
BROWN UNIVERSITY

Department of Computer Science

Master's Thesis

CS-93-M6

"CCEL: The c++ Constraint Expression Language"

by

Yueh-hong Lin

This research project by Yueh-hong Lin is accepted in its present form

by the Department of Computer Science at Brown University

in partial fulfillment of the requirements for the Degree of Master of Science.

Date ~5/20/'1 ? 7~
Steven P. Reiss

CCEL: The C++ Constraint Expression Language
An Annotated Reference Manual

Version 0.5

Yueh-hong Lin Scott Meyers

May 18, 1993

Contents

1 Introduction

2 Overview of CCEL

3 CCEL Lexical Conventions
3.1 Tokens ...
3.2 Comments.
3.3 Identifiers
3.4 Keywords
3.5 Literals

4 CCEL Classes

5 CCEL Variables

6 CCEL Expressions

7 CCEL Constraints
7.1 Constraints . . .
7.2 Constraint Qualifiers
7.3 Constraint Classes

8 Violation Messages

9 CCEL Classes and Member Functions
9.1 Int .
9.2 String .
9.3 C++Object ..
9.4 NamedObject
9.5 Type .
9.6 Class .
9.7 Template ..
9.8 TypedObject
9.9 Function...
9.10 Variable ...
9.11 AnyParameter
9.12 Parameter ...
9.13 TypeParameter
9.14 Member
9.15 MemberFunction
9.16 DataMember
9.17 TypeMember ..

1

1

4

4

6

6

6

7

7

9

11

13

13

17

20

23

25

25

26

27

27

28

32

33

33

36

37

37

37

38

38

39

39

39

10 Unsupported Features in CCEL 40

11 Request for Comments 40

A CCEL Grammar 41

A.l Programs .. 41

A.2 Constraint Classes . 41

A.3 Constraints . 41

A.4 Constraint Qualifiers .. 42

A.5 Expressions . 43

A.6 Variables Declarations .. 44

A.7 Names . . 44

11

1

1 Introduction

C++ is an expressive language, but it does not allow software developers to say many of the things
about their systems that they need to be able to say. In particular, C++ offers no way to ex
press many important constraints on a system's design, implementation, and stylistic conventions.
Consider the following sample constraints, none of which can be expressed in C++:

•	 The member function M in class C must be overridden in all classes derived from C. This is
an example of a design constraint, because the constraint is specific to a particular class,
C, and a particular member function in that class, M. This kind of constraint is common in
general-purpose class libraries. For example, the NIH class library [3] contains many functions
which must always be redefined if the library is to function correctly.

•	 If a class declares a pointer data member, it must also declare an assignment operator and a
copy constructor. This is an example of a design-independent implementation constraint.
Failure to adhere to this constraint almost always leads to incorrect program behavior [5].

•	 All class names must begin with an upper case letter. This is an example of one of the most
common kinds of stylistic constraints. Most software development teams adopt some type
of naming convention for identifiers, violations of which are irritating at best, confusing and
misleading at worst.

Constraints such as these exist in virtually every system implemented in C++, but different
systems require different sets of constraints. Our approach to this problem is the development of
a new language, CCEL ("Cecil")-the C++ Constraint Expression Language, that allows software
developers to specify a wide variety of constraints and to have a system automatically detect
violations of those constraints.

CCEL-I, which is the version of CCEL described in this document, supports the expression of
constraints on C++ declarations; it has no vocabulary for specifying constraints on C++ definitions.
A future CCEL-II will add to CCEL-I the ability to specify constraints on definitions.

Our work on this document and on the CCEL language itself is an ongoing endeavor, and we are
quite interested in your reactions to both the language and this specification of it. For information
on how to send comments to us, see Section 11.

2 Overview of CCEL

A CCEL program consists of a set of CCEL constraints, constraint qualifiers, and constraint classes,
which are to be imposed on C++ sources. Here, we say C++ sources instead of C++ programs because
they do not need to contain the function main. They could be arbitrary sets of C++ source files or
C++ libraries. The C++ sources to be checked by a CCEL program are the target C++ sources.

CCEL constraints are used to describe the rules about C++ sources. They are loosely based
on expressions in the predicate calculus, allowing programmers to make assertions (modeled on
the assert macro) involving existentially or universally quantified CCEL variables. If an assertion
fails, violation messages would be reported. The following is an example of a CCEL constraint:

2 2 OVERVIEW OF CCEL

II Every base class must have a virtual destructor:
File IListNode.H" : VirtualDtorlnBase (

Class B; II for each class B
Class D I D.is_descendant(B); II for each class D derived from B

Assert(MemberFunction B: :bmf; I II there must exist a member

II function bmf in B such that:

bmf . name () :::: II-II + B. name () &:&: bmf . is_virtual ());

) ;

In CCEL, the characters / / start a comment to the end of the line, just as in C++. An English
translation for this constraint is:

For all classes Band D declared in the file ListNode. H such that D is a descendant of
B, it must be true that there exists a member function bmf in class B such that bmf's
name is a tilde followed by B's name and bmf is virtual.

The name of the above constraint is VirtualDtorlnBase. "ListNode. H" specifies where in
the target C++ sources VirtualDtorlnBase applies. The file ListNode. H is called the applicable
scope of VirtualDtorlnBase. An applicable scope can be the entirety of the target C++ sources
or any combination of the files, the functions, and the classes in the target C++ sources. Class and
MemberFunction are CCEL classes. CCEL classes are the type system of CCEL (see Figure 1). B, D,
and bmf are CCEL variables. Variables Band Dare of type Class, so their values may range over the
classes in the target C++ sources. bmf is of type MemberFunction and its values may range over the
member functions. Because Band D are declared outside the Assert clause, they are universally
quantified variables. On the other hand, bmf is an existential quantified variable ,because it is
declared inside the Assert clause.

The functions is_descendant 0, name 0, is_virtual 0 , operator== 0, operator+ 0, and
operator&&O are CCEL class member functions (see Table 1). Function calls to CCEL class
member functions are used to construct CCEL expressions. In the above example,

D.is_descendant(B)

and

bmf .name () :::: + B. name () &:&: bmf. is_virtual ()11- II

are CCEL expressions. The is a string literal. The Assert clause comprises the essence ofII-II

the constraint. It asserts that for all possible bindings of the universally quantified variables Band
D, there must exist at least one binding of the existentially quantified variable bmf such that the
expression inside it,

II-IIbmf .name () :::: + B.name() &:&: bmf.is_virtual()

evaluates to true.
If this constraint is violated, a violation message is to be reported. For example, suppose the

target C++ sources are the following:

3

class Object {
public:
virtual char *is_a();

};

class Ball : public Object {

};

Classes Obj ect and Ball violate the constraint VirtualDtorlnBase, because Obj ect is the base
class of Ball, but it does not have a virtual destructor. A message about this violation is reported
as follows:

"constraint.ccel", line 28: VirtualDtorlnBase violated:
B = Object ("objects.H", line 15)
D = Ball ("objects .H", line 20)

The message says that the constraint VirtualDtorlnBase beginning on line 28 in the CCEL source
file constraint. ccel is violated because the variable B can be bound to the C++ class Obj ect,

which begins on line 15 in the C++ source file obj ect . H, and because variable D can be bound to
class Ball, which begins on line 20 in the file obj ect. H. The above violation message is in the
default format. However, formats of violation messages may be defined by CCEL programmers
themselves.

Constraint qualifiers are used to change the applicable scopes of constraints. For example, the
constraint qualifier

File "TreeNode. H" : EnableVirtualDtorlnBase (
Enable VirtualDtorlnBase;

) ;

makes virtualDtorlnBase apply to the file TreeNode.H in addition to ListNode .H.
Constraint classes are used to group individual constraints and constraint qualifiers. For exam

ple, a constraint class can be used to group the constraints related to VirtualDtorlnBase together:

II Some constraints about base classes:
File "ListNode.H" : RequirementsOnBase {

Class B; II for each class B
BClass D I D.is_descendant(); II for each class D derived from B

VirtualDtorlnBase (
Assert(MemberFunction B: :bmf; I

bmf.nameO == II-II + B.nameO && bmf.is_virtuaIO);
) ;

CtorlnBase (
Assert(MemberFunction B: :bmf; I

bmf.name() == B.name());
) ;

};

4	 3 CCEL LEXICAL CONVENTIONS

As shown above, the constraints in a constraint class may share the applicable scope and universally
quantified variables.

Summarizing, the features of CCEL are:

•	 CCEL classes represent the components of C++ sources, such as classes, functions, variables,
etc. They serve as the type system of CCEL. CCEL classes are described in Section 4.

•	 CCEL variables are declared with one of the CCEL classes as their types and are to be
bound to the components represented by the CCEL class. CCEL variables are described in
Section 5.

•	 CCEL expressions are constructed with function calls to CCEL class member functions.
They may be used to specify the restrictions on variable bindings, the goals of Assert clauses,
or the formats of violation messages. CCEL expressions are described in Section 6.

•	 CCEL constraints are used to express rules about C++ sources by making assertions in
volving existentially and/or universally quantified CCEL variables. CCEL constraints are
described in Section 7.1.

