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1.0 INTRODUCTION 

Clearly, there are methods superior to neural networks for enabling an artificial system 
to tell time from the image of a wall clock. However, the purpose of this project was to set 
up the problem for a neural network as a springboard for gaining better insight into con­
nectionist learning methods. It was initially believed that the problem would be trivial to 
learn, but thousands of processing hours later it seems that this is not the case. 

The software program that attempts to tell time from the image of a wall clock has been 
named Net-time. In an effort to improve Net-time's performance, several experiments uti­
lizing ablation patterns on vectorized input instances were conducted, and it was deter­
mined that an ablated input instance could give rise to a correct output response where the 
unablated input instance did not. Net-time was ported to a parallel machine so that several 
ablation patterns on an input instance could be tested simultaneously. This software port 
led to the development of ConOation, a model that produces output by processing in paral­
lel several vectors of an input instance, each having a different ablation pattern imposed 
on it. 

Conflation was developed as an enhancement to the Brain State in a Box (BSB) [2] neu­
ral network model, and proved successful on Net-time data. In an effort to determine if 
this enhancement was significant, it was tested on other domains in addition to Net-time, 
with similar success. 

The remainder of this paper is organized into two main sections. The first explains the 
Net-time program, the dataset and infonnation representations it utilizes to tell time, and 
experimental results. The second section explains a controlled benchmark study which 
explores the significant effects of ablation patterns on several connectionist learning mod­
els. 

1.1 LEARNING TO TELL TIME 

Machine learning involves a training phase, where a subset of a domain is used to 
train the network, and a testing phase where a portion of the remainder of the domain is 
used to test a learning model's ability to produce correct output responses from input 
instances that were not used during the training phase. For many domains, input instances 
can be mapped to classes, and the learning model is used as a classification process to real­
ize this mapping. In real world systems, when it is possible to enumerate and store the 
entire domain, the classification process is most accurately realized by lookup table, and 
no "learning" need take place. 

In order to perform non-trivial classification on domains whose instances can not be 
stored because they are infinite or exponential in the number of attributes used to represent 
instances, the domain must be learned. The task of telling time involves responding with 
the time-class that the configuration of the clock's arms represents. Although the number 
of classes for this task is limited to the different times of day, for some prespecified level 
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of granularity of time, the number of wall-clock instances in the universe representing a 
particular time of day is essentially infinite, so a method for telling time must involve an 
ability to generalize. A human becomes proficient at telling time by learning the task on a 
limited number of clock faces, but s/he is still capable of telling time on a clock face 
whose image was never previously encountered. The attributes of a clock's image vary 
between times of day and between different clocks. Different clocks have different tick 
markings, numeric symbol representations, arm types, arm lengths, etc., and we expect 
these attributes will continue to vary as clock makers develop new aesthetics, and intro­
duce new clock instances into the universe. Furthermore, we expect that these new clock 
instances will not present a problem to those who know how to tell time. 

Unfortunately, there is not a great deal Of research concerned with the way humans tell 
time, so at this point we can not expect to create a system that mimics this ability. But in 
order to gain better insight into this process in humans, I conducted some informal experi­
ments. One experiment involved drawing the configuration of the arms of a clock (repre­
sented by two pencil lines) on a sheet of paper. Most people had no problem responding 
with an approximation of the time that was intended. Since these drawings were void of 
any clock feature other than arms, it was apparent that the angle between the large hand 
and the small hand was sufficient for telling approximate time. However, when the same 
people were asked questions of the type, "What time is it when the little hand is 6 degrees 
south of 7 and the large hand is 66 degrees north of 7," responses were relatively slow, and 
mostly "I give up." I concluded from these infonnal experiments that people do not utilize 
the absolute angles found in mathematics, but develop an intuition for fuzzy angles 
between arms in a configuration with no numerical significance other than larger or 
smaller. With this in mind, I proceeded to train a neural network on a vectorized represen­
tation of the image of the configurations of the arms of a clock. 

1.2 NET-TIME 

The training task of Net-time involves teaching a neural network vectors representing 
every 5 minutes of wall-clock time from the image of a 12-hour analog clock. Testing is 
conducted by presenting a BSB neural network with a vector representing a non-5-minute 
time. A successful test is one where a non-5-minute time input gives rise to an output rep­
resenting the closest 5-minute time. A complete testing run processes vectors representing 
every minute around the clock (including training instances), and the percentage of correct 
responses represents the network's ability to tell approximate time. Usually, when we 
speak of the peiformance ofa learning system, two measurements are implied: the per­
centage of correctly learned training instances, and the percentage of correctly classified 
testing instances. However, in the context of Net-time, the overall ability to tell time is 
most important, and represents the combination of testing and training performance. 

The actual output of Net-time is a human (pre-recorded) voice telling the approximate 
time. 144 voice files, one for every 5-minute time around the clock, were recorded by 
Claudia Papka, Jennifer and John Reubens, Paul Reilly, Andrew MacKeith, and Noela 
Cabrera. In User-Mode, a person can enter a time at the command line, and a few seconds 
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later, the program will reply "out loud" with what it believes to be the approximate time. If 
the time is "unknown," a reply to that effect is heard. 

The program was developed on a Sun Sparc 2, and later ported to a parallel implemen­
tation on Thinking Machine's Connection Machine (CM-2 w/4k processors). The code 
was written in C and TM's C/Paris using GNU's C compiler. The clock images were gen­
erated using the Brown Workstation Environment BWE/ASH, an XII graphics toolkit 
written by Steve Reiss et al. 

1.3 A VECTOR REPRESENTATION FOR TIME 

One of the most important factors contributing to successful learning using neural net­
works is an appropriate vector representation for input and output information. Problems 
will exist for networks containing one layer if the resulting vector representation imposed 
on a domain is not linearly separable, or if instances are in general position [9]. In Net­
time, an ideal representation will not only be learnable, but will also be flexible enough to 
allow generalization. A -1/1 binary representation was used for the experiments that fol­
low, and the input representation (image of the clock) remained constant, while the output 
representation (time) was varied. The training phase of the BSB model utilizes Widrow­
Hoff [13] (delta rule) to auto-associate vectors. Widrow-Hoff is a supervised learning 
algorithm, where a weights matrix is adjusted during an iteration to compensate for the 
error each input instance's output vector contains. This error is the element-wise differ­
ence between input vector and output vector. A pseudo-code program for the Widrow­
Hoff algorithm is listed in the Appendix. 

During training, input and output are contained in the same vector. During testing, 
input is present, but the output bits are ablated (zeroed). The testing process of the BSB 
model is responsible for reconstructing the output bits. It does this by means of a recurrent 
process. The output vector is fed back through the weights matrix for several matrix-vec­
tor inner product iterations. After each iteration, the ablated output elements begin to take 
on small real values in the interval [-1, 1]. If a vector element grows beyond the -1/1 
binary limit, the element is clipped to the limit. There are 3 control constants used during 
this process, and they are listed in the Appendix along with pseudo-code for the BSB algo­
rithm. 

The training phase ofBSB attempts to define points of attraction on the hypercube that 
represent training instances. If this process is successful, an input vector will move to the 
intended attractor during the testing process. This paradigm lends itself to retrieving 
approximate time. The ann configuration for every 5-minute time, and its associated sym­
bol time (e.g. 12:55) are represented in a binary vector that is learned by a BSB network. 
Since these are binary vectors, they map to points on a hypercube. A good representation 
would allow an input instance of a non-5-minute time to move to the attractor representing 
the closest 5-minute time. 
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The image for a simulated wall-clock was created using the line and circle drawing 
functionality of BWE. A sample is contained in figure 1. The experiments were concerned 
only with learning the configurations of the anns of the clock, so the clock face (i.e. outer 
circle and tick marks) are drawn only for aesthetic purposes, and do not become part of 
vector information. 

