
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-93-Ml

" Logging and Recovery in ObServer2"

by

Paul Alan Reilly

Logging and Recovery in ObServer2

Paul Alan Reilly

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the Degree of

Master of Science in the Department of Computer Science at Brown University

February 1993

This research project by Paul Alan Reilly is accepted in its present form by the

Department of Computer Science at Brown University in partial fulfillment of the requirements

for the Degree of Master of Science.

S£~l,

-Z/'"7 fL3
r-- Date

Logging and Recovery in ObServer2

Logging and Recovery in ObServer2

Master's Project

Paul Alan Reilly

February 11, 1993

Paul Alan Reilly 1

Logging and Recovery in ObServer2

1. Introduction
This project Is an Implementation of the logging and recovery sUbsystem of Ob

Server2, a distributed persistent object store. This paper Is concerned only with the logging and
recovery system used In ObServer2 and presumes some knowledge of ObServer2. However,
those with some understanding of database principles, should be able to follow most of It.. For a
more detailed discussion of ObServer2 refer to David Langworthy's Ph.D. Thesis Proposal [2]. This
project Is an Implementation of the logging and recovery system outlined In that proposal.

2. Overview
In order to understand various aspects and features of this project It Is helpful to

have an understanding of how the logging and recovery subsystem fits Into the whole system.
Figure 1 shows some of the relevant pieces of the ObServer2. Only those pieces on the server
side of the system are shown. The logging and recovery system resides solely on the server side
Of ObServer2,

The major components Include the Logging System which will be discussed, In some

Transactio
Manager

DatabaseLogging System Manager

Disk

~
Fiaure 1

detail throughout this paper, the Network manager, the Database Manager, and the Transac
tion Manager. Each of these Interact with the Logging System and must be understood as well.

The Network Manager Is responsible for handling all communications between the
client and server components of ObServer2. The Network Manager calls the approprlal'e Log
ging System routine whenever a logging function message Is received from a client.

Paul Alan Reilly 2

Logging and Recovery in ObServer2

The Transaction Manager Is responsible for managing the state of all transactions
on this server. It must maintain which transactions are currently In progress, what state they are
In. what objects are Involved In those transactions, etc.. The Transaction Manager uses the Log
ging System to achieve these goals. The Logging System notifies the Transaction Manager
whenever It receives operations which affect the state of the transaction (Ie PREPARE and
COMMIl). The Logging System also stores records of all operations on objects and the Transac
tion Manager uses these to determine whether or not a transaction can commit. The two sys
tems work together during Checkpolntlng and Recovery to make sure that the state of Pre
pared and Committed transactions Is preserved.

The Database Manager Is responsible for storing the objects on disk. It works With the
other components to supply these objects to the client and server when operations are being
performed. It Is the responsibility of the Database Manager to maintain stable copies of commit
ted versions of objects. However. not every committed object state will be reflected In the da
tabase. The version of the objects stored In the database are considered base versions, to
which the updates of committed transactions stored In the log must be applied to bring the ob
Ject up to date.

Each of these components plays an Important role In the ObServer2 system. How
ever. this paper only deals With the Logging System Implementation and Its Interactions with the
other components. not the full functionality of these other components or their Implementa
tions.

3. Logging and Recovery

The logging and recovery system uses an original no-undo, no-redo write-ahead
logglhg algorithm called No-Redo Write Ahead Logging (NR-WAL). Intention lists are used to
eliminate redo during recovery. This allows recovery to be done In, at most. a single pass of the
log from the last checkpoint onward. Also, the nature of the log allows updates to be applied
asynchronously so that preparing and committing transactions are much quicker.

The following subsections explain various aspects of the Logging system. First the
physical structure of the log Is explained. Next. the major data structures used are outlined. Then
the algorithms used for the major functions of the system are explained. Finally. the actual Im
plementation Is discussed Including a list of all of the external and major Internal Interfaces of
the system.

