are worth noting. The first space
mapping (abs(z)/(1.0+ abs(z))) will compress all s-expression values from 1.0 to in-
finity to values 0.5 to 1.0. This is like a high pass filter. The second space mapping
(mod(z,1.0)) is periodic and subject to aliasing and can produce distinct banding-
stripping. This often produces desirable results. The fourth space mapping (0.5 *
(sin{x)+1.0)) is also periodic and subject to aliasing but produces a smoother image.

We now have a 3D tezture, a function that defines a color for any point in an
ob jects 3-space. Now how do we evaluate it and judge its fitness? Since we can’t view
all of it we must sample it somehow and display the sampling.

6.6 3D Texture Sampling

Sampling of any 3 space can be done in many ways. We have two main options, sample
on some surface or sample through a volume.

We give the user a view of a 3D texture by looking at a surface rendering of a
particular shape within that texture’s space This gives the user a sample of what the
texture can produce. What is a good sample surface? We chose a cube centered at
the origin, with edge-length two. A cube or a sphere seemed reasonable as a more
complicated object would take longer to render. A cube was chosen because it would
show the change in the texture over z, y, abdz more clearly.

At what scale or at what offset/location should this sample surface be placed.
Normally we do not know the extent of the object to which a shader/texture is to be
applied. But since one can always scale a shader, this is not particularly important.
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Some RenderMan shaders allow for this by having a scale instance parameter. There
is a problem with surface values limited to -1 to 1. Functions like noise() and sin()
will have very little change. For these functions to be worthwhile they need to have
arguments that have a wide range of values. Of course too wide a range will generate
aliasing.

Figure 9 show the same 3D texture a different scales.

If the computation involved in rendering the images were faster, we could give the
user control of scaling and offset, so that the user could really explore a texture.

6.7 Getting Started - Something for Nothing

The genetic operations “mutate,” “cross,” and “blend” need an existing s-expression(s)
to operate. So how does the user create an initial s-expression? One method is that
the user can type one in, but this is not ideal for the novice. The user can also read
one from a file, if some expressions have been previously created and stored. But for
starting from nothing the user has only to select “Mutate” on a null image window.
This will cause a random s-expression (tree) to be generated.

In generating a random tree, a random root node type can be selected based on
node type weights. If the node type chosen is a function, then the arguments are
chosen in the same manner and so on.

There are some problems with this nethod. One is that if the function node weight
is too low, then the s-expressions generated will be very short and uninteresting. If
the function node weight is too high, the s-expressions generated will be very long and
be slow to render.

Another problem is that is if the variable weight is too low, the s-expression may
not be a function of 2,y, or z and therefore end up being constant. If the variable node
weight is too high, the s-expressions generated may not be very interesting because
of the lack of constants as some functions are not very interesting over the unscaled
values of z,y, or z (-1.0 to 1.0).

Aside from adjusting the weights of the node type, we have tried a few other
methods for generating an initial s-expression. One was to always pick a function to
be the root node, then use the random subtree generation for its arguments. All this
does is guarantee that at least one function is in the s-expression.

Another method was to make the vee(z,y, z) function the root function, and then
use the random subtree generation for its arguments. The advantage of this is that
since standard color spaces are three dimensional, this guarantees that each dimension
is a separate function (of z,y,orz hopefully).

Once some good s-expressions are generated, the user can then apply the mutate,
cross, and blend operations on them. Cross and mutate usually don’t result in s-
expressions much different in length from the original s-expressions, while blend does.
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7 Results

Our results are a combination of performance, ease of use, flexibility (re-usability) and
quality of images generated (fitness).

TX’s performance can be measured in two ways: (i) How long does the user have
to wait for individual(new) textures to be displayed?, and (ii) how long does it take
(number of iterations) before interesting results are produced?.

For the RenderMan renderer version, total user wait time includes the following :
time for master to send s-expr to drone, time for slave to parse s-expr and generate
shader file, time to compile shader, time to render-BI file, time for slave to read Bl
file, time to send image to master, time for master to display image. The RenderMan
renderer version involves three machines: the master process host, the slave process
host, and the RenderMan renderer host. The RenderMan renderer version takes about
30 seconds to return an image for an moderately complex s-expression with the slave
process and the RenderMan renderer on a Sun4m running 4.1.3. With the slave process
running on a Sundc it takes about twice that. About 20 of the 30 seconds is for
rendering; the rest is for the shader generation, shader compilation, and networking,.