_ ~ _ _..__ _-_ - _..__ _ 
o • • • 

Figure 1: Clockjace 

. 
-

The procedure for vectorizing the image for a particular time begins by drawing the 
arms within a circle having a 360 pixel diameter, and then taking a 360 x 360 bit-map 
snapshot of the arms, using the xwd windows function. Flattening the matrix to form a 
vector yields vectors with 129,600 elements, and since vector elements must be floating 
point numbers, each vector requires over .5 Megabytes of storage. To avoid this, the solu­
tion was first to create two 360-element vectors, one containing the column-wise reduction 
of pixel values, and the other the row-wise reduction of pixel values, Next, the two vectors 
were concatenated and shrunk into one vector containing 360 elements. The shrinking was 
accomplished by first taking every other element from the column-wise reduction, and 
then every other element from the row-wise reduction. Finally, a -1/1 binary representa-
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tion was achieved by replacing all elements containing values greater than 1 with 1, and 
replacing elements containing a value of °with -1. The image vectors containing integer 
values are unique for each time around the clock; however, when binarized, adjacent times 
have vectors that are too similar. To circumvent this problem, only the tips of the clock's 
arms (30 pixels worth) were used to construct the image vector and thus produce unique 
vectors with less overlap for each 5-minute time. 

The 360 elements of the image vector serve as the input portion of the vectors used by 
the BSB model. The output portion of this vector contains the encoding for the digits rep­
resenting the time. For example, the time 12:05 can be represented with the digits 1,2,0, 
and 5, so the time encoding problem was reduced to finding a representation for the digits °through 9. Several representation, requiring different numbers of bits, were tested: 

#or 
Bits Representation 

4 8421-BCD and Excess-3 BCD 

5 2-of-5 BCD 

10 Grandmother Cell (one bit for each digit) 

32 ASCII word (ONE, TWO, THRE, etc.) 

32 Barcode (Thennometer: 1= * 2= ** 3=***) 

32 Orthogonal Vectors (From Walsh functions) 

32 Orthogonal Vectors (From Random Search) 

32 Maximized Hamming Distance 

The Maximized Hamming Distance encoding was created by generating a set of 10 
random binary vectors, and determining the Hamming distance a vector had with respect 
to every other one in the set. It was later found that an excellent process for generating 
approximately orthogonal or orthogonal vectors utilizes a Genetic Algorithm [4a, 6] 
instead of random search or Walsh functions. Walsh functions generate a set of orthogonal 
vectors containing fairly regular bit patterns. By utilizing the Genetic Algorithm, vector 
sets with irregular patterns can be created. 

Figure 2 depicts the set of 144 training vectors. The 488 pixels on one line represent 
one vector. The dots on the extreme left of the figure delineate the vectors for each hour 
starting at 12:00. The two sinusoidal curves running down the vectors represent the signal 
that the tip of the hour hand emits. Figure 3 depicts all 720 vectors, and the sinusoidals 
emitted by the minute hand can also be seen. The "barcode" pattern on the right third of 
the image is the string of bits for the output representation. This pattern is 128 bits long, 
where four 32 bit strings decode to the digits of the corresponding time. 
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Figure 2: 5-minute vectors (Barcode output representation) 
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In order to test a particular time, the image of the time is created and then vectorized in 
the manner described above. The output bits are ablated, and the vector is run through the 
testing phase of the BSB model. After the vector limits, or the maximum number of itera­
tions is executed, the resulting output bits of the vector are decoded. In several cases, the 
decoding of the bits does not yield an exact match to a digit, hence the encoding nearest in 
Hamming distance (its nearest neighbor) is used. In User-Mode, Net-time will open an 
audio file whose filename is the decoded time, and write the file to the speaker device. 
This provides the system with its speech capabilities. 

Early experiments were conducted on a Sun Sparc 2. The 144 5-minute vectors were 
trained using 6,000-10,000 random presentations, and the Widrow-Hoff learning rate was 
held to the inverse of the vector length. Training required approximately 12 hours for 
10,000 presentations. The BSB testing phase was conducted on all 720 vectors utilizing 
180 feedback iterations. The feedback constants alpha, delta, and lambda where held at 
0.2, 1.0, and 0.9 respectively. The following table lists the results of the two best-perform­
ing representations (the Grandmother cell representation was not tested at this time.) Each 
test took 3 days on the Sparc 2. The 4 and 5 bit representations allowed approximately 
65% of the training vectors to be learned, and the orthogonal vectors could facilitate the 
learning of only 39% of the training set. In the following table, results are presented with 
two values, the first being the number of correctly classified times, and the second being 
the percentage of correctly classified times. 

Representation Performance Training 

ASCII word 390 - .5416 134 - .9305 

Max. Hamming 397 - .5513 141 - .9791 
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1.4 MORE ABOUT NET-TIME 

In addition to generating time images and telling the times they represent, Net-time 
has a command line driven User Interface with the following commands: 

'a' =set ablation pattern. 

'b' =save window as bit map. 

'c' = set color constant. 

'd' = display matrix. 

'h' = help. 

'i' = set maximum iterations. 

'I' = load matrix. 

'p' = set feedback parameters (Alpha, Delta, Lambda). 

'q' = quit. 

's' = save matrix. 

'1' = toggle eM-2. 

'v' = display vector map. 

'w' = create vector map. 

'XX:XXL9' = Relearn time XX:XX with 9 learning iterations. 

'XX:XXU9' = Unlearn time XX:XX with 9 unlearning iterations. 

'XX:XX' = Tell time XX:XX. 

1.4.1 
'a' = set ablation pattern. 

A -1/1 binary vector is ablated by zeroing some of its elements. In addition to ablating 
the output portion of a vector, it is also possible to ablate some of the input elements. The 
motivation for ablating the input elements is that a vector representing full information 
may not reach its intended attractor, while some ablated instance of the vector does. There 
were several instances of this phenomenon found in some of the early experiments. The 
use of ablation patterns} on input instances was extensively studied, and the results are 
discussed in the second section of the paper. 

If the user selects' a' at the command line, s/he has the option of selecting one of eight 
ablation patterns. 

1. An ablation pattern is a mask over an input instance that indicates the elements to be ablated. 
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1.4.2 
'b' = save window as bit map. 

'c' = set color constant. 

'd' = display matrix. 

'v' =display vector set. 

'w' = create vector set. 

When working with neural networks and information embedded in high dimensional 
space, visualization techniques are almost essential for ensuring that a program is manipu­
lating data as intended. The images from figures 2 and 3 were created by first creating a 
vector set, then displaying the set, and finally saving the window it appeared in to a bit­
map file in xwd format. Displaying a vector set or a matrix can provide a visualized insur­
ance that a persistent structure is read correctly from disk. In addition, it provides a better 
intuition of the data one is working with. Figure 4 is the image of a neural network or 
weights matrix. Each pixel of the image is the corresponding value in a matrix multiplied 
by a constant (in order to produce a pixel value within the bounds of the display's color 
map.) By changing the color constant, the magnitude of the values of different regions in 
weight space is illuminated. The matrix in the figure indicates that auto-associating vec­
tors produces a relatively symmetric matrix with regions of weights containing the same 
value. A closer examination reveals that the subregions of the matrix are symmetric about 
the diagonal, but that the values in these symmetric regions are not necessarily the same, 

The speed improvements afforded by the Connection Machine and its Display Library 
allowed the visualization of the formation of the network in real-time. As training pro­
ceeds, regions within the matrix become well defined and converge to an image similar to 
that of figure 4. 