3.1. Log

The log Is a circular log based on a memory mapped raw disk partition. This gives
the log various features which Include control over the actual layout of records on disk. There
fore. the cost of accessing sequential records Is a fixed amount. not unknown as would be the

Paul Alan Reilly 3

Logging and Recovery in ObServer2

case when using a file system. Also, the Logging System can synchronously write portions of the
log to disk with assurance. Therefore, If the write succeeds, the data made It to disk.

Log Structure

Head Tail AP

LSNs 23:5060 22:10565 22:15670

Figure 2

Figure 2 shows an example of what the log might look like. It Is fixed In size. However,
It can wrap-around to restart at the beginning as long as the data stored there Is no longer
needed. This allows the log to make better use of the space that It has while maintaining Integ
rity of the relationships of LSNs (monotonically Increasing).

3.2. Data Structures

The following are the Important data structures used within the Logging System.

3.2.1. Log Sequence Numbers

A Log Sequence Number (LSN) Is an Index Into the log. It Is a montonlcally Increas
Ing value which will uniquely Identify log entries. This allows the LSNs to be used for multiple pur
poses. The first purpose Is to Identify log records and allow them to be located. The second use
Is as a version number for objects store In the database. The LSN stored with the object Is that of
the log record for the most recent update operation. This allows LSNs to be used to see If an
object Is up to date.

An LSN consists of two parts. The first part, located In the high order bits, Is a wrap
count. This Indicates how many times the log has wrapped to start back at the beginning. The
second portion Is a direct offset from the beginning of the memory of the log. This allows any
thing pointed to by an LSN to be reached without following Indirect pointers.

3.2.2. Log Records
Every thing stored In the log Is considered to be a log record. Each of these begins

with a Log Record Header which contains the type of record, the Isn of the record Itself, and
the size of the record. The LSN of the record Itself Is used during the forward scan In recovery to
detect whether the record Is of the current wrap of the log. It Is also used as a check for corrupt
log entries. The size of the record allows records to be skipped while scanning the log.

Following the Log Record Header Is the record Itself. There are five types of log re
cords - Intention, Checkpoint, Prepare, Commit, and NULL. Each of these has a different pur
pose and structure.

An Intention Record Is used to record the operations, both observers and modifiers,
that a transaction performs on various objects. This record consists of a Transaction Identifier, an
LSN of the previous Intention record (used for linking together the Intention Records Involved In a
transaction), and one or more Operation Records which describe the operation being per
formed.

Paul Alan Reilly 4

Logging and Recovery in ObServer2

A Checkpoint record Is used to store the state of the logging system. This allows the
logging system a place to being upon recovery. After reading the checkpoint, the state Is up to
dal'e with respect to transactions that prepared or committed before the checkpoint. The
checkpoint record contains the transaction table, the version table, and their respective sizes.

A Prepare record Is used to Indicate that a transaction has successfully prepared (In
the 2PC sense). The Prepare record contains a transaction Identifier (TID), the LSN of the last In
tention Record of the transaction and a timestamp (which Is used to order transactions Involved
In blind updates).

A Commit record Is used to Indicate that a transaction has successfully committed.
The Commit record contains a transaction Identifier (TID), and the LSN of the Prepare record.

A NULL record Is used as a filler In certain situations. The first case Is when a record Is
to big to fit In the current wrap of the log. In this case a NULL record will be written out to take
up the rest of the space of the wrap, and the record Is written In the next wrap of the log. The
next case occurs If a record needs to fit within a page, then a NULL record can be written out
to take up the rest of the page (this has not been Implemented yet).

3.2.3 Log Header
The Log Header Is used to describe the state of the log. It Is stored at the beginning

of the log. Thus, It Is a stabley stored piece of data. Whenever It Is updated with data that Is
critical, It Is synchronously written back to disk before proceeding. The Log Header contains a
log Identifier used to Indicate that this Is actually an ObServer2 log, a version of the format of
the log, a flag Indicating whether of not a checkpoint has ever been done, and the LSN of the
last checkpoint.