•	 Applicable scopes are the part of target C++ sources to which a constraint applies. They
may be specified in constraint declarations or may be changed by constraint qualifiers. Con
straint qualifiers are described in Section 7.2.

(•	 Constraint classes are used to group together individual constraints which may share the
applicable scope and universally quantified variables. Constraint classes can also be used to
group constraint qualifiers. Constraint classes are described in Section 7.3.

•	 Violation messages are reported if CCEL constraints are violated. Violation messages may
be reported in a default format or in user-defined formats. Violation messages are described
in Section 8.

In the rest of this document, the CCEL language is formally described. The syntax notation
used in this document is similar to that used in the ARM [2]. The syntactic categories are indicated
in slanted type, and literal words and characters in typewriter type. Alternatives are listed on
separate lines. An optional symbol is indicated by the subscript opt. Design issues, examples, etc,
which have no place in a reference manual, are presented as annotations as the ARM does.

3 CCEL Lexical Conventions

3.1 Tokens

There are five kinds of tokens in CCEL: identifiers, keywords, literals, operators, and other separa
tors. In CCEL, the white space characters are treated in the same way as in C++.

3.1 Tokens 5

~ CCEL Class I Member Function ~ I

AnyParameter lnt positionO
C++Object String fileO Member Function CCEL Class

lnt beginJineO lnt is_class_templateOTemplate
lnt end_lineO lnt is_function_templateO

Class lnt has_name(String)Type
DataMember Type basiC-typeO
Function lnt num_paramsO lnt operator == (Type)

lnt is_inlineO lnt is_convertible_to(Type)
lnt is_friend(Class) lnt is_enumO

Int lnt operator == (lnt) lnt is_classO
lnt operator < (lnt) lnt is_structO
lnt operator ! 0 lnt is_unionO
lnt operator && (lnt) lnt is_friend(Class)
lnt operator II (lnt) lnt is_child(Class)
lnt operator != (lnt) lnt is_descendant(Class)
lnt operator> (lnt) lnt is_virtuaLdescendant(Class)
lnt operator <= (lnt) lnt is_public_descendant(Class)
lnt operator >= (lnt) lnt operator != (Type)
lnt is_privateOMember TypedObject Type typeO
lnt is_protectedO lnt numindirectionsO
lnt is_publicO lnt is_referenceO

MemberFunction lnt is_virtualO lnt is_staticO
lnt is_pure-YirtualO lnt is_volatileO
lnt overrides(MemberFunction) lnt is_constO

NamedObject String nameO lnt is_arrayO
lnt scope_is_globalO lnt is_longO
lnt scope_isJlleO lnt is_shortO

Parameter lnt has_default_valueO lnt is_signedO
String lnt operator == (String) lnt is_unsignedO

lnt operator < (String) lnt is_pointerO
lnt match(String) TypeMember
String operator + (String) TypeParameter
lnt operator != (String) Variable lnt scope_is_localO
lnt operator> (String)

lnt operator <= (String)

lnt operator >= (String)

Table 1: CCEL Class Member Functions. The functions shown in the upper box of each CCEL
class are primary functions. The ones in the lower box are secondary functions. A primary function
is necessary for the expressive power of CCEL. A secondary function is just a convenience function
and is defined in terms of the primary functions.

6 3 CCEL LEXICAL CONVENTIONS

Int String C++Object

Figure 1: CCEL Class Hierarchy

3.2 Comments

The characters I I start a comment in CCEL in exactly the same way as C++ . The C++ block
comment 1* ... *1 is not supported in CCEL.

3.3 Identifiers

The rule for making a legal identifier in CCEL is the same as in C++.

3.4 Keywords

The following identifiers are reserved as keywords in CCEL and cannot be used in any other fashion:
Assert Enable Disable

• Unlike C++, the names of built-in types are not reserved as keywords in CCEL. Thus, as
few restrictions as possible are imposed on CCEL programmers. There is no ambiguity in the
CCEL grammar whether those names are reserved as keywords or not.

The ASCII representation of CCEL programs uses the following characters as operators or for
punctuation:

() + { } II < >

and the following character combinations are used as operators:

<= >= != && II

Each is a single token.

3.5 Literals	 7

3.5 Literals

CCEL allows integer literals and string literals. An integer literal must be given in the decimal
form and is treated in the same way as a decimal integer constant in C++. A string literal is given
in the same way as a string literal in C++ except that those escape sequences which represent single
quotes, question marks, octal numbers and hexadecimal numbers are not provided in CCEL. This
is because single quotes and question marks are not punctuation characters in CCEL, and CCEL
is not used for numerical purposes.

4 CCEL Classes

CCEL classes are the type system in CCEL. In C++, fundamental types such as int, char, etc are
not treated as classes. Members and inheritance relationships are not allowed for them. Unlike
C++, all CCEL types are classes and may have members and inheritance relationships. Based on
the object-oriented model, CCEL classes are arranged in a multiple inheritance is-a hierarchy and
represent the components of C++ sources, such as templates, types, classes, functions, variables,
etc (see Figure 1). CCEL class member functions are defined to access information about the
properties of the components (see Table 1).

The following is a list of CCEL classes:

•	 Int: The integer type.

• String: The string type.

•	 C++Object: The components of C++ sources, such as types, functions, etc.

•	 NamedObject: The named components of C++ sources, including templates, types, functions,
variables.

•	 Type: C++ types.

•	 Class: C++ classes, Le. class, struct, and union .

• Most C++ programmers might want to draw distinctions between class and struct.
However, class, struct, and union are all called classes in C++ by Stroustrup's book, The
Annotated C++ Reference Manual [2) (in the rest ofthis document, this book will be referred
as C++ ARM). To be consistent with C++, we use one CCEL class, Class, to represent all
generally speaking C++ classes, including struct, class, and union.

•	 Template: C++ templates, including class templates and function templates.

• TypedObject:	 The components of C++ sources that have types associated with them, including
variables and functions.

•	 Function: C++ functions, including global functions, file static functions, and class member
functions.

8	 4 CCEL CLASSES'

•	 Variable: C++ variables, including global variables, file static variables, function parameters,
local variables, and class data members .

• The class Variable also represents C++ function parameters because function param
eters are just like variables in C++ . Furthermore, most constraints generally imposed on
global variables, local variables, and class data members are also intended to be imposed
on function parameters.

•	 AnyParameter: C++ parameters, including function parameters and template parameters.

•	 Parameter: C++ formal function parameters or formal template non-type parameters.

•	 TypeParameter: The actual type parameters of C++ template instantiations.

•	 Member: C++ class members, including member functions, data members, and even type
members (types declared in a class).

•	 MemberFunction: C++ class member functions.

•	 DataMember: C++ class data members.

•	 TypeMember: The C++ types which are declared or introduced by typedef inside a class.

Detailed descriptions of each CCEL class and its member functions are presented in Section 9 .

• When designing CCEL, we determined which classes were needed by examining in detail
the concepts important to C++ programmers and the constraints which programmers commonly
want to express. Then, we classified the concepts we had identified into GGEL classes, such as
the C++ classes and member functions, and into properties of CCEL classes (accessed by member
functions), such as the protection level of a C++ member function. Finally, we determined the
CCEL class hierarchy by analyzing the features of the CCEL classes and by moving the common
features up the hierarchy into more general CCEL classes.

While abstracting the concepts of C++ into CCEL classes, we often had to decide if a concept
was a new CCEL class or if it could be expressed as member functions of the existing CCEL
classes. For example, the only difference between a C++ class and a C++ struct is that the default
protection for a class is private while the default protection for a struct is public. One possibility
would be to use a single CCEL class to represent both class and struct with a boolean member
function indicating whether it is a class. A second possibility would be to use two CCEL classes
to represent class and struct separately, with their common functionality abstracted to a base
CCEL class (this has been tried in an earlier version of CCEL [1]).

We also combined concepts into one CCEL class when the differences were trivial and the
additional complexity of having a new CCEL class outweighed the increased functionality. For
example, we think the distinction between functions in general (i.e., both global and mem
ber functions) and global functions in particular is not significant, so the current CCEL class
hierarchy has no single CCEL class specifically devoted to global functions.

9

5 CCEL Variables

Each CCEL variable must be declared with a CCEL class as its type. CCEL variables are like the
tuple variables in a database query language: during evaluation, they are bound to values from the
program information database of the target C++ sources [6]. For example, a CCEL variable of type
Member may be bound to each class member in the target C++ sources.

There are two kinds of CCEL variables-the universally quantified variables and the existentially
quantified variables. The way they are quantified depends on where they are declared. This will be
explained in Section 7.1, Constraints.

All CCEL variables must be declared before use. A variable declaration has the form:

variable_declaration:

class_name variable-specifier-list ;

class_n ame:

identifier

variable-specifier-list:

variable-specifier

variable-specifier-list , variable-specifier

A class_name is the name of one of the CCEL classes which can be used to declare CCEL
variables, i.e. NamedObject or any CCEL classes derived from I\lamedObject.