Another technique is to display the current state of a vector being processed. In figure 
I, there are three groups of vectors displayed just below the clock face. The first group 
contains the column-wise and row-wise reduction vectors of the arm configuration image. 
The top vector in the second group contains the input portion of the vector being tested, 
and the bottom one is the input portion of the vector representing the expected approxi­
mate time, The middle vector is a display of the current state of the feedback vector. Its 
image is updated every 10 or 20 iterations. The top line of the third group is the expected 
output portion of the feedback vector, and just below it is the output portion's current state. 
The five dots on the bottom line delineate the groups of 32 bits representing the four digits 
of a time. By displaying the feedback vector, one can see how quickly a vector moves to 
an attractor, and also intuit the problems caused by attractors created from poorly perform­
ing information representations. 
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Figure 4: Weights Matrix / Neural Network (488 x 488) 
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1.4.3 
'i' = set maximum iterations.
 

'p' = set feedback parameters (Alpha. Delta, Lambda).
 

The number of iterations and the feedback constants are the four main learning 
"knobs" with which the user can experiment. It was determined that 600 iterations were 
necessary to allow an input vector to reach a stable state. Setting alpha to 0.2, delta to 1.0, 
and lambda to 0.9 provided the best results. 

1.4.4 
'J' = load matrix.
 

's' = save matrix.
 

'XX:XXl..9' = Relearn time XX:XX with 9 learning iterations.
 

'XX:XXU9' = Unlearn time XX:XX with 9 unlearning iterations.
 

Since networks were trained by randomly presenting instances, certain orderings pro­
vided for better performing networks than others. Furthermore, it was found that the per­
fonnance of a network could be improved by "reteaching" 5-minute times that were not 
originally learned. Several experiments involving relearning were successful, and one ses­
sion allowed a network utilizing the Maximum Hamming Distance representation to learn 
all 144 training vectors. In some cases a particular time was "overlearned" and caused 
many vectors to move to its attractor. "Unlearning" experiments were conducted with 
marginal success. It was found that unlearning would alleviate the problem caused by a 
particular time, but would create problems for other times. 

1.4.5 
'f = toggle CM-2. 

After conducting initial experiments, it was determined that it would be necessary to 
port the application to a parallel machine to gain running-time improvements, Thinking 
Machine's Connection Machine (CM-2 w/4k processors) proved very suitable for imple­
menting the BSB model. In addition, CM's CMSSL library provided a Matrix-Vector mul­
tiplication routine that would allow several vectors to be processed through a network in 
parallel. This capability was used to test the effects of ablation patterns imposed on vec­
tors. Brown's CM-2 utilizes a Sparc I as the front-end. Running times comparing the 
Sparc 1 to the CM-2 are listed below. The Sparc 1 tests involved running one time vector 
through the BSB model for the specified number of iterations. The CM-2 tests were simi-
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lar, but 8 vectors (7 ablated) were processed in parallel. Times are in minute-second 
(mm:ss) format. 

Iterations CM·2 Spare 1 

60 00:05 01:06 

180 00:08 03:07 

360 00:12 06:09 

600 00:18 10:14 

1.4.6 
'h' = help.
 

'q' = quit.
 

'XX:XX' = Tell time XX:XX.
 

If a time is typed at the command line, Net-time will process the vector representing its 
image, and attempt to tell approximate time. For example, if 12:43 is typed at the com­
mand line, the clock face representing this time is drawn, and the processing of the vector 
commences. A successful response for this example would be 12:45. If the user forgets a 
command, s/he can type h for help, or, if s/he wishes to terminate the session, q for quit. 

1.5 CONFLATION AND THE USE OF ABLATION PATTERNS 

A variation of BSB, named Conflation, was developed to improve the performance of 
Net-time. Conflation attempts to utilize the output ponion of parallel-processed ablated 
vectors of an input instance to increase the possibility for a correct classification. Ablated 
vectors are created by duplicating an input instance and zeroing some of its attributes; they 
are used in Conflation by combining the output portions of the various ablated vectors and 
the unablated vector at time t in processing, and distributing this output to all vectors for 
processing at time t+1. It was found that Conflation works best if the output portions are 
combined after the first iteration (t=l ). 

Figure 6 illustrates Conflation using four vectors. At time t = 0, ablation patterns are 
applied to the vectors. The first vector in a group represents full information of an input 
instance, and the whited out sections of the following three vectors represent ablated ele­
ments on the same instance. These vectors are simultaneously processed using an iteration 
of the BSB testing algorithm. At time t=1, Conflation is applied before further BSB pro­
cessing. Conflation essentially takes output bits of a group of vectors and sums them ele­
ment-wise to create new output bits which are subsequently distributed to all vectors in the 
group. Hence, after Conflation, and before the next iteration of BSB processing, the output 
portion of all vectors will be identical. 
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Vector states at time t=l, after conflation. 

Output Bits 

Vector states at time t=1 

Vector states at time t=O 

Figure 6: Confiation 

It may seem that Conflation is simply perturbing the output bits, and that the perturba­
tion is the reason for performance improvements. However, experiments were conducted 
to test the effects of random perturbation of output bits. The results indicate that random 
perturbation using values similar in magnitude to the changes caused by Conflation did 
not improve performance, and on average caused a performance degradation. 
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Ablated vectors often give rise to correct output responses in cases where the unab­
lated vector does not. In general, simultaneously processing x vectors with various abla­
tion patterns produces at most x different outputs. Ideally, one would like to have an oracle 
choose the correct output as the classification for an input instance. In the following exper­
iments, an oracle that knew the correct time was created to determine the best possible 
performance a network could attain using Net-time data. 

Table 1 lists the results from 3 experiments which utilized the Maximum Hanuning 
Distance output representation. The results indicate that Conftation improved Net-time 
performance. The final output for Conflation was taken to be that belonging to ablation 
pattern 2, which consistently provided the best performance. The ablation patterns used 
for these ex eriments are ex lained in the Ap endix. 

RUN TRAINING 
NO 
ABLATION 

CONFLATI 
ON 

PERTURBA 
TION ORACLE 

1 140 - .9722 474 - .6583 500 - .6944 456 -.6333 616 - .8556 

2 138 - .9583 473 - .6569 485 - .6736 474 -.6583 613 - .8553 

3 144 -1.000 457 - .6347 474 - .6583 456 -.6333 627 - .8708 

AVG 140 - .9768 468 - .6500 486 - .6754 462 -.6416 619 - .8597 

Table 1: Pelformances of3 runs using Maximum Hamming Distance 

It was later found that the Grandmother Cell output representation provided improved 
performance over Maximum Hamming Distance. The line labelled G in Table 2 lists a 
sample run using this representation. The line labelled P lists the results using a simple 
Perceptron model, and the line labelled N is the results usin Nearest Neighbor. The Near-

RUN TRAINING 
NO 
ABLATION 

CONFLATI 
ON 

PERTURBA 
TION ORACLE 

G 144 - 1.000 492 - .6833 521 - .7236 491 - .6819 640 - .8889 

p 142 - .9861 470 - .6528 * * 544 - .7456 

N 144 - 1.000 690 - .9630 * * * 

Table 2: Grandmother Cell, Perceptron, and Nearest Neighbor 

est Neighbor run provided the best overall performance, and confirmed that vectors repre­
senting adjacent times were closest in Hanuning Distances for all but a few times. 