3.2.4 Log Structure
The Log structure Is a run-time structure which maintains volatile Information about

the log, The current Head, Tall, and AP are kept here. Locks controlling access to these are also
stored here. Pointers to all of the routines registered with 10g-,nltO are stored In this structure.
Also, the pointer to the actual log memory Is stored In this structure.

3.3. Algorithms
This section outlines the algorithms used for various phases of the system. The four

major sections considered are Logging Intentions, Checkpolntlng, Applying Updates and Re
covery. Each of these will be described In turn.

3.3.1. Intention Logging
Intention Logging Is fairly straight forward. When a client accesses objects, either

observing or modifying them, It builds up an Intentions list of these operations. These Intentions
lists contain transaction Identifiers (TId) which are used to Identify the transaction. This allows the
client to send the Intentions list to the server whenever It wants. However, before a transaction
can Prepare, all of the Intentions lists from the client for that transaction must have arrived at the
server.

When the server receives an Intentions list, the Intention list must be added to the
end of the log. To do this a record header Indicating the type of record (Intention) and the size
of the record Is prepended, and the whole thing Is written to the head of the log. After this oc
curs the log header Is updated to Indicate the new head of the log.

Paul Alan Reilly 5

Logging and Recovery in ObServer2

3.3.2. Checkpointing
The next major topic to be discussed Is that of Checkpolntlng. During checkpolntlng,

enough Information Is written to the log to ensure that the current state of prepare and commit
ted transactions can be recovered. For NR-WAL, this Information Is fairly small. It consists of the
Version Table, the Transaction Table, and the current head of the log. With this Information the
Recovery algorithm can reproduce the state of prepared and committed transactions.

Checkpolntlng consists of gathering this Information and writing It to the log. To get
the Version and Transaction Tables, the log manager calls the routines supplied to It upon Initiali
zation. This Information Is then added to the log with a log record header IndIcating the type of
record (Checkpoint) and the size of the record. This Information Is then appended to the log.

However, this alone Is not enough to guarantee that the state can be recover. The
Recovery algorithm needs to know where the Checkpoint record Is stored. Thus, after the
Checkpoint record Is written out (synchronously), the Log Header (a record at a known loca
tion) Is updated with the LSN of the Checkpoint record. This guarantees that we can recover
the state represented by the Checkpoint record.

3.3.3. Applying Updates

Applying Updates Is the next major topic to be considered. In some ways this Is sim
ple for the logging system. All that the logging system worries about Is, whether or not the Inten
tion record Is of a transaction that has committed. Also, a check Is made to see If there Is an
entry In the Version Table for this object. This would Indicate that the stable state of the object
may not be up to date with the committed state of the object. If so, then It can check to see If
the object needs to have this update applied (by comparing the LSN of the object with the LSN
In the Version Table).

Whenever an operation Is found that needs to be applied, a routine which Is regis
tered for that operation code Is called with the object the operation code, and the arguments
to the operation. It Is up to this routine to apply the operation to the object. After thIs occurs the
object can then be written back to disk with the updated LSN.

In order to Implement this functionality, a thread, called the Appller thread, runs to
apply these updates. It will contInually check the log at the Application Pointer to check (by the
above process) If there Is an operation which needs to be applied. If the transactIon has not
committed, but Is stili active (Ie not aborted), then the Appller thread walts. When the log re
ceives a commit operation for a transaction, It signals the Appller thread after notifying the
Transaction Manager. This will wake up the Appller, which can then check to see If the opera
tion has committed. If the operation has aborted, then the Application Pointer Is updated to the
next operation. Otherwise the process continues as specified above.

An alternative Implementation would be to have the Appller thread go through the
log applying all updates that It can for committed transactions, without worrying whether or not
they are the last one (Ie pointed to by the Application Pointer) or not. Although this would apply
more updates more quickly, 1'1" does nothing to free up the critical resource of log space be
cause space can only be reclaimed at the Tall of the log. Thus, this approach does not seem
worthwhile.