A variable_specifier has the form:

variable-specifier:

variable-scoper conditionopt

variable-scoper:

variableJ1ame

class_variableJ1ame :: variableJ1ame

function_variableJ1ame (variableJ1ame)

template_variableJ1ame < variableJ1ame>

variableJ1ame:

idel1tifier

class_variableJ1ame:

identifier

funetion_ variableJ1ame:

identifier

tempIate_variableJ1 ame:

identifier

For the first alternative of a variable_scoper, the type of the declaration must be one of the
following CCEL classes which can be used to declare variables directly: I\lamedObject, Type, Class,
Template, TypedObject, Function, and Variable. For example,

10	 5 CCEL VARIABLES

Class C;

declares the CCEL variable C of type Class. The variable is to be bound to each class in the target
C++ source.

For the second alternative of a variable_scoper, class-Yariable_name is the name of a CCEL
variable which has been declared of type Class. The type used in this declaration must be Member,
MemberFunction, DataMember, or TypeMember. For example,

Class C;
MemberFunction C::mfunc;

declares the CCEL variable mfunc of type MemberFunction. The variable is to be bound to each
member function of the class to which the CCEL variable C is bound.

For the third alternative of a variable_scoper, function_variabLe_name must be the name of a
CCEL variable which has been declared of type Function or MemberFunction. The type used in this
declaration must be Parameter. For example,

Class C;
MemberFunction C::mfunc;
Parameter mfunc(p);

declares the CCEL variable p of type Parameter. The variable is to be bound to each parameter of
the member function to which the CCEL variable mfunc is bound.

For the last alternative of a variable_scoper, template_variabLe_name must be the name of a
variable which has been declared of type Template. The type used in this declaration must be
AnyParameter, Parameter, or TypeParameter. For example,

Template	 T;
TypeParameter T<C>;

declares the variable C of type TypeParameter. The variable is to be bound to each type parameter
of the template to which the CCEL variable T is bound.

If present, a condition is a vertical bar followed by a CCEL expression (see Section 6):

condition:

I expression

The expression here is a binding restriction expression. It specifies the restriction on the values to
be bound to the variable being declared. The vertical bar means such that (as in set theory). Only
those components in the target C++ sources which make the expression evaluate to true can be
bound to the variable. The result of the expression must be an integer, because a boolean value is
required here (see Section 9.1 about type Int and boolean values). For example, the following are
CCEL variable declarations:

Function	 f1 I f1.nameO == "quick_sort",

f2;

The function nameO is a member function of the class NamedObject. It returns the name of
the named object. The possible bindings of the variable ft are the functions whose names are
quick_sort. On the other hand, f2 may be bound to each function in the target C++ sources.

11

6 CCEL Expressions

In CCEL, expressions are used to specify the restrictions on variable bindings, the goals of Assert
clauses (see Section 7.1), or the formats of violation messages (see Section 8). A CCEL expression
is constructed with function calls to CCEL class member functions. A call to an operator member
function must be written in infix form rather than function call form. The operator precedence of
CCEL member functions is the same as in C++. Parentheses can be used to enforce the order of
the computation of operators.

For example, suppose x is a CCEL variable of type NamedObject. The following is a CCEL
expression:

x . name 0 == "List"

In the above, the member function name 0 of the variable x is called first and name 0 returns a
string. Then the member function operator== of the returned string is called with the string literal
"List II as the parameter. The above expression may not be written as

x . name 0 .operator == ("List") II error!

This restriction makes the syntax of CCEL simpler.
A CCEL expression has the form:

expresslOn:

logicaLor-expression

logicaLor-expression:

logicaLan d_expression

logicaLor-expression I I logicaLand_expression

logicaLand_expression:

equali ty_expression

logicaLand_expression && equality_expression

eq uali ty_expression:

relationaLexpression

equality_expressiOll == relationaLexpression

equality_expression ! = relationaLexpression

relationaLexpression:

addi tive_expression

relationaLexpression < addi ti ve_expression

relationaLexpression > additive_expression

relationaLexpression <= addi ti ve_expression

relationaLexpression >= additive_expression

addi ti ve_expression:

unary_expression

additive_expression + unary_expression

12 6 CCEL EXPRESSIONS

unary_expression:

literal

(expression)

postfix_expressioll

! unary_expression

literal:

string_Ii teral

integer_literal

postfix-expression:
variable-llame

postfix_expression . memberJunction_name (expression_listopt)

variableJlame:
identifier

memberJunction_name:
identifier

expression_list:

expression

expression_list • expression

Notice that according to the grammar, the infix notation of operator member function calls
is allowed for literals, but the dot notation of ordinary member function calls is not allowed for
literals. For example, the expressions

42.is_short() I I syntax error

"strcmp".matches("strcmp") II syntax error

are rejected by the CCEL grammar. However, the expressions

500 > x.end_line() II ok ! (x is a NamedObject variable)

"There should be no global function: II + f .nameO I I ok ! (f is a Function variable)

are allowed in CCEL.

• To prevent the CCEL grammar from accepting expressions like this,

(42). is_short 0 II recognized by grammar as: (expression).is_short()

parentheses are not allowed with the dot notation of ordinary member function calls. That is,
the expressions,

(mf).is_virtual() II syntax error
(x.nameO + y.nameO) .match(IStackNode") II syntax error

are rejected as syntax errors.

13

7 CCEL Constraints

7.1 Constraints

CCEL constraints are used to express the rules about C++ sources. They are loosely based on
expressions in the predicate calculus, allowing programmers to make assertions (modeled on the
assert macro) involving existentially or universally quantified CCEL variables. If an assertion
fails, violation messages are reported.

A CCEL constraint has the form:

constraint:
originaLapplicable...scopeopt constraint-name (constraint-body) violation.messageopt

constraint-name:

identifier

A constrainLname is an identifier and serves as the name of the constraint being declared. No
two constraints declared outside constraint classes may have the same name.

An originaLapplicable_scope is used to specify the applicable scope of the constraint being
declared. The applicable scope specified here is the original applicable scope because the appli
cable scope may be changed by constraint qualifiers (this will be explained in Section 7.2). An
originaLapplicable_scope has the form:

originaLapplicable...scope:

scope_selector_list :

scope_selector_list:

scope_selector

scope_selector_list • scope_selector

scope_selector:

File C++_file_selector

Class C++_dass_selector

Funct ion C++Junction_selector

C++_file_selector:

string_li teral

C++_dass_selector:

string_literal

C++Junction_selector:

string_literal

The original applicable scope of a constraint is the union of the C++ files, classes, and func
tions listed in the originaLapplicable_scope. If an originaLapplicable_scope is not given, the orig
inal applicable scope of the constraint being declared is the entire target C++ sources by de
fault. In an originaLapplicable_scope, a C++_tile_selector has the same syntax and semantics

14 7 CCEL CONSTRAINTS

as the UNIX sh wildcards [4]. Whether the file names given here should include paths or not
is implementation-dependent. This is because some environment parameters such as the current
directory would be involved if file names not including full paths are allowed. A C++_class_selector
and a C++_function_selector have the same syntax and semantics as the regular expressions of
UNIX command grep [4]. For example, the following is an original applicable scope specification:

File "my_*.H", Class "-Human", Function "-Animal: :move$" : MyRequirement (

) ;

The original applicable scope of the constraint myRequirement is all the files whose names match
the wildcard my _*. H, all the classes whose names match the regular expression -Human, and the
member functions whose names are Animal: :move. As shown in this example, to refer to a function
or a class which is not global, the full name including the scope resolution operator

.. must be given.

• For CCEL constraint libraries, sometimes it would be more convenient to let the original
applicable scopes of the library constraints be null. Then library users can use constraint
qualifiers to enable the constraints needed for their C++ sources. To make an original applicable
scope null, a non-existing file name (or a class, a function) or an empty file can be used as:

File "" : SomeSpecificRule (

) ;

File "empty.H" : AnotherSpecificRule (

) ;

The first approach is safer.

A constraint-body has the form:

constrain Lbody:

variable_declaratiOlL1istopt assertion

A variable_declaration_list is a list of CCEL variable declarations:

variable_declaration-list:

variable_declaration

variable_declaration-list variable_declaration

The CCEL variables declared here are universally quantified.
An assertion is the Assert clause which comprises the essence of a constraint. An Assert clause

has one of the forms:

assertion:

Assert (variable_declaration-list I expression)

Assert (expression) ;

Assert (variable_declaratiOlL1ist) ;

7.1 Constraints	 15

In contrast to the fact that the CCEL variables declared outside the Assert clause are universally
quantified, the variables declared inside the Assert clause are existentially quantified. No two
variables declared in a constraint may have the same name. In the second alternative of the Assert

clause shown above, there are no existentially quantified variables declared.
The expression inside an Assert clause is used to specify the goal of the assertion. The result of

the expression must be an integer because a boolean value is required (see Section 9.1 about type
Int and boolean values). The existentially quantified variables declared in the Assert clause and
the universally quantified variables declared in the constraint can be used in the expression. The
third form of an Assert clause is equivalent to the first form with the boolean literal TRU E as the
expression:

Assert (variable_declaration-list I TRUE)

A constraint asserts that for each combination of the bindings of the universally quantified
variables, there must exist at least one combination of the bindings of the existentially quantified
variables such that the assertion expression is true. The assertion fails in the condition that for
some combination of the bindings of the universally quantified variables, there exists no possible
combination of the bindings of the existentially quantified variables such that the assertion expres
sion is true. For the cases in which there are no universally quantified variables, or no existentially
quantified variables, or for the cases in which the variables are declared but there are no possible
bindings for them, the conditions to make the assertion fail or not are:

•	 Under the circumstance where there are no universally quantified variables declared, the
assertion fails if there exists no possible combination of the bindings of the existentially
quantified variables such that the assertion expression is true.