Though Conftation improved the performance of Net-time, it remained to be seen if it 
was applicable to other domains. The following section describes controlled experiments 
on other domains. The experiments also explore the reasons ablation patterns help to 
improve the performance of connectionist classifiers in general. 
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2.0 INTRODUCTION 

In the previous section, it was shown that Conflation could be used to improve the 
number of correct classifications for untrained input instances using the Brain State in a 
Box (BSB)[2] neural network model on Net-time data. This improvement is caused by a 
simple linear mechanism applied to several ablated vectors representing the same input 
instance. To understand the effects of ablation patterns on data vectors, a benchmark study 
across basic connectionist learning models was conducted. The study utilizes domains that 
have been previously examined by researchers to test the capabilities of statistical, proba­
bilistic, and connectionist learning models, and examines them once again to test the capa­
bilities of ablation patterns. 

This benchmark study compares the classification performance of three machine 
learning models --BSB, Perceptron [11], and Nearest Neighbor. The models were tested 
using a (-1 / 1) binary vector representation on records from 2 databases: Voting-84 and 
LED-7, which were obtained from the Repository of Machine Learning Databases at 
D.C.I. The comparison of BSB to Perceptron is interesting because both utilize Widrow­
Hoff [13] (delta rule) for supervised learning; however, BSB requires the auto-association 
of vectors, and Perceptron requires the hetero-association of the input elements to the out­
put elements of a vector. BSB is a recurrent model, so during testing the output is fed back 
through the network for several matrix-vector inner product iterations. Perceptron requires 
just one inner product. Nearest Neighbor was used to confirm the published performance 
measures on the Voting-84 and LED-7 databases, and to provide an intuition for the loca­
tions of vectors in attribute-space. Furthermore, its contribution to the experiments engen­
dered a variation of the model which utilizes a Genetic Algorithm and input ablation 
patterns to create a classifier superior for certain domains. 

The utility of ablated vectors is not surprising. Booker, Goldberg, and Holland note: 

The interaction among computing elements in a connection­
ist system make 'best-fit' searches a primitive operation. 
Activity in a partial pattern of elements is tantamount to an 
incomplete specification of a concept. Such patterns are 
automatically extended into a complete pattern of activity 
representing the concept most consistent with the given 
specification. [4b] 

During BSB processing, then, it may be the case that the ablated instance ignores some 
attributes that would prevent correct classification from the unablated vector, and that 
instead, by means of recurrence, the ablated attributes are filled with values that allow cor­
rect classification. In nearly every experiment it was found that some ablated vectors give 
rise to correct classification where the unablated vector did not. 

On certain domains, it will be shown that Conflation improves the classification ability 
of some vector with some ablation pattern, but the algorithm does not have a method for 
determining which one, so an a priori decision must be made as to which ablation pat-
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tern's output will serve as the final classification. A general method for this decision is dis­
cussed in a following subsection. 

Conflation is an intra-processing mechanism for improving classification. A post-pro­
cessing method for choosing the correct classification is Consensus. It works as follows: 
Various ablated input instances and the unablated instance are run through a model. The 
classification that is represented most as output is the final classification. In the event of a 
tie, the classification belonging to the vector containing the least amount of ablation is the 
final classification. 

With Nearest Neighbor, selecting a final classification in the event of a "tie" can make 
the difference between this model being the best candidate for a classification task, and the 
worst. In what follows, the Nearest Neighbor algorithm uses the points that training 
instances represent as neighborhoods, and classifies a testing instance as the classification 
of the training point whose neighborhood it falls into. In other words, the testing point is 
considered to be in the same class as the training point to which it is closest in Euclidean 
distance. For domains with few attributes, a testing instance could very well be equally 
distant to several training points. If these points all are in the same class, the classification 
of the testing instance is trivial; however, if they are in different classes, a decision must 
be made. 

Kohonen et al. have developed LVQ algorithms [8], which are modifications to the 
Nearest Neighbor model used in these experiments, and which obviate the need for an 
additional decision step. Implementing LVQ (Linear Vector Quantizer) in this context 
would utilize the class probability distributions of a domain to move a training point in a 
direction to increase or decrease the likelihood of a testing point falling into its neighbor­
hood and acquiring its classification. LVQ has been shown to provide significant perfor­
mance improvements for Nearest Neighbor. 

What is presented here is a different modification to Nearest Neighbor which utilizes 
an ablation pattern on domain instances. The ablation pattern represents a template or 
mask that defines which attributes will be used to represent instance points. A "good" 
ablation pattern ignores attributes which detract from, or do not contribute to, correct clas­
sification. We can view such attributes as being ambivalent, or as contributing insignifi­
cant information; when removed, their undesirable contribution to Euclidean distance is 
also removed. A method for finding good ablation patterns is discussed below. 

The following subsection describes the results of the experiments using the Voting-84 
domain. Section 3 discusses the LED-7 experiments. The Appendix contains the domain 
specifications and the ablation patterns used for the various experiments. 

2.1 VOTING·84 DATABASE RESULTS 

The Voting-84 database consists of the 1984 voting patterns of 435 members of the 
House of Representatives voting on 16 issues. The classification task is to conduct training 
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on a subset of database records, and attempt to detennine the correct Party affiliation for 
the untrained subset. The Voting-84 database has been extensively tested using other 
learning models. Previous results on this domain state that: IB? has a -91.5% success rate, 
C4 -95.5%, STAGGER 90%-95% [1,10,12], and Backprop -93.5%. 2 

In what follows, the records of the database where partitioned into 3 sets, and cross­
validation experiments where conducted on both 145- and 290-record training sets, and 
their respective 290 and 145 testing sets. Hence, a total of 6 testing runs was conducted for 
each model. Final performance figures are those representing the average performance of 
3 homogeneous runs (i.e. cross-validation runs using the same number of training set 
instances and testing set instances). 

In order to limit the effects of independent testing variables, the following where held 
constant: All learning was done using Widrow-Hoff (delta rule) training, where the learn 
constant remained at .01111 . To minimize the effects of training order, records were pre­
sented sequentially. A log containing the square-summed error of the error-vector, and its 
constituent elements, was maintained to determine if a perceptron reached a stable state 
during the training phase. In general, it was found that perceptrons required far less than 
30,000 sequential presentations for training sets of 145 records, and 40,000 presentations 
for training sets of 290 records. 

The error-vector log described above was also used to detennine if a BSB overtrained. 
Apparently, when a BSB is overtrained the resulting network is very similar to the Identity 
Matrix, which is one obvious weights matrix solution when auto-associating vectors. 
While using this domain, if a BSB is trained until its error vector reached a stable state, the 
result is a matrix where diagonal elements approached 1 and non-diagonal elements 
approached O. This type of matrix is undesirable, and it is therefore necessary to "under­
train" a BSB. Empirically, it was found that 8,000 sequential presentations for training sets 
of 145 records, and 16,000 presentations for training sets of 290 records, were sufficient 
for a well perfonning BSB. This undertraining produced matrices whose diagonal ele­
ments still approached 1; however, the absolute values of the non-diagonal elements were 
large enough to counter the effects of the diagonal. 

It was found that the use of a Bias or Clamp bit set to -1.0 for the training vector sets 
created improved performance for the BSB and Perceptron models, and Biases were there­
fore used for all tests. Two different bit-representations of Party membership were tested: 
The 3-bit representation encodes Republican as (-1, 1, -1) and Democrat as (1, -1, 1); and 
the I-Bitrepresentation encodes Republican as (-1) and Democrat as (1). In general, the 1­
bit representation provided a better perfonning system. This result is consistent with 
Occam's Razor, which suggests: "given two explanations of the data, all other things 
being equal, the simpler explanation is preferable." [3] 

In fact, Occam's Razor prevails for models used on the Voting database, because the 
Simple Perceptron consisting of one unit classifies untrained instances with a 95.86% suc­
cess rate. Hence, for this domain, building probability trees and unnecessarily large matri­

2. Dr. Steve Romaniuk from the National University of Singapore conducted these experiments. 
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ces does not make a better classifier than the 17 correctly set weights used by a simple 
linear model. 