3.3.4. Recovery

The last major topic to be discussed Is Recovery. Recovery Is the process of restoring
the state of the system as close as possible to the state that It was In before the crash, system
failure, or shutdown. It Is a requirement of the recovery process to be able to recover the state
of any prepared or committed transactions. However, transactions which are not In these states

Paul Alan Reilly 6

Logging and Recovery in ObServer2

may be lost.

When the logging system starts up (when 10gJnlt Is called), the system reads the log
header to find the last checkpoint. This checkpoint Is then used to restore the state of the trans
action and version table data which are passed to the Transaction Manager and Version Table
respectively. Then a forward scan Is made of the log to recover any thing that happened after
the checkpoint was made. As prepare and commit records are encountered the Transaction
Manager Is notified with the Information. After this scan, the system Is ready to continue without
any further work.

There are some Interesting problems Involved with this scan. The first Is how do we
know when to stop? One approach Is that the scan continues until a record Is found that Is not
valid (Ie from the previous wrap, or has an Invalid type, bad data, etc.). This approach has the
major flaw that It will not discover any prepare or commit records which occur after this Invalid
record. Well, the question then arises can prepare or commit records occur after an Invalid re
cord. The answer Is a modified yes. If only those records which are Involved In transaction which
Is preparing are ensured to be synchronously written out to disk before a prepare occurs, then
there could be records from other transactions Intermixed with these records which will not be
guaranteed to be written out. Thus, there could be an Invalid record In between valid records
and before a prepare record. If we used the above scheme for stopping, then these records
would never be detected.

There are two solutions to this scanning problem. The first Is to use a different criterion
for determining when to stop scanning the log. One criterion would be to stop when the tall of
the log Is reached. However, this approach Is extremely expensive. Not only does the whole log
have to be scanned during a recovery, but whenever an Invalid record Is discovered, the log
would have to be scanned byte-by-byte to ensure that the beginning of the next valid log re
cord Is found (think about a record which crosses pages to understand why this Is so. If records
can't cross pages. then we would just need to begin at the next page whenever an Invalid re
cord was found). A different approach would be to ensure that everything from the checkpoint
to the last commit or prepare record was written out to disk. This would allow us to just scan for
ward until an Invalid record Is reached.

Unfortunately, neither of these solutions Is currently Implemented In the logging sys
tem. However. neither one would take long to add. Also, there are other possibilities for ensuring
the correct recovery of the log. but only some straight forward ones were outlined here. If these
are not satisfactory, other methods (like a mixture of the two above) could certainly be devised.

4. Implementation

The Implementation of the log Is fairly Interesting. It uses a memory mapped partition
(or file) to Implement the log. This allows access to log records to be as easy as following mem
ory pointers. This Is especially critical during transaction Prepare when all of the Intention records
for a transaction must be examined for conflict, during observations when an object may have
to be brought up to date, and during application of committed updates to the log.

4.1. External Interface
The Interface to the log Is as follows. Each of these routines Is thread-safe. In other

words, mUltiple threads can call these routines simultaneously and they will not cause Incorrect
results. Locks from the threads package described In section 6 are used to control access to
shared data.

Paul Alan Reilly 7

Logging and Recovery in ObServer2

Routine Name: logjnit

Description:
Initializes the log upon startup. Will also start recovery when starting up after the log

has already been Initialized. Checks the beginning of the fog for layout and then calls
10(Lrecover to do recovery.

Format:
int log,jnit(Log * log, char * partition,

int (* vCget) (void * * vt, unsigned • size),

int (* vt_put) (void * vt, unsigned size),

int (* vCupdate) (Oid * oid, int state, Lsn • isO),

int (* tt...,get) (void * * tt, unsigned * size),

int (* tt_put) (void * tt, unsigned size),

int (* tm-prepare) (Tid * tid, Lsn * lasCir),

int (* tm_commit) (Tid * tid, Lsn * prep_ir»

Arguments:

log - pointer to log structure which contains Information pertinent to the log. Most
of this Information In this structure Is set In thIs routine

partition - character string Indicating the file to use as the log. The file will be ex
amined and Its size will determine the size of the log. This does not actu
ally have to be a partition, but using a partition may Increase the per
formance (slightly).