•	 Under the circumstance where there are universally quantified variables declared but there is
no possible combination of bindings for them, the assertion never fails.

•	 Under the circumstance where there are no existentially quantified variables declared, the
assertion fails if any combination of the bindings of the universally quantified variables makes
the assertion expression evaluate to false.

•	 Under the circumstance where there are existentially quantified variables declared but there is
no possible combination of bindings for them, the assertion fails no matter what the assertion
expression is.

A violation message is to be reported for each combination of the bindings of the universally quan
tified variables which makes the assertion fail. For a constraint without any universally quantified
variables, a single violation message is to be reported if the assertion fails. The violation_message
at the end of a constraint declaration is used to specify the format of violation messages. This is
described in Section 8.

The simplest possible constraint consists of only the constraint identifier and the Assert clause.
For example:

16	 7 CCEL CONSTRAINTS

II The global inline function debug must be declared:
GloballnlineDebugExist (

II there must exist a function F such that ...

Assert(Function F I F .nameO == "debug" &&

F.scope_is_global() &&

F.is_inline(););
) ;

This constraint, having the identifier GlobalInlineDebugExist, declares the existential quantified
variable F of type Function. It asserts that there must exist a function which has the name debug
and which is a global inline function .

• In fact, any binding restriction expressions of the existential quantified variables can be
moved into the assertion expression combined with AND operators to make a new constraint
which retains the same semantics. For example, the above constraint can also be written as:

InlineDebugExist (
Assert(Function F; I II the following is the assertion expression:

F .nameO == "debug" &&

F.scope_is_global() &&

F.is_inline());
) ;

However, to put binding restriction along with variable declarations is sometimes more straight
forward and makes the CCEL code clearer. Furthermore, the binding restriction on an individual
CCEL variable may help the efficiency of constraint evaluation.

The following constraint involves both universally quantified variables and existentially quanti
fied variables:

II Base::draw must be overridden in all classes derived from Base:
RedefineBaseDraw (

Class B I B.nameO == "Base"; I I for class B whose name is "Base"

Class C I C.is_descendant(B); II for each class C derived from B

MemberFunct ion B: :bmf I bmf. name () == "draw";

II for member function bmf in B, which has
II name "draw"

Assert(MemberFunction C: :cmf I cmf.overrides(bmf););
II there must exist a member function cmf in C
II such that cmf override bmf

) ;

It declares the universally quantified variables B, C, and bmf, and the existential quantified variable
cmf. It asserts that there must exist a member function in any class derived from Base such that
the member function overrides the member function Base: : draw.

7.2 Constraint Qualifiers 17

• CCEL programmers must be careful when making a decision to declare a variable univer
sally quantified or existentially quantified. For the above constraint, no violation message will
ever be reported if the function Base: :draw is missing. On the other hand, suppose that the
variable bmf is declared as an existentially quantified variable:

RedefineBaseDraw (

Class BIB .nameO == "Base";

Class C I C.is_descendant(B);

Assert(MemberFunction B: :bmf bmf .name() == "draw";
II asserts that Base::draw must exist

MemberFunction C: :cmf rdraw.overrides(bmf););
) ;

Redef ineBas eDraw is violated if the member function Bas e : :draw is not declared in the target
C++ sources.

It is sometimes useful to write a constraint such that any possible bindings of the universally
quantified variables make the assertion fail. For example:

II No member functions in struct:
NoMemberFunctionlnStruct (

Class S I S.is_struct(); II for each class S which is a struct

MemberFunction S: :smf; II for each member function smf in S

II the assertion should fail for any combination of structs

II and member functions that satisfy the above relationships

Assert(FALSE);

) ;

However, it is meaningless to write a constraint with the Assert clause like this:

Assert(TRUE);

This is because there is no way to violate such a constraint and no violation message could ever be
reported.

7.2 Constraint Qualifiers

A constraint qualifier is used to enable or disable some constraints or some other constraint qualifiers
in its applicable scope. It has the form:

constrain Lqualifier:
originaLapplicable...scopeopt constrainLqualifier_llame (constrainLqualifier_body)

cons traill LqualifierJlame:

identifier

cOllstrainLqualifier_body:

18 7 CCEL CONSTRAINTS

en able_disable_statemen Uis t

enable_disable_statemenUist:

enable_disable_statemen t enable_disablastatemenUistopt

enable_disable_statement:
enable_statement
disable-statement

enable_statement:

Enable constrainLselector_list ;

disable-statement:

Disable constrainLselector_list ;

constrain Lselector-list:

constrain Lselector

constraint-seleetor_list , cOllstraillLselector

cOllstraillLselector:

COll S train Lname

constrain LqualifierJlame

constrain Lclass_n arne

constrainLclass_name :: constrainLname

constrainLclass_name :: constrainLqualifierJlame

cOllstrainLname:

identifier

constraillLqualifierJlame:

idelltifier

cOllstrainLclass_llame:

idelltifier

Constraint classes will be described in Section 7.3. Here, just regard both constrainLclass_name
and constrainLclass_name: : constrainLname as constrainLname.

The originaLapplicabLe_scope in a constraint qualifier declaration has the same syntax and
semantics as in a constraint declaration. The constrainLquaLifier-name is an identifier and serves
as the name of the constraint qualifier. No two constraint qualifiers declared outside constraint
classes may have the same name. A constraint and a constraint qualifier declared outside constraint
classes may not have the same name.

An enabLe_statement is used to enable those constraints or constraint qualifiers whose names
are listed in the statement in the applicable scope of the constraint qualifier. A disabLe_statement
is used to disable those constraints or constraint qualifiers whose names are listed in the statement
in the applicable scope of the constraint qualifier. For example:

File "my. H" : MyLimi t (

7.2 Constraint Qualifiers 19

) ;

File new .H" : EnableMyLirnitI

Enable MyLirnit;
) ;

Function "-rny_sort$".: DisableMyLirnit (

Disable MyLirnit;

) ;

The original applicable scope of the constraint MyLimit is the file my. H. Enabled by the constraint
qualifier EnableMyLimit and disabled by another constraint qualifier DisableMyLimit, MyLimit
applies to the two files my. H and new. H but not the function my_sort. If there are both Enable
statements and Disable statements acting on a constraint, the applicable scope of the constraint is
decided by computing the scope union operations indicated by the Enable statements earlier than
the scope minus operations indicated by the Disable statements. That is: enlarge the applicable
scope first, then shrink it. The order of the statements shown in the CCEL source code does not
matter. For example, adding to the above the constraint qualifier

DisableMyLirnitAtAll

Disable MyLirnitj

Enable MyLirnit;

) ;

makes MyLimit apply to nothing because it is disabled in entire target C++ sources at last.
A constraint qualifier can be used to enable or disable another constraint qualifier. However, a

constraint qualifier cannot enable or disable itself. It also cannot enable or disable any constraint
qualifier which affects its applicable scope. To re-enable a disabled constraint, another constraint
qualifier has to be used to disable the constraint qualifier which disables the constraint. For example,
adding to the above one more constraint qualifier

Function l-new .H$" : DisableDisableMyLirnitAtALL

Disable DisableMyLirnitAtALL;

) ;

makes the constraint MyLimit apply to the file new. H, not including the function my_sort .

• It should be common that the persons who use CCEL constraints to check their C++ sources
are not the persons who wrote the constraints. This is one of the most important inspirations
for us to support the constraint qualifier mechanism in addition to the original applicable scope
specification in CCEL. It is convenient to take a set of CCEL constraints and then use a set
of constraint qualifiers to decide their applicable scopes without touching the code of these
constraints.

• In contrast to a constraint class that can be used to group the constraints which have repet
itive universally quantified variables, a constraint qualifier can be used to group the constraints
which have no repetitive universally quantified variables. For example:

20 7 CCEL CONSTRAINTS

II Class names must begin with a capital letter:

File 1111 : ClassNameCapitalLeading (

Class C;

Assert(C.nameO.match("-[A-Z]"));
) ;

II Function names must begin with a lower case letter:

File 1111 : FunctionNameLowerCaseLeading (

Function f;

Assert(f .nameO .match(11- [a-z] II));

) ;

II A set of naming rules:
File '"l : NamingConventions (

Enable ClassNameCapitalLeading, FunctionNameLowerCaseLeading;
) ;

Notice that the original applicable scopes of the above constraints are all null. To make both
ClassNameCapitalLeading and FunctionNameLowerCaseLeading apply to some part of the
target C++ sources, someone can just enable the constraint qualifier NamingConventions instead
of enabling two individual constraints.