A comparison of the models' average performances, using the parameters as described 
above, is consolidated in Table 3. The table is organized into two sections, one containing 
the results of unablated input, and the other containing the results of the best-performing 
ablated input pattern. A type of 0 in the last column specifies that the unablated input per­
fonned better than all ablated input patterns; otherwise, type represents one of the seven 
ablation patterns, which where handpicked for their geometric appeal and are further dis­
cussed in the Appendix. 

I TestJ 
I Trai~ing 

set sIZe Model 

NoAb 

3-bit 

ation 

I-bit 

Best Pe 
Ablation 
3-bit 

forming 
Patterns 
I-bit Type 

145/290 Perceptron 0.9494 0.9586 0.9494 0.9586 0 

Perceptron- Cons. 0.9494 0.9563 * * * 
BSB 0.8747 0.9023 0.9471 0.9482 7 

BSB- Conflation 0.8747 0.9000 0.9368 0.9425 7/1 

BSB- Consensus 0.8690 0.8850 * * * 
Nearest Neighbor 0.9103 0.9103 0.9333 0.9333 4 

290/145 Perceptron 0.9563 0.9586 0.9563 0.9586 0 

Perceptron- Cons. 0.9563 0.9586 * * * 
BSB 0.9540 0.9448 0.9563 0.9563 7 

BSB- Conflation 0.9517 0.9471 0.9563 0.9540 7/1 

BSB- Consensus 0.9540 0.9471 * * * 
Nearest Neighbor 0.9126 0.9126 0.9402 0.9402 4 

Table 3: Voting-84 testing results 

Figures represent the percentage of correctly classified testing vectors, averaged over 3 rons. 

Averaging the performances of a model using different training set sizes shows that the 
Perceptron models perfonned best, with the BSB models second, and the laggard being 
Nearest Neighbor. However, if we focus on runs created with 145 training vectors, we see 
that the BSB models are performing much worse than their counterparts using 290 train­
ing vectors. The reason for this poor result can be traced to one abysmally performing 
instance of the BSB while training with 145 vectors. For the 3-bit Party representation, 
this network correctly classified 77% unablated input instances, and for the I-bit about 
81 %. For both representations it significantly lowered the average perfonnance; however, 
it shed some light onto other aspects of training and testing networks. 

The dataset used to train the abysmal BSB (BSB-a) was the 2nd third of the database, 
and it was tested on the 1st and 3rd thirds of the database. BSB-a's counterpart was trained 
on the 2nd and 3rd thirds of the database, and it was tested on the 1st third. The counter-
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part network performed as well or better than its homogeneous runs, implying that the 
addition of the 3rd third of the database to training allowed the BSB network to learn the 
2nd third. From Table 3 we see that training on more data improved perfonnance for all 
models, and that for BSB-a's counterpart, the training on additional records also changed 
the order of presentation (Le., after sequentially presenting the records of the 2nd third, 
records of the 3rd third were presented). 

In order to determine if the 2nd third could be better learned, a few BSBs were created 
utilizing random presentation of the training vectors using the 3-bit Party representation. 
When tested, their perfonnances averaged around 84%, revealing that there existed pre­
sentation orderings that could facilitate learning. In general, however, the 2nd third proved 
difficult for a BSB to learn. 

Except for ablation types 7 and 1, the other ablated input vectors performed poorly 
(below 50%) while being processed using BSB-a. When an ablated vector perfonns 
poorly it is rnisclassifying input most of the time. If enough ablated vectors perform 
poorly, a consensus is reached for the wrong classification most of the time. This explains 
a comparatively low BSB-Consensus perfonnance using 145-record training sets. For all 
other homogeneous runs, BSB-Consensus perfonns the same as BSB using unablated 
input, and Perceptron-Consensus perfonns as well as Perceptron. 

These experiments also show that BSB-Conflation3 is slightly more resilient than 
BSB-Consensus to poorly performing ablated vectors; however, BSB-Conflation can not 
provide a performance improvement unless ablated vectors can give rise to correct classi­
fication most of the time. In other words, if the majority of ablated vectors is not working, 
neither is Conflation. 

2.1.1 OPTIMAL ABLATION PATTERNS AND GENETIC ALGORITHMS 

At this point in the experimentation, a searchfor optimal ablation patterns was pursued. 

The best method for finding optimal ablation patterns is to use exhaustive search. One 
exhaustive search on the Voting-84 database resulted in a 3-day run which tested all 2"16 
ablation patterns for perfonnance, using 290 neighborhood records, 145 test records, and 
NN classification perfonnance as the metric for determining superior ablation patterns. 
The top 100 were saved. There was 1 ablation pattern that could correctly classify 142 test 
records (-98%) and 44 patterns capable of classifying 141; the remainder of the top 100 
classified 140 records correctly. 

The problem with a search of this type is that we simply do not have fast enough hard­
ware for running times which are exponential in the number of attributes. The exhaustive 
search for ablation patterns for 16 attributes took 3 days of Spare 1 computer time; adding 
one more attribute would require 6 days; adding 10 more attributes would require about 

3. Conflation and BSB-Conflation henceforth will be used interchangeably. 
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2.82 years. Of course, NN is an ideal model for parallelization, and I would estimate that 
ablation patterns for 26 attributes would take a few days on a Thinking Machines CM-2; 
however, at some relatively small number of attributes, exhaustive search becomes unfea­
sible on any machine. The alternative is to use a Genetic Algorithm (GA) [4a] for near 
optimal ablation pattern search. 

A GA operating on a population of 40 ablation patterns was run 3 times to generate a 
pool of 120 ablation patterns (duplicates included), from which 7 unique patterns were 
handpicked for further performance testing on all learning models. Each run took 1 hour 
of Sparc 1 wall clock time.. 

The GA worked as follows: An initial population of 40 binary vectors was generated 
using a uniform random number generator for the interval [0,1). An ablation pattern ele­
ment took 1 as its value if the generator produced a number >= .5 otherwise it became O. 
This resulted in a 50% probability for any element of any vector being a 1 for the vectors 
of the initial population. A 0/1 binary vector conveniently serves as a mask for an ablation 
pattern: if the element in the mask is 0, the corresponding attribute is not used. 

A fitness value was calculated for each member (vector) in the population. This value 
was the percent of correctly classified testing records using NN on the same training and 
testing sets as the exhaustive search. To create slots for the roulette wheel [6], the percent­
age of a member's fitness to total population fitness was used, and a uniform random num­
ber [0,1) was generated to serve as the croupier. For each iteration, 10 sets of 2 spins of the 
roulette wheel were conducted for choosing members for crossover. In other words, for 
each iteration of the GA two unique members of the population where chosen 10 times for 
crossover in order to generate 20 new members of the population. The 20 members lowest 
in fitness were decimated, leaving the new population with the 20 new members from 
crossover, and the 20 most fit from the previous instance of the population. The algorithm 
used no mutation and essentially consisted of a fitness function and a reproduction func­
tion that included decimation functionality. 

Each of the 3 runs was conducted using a unique initial population and 20 iterations of 
the fitness and reproduction functions. The final populations always contained duplicates. 
In fact, one run resulted in a population where members were identical. However, the 
majority of the final population for each run was in the top 100 from the exhaustive 
search! The first run contained 14 unique ablation patterns in the top 100, two of which 
were in the top 44; the second run produced 40 duplicates of a pattern in the top 44; and 
the third produced 13 unique ablation patterns in the top 100, five of which were in the top 
44. 

The seven patterns used for subsequent testing where selected based on their member­
ship in the top 100, and on variety (e.g., it did not make sense to pick two ablation patterns 
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that differed by one attribute). These seven handpicked ablation patterns were tested for 
all models using the I-bit Part re resentation, and the results are consolidated in Table 4. 