The stand-alone version only involves two machines, the the master process host
and the slave process host. The stand-alone version takes about a third to a half the
time of the of RenderMan renderer version, and certainly could be faster with some
more work. The number of images that can be generated simultaneously with the
stand-alone version is equal to the number of drone-slave processes.

How many iterations of selecting 3D textures and operators does it take to get
interesting results starting with null s-expressions? This is subjective but does depend
on the number of drones-slave processes. The screen shown in Figure 10. took about
four iterations starting with null s-expressions and with five children (s-expressions)
created per genetic operation.

7.1 Examples

How interesting are the 3D textures that TX can generate? That is, of course, up to
the individual, but we will give a few examples of interesting textures.

Figure 11. is from the s-expression

(mod (pow [ 1.50 2.90 1.90 ] (length P ) )
(vec (mod (* [ 2.00 4.0 3.0 ] (noise (* 3.00P ) ) ) P )
(periodic (* [ 7.0 3.0 5.0 ] (noise (* 3.0 P ) ) ) P 3.0)
(- (*x [ 11.00 0.00 5.00 ] (noise (* 3.0P ) ) ) P ) ) )

with space mapping mod(z,1.0) an with color mapping RGB.

Figure 12. is from the s-expression

(* (In (+ (- (* 5.00 (sin (* 7.00 x ) ) )
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Figure 11: Example Texture




(* 3.00 (cos (* 11.00 y )
) )

) ) )
(* 4.00 (cos (*x 9.00 z ) D))

P)

with space mapping mod(z,1.0) and with color mapping RGB.

is from the s-expression Figure 13.

(* 10.000000 (+ (* [ 3.00 3.00 3.00 ] (normalize P ) )
(/ (acos (/ x (sqrt (+ (*xxx) (x22z2) ) ) ))
(* 4.00 (cos (* 5.00=z))))))

with space mapping 0.5 # (sin(z) + 1.0) and with color mapping HSV.

One important goal was the re-usability of the textures generated. Figures 14 and
15. give some examples of the 3D textures generated applied to objects as RenderMan
shaders in a more interesting scene.

7.2 Future Work

If the 3D textures could be rendered at near interactive speeds, the user could explore
interesting textures with slicing, scaling, and offsetting of the sample surface. The user
currently gets a limited view of the 3D texture. We could add the option to allow the
user to specify what the sample surface (object) is used. We could even allow the user
to input his own object in some form (polygonal or surface patch). The disadvantage
of allowing the user to do this is that the more complicated the object, the longer it
will take to render.

It is hard to evaluate the long term sampling of texture search space by our genetic
operations and function set. We could try to develop higher level functions or add
parameters to influence particular combinations of functions and arguments. We could
also base our s-expression generation on some grammar. The grammar rules could
more easily be made to generate specific combinations of functions and arguments.

7.8 Conclusions

TX does meet the goal of a novice user being able to generate 3D textures with little
input. The user only has to select genetic operations and make aesthetic judgements
on the images produced. The user also has control of the color and space mapping.
The user does not have to understand the mapping functions to use them.

The time to evaluate a single s-expression and return the image is not quite fast
enough to keep the user’s complete interest if this is all the user is doing. It is fast
enough if the user has something else to do while images are being evaluated. Because
of the distributed rendering, the user could initiate the as many as 20 evaluations and
the total wait time would be about the same as for one.
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Figure 12: Example Texture
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Example Texture

Figure 13
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Figure 14: Example Textured Scene

29






It is difficult to determine if the current genetic operations and function set pro-
duce s-expressions that sample the 3D texture search space sufficiently to produce
an adequate variety of 3I) textures. This will be determined with long term use and
cataloging of the 3D textures.

The goal of the 3D textures being re-usable is meet by having the 3D textures
transformed into RenderMan shaders. These can be applied to any object in a scene
with a RenderMan compliant render. The s-expression format is also a generic form
which can be translated into forms that other renderer’s might require.
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