7.3 Constraint Classes

A constraint class is used to group individual constraints and constraint qualifiers. It has the form:

constraiJl Lc1ass:

originaLapplicable..scopeopt COlIS train Lc1ass_name { constraill Lc1ass_body }

constrain Lc1ass_name:

identifier

COlIS train Lc1ass_body:

variable_dec1aratiOlLlistopt constrain Lor_qualifier-list

constraiJlLor_qualifier-list:

constraiJlLor_qualifier collstraiJlLor-qualifier-listopt

constraiJlLor_qualifier:

constraint

COlIS train Lqualifier

Notice that the extent of constraint classes is demarcated by brackets { ... }, while individual
constraints use parentheses as their delimiters. Also, constraint classes cannot be nested.

A constrainLc1ass_name is an identifier and serves as the name of the constraint class. No two
constraint classes may have the same name. No constraint declared outside constraint classes may

7..3 Constraint Classes 21

have the same name as a constraint class.
As for an individual constraint, the originaLapplicable_scope in a constraint class declaration

is used to specify the original applicable scope of the constraint class. An original applicable scope
specification is not allowed for individual constraints or constraint qualifiers inside a constraint
class. The original applicable scope of a constraint or a constraint qualifier inside a constraint class
is the original applicable scope of the constraint class.

A constrainLoLqualifieLlist is a list of CCEL constraint or constraint qualifier declarations.
No two constraints or constraint qualifiers declared in a constraint class may have the same name.

The variable_dec1aration_list is a list of variable declarations. It declares the CCEL variables
which belong to the constraint class. A variable so declared is a constraint class variable. No two
constraint class variables of a constraint class may have the same name. No variable declared in
the constraints of a constraint class may have the same name as any constraint class variable of
the constraint class. A constraint class variable can be used as a universally quantified variable
in any constraint of the constraint class. A constraint class variable affects only those constraints
which directly or indirectly use the variable. Directly use means that the constraint class variable is
referred to explicitly. Indirectly use means that some other constraint class variable whose binding
restriction expression involves the variable is directly or indirectly used in the constraint. For
example:

II Members must be declared in this order: public -> protected -> private:
MemberDeclOrdering {

Class C;
Member C: :pub I pUb.is_public();
Member C: :prot I prot.is_protected();
Member C: :priv I priv.is_private();

PublicBeforeProtected (

Assert(pUb.begin_line() < prot.begin_line());

) ;

PublicBeforePrivate (

Assert(pUb.begin_line() < priv.begin_line());

) ;

ProtectedBeforePrivate (

Assert(prot.begin_line() < priv.begin_line());

) ;

};

In the above example, the variable C acts as if it has been declared as a universally quantified
variable in all the three individual constraints. pub is just like it has been declared in both
PublicBeforeProtected and PublicBeforePrivate. prot is just like it has been declared in both
PublicBeforeProtected and ProtectedBeforePrivate. priv is just like it has been declared in
both PublicBeforePrivate and ProtectedBeforePrivate.

• The rule to decide whether the binding restriction of a variable involves some other variable
or not is based on the syntax but not on the logical meaning. For example:

22 7 CCEL CONSTRAINTS

OddConstrClass {
Class A;
Class B I A.nameO == "joke"; II logically, B's bindings don't involve A

ConstrX (

Class C I C.is_descendant(B);

) ;

};

In the above example, B is regarded as related to A and both Aand B will affect ConstrX.

There are some constraints which can be used together to make C++ struct just like C struct.
They can be grouped together into a constraint class called LimitedStruct:

II Make C++ struct just like C struct:

File "x.H", File "y.H" : StructLikeCStruct {

Class S I S.is_struct();

OnlyPublicMember (

Member S: :m;

Assert(m.is_public());
) ;

NoMemberFunction (

MemberFunction S: :mf;

Assert(FALSE);
) ;

No Inheritance (

Class C I S.is_descendant(C);

Assert(FALSE);
) ;

};

The applicable scope of the constraint class StructLikeCStruct is the files x. Hand y. H, such
that each of the individual constraints OnlyPublicMember, NoMemberFunction, and Nolnheritance
applies to x. Hand y . H. A constraint qualifier can be used to enable or disable a constraint class or
an individual constraint of a constraint class. For example, add the following constraint qualifiers
to the above example:

File "z.H" : EnableLimitedStruct

Enable LimitedStruct;

) ;

File "x .H" DisableNoInheritance (

23

8

Disable LimitedStruct: :Nolnheritance;
) ;

Now LimitedStruct: : OnlyPublicMember and LimitedStruct: :NoMemberFunction apply to the
file z. H in addition to the files x. Hand y. H. Disabled by DisableNolnheritance in the file x. H,
Limited: : Nolnheritance applies only to the files y. Hand z. H. As shown above, an individual
constraint of a constraint class can be referred to outside the constraint class with the form:

COllstrainLclass_name :: constraillLname

• To take out repetitive universally quantified variables to be declared as constraint class
variables does not only make the code cleaner but also enhances the efficiency of constraint
evaluation because the individual constraints can share the bindings.

Violation Messages

Violation messages are to be reported if a constraint is violated. For each combination of the
bindings of the universally quantified variables which makes the assertion fail, there is a violation
message to be reported. For a constraint without any universally quantified variables, a single
violation message is to be reported if the assertion fails.

In a constraint declaration

constraint:
originaLapplicable...scopeopt constrainLname (constrainLbody) YiolationJTlessageopt ;

the violation_message is used to specify the violation message format of the constraint being de
clared. It has the form:

YiolationJTlessage:

expreSSlOn

It is a CCEL expression whose result is a string. This string is reported as the violation message.
Some built-in special tokens can be used as strings in the expression. These strings provide the
information about the constraint (see Table 2). If a CCEL variable, say x, is referred to alone as a
string in this expression, it is taken as the following string which provides the information about
the binding of x:

x.name() (" x .file()", line x.beginJinem

(see the example later in this section). Ordinarily, the CCEL member functions begin_line 0
and end_lineO return values of type Int. However, if they are called in a violation_message, they
return strings which represent the integers which they ordinarily return.

If a violation_message is not given in a constraint declaration, the following default format is
used for the violation messages of the constraint:

24 8 VIOLATION MESSAGES

default-violationJIlessage:

Constraintlnfo + "violated:" variable_binding-infoJistopt

variable_binding-infoJist:

variable_binding-info variable_binding-infoJistopt

variable_binding-info:
+ "\n\t" + variableJleading + variableJlame

For each universally quantified variable of the constraint, there is a corresponding variable_binding_info.
The variable_heading is a string literal. If the name of the variable is bmf, the corresponding
variable_heading is "bmf = ". The variable_name is referred to alone as a string here, so that it is
to be taken as the string which provides the information about the binding as described earlier in
this section.

• The default format of violation messages is deliberately designed to be compatible with
that of standard UNIX software development tools, e.g., compilers. The benefit of this design
decision is that programs that already know how to parse output messages from other tools will
also be able to work seamlessly with a CCEL-based constraint-checking system.

For example, suppose that the constraint

II Subclasses must never redefine an inherited non-virtual member function:
NoNonVirtualOverrides (

Class B;

Class D I D.is_descendant(B);

MemberFunction B: :bmf;

MemberFunction D::dmf I dmf.overrides(bmf);

Assert(bmf.is_virtual());
)

Constraintlnfo + ": Non-virtual" + B.name() + "::" + bmf .name() + "overridden by \n\t"

+ dmf + " of class" + D.name + " !";

IS violated in the situation that the non-virtual member function getSizeO of class Table is
overridden by the member function getSizeO of the derived class HashTable. The following
violation message is reported:

"rules. ccel" , line 5: NoNonVirtualOverrides: Non-virtual Table::getSize overridden by
getSize ("hash_table.H", line 123) of class HashTable !

If the user-defined format is not present, the violation message is reported in the default format as
follows:

"rules.ccel", line 5: NoNonVirtualOverrides violated:

B = Table ("table. H", line 12)

D = HashTable ("hash_table.H", line 17)

bmf = getSize ("table. C", line 53)

dmf = getSize ("hash_table.C", line 123)

25

9

[Special token I Corresponding string
I I

Constraintld the name of the constraint
ConstraintFile the name of the file containing the constraint
ConstraintLine the beginning line number of the constraint
Constraint Info "ConstraintFile". line ConstraintLine: Constrain tId

Table 2: Special tokens to be used in violation message Formats

CCEL Classes and Member Functions

In this section, each CCEL class and its member functions are clearly described. In the object
oriented model of CCEL, the class member functions provide the way to access the properties of
CCEL classes and the calls to member functions are the operators in CCEL expressions. The
member functions are divided into two groups: primary member functions and secondary member
functions. Primary functions are necessary for the expressive power of CCEL. Secondary member
functions are just convenience functions and are defined in terms of primary functions. In the
following descriptions, the word this stands for the object whose member function is called.

9.1 Int

The class Int is like the fundamental type int of C++ in that it represents the integer type. As in

C++, Int is also used for boolean values in CCEL. 0 is false, all non-zero values are regarded as true.

Two integer constants are defined by the system: TRUE of value 1 and FALSE of value o. The class

Int cannot be used to declare CCEL variables. However, some member functions return values of

type Int.