Train! 
Testing 
set size Model 

No 
Ablation 
I-bit 

Best Perro 
Ablation P 
I-bit 

ming 
tterns 
Type 

145/2901 Perceptron 0.9586 0.9609 1 

Perceptron- Cons. 0.9574 * * 
BSB 0.9022 0.9482 1 

BSB- Conflation 0.9195 0.9448 1 

BSB- Consensus 0.9321 * * 
Nearest Neighbor 0.9103 0.9597 4 

290/145 Perceptron 0.9586 0.9586 0&1 

Perceptron- Cons. 0.9517 * * 
BSB 0.9448 0.9540 1 

BSB- Conflation 0.9494 0.9563 1 

BSB- Consensus 0.9517 * * 
Nearest Neighbor 0.9126 0.9609 5 

Table 4: Ablation typesfrom Genetic Algorithm results
 

Figures represent the percentage of correctly classified testing vectors. averaged over 3 IUDS.
 

Ablation type I clearly perfonned well for the neural network models, and ablation 
types 4 and 5 served well for NN. The results of these experiments show that perfonnance 
of an ablation pattern for NN is not correlated one-to-one with its perfonnance for Percep­
tron and BSB. The ablation patterns detected while using the combination of GA and NN, 
however, were good enough to allow BSB-Conflation and BSB-Consensus to outperfonn 
the basic BSB modeL In addition, this method produced an ablation pattern sufficient for a 
I-unit Perceptron to set a perfonnance record of 96% for correct Party classification of 
untrained instances using the Voting-84 database. 

The seven ablation patterns all performed better than the unablated input when using 
NN. The average was 95% correct classification, and picking any of the ablation patterns 
for final output would have realized a substantial perfonnance improvement over unab­
lated input. 

Based on reported perfonnances using the same domain, it seems that probability­
based algorithms, such as Quinlan's ID3 and its improvement, C4, have (inherently) the 
advantage that ablation gives to NN. These algorithms make training decisions based on 
the amount of infonnation a particular attribute can contribute to a classification. Basic 
NN has only Euclidean Distance to make its decisions, and it is therefore unable to tran­
scend the effects of attributes whose ambivalence across classes (or lack of information) 
makes classification less successful. 

Ron Papka Master's Thesis 22 



On the other hand, neural network models incorporate this lack of information in their 
weights during training; unfortunately, final network weights do not reveal ambivalent 
attributes. By using ablation in conjunction with Perceptrons, weights that are aligned 
with ambivalent attributes are ignored, allowing attributes with more information to wage 
their war across a hyperplane. With BSB, ablated elements are ultimately filled in with 
values that facilitate the feedback vector's reaching an attractor state while utilizing only 
unablated attributes. If the values for ablated attributes are those responsible for what 
would otherwise lead to an incorrect classification for many testing instances, clearly their 
removal can only improve total classification performance. The problem is finding a sub­
set of attributes that can be removed so that a performance improvement is realized for the 
testing set as a whole, and from the results utilizing the Voting-84 domain, it is clear that 
the set of attributes that can be removed is learning-model-specific. 

2.2 GENERALIZED TECHNIQUE 

One result of these experiments is the development of a technique for improving the 
classification abilities of Nearest Neighbor and neural network models on some domains. 
The potential improvement is achieved by introducing ablation patterns and Genetic Algo­
rithms into the models. 

The technique is the following: 

I) Partition the domain into 3 subsets of which two will be used for determin­
ing good ablation patterns, and one will be used for testing the model's classifi­
cation capabilities. Each of the subsets should in turn be divided into training 
and testing sets. 

2) Take one of the domain subsets and use a GA to determine ablation patterns 
which maximize classification performance for the testing records of the sub­
set. The GA's fitness function should utilize the model which this technique 
attempts to improve, and the value returned will be the performance percentage 
of the ablation pattern on the testing input It may be desirable to use another 
model for convenience. For example, using Perceptron in place of BSB would 
save a considerable amount of time for many domains. 

3) Using the second subset of data, take several well-performing ablation pat­
terns from 2, and test for ablation patterns that classify this subset best. The 
purpose of this step is to find ablation patterns that perform well on data that 
differ from the data that were used to create them. 

4) Use the third subset to determine final classification performance. 

During steps 2,3, or 4, unablated input should be tested to ascertain whether unablated 
input will provide for better performance. This will be important as the domain is 
explored. 
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2.3 LED-7 DATABASE RESULTS 

The second domain used to test the effects of ablation patterns was LED-7. The 
records of the LED-7 database are generated by a C-code program, and represent the for­
mation of lights turned on for a digit-LED display. An attribute is valued 1 or -1 according 
to whether the corresponding light is on or not. Noise is incorporated into a record by 
probabilistically complementing the value of an attribute. In the following experiments, 
this probability was held at 10%. Based on the classification abilities of other models, it 
seems that this database presents a more difficult learning task than Voting-84. Some pub­
lished results include: ill? 70.0%, C4 68.3% - 72.6%, Optimal Bayes 74%, CART deci­
sion tree 71 %, and Nearest Neighbor 71 % [1, 10,5]. Most of these results are based on 
different sized training and testing sets, but the models seem to have similar performance. 

In order to train a neural network for this task, a binary encoding for the classification 
values [0..9] must be decided upon. A grandmother cell representation was chosen, where 
10 elements of a training vector were used to account for each of the ten values (classes). 
This representation is discussed further in the Appendix. A 2-of-5 binary encoding using 5 
elements to represent classes was also tested, but produced inferior results. 40,000 sequen­
tial presentations where used to train the Perceptron, and 16,000 sequential presentations 
where used for the BSBs. All training was executed with a learning constant of .01111 . In 
addition, both models utilized a Bias element, but during BSB testing it was necessary to 
ablate the Bias element in order to produce a classification. 

Experiments were conducted to test the effects of training with and without noise. The 
training set without noise contained one instance for each ofthe 10 possible digits, and the 
training set with noise contained 400 instances. Three testing sets, each containing 400 
records, were generated with noise. The results for these experiments are listed in Table 5, 
where figures represent the average performance of a model on the three testing sets. 
Ablation patterns where hand-picked, and are specified in the Appendix. As expected, all 
models performed marginally better on the training set without noise. 

Based on a 10% probability that any attribute's value will be complemented, the prob­
ability that a given record is noisy, thus having at least one complemented bit, is around 
52%. The noisy training and testing sets for these experiments were examined and found 
to contain 51.5% noisy instances, of which most contained 1, 2, or 3 complemented bits. 
Since noisy and clean records are randomly ordered within a training or testing set, the 
neural network training on the noisy set was unsuccessful. It would appear that some of 
the adjustments made for a clean instance would be undone within a few presentations by 
a noisy instance. 

Both BSB and Perceptron learned perfectly the training set without noise, to the extent 
that each training instance was capable of firing only one cell. However, in testing, the net­
work models performed poorly. This can be attributed to the inability of a trained network 
to give rise to the "firing" of only one element of the grandmother cell representation 
when a noisy test instance is presented, and resulted in the use of a decision step for deter­
mining which of the fired cells to use as the final classification. For both BSB and Percep­
tron models, the cell with the strongest positive signal was taken to be the classification. In 
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the event of a tie, the cell representing the lowest digit value was taken as the classifica­
tion. If no cell fired, the final class was considered unknown. The consensus models did 
not include unknown responses as art of their calculation. 