Primary member functions:

Int operator == (Int i)

returns TRU E if this integer is equal to the parameter i, returns FALS E otherwise.

Int operator < (Int i)

returns TRU E if this integer is less than the parameter i, returns FALSE otherwise.

Int operator! ()

Boolean NOT: returns TRUE if this integer is zero, returns FALS E otherwise.

Int operator && (Int i)

Boolean AND: returns TRU E if both this integer and the parameter i are non-zero, returns FALSE

otherwise.

Secondary member functions:

Int operator != (Int)

Inti != Int2 = !(Inti == Int2)

26 9 CCEL CLASSES AND MEMBER FUNCTIONS

Int operator > (Int)

Inti > Int2 - !((Inti == Int2) II (Inti < Int2))

Int operator <= (Int)

Inti <= Int2 - (Inti < Int2) II (Inti == Int2)

Int operator >= (Int)

Inti >= Int2 - ! (Inti < Int2)

Int operator I I (Int)

Inti I I Int2 = !(!Inti && !Int2)

• The member function operator II is the boolean or operator.

9.2 String

The class String represents character strings in CCEL. As for Int, the String class cannot be used

to declare CCEL variables, but some member functions may return values of type String.

Primary member functions:

Int operator == (String s)

returns TRU E if the standard C library function strcmp returns zero with these two strings as

parameters, returns FALSE otherwise.

Int operator < (String s)

returns TRU E if the C standard library function strcmp returns a negative value with this string

as the first parameter and the parameter s as the second parameter, returns FALSE otherwise.

Int match(String s)

returns TRU E if this string matches the regular expression specified by the parameter s, returns

FALSE otherwise. The syntax and semantics for the regular expression and matches are the same

as for the UNIX command grep [4].

String operator + (String s)

returns a String which is the concatenation of this string and the parameter s. For example, the

result of the expression

"String" + "::" + "operator=="

is "String: :operator==II.

Secondary member functions:

9..3 C++ Object 27

lnt operator != C String)
S1 != S2 = !CS1 == S2)

lnt operator > C String para)
S1 > S2 = !CS1 == S2 I I S1 < S2)

lnt operator <= C String)
S1 <= S2 = CS1 < S2) I I CS1 == S2)

lnt operator >= C String)
S1 >= S2 = !CS1 < S2)

9.3 C++Object

The class C++Object represents the components of C++ sources. For example, templates, types,

functions, variables, etc are C++ source components. C++Object may not be used to declare CCEL

variables.

Primary member functions:

String fileO

returns the full name, including the absolute path, of the file which contains this C++Object.

lnt begin_line 0

returns the line number of the first lexical token of this C++Object.

lnt end_lineO

returns the line number of the last lexical token of this C++Object.

If the definition of this C++Object exists, the above functions are used to locate the definition.
If the definition does not exist, the above functions locate one of the declarations of this C++Object .

• To abstract C++Object out as a base class makes it easier to add new CCEL classes to
represent any kind of C++ source components in later versions of CCEL.

9.4 NamedObject

The class NamedObject represents those components of C++ sources that have names associated
with them. Templates, types, functions, and variables in C++ sources are named objects. On the
other hand, an expression or a for statement in C++ sources is not a named object. NamedObject
and all CCEL classes derived from it can be used to declare CCEL variables. Anonymous classes
in C++ sources are also regarded as named objects with names as empty strings.

Primary member functions:

28 9 CCEL CLASSES AND MEMBER FUNCTIONS

String nameO

returns the name of this ~lamedObject. The returned name is always a local name but never a fully

qualified name. For example, if this NamedObject is bound to the member function pop of the class

stack, name 0 returns the string "pop" rather than the string "stack: :pop". The name returned

by name 0 contains no unnecessary white space characters. For example, if this NamedObject is

bound to the type const char*, nameO returns the string "const char*" but never the string

"const char *".

lnt scope_is_global()

returns TRUE if this NamedObject is global (with external linkage), returns FALSE otherwise.

lnt scope_is_file()

returns TRU E if this NamedObject is declared as static in a file scope, returns FALS E otherwise.

9.5 Type

The class Type represents types in C++ sources, including fundamental types such as int, char, etc,
and derived types, which might be enum, union, struct, class, char*, const int, etc. The types
returned by TypedOb j ect : : type () could be arbitrary C++ types except function signatures (see
Section 9.8). However, a CCEL variable of type Type may only be bound to C++ fundamental
types, enums, classes, and the types introduced by typedef. For example, for the C++ source

static const int TRUE = 1;

enum {

ALPHA,

BETA,

GAMMA

} RayType;

typedef char* String;

class List;

int strcmp(const String s1, const String s2);

a CCEL variable T of type Type is to be bound to each fundamental type, char*, RayType, and
List. Notice that if T is bound to char*, T .nameO returns "String" rather than "char*" .

• CCEL can be used to express the constraints about pointers to class member functions
(e.g., void (SomeClass:: *fp) 0). For example:

II No function may take a parameter that is a pointer to member function:
NoPointerToMemberFunctionAsParameter (

Class C;

9.5 Type 29

Function f;

Parameter f(p) p.typeO.nameO.match("(" + C.nameO + "::*)");

Assert(FALSE);

) ;

Primary member functions:

lnt has-name(String s)

returns TRUE if the parameter s is the name of this Type or one of the synonyms of this Type,

returns FALSE otherwise. For example, if this Type is bound to long, has_name 0 returns TRUE if

either "long" or "long int" is passed as parameter. For the C++ source

class Node;

typedef Node* NodePt;

if this Type is bound to Node*, has_name 0 returns TRUE if either "Node*" or lNodePt" is passed
as parameter. The names or synonyms recognized by has_nameO may contain unnecessary white
space characters.

Type basic_typeO
returns this Type without any type declarator or type specifier. For example, if this Type is bound
to static const char* [], basic_type 0 returns char.

• A C++ type, say the class Green, is a different type from it coming with type declarators
and/or type specifiers, e.g., Green*. Suppose Green is derived from the class Color. It is
absolutely false to say Green* is derived from Color. The member function basic_typeO helps
to make distinction between them. For example:

II The return type of operator= must be a reference to the class:
ReturnTypeOfAssignmentOp (

Class C;

MemberFunction C: :mf I mf.nameO == "operator=";

Assert(mf.is_reference() && mf.type().basic_type() == C);
) ;

In C++, the type SomeClass& is not equivalent to SomeClass.

lnt operator == (Type t)

returns TRUE if the two types are equivalent in C++, returns FALSE otherwise. C++ takes name

equivalence for types. Two types are equivalent if and only if their names are the same.

lnt is_convertible_to(Type t)

returns TRUE if this Type can be implicitly converted to the parameter t in C++, returns FALSE

30 9 CCEL CLASSES AND MEMBER FUNCTIONS

otherwise.

Int is enumO

returns TRUE if this Type is an enum type, returns FALSE otherwise.

The following member functions deal with the properties of C++ class types: class, struct, and
union. They are defined in the class Type because the problem introduced by TypedObject: :typeO
(see Section 9.8, the commentary below the function typeO). They just return FALSE if this Type
is not a class .

• Although all class-related member functions are defined in Type, the CCEL class Class is
still derived out because class is the main concept of C++ and is also what C++ programmers
most want to impose constraints on. To declare a CCEL variable to be bound to C++ classes,
it will be more convenient to write the statement

Class C;

rather than the statement

Type C I C.is_class();

Int is_class 0

returns T RUE if this Class is a class, returns FA LS E otherwise.

Int is_struct 0

returns TRUE if this Class is a struct, returns FALSE otherwise.

Int is union 0

returns TRUE if this Class is an union, returns FALSE otherwise.

Int is_friend(Class c)

returns T RUE if this Class is a friend class of the parameter c, returns FA LS E otherwise.

Int is child(Class c)

returns TRUE if this Class is immediately derived from the parameter c, returns FALSE otherwise.

Immediately derived means that the parameter Class appears in the base class list of the definition

of this Class.

• The member function is_childO helps to express those constraints about class multiple
inheritance. For example:

II No multiple inheritance is allowed:
NoMultilnheritance (

Class A;

Class B I B.is_child(A);

Class C I C.is_child(A) && C != B;

9.5 Type 31

Class D I (D.is_descendant(B II D == B) &&

(D.is_descendant(C II D == C);

Assert(FALSE);
) ;

To express class multiple inheritance relationships, is_child() is necessary. Even with the
member function isJiescendant (), there is no way in CCEL to express a constraint about the
following simplified multiple inheritance without is_child():

class A { ... };

class B public A { ... };

class C public A, public B { ... };

With only is_descendant (), one might write down a CCEL constraint like this:

TryToFindSirnplifiedMultilnheritance (

Class a;

Class b I b.is_descendant(a);

Class c I c.is_descendant(a) && c.is_descendant(b);

) ;

However, this constraint is incorrect because the C++ classes in the inheritance chain

class A { ... };

class B public A { };

class C public B { };

are also possible bindings for the CCEL variables a, b, and c.

lnt is_descendant(Class c)

returns TRU E if this Class is derived from the parameter c, returns FALSE otherwise. The ts

descendant relationship are just the transitive closure of the is-child relationship.

lnt is virtual descendant(Class c)

returns TRU E if this Class is a virtual descendant of the parameter c, returns FALS E otherwise. In

CCEL, a C++ inheritance path is called a virtual inheritance path if and only if the first edge of the

path is specified as virtual inheritance. A C++ class D is called a virtual descendant of a C++ class

B if and only if D is descendant of B and all inheritance paths from B to D are virtual inheritance

paths. The fact that D is a virtual descendant of B ensures that there is only one subobject of B in

an object of D.