Train / Testing set size Model 

No 
Ablation 
lO·bit 

Best Pen
Ablation) 
lO·bit 

~rming 

atterns 
Type 

lO-Ciean /400-.1 Noise Perceptron 0.6556 0.6556 0 

Perceptron- Cons. 0.5962 * * 
BSB 0.6237 0.6237 0 

BSB- Conflation 0.6312 0.6837 1 

BSB- Consensus 0.5962 * * 
Nearest Neighbor 0.7312 0.7312 0 

400-.1 Noise/400-.1 Noise Perceptron 0.3858 0.3858 0 

Perceptron- Cons. 0.4341 * * 
BSB 0.3100 0.3235 7 

BSB- Conflation 0.2853 0.2853 0 

BSB- Consensus 0.2100 * * 
Nearest Neighbor 0.6900 0.6900 0 

Table 5: LED-7 testing results 

Figures represent the percentage of correctly classified testing vectors. averaged over 3 runs. 

2.3.1 Nearest Neighbor and LED-' 

Nearest Neighbor proved to be the best performer among the models tested. Since' 
these experiments utilized binary vectors, the Euclidean distance between any two points 
is equivalent to the Hamming distance of their binary representations. If the records in a 
noisy training set are considered the points that define neighborhoods, it is very likely that 
the point representing a testing instance has the same Hamming distance to several train­
ing set points with different classes. Consider the followin example: 

Training points:
 

Nl ::: 1, 1, 1, 1, 1, 1, 1,0
 

N2::: 1, 1, 1, 1, 1, 1, 1,8
 

N3 = 1, 1, 1, 1, 1, 1, 1,6
 

N4 = 1, 1, 1, 1, 1, 1, 1,9
 

Testing point:
 

TP= -1,1, 1, 1,1, 1, 1,8
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The Hamming distance between the testing point TP and all four training points is 1, 
but a decision must be made for a final classification. For the NN experiments, the method 
for deciding among classes was to use the class which was represented most in the training 
set of points with the minimum Hamming distance from the test point. In the event of a tie, 
the class whose value was lowest was considered the final classification. For the example 
above, 0 would be the final classification. 

2.3.2 OPTIMAL ABLATION PATTERN FOR LED-7 

Table 5 indicates that ablation patterns did not (except in one strong case) increase the 
performance of a model. It appeared that LED-7 required unablated input This seems rea­
sonable considering that a value of -1 for a few attributes could make the difference 
between lights representing a 0,6,8, or 9, implying that most attributes contain very high 
information to contribute to making a classification. However, through exhaustive search, 
it was found that one ablation pattern performed as well as the unablated input using NN. 

The exhaustive search experiment utilized 1 training set and 3 testing sets each con­
taining 400 records with noise. One of the testing sets was used along with the training set 
for an exhaustive search for optimal ablation patterns. The unablated and best-performing 
ablated pattern classified the testing set 69.00% correctly. The two remaining testing sets 
had an average performance of 68.50% on unablated input, and 71.00% on ablated input, 
temporarily confirming that an ablation pattern could be used to improve NN on the LED­
7 domain. 

It should be noted that this optimal ablation pattern did not outperform the unablated 
pattern on other testing sets of various sizes. Three of the ablation patterns were within 
l~, asymptotically, of the performance of the unablated input. 

In addition, it was found that these three ablation patterns could be used successfully 
to classify 100% of an unnoisy testing set on a noisy training set. We would expect this to 
be the case for the unablated pattern, because 48% of the training set contains unnoisy 
instances, several of which will be of the same class. The testing instance will have an 
exact match to many unnoisy training instances, thus breaking any Hclnuning distance ties 
contested by noisy instances. The perfect performance using these ablation patterns would 
suggest that the attributes being ablated provide less information than the others. 

Ablation type 1 (specified in the Appendix) implies that attributes 6 and 7 provide the 
least information for a classification decision. In fact, with no noise, these attributes pro-
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vide no infonnation. For example, if lights 6 and 7 are removed from the LED digit, there 
is still a unique configuration for each number. 

I I I I I I I I 
I I 

o 1 2 3 4 5 6 7 8 9 

2.3.3 TESTING WITH OPTIMAL ABLATION PATTERNS. 

A final experiment utilizing the best-perfonning ablation patterns was conducted using 
the training set without noise, and 4 noisy testing sets containing 400 instances. The train­
ing parameters were the same used in the experiment described at the beginning of this 
section. The results are consolidated in Table 6. 

Train / Testing set size Model 

No 
Ablation 
to·bit 

Best Pen 
Ablation I 
to·bit 

rming 
atterns 
Type 

1O-Clearn/400-.1 Noise Perceptron 0.6556 0.6556 0 

Perceptron- Cons. 0.6812 * * 
BSB 0.6237 0.6781 1 

BSB- Conflation 0.6356 0.6868 5 

BSB- Consensus 0.6550 * * 
Nearest Neighbor 0.7312 0.7312 0 

Table 6: LED-7 Testing results with optimal ablation patterns 

Figures represent the percentage of correctly classified testing Vedors, averaged over 4 runs. 

The use of these ablation types helped improve Perceptron-Consensus over Percep­
tron, and BSB-Consensus over BSB. This result indicates that the optimal ablation pat­
terns give rise to correct classification on many testing instances where unablated input 
does not. 

The results of the Voting-84 experiments reveal that BSB-Conflation can provide a 
performance improvement over BSB, and in the unnoisy LED-7 experiments, it proves to 
be the best-performing network model. However, these statements are only true if we con­
sider the final performance of BSB-Conflation as the classification performance of some 
ablation pattern. In general, taking the results of an ablation pattern as final classification 
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must be accompanied by an a priori decision regarding which of the ablation patterns to 
use for final classification.The results listed in the tables are averages; however, the indi­
vidual experiments conducted with both domains indicate that an ablation pattern that per­
formed well, consistently performed well for all testing sets on a neural network. 

3.0 CONCLUSION 

The use of ablation patterns to improve the classification performance of machine 
learning models was a by-product of the attempts to improve Net-time's ability to tell 
time. After various implementation experiments, it was found that for several vectorized 
input instances of the image of a clock, the ablated instance could give rise to the correct 
time where the unablated instance representing full image information could not. Because 
of this and the ensuing need to test several ablation patterns in a system requiring high 
dimensional vector space, a software port to a SIMD massively parallel hardware architec­
ture was pursued, and led to the concept of Conflation. 

The use of ablation is not, by any means, pervasive in learning literature, although 
Kibler and Langley [7] suggest lesion studies as an experimental tool for discovering the 
effects that a given component or operator has on a learning model, and cognitive simula­
tions use lesion or ablation on the neural network itself as a method for simulating the 
effects of the loss of neurons. However, the use of ablation while working with the BSB 
model is quite natural. For example, one way to create an input / output mapping is to par­
tition the elements of a vector into input and output portions. After Widrow-Hoff training, 
the mapping is tested by zeroing or ablating the output portion of a training vector. The 
model "fills in" the output portion as the vector is processed. Various tests indicate that 
BSB's mapping ability is relatively superfluous to a few zeroed elements on the input por­
tion, and experimenting with Net-time showed that certain patterns of zeroed elements 
facilitated the mapping of several clock images to their approximate times. 

The benchmark study in this paper indicates that there is potential for ablation patterns 
to be used by two neural network models for improving classification on real-world 
domains. If neural networks are to be used as classifiers, a method for improving their per­
formance is to process (in parallel) several ablation patterns on an input instance, and to 
reach a classification decision based on an intra- and/or post-process method. The study 
also indicates that the Nearest Neighbor classifier is improved with ablation patterns if a 
domain contains attributes that complicate its classification process. For all three models, 
the Genetic Algorithm provides a method for determining well-performing patterns when 
exhaustive search is not feasible. 

The results of the experiments presented in this paper also show that there exist some 
domains which are classified better by connectionist models, and some classified better by 
statistical and probabilistic models. Ablation patterns, Consensus, and Conflation have a 
promising future for domains benefitting from the connectionist models, 
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4.0 APPENDIX 

The Appendix contains the specifications for the ablation patterns used in the various 
experiments, the specifications for the Voting-84 and LED-7 domains, and pseudo-code 
for Widrow-Hoff training and BSB testing. The Voting-84 and LED-7 databases are cour­
tesy of the University of California at Irvine's Repository Of Machine Learning Data­
bases. They are available via ftp from U.c.1. 

4.1 NET-TIME ABLATION PATTERNS 

Ablation 
Type Description 

0 Full information. 

1 Ablate every other element. 

2 Leave every 4th element unablated. 

3 Randomly ablate 60 elements. 

4 Ablate left half. 

S Ablate right half. 

6 Ablate outside quarters. 

7 Ablate middle half. 

4.2 VOTING-84 DATABASE 

Vector set specifications 

Binary -1/1 vectors of dimensionality 18 or 20. 

Elements 1-16: yin voting pattern. 

Element 17: Bias set to -1. 

Elements 18: Classification representation, D =(1), R=(-I), or 

Elements 18-20: Classification representation, D =(1,-1,1), R=(-I,I,-I). 

This data set includes votes for each of the U.S. House of Representatives Congress­
men on the following 16 key votes: Handicapped infants, Water project cost sharing, 
Adoption of the budget resolution, Physician fee freeze, El Salvador aid, Religious groups 
in schools, Anti-satellite test ban, Aid to Nicaraguan Contras, MX missile, Immigration, 
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Synfuels Corporation cutback, Education spending, Superfund right to sue, Crime, Duty­
free exports, and Export administration act South Africa. It contains 435 instances (267 
democrats, 168 republicans), hence 2 classes, and 17 attributes. 'y' represents a yes vote, 
'n' a no vote, and'?, represents vote present (to avoid conflict), or vote unknown. 

Sample records 

democrat - n,y,n,y,y,y,n,n,n,n,n,n,?,y,y,y 

republican - n,y,n,y,y,y,n,n,n,n,n,n,y,y,?,y 

The following ablation patterns were handpicked based on their aesthetic appeal: 

Attribute number 

Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
1 * Y * Y * Y * Y * Y * Y * Y * Y 
2 Y * * * y * * * y * * * y * * * 
3 RaJ dam vabh te 5 

4 Y Y Y Y Y Y Y Y * * * * * * * * 
5 * * * * * * * * y y y y y y y y 

6 * * * * y y y y y y y y * * * * 
7 Y Y Y Y * * * * * * * * y y y y 

y = present *=not present 

The following ablation patterns were handpicked based on fitness from 3 runs of a 
Genetic Algorithm: 

Attribute Number 

Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
1 * Y Y Y * * * * * y y * * y y y 

2 * Y Y Y * * * * y * y * * y y * 
3 * Y Y Y * Y * Y Y Y Y * * * y * 
4 * * * y * y * * y * y * * * * * 
5 * * y y y * y * * y y * * y * y 

6 * y y y * * * * y * y * * * * y 

7 * Y Y Y Y Y * * y * y * * y y y 

y =present * =not present 

Ron Papka Master's Thesis 30 



4.3	 LED-' DATABASE 

The records of this database are generated by a C-code program and represent the for­
mation of lights turned on for a digit-LED display. An attribute is valued -lor 1 according 
to whether the corresponding light is on or not. For noise experiments, each attribute, 
excluding the class attribute(s), has a 10% percent chance of being inverted. 

Vector set specification 

Binary -1/1 vectors of dimensionality 18. 

Elements 1-7: -1/1 segment pattern generated by D.C.!. C-code. 

Element 8: Bias set to -1. 

Elements 9-18: Classification representation of grandmother cell. (Shown in 0/1 
binary below): 

Digit Classification 

0 1000000000 

1 0100000000 

2 0010000000 

3 0001000000 
4 0000100000 

5 0000010000 

6 0000001000 

7 0000000100 

8 0000000010 

9 OOOOOOOO01 

The records contain 8 attributes and 10 classes, and the number of instances is deter­
mined by the user. 

Attribute configuration in LED display 

1 

21 4 1 
3 

51 
1 

6 

7 
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Sample records for the digit 8 

(NO noise) 1, 1, 1, 1, 1, 1, 1 ,8 or 

(noise) -1, 1, 1, 1, 1, 1,-1,8 

The following ablation atterns were hand icked based on their aesthetic appeal: 

Attribute Number 

Type 1 2 3 4 5 6 7 

0 y y y y y y y 

1 Y * Y * Y * Y 
2 y * * y * * y 

3 RA mdo nly ~ blatt 3 

4 Y Y Y Y * * * 
5 * * * y y y y 

6 * * y y y * * 
7 Y Y * * * y y 

y =present * =not present 

The following are the 8 top performing ablation patterns from an exhaustive search: 

Attribute Number 

Type 1 2 3 4 5 6 7 

0 y y y y y y y 

1 Y Y Y Y Y * * 
2 y y y y y y * 
3 y y y y y * y 

4 Y * Y Y Y Y Y 

5 * Y Y Y Y * * 
6 y * y y y y * 
7 Y Y * Y Y * * 

y =present * = not present 

Note: The order of overall performance is Type 0,1,2,3,4,5,6, and 7. 
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4.4 PSEUDO-CODE 

Widrow-Hoff training algorithm 

Vector L g, wv, DiU; 1* Binary vectors (-1,1) *1
 
Matrix A, Ai;
 
float learn_constant;
 

for(i=1; i <= ~JM_OF_ITERATIONS; i++} { 

f = g = Next_vector(};
 
learn_constant = 1 I Inner-product(f,f};
 

Matrix_tim~s_vector( A, f, tempg}; I*get expected association*1 
Subtract_vectors(g, tempg, Diff}; I*get diff vector*1 
Scalar_times_vector(learn_constant, Diff, wv); I*create wv which incorporates learn constant*1 
Outer-prcdJct(f,~~, Ai ); I*create delta matrix*1 
Add_matrices (Ai , A, A); I*add delta matrix to associator*1 

BSB testing algorithm 

~dE:i;,e A~?~A 0.2 I'feedback constant'l
 
lldefi:-.E ~.z...:!<=:,A 0.9 l'gain'l
 
~def~~~ DE~:~ 1 I'original input, 1= present*1
 

I" Next s:~:e of vector *1
 
/" ):(t~1) = :..J..2·:::::;'."X't) + AL?HA"Ax(t} + DELTA*x(O); *1
 

/7 l.i::-:': :_'1:f':-::CY" f'JfJction * / 
ferti=,;; i< :,,i;:-''2:'jsic:-Jality; i + +) (
 

if: x:iJ > 1.0} xli) 1.0;
 
ifl x:ij < -1.0) x[iJ = -1.0;
 
else ~::_chc:nge;
 

I*LOOP for number of pairs*1 

f =	 r~e>::_Ve~tor{i); 

:cr,r=4S}; k< 501; k++) f[kJ = 0; I*ablate as you like*1 
forir=:; k< Dimensionality; k++l 

next_vec[kJ = f[k]; I*create first input vector*1 

for(j = C; j< l~~_Nm~_lTERATIONS; j++}{
 
M~trix_tirr,es_vector( A, next_vee, tempf);
 
for(k=:; k< Dimensionality; k++) {
 

z =	 (next_veclk) * LAYiliDA) +
 
(tempf [k] * ALPHA) +
 
(flk] * DELTA);
 

next_vec[k] = z; I*ereate vector for time t+l *1 
) 

Li~it_vector( next_vee )i
 

} I"inner for loop'l
 
pri~t_vector( next_vee);
 

I"out~r for loop"1 
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