32	 9 CCEL CLASSES AND MEMBER FUNCTIONS

• The member function is_virtuaLdescendantO helps to express the following constraint:

II Multi-inheritance only allowed with virtual inheritance:
DiamondOnlyWithVirtual (

Class A;

Class B I B.is_child(A);

Class C I C.is_child(A) && C != B;

Class D I (D.is_descendant(B) I I D == B) &&

(D.is_descendant(C) I I D == C);

Assert(D.is_virtual_descendant(A));
) ;

lilt is_public_desceildant(Class c)
returns TRU E if this Class is a public descendant of the parameter c, returns FALSE otherwise. In
CCEL, a C++ inheritance path is called a public inheritance path if and only if all edges of the path
are specified as public inheritance. A C++ class Dis a public descendant of a C++ class B if and only
if there exists any public inheritance path from B to D.

• The member function is_public-Ciescendant 0 helps to express the following constraint:

II Multiple public inheritance only allowed for virtual inheritance:
MultiPublnheritanceMustBeVirtual (

Class A;
Class B I B.is_child(A) && D.is_public_descendant(A);
Class C I C.is_child(A) && E.is_public_descendant(A) && C != B;
Class D I (D.is_public_descendant(B) I I D == B) &&

(D.is_public_descendant(C) I I D == C);

Assert(B.is_virtual_descendant(A) &&

C.is_virtual_descendant(A));

) ;

Secondary member functions:
lilt operator != (Type)
T1 != T2 == ! (Tl == T2)

9.6 Class

The class Class represents class types in C++ sources, including class, struct and union. The member
functions involving C++ classes are defined in the class Type because of the problem introduced by
TypedObject: :typeO (see Section 9.8, the commentary below the function typeO).

9.7 Template 33

9.7 Template

The class Template represents templates in C++ sources, including class templates and function

templates.

Primary member functions:

Int is_class_templateO

returns TRUE if this Template is a class template, returns FALSE otherwise.

Secondary member functions:

Int is-function_templateO

T.is_function_template() T.is_class_template()

9.8 TypedObjeet

The class TypedObject represents those components of C++ sources which have types associated
with them. C++ variables and functions are typed objects. On the other hand, a C++ type or a
C++ template is not a typed object. CCEL regards the type of a C++ function as the type of its
return value although C++ regards the type of a function as its signature.

• CCEL regards the type of a C++ function as the type of its return value instead of its
signature because this is simpler and more useful. For the constraints involving C++ function
parameters, the CCEL class Parameter can be used.

Primary member functions:
Type typeO
returns the type of this TypedObject. The type of a C++ typed object includes all type declarators
and type specifiers which are used to declare this typed object (see Table 3). The name of the type
of a typed object is the lexical string used to declare it. Thus, if a type synonym is used to declare
a typed object, the name of the type of the type object is the type synonym. For example:

typedef char* String;

String s1;

char *s2;

If this TypedObject is bound to s1, typeO .name 0 returns "String". If this TypedObject is
bound to s2, typeO .nameO returns "char*". However, both typeO .has..name("String") and
typeO .has..name("char*'I) return TRUE whether this TypedObject is bound to s1 or s2 .

• The member function typeO introduces a problem coming with such a constraint:

II The type of the parameter of some function must be derived from some class
LimitedParameterType (

Function fl ... ;

Parameter f(p) I ... ;

34 9 CCEL CLASSES AND MEMBER FUNCTIONS

[Binding of this TypedObject I Returned value of typeO
I I I

int i; int
unsigned long i; unsigned long int
const int *&i; const int*&
static volatile double v[]; static volatile double[]
typedef char *String;
String msg; char*

Table 3: Returned values of type 0

Assert(Class Base I I f.type().is_descendant(Base));
) ;

Sometimes, it is necessary to call class-related member functions for the type of a typed object
(P. typeO. is_descendant (Base) in the above example). This means that isJiescendantO
and other class-involved member have to be functions defined in CCEL class Type because the
return type of TypedObject: :typeO is Type.

Another solution without defining those member functions in Type is to introduce auxiliary
CCEL variables. The above constraint can be rewritten as following:

LimitedParameterType (

Assert(Class Base I ... ,

Class C I C == p.type(); I

C.is_descendant(Base););

) ;

However, this solution is not adopted because to introduce auxiliary CCEL variables is incon
venient and may cause overhead in constraint evaluation.

rnt num_indirections()
returns the number of indirection levels of this TypedObject. The number of indirections levels of
a typed object is the number of pointer indirect accesses (specified with *) (see Table 4).

rnt is-reference()

returns TRUE if this TypedObject is a reference (specified with &), returns FALSE otherwise.

rnt is_staticO

returns TRUE if this TypedObject is static, returns FALSE otherwise.

rnt is volatile()

returns TRUE if this TypedObject is volatile, returns FALSE otherwise.

9.8 TypedObject	 35

[Binding of this TypedObject I Number of indirection levels
I

int i;
char **s;
int box[10J [10J [10J

int *link_heads[J;
typedef char *String;
String *table;

struct Node { Node *next; };
Node head;

int &a;
int *&a;

0

2

3	 (since int [J [J [J is compatible

with int ***)
2

2	 (String* implies char** since a
typedef simply declares a
synonym of a type but not really
introduce a new type.)

0	 (A struct itself is a type and
head is of type Node.)

0
1	 (nUILindirect ions 0 counts

ONLY pointer indirect accesses
(specified with *) but not
reference (specified with &).

!

Table 4: Number of indirection levels of TypedObject

lnt is_const 0

returns TRUE if this TypedObject is a constant, returns FALSE otherwise. For example, is_constO

returns TRU E if this TypedObject is bound to char *const s. However, it returns FALSE if this

TypedObject is bound to a pointer-to-constant, e.g., const char *s. There is no facility in the

current version of CCEL to check if a typed object is a pointer-to-constant.

lnt is_arrayO

returns TRUE if this TypedObject is an array (specified with [J), returns FALSE otherwise (see

Table 5).

lnt is_longO

returns TRU E if the type of this TypedObject is a C++ long type, returns FALSE otherwise. Even

for the systems on which the type int takes the same size as the type long int or the type double

takes the same size as the type long double, int and double are not regarded as long types in CCEL.

lnt is_short ()

returns TRU E if the type of this TypedObject is a C++ short type, returns FALSE otherwise. Even

for the systems on which the type int takes the same size as the type short int, int is not regarded

as a short type in CCEL.

36 9 CCEL CLASSES AND MEMBER FUNCTIONS

C++ source: float final--e;rade(char* name, float grades [])

Binding of this TypedObject I Returned value of is_arrayO

final_grade FALSE
name FALSE
grades TRUE

Table 5: Returned values of is_array 0

lnt is_signedO

returns TRUE if the type of this TypedObject is explicitly or implicitly specified as signed, returns

FALS E otherwise.

lnt is_unsigned()

returns TRUE if the type of this TypedObject is specified as unsigned, returns FALSE otherwise.

Secondary member functions:

lnt is_pointerO

is_pointer() = num_indirections() > 0

9.9 Function

The class Function represents the functions in C++ sources, including global functions, file static

functions, and class member functions.

Primary member functions:

lnt num_params ()

returns the number of formal parameters of this Function. The unspecified number of parameters

(specified with ...) is not counted by num_params O. There is no facility in the current version of

CCEL to check if a C++ function has an unspecified number of parameters.

lnt is inlineO

returns TRUE if this Function is explicitly or implicitly declared as an inline function, returns FALSE

otherwise.

• In C++, a member function with its body defined inside the class declaration is automati
cally taken as an inline function even without the keyword in line.

lnt is_friend(Class c)

returns TRU E if this Function is a friend function of the parameter c, returns FALS E otherwise.

9.10 Variable 37

9.10 Variable

The class Variable represents variables in C++ sources, including global variables, file static vari
ables, function parameters, local variables, and class data members.

Primary member functions:
rnt scope_is_local
returns TRUE if this Variable is a local variable or a function parameter, returns FALSE otherwise.

• There is no member function scope_is_class 0, in contrast with scope_is....globalO and
scope-is_class 0, since it is equivalent to

!(scope_is_global() I I scope_is_local())

Furthermore, the CCEL class DataMember is dedicated to C++ class data members. The decla
ration

Variable v I v.scope_is_class();

could be written as

Class C;
DataMember C: : v ;

9.11 AnyParameter

The class AnyParameter represents parameters in C++ sources, including function parameters and
template parameters.

(

\.,

Primary member functions:
rnt positionO
returns the position of this AnyParameter in the parameter list. The position is numbered starting
from zero, going from left to right.

9.12 Parameter

The class Parameter represents formal function parameters and non-type template parameters in
C++ sources .

• The class Parameter can be used to express the following constraint:

II Templates in C++ sources can have only type parameters:
OnlyTypeParameterlnTemplate (

Template T;
Parameter T< p >; II p is to be bound to non-type parameters

) ;
Assert(FALSE);

38	 9 CCEL CLASSES AND MEMBER FUNCTIONS

Primary member functions:

Int has_default_value()

returns TRUE if this Parameter is specified with a default value in either the declaration or the

definition of the function, returns FALS E otherwise.

9.13 TypeParameter

The class TypeParameter represents the actual type parameters of template instantiations in C++
sources. There are no member functions defined in TypeParameter .

• TypeParameter represents the actual parameters of template instantiations instead of the
formal parameters in template declarations because a template instantiation declares a new type
and most C++ programmers are likely to impose constraints on the instantiations. For example,
the following constraint imposes that the classes passed as the parameters to instantiate the
template List must be derived from the class Node:

II Only the classes derived from Node can be passed as parameter to

II instantiate the template List:

OnlyNodeBasedClassForList (

Template TIT .nameO == "List";

TypeParameter T< C >;

Assert(Class B I B.nameO == "Node";

C.is_descendant(B));

) ;

9.14 Member

The class Member represents class members in C++ sources, including member functions, data

members, and type members. In CCEL, a function (or a variable, or a type), m, is regarded as a

member of C++ class C if and only if m is declared inside C. Thus, it is not possible for m to be a

member inherited by C from some other class.

Primary member functions:

Int is_private 0

returns TRUE if this Member is a private member, returns FALSE otherwise.

Int is_protected()

returns TRUE if this Member is a protected member, returns FALSE otherwise.

Secondary member functions:

Int is_publicO

is_public = leis_private I I is_protected)

9.15 MemberFunction 39

9.15 MemberFunetion

The class MemberFunction represents class member functions in C++ sources.

Primary member functions:

rut is_virtual 0

returns T RU E if this MemberFunction is explicitly declared as a virtual member function or it over

rides a virtual function, returns FA LS E otherwise.

rut is_pure_virtualO

returns TRU E if this MemberFunction is a pure virtual member function, returns FALSE otherwise.

rut overridesC MemberFunctiou mf)

returns TRUE if this MemberFunction overrides the parameter mf in the class inheritance, returns

FALSE otherwise. overrides 0 always return FALSE if mf is not a virtual function.

9.16 DataMember

The class DataMember represents class data members in C++ sources. There are no member func
tions defined in DataMember.

9.17 TypeMember
(

The class TypeMember represents the types which are declared or introduced by typedef inside a
class in C++ sources. There are no member functions defined in TypeMember.

• Many C++ programmers like to have SmallTalk-like Super class to refer to the class which

a class is immediately derived from (this is only for single inheritance). This is useful to incre

mentally refine inherited virtual member functions. Michael Tiemann suggested to use typedef

in C++ to declare a synonym of the parent class as Super:

class Parent {

virtual void foo();

};

class Child : public Parent {

private:

typedef Parent Super;

void fooO
{

Super: :fooO;

}

40	 11 REQUEST FOR COMMENTS

};

The CCEL class TypeMember helps to express the following constraint to enforce this:

II "Super" refers to the parent class:
SuperAsParentClass (

Class C;

Class D I D.is_child(C);

Assert(TypeMember D: :tm I tm.name() == "Super" &&

tm == C;);
) ;

10 Unsupported Features in CCEL

The following are unsupported features in CCEL:

•	 CCEL has no concept of preprocessor macros.

•	 There is no facility in the current version of CCEL to check if a typed object is a pointer- to
constant, e.g., canst char*.

•	 There is no facility in the current version of CCEL to check if a C++ function has an unspecified
(number of parameters (denoted as ...).

11 Request for Comments

Our work on this document and on the CCEL language itself is an ongoing endeavor, and we are
quite interested in your reactions to both the language and this specification of it. Please send your
comments to ccel@cs.brawn.edu, or, if electronic mail is inconvenient or unavailable to you, to:

Scott Meyers

Brown University, Box 1910

Department of Computer Science

Providence, RI 02912

41

A CCEL Grammar

A.I Programs

cceLprogram:

constrainLgroup_lis t

constrain Lgroup_list:

constrainLgroup constrainLgroup_listopt

constrain Lgroup:

constrainLor-qualifier

constrainLclass

constrain Lor_qualifier:

constraint

constrain Lqualifier

A.2 Constraint Classes

constrain Lclass:
originaLapplicable...scopeopt constrainLclass_name { constrainLclass_body }

constrain Lclass_body:

variable_declarationJistopt constrainLor-qualifier-list

constrain Lor-q ualifierJist:

constrain Lor-qualifier constrain Lor_qualifierJistopt

A.3 Constraints

constraint:
originaLapplicable...scopeopt constrainLname (constrainLbody) violationJTIessageopt

originaLapplicable...scope:

scope_selector-list

scope_selector-list:

scope_selector

scope_selector_list , scope_selector

scope_selector:

File C++_file_selector

Class C++_class_selector

Function C++-function_selector

c++_file_selector:

42 A CCEL GRAMMAR

string_literal

c++_dass_selector:

string_Ii teral

c++-function_selector:

string_Ii teral

constrain Lbody:

variable_dedaration-listopt assertion

assertion:

Assert (variable_dedaration-list I expression)

Assert (expression) ;

Assert (variable_dedaration-list)

violationJIlessage:

expression

AA Constraint Qualifiers

constrain Lqualifier:
originaLappIicable...scopeopt constrainLquaIifier-name (constrainLqualifier_body)

constrain Lqualifier-body:

enable_disable_statemenUist

en able_disable_statemenUist:

en able_disable_statemen t en able_disable...statemenUistopt

enable_disable_statement:

enable_statement

disable...statemen t

enable_statement:

Enable constrainLselector_Iist ;

disable...statemen t:

Disable constrainLselector_Iist ;

COIJstrainLselector-list:

constrain Lselector

constrainLselector-Iist , constrainLselector

constrain Lselector:

constrain Lname

constrain LqualifierJ.Jarne

constrain Ldass_name

A.5 Expressions 43

constrainLdass_name :: constrainLname

constrainLdass_name :: constrainLqualifierJlame

A.5 Expressions

expression_list:

expreSSIOn

expression_list , expression

expressIOn:

logicaLor-expression

logicaLor-expression:

logicaLand_expression

logicaLor-expression I I logicaLand_expression

logicaLand_expression:

equality_expression

logicaLand_expression && equality_expression

equality_expression:

reIationaLexpression

equality_expression == relationaLexpression

equality_expression ! = relationaLexpression

relationaLexpression:

addi ti ve_expression

relationaLexpression < additive_expression

relationaLexpression > additive_expression

relationaLexpression <= additive_expression

relationaLexpression >= additive_expression

additive_expression:

unary_expression

additive_expression + unary_expreSSIOn

unary_expression:

literal

(expression)

postfix_expression

! unary_expression

literal:

string_literal

integer-literal

postfix_expression:

variableJlame

44 A CCEL GRAMMAR

postfix_expression . memberJu11ctiolL11ame (expreSSi01Llistopt

A.6 Variables Declarations

variable_declaration-list:

variable_declaration

variable_declaration-list variable_declaration

variable_declaration:

class_name variable...specifier_list

variable...specifier_list:

variable...specifier

variable...specifier_list • variable...specifier

variable...specifier:

variable...scoper conditionopt

variable...scoper:

variableJlame

class_variableJ1ame :: variableJlame

fU11ction_variableJ1ame (variableJ1ame)

template_variableJ1ame < variableJ1ame>

condition:

I expressio11

A.7 Names

class_name:

identifier

memberJunction_name:

iden tifier

variableJlame:

identifier

class_variableJlame:

iden tifier

function_variableJ1ame:

identifier

template_variableJlame:

identifier

c011strain Lname:

45 REFERENCES

identifier

constraint-qualifierJlame:

identifier

constrain t-dass_name:

identifier

References

[:1.]	 Carolyn K. Duby, Scott Meyers, and Steven P. Reiss. CCEL: A Metalanguage for C++. In
USENIX C++ Conference Proceedings, August 1992. Also available as Brown University Com
puter Science Department Technical Report CS-92-51, October 1992.

[2]	 Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison
Wesley, 1990.

[3]	 Keith E. Gorlen, Sanford M. Orlow, and Perry S. Plexico. Data Abstraction and Object-Oriented
Programming in C++. John Wiley & Sons, 1990.

[4]	 Brian W. Kernighan and Rob Pike. The UNIX Programming Environment. The Prentice-Hall
Software Series. Prentice-Hall, 1984.

[5]	 Scott Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and Designs. Addison
Wesley, 1992.

[6]	 Scott Meyers, Carolyn K. Duby, and Steven P. Reiss. Constraining the Structure and Style of
Object-Oriented Programs. In Proceedings of the First Workshop on Principles and Practice of
Constraint Programming (PPCP93), April 1993. Also available as Brown University Computer
Science Department Technical Report CS-93-12, April 1993.