vt-get - routine to be called when the log Is going to do a checkpoint and wants
a current copy of the version table. This routine must supply a version ta
ble that Is In contiguous memory. The format does not matter except that
It will be passed to the vt.J)ut routine when a recovery Is done.

vt...,put - routine to be called when recovery Is done. It gets passed a pointer to
the version table that was stored during the last checkpoint.

vt_update - routine to be called when an update has to be made to the version
table.. It gets passed a pointer to the object Identifier (Old), a state, and
a pointer to the new lSN (If applicable).

tt-get - routine to be called when the log Is going to do a checkpoint and wants
a current copy of the transaction table. This routine must supply a trans
action table that Is In contiguous memory. The format does not matter ex
cept that It will be passed to the tt...,put routine when a recovery Is done.

tt...,put - routine to be called when recovery Is done. It gets passed a pointer to
the transaction table that was stored during the last checkpoint.

tm...,prepare - routine to be called during recovery when a PREPARE record Is
found. It gets passed a pointer to the transaction Identifier, and a pointer
to the last Intention record Isn.

tm_commit - routine to be called during recovery when a COMMIT record Is
found. It gets passed a pointer to the transaction Identifier, and a pointer
to the prepare Isn.

Routine Name: logjntention

Paul Alan Reilly 8

Logging and Recovery in ObServer2

Description:
This writes an Intention record to the log using the lower levello9-add_record.

Format:
int 10gjntention(Log • log, Lsn • Isn,

Tid ·tid, Lsn • prev_ir,

OperationRecord • op)

Arguments:

log - structure Identifying log In which this record Is to be written

Isn - returned Isn of where this record Is placed.

tid - transaction Identifier for the transaction of which this Intention record Is part

prevjr - Lsn of previous Intention record op - operation records

Routine Name: log_checkpoint

Description:
Places enough Information Into the log so that we can recover to the current state

without reading the log. Need to write out the Version Table, Transaction Table, and Head of
the log. This routine shoUld probably be called periodically from a thread which sleeps. How
ever, we may also want to be able to call It at specific points.

Format:
int log..checkpoint(Log • log)

Arguments:

log - pointer to the structure containing the Info about the log that Is being
checkpolnted,

Routine Name: 10gJ)repare

Description:
Calls the registered prepare routine. Then, If the routine returns a success value, It will

write out the prepare recrod and change the status In the various tables.

Format:
int log..prepare(Log • log, Lsn • Iso, Tid • tid, Lsn • lasCir)

Arguments:

log - pointer to the structure containing the Info about the log In which to write
the record.

Isn - place to write the LSN of the prepare record.

tid - pointer to transaction Identifier of the transaction that Is preparing.

lastjr - pointer to the LSN of the last Intention record of this transaction.

Routine Name: log_commit

Description:
Writes out a commit record to the log. This will also force a 109-sync for the log up

to the end of the commit record of the transaction.

Paul Alan Reilly 9

Logging and Recovery in ObServer2

Format:
int IOLcommit(Log ·log, Lsn • Isn, Tid • tid, Lsn • prepare_lsn)

Arguments:

log - Pointer to the log structure Inl'tlallzed by 10g-,nltQ.

Isn - pointer to Lsn structure which will Indicate where this commit record Is
placed when It Is written to the log. Filled out by this routine.

tid - Transaction Identifier of the transaction which Is committing.

prepareJsn - Lsn of the prepare record of this transaction.

Routine Name: log_sync

Description:
Makes sure that a portion of the log Is on stable storage.

Format:
int IOLsync(Log ·Iog, Lsn • beLlsn, Lsn • end_lsn)

Arguments:

log - Pointer to the log structure which contaIns all Information pertinent to the
log.

begJsn - Pointer to the Lsn of the start of the section of the log to be stabilized.

endJsn - Pointer to the Lsn of the end of the section of the log to be stabilized.

4.2. Internal Routines

The following set of routines are those that are used Internally that are Important.
Each of these routines has a large Impact on the system, and the understanding of them Is vital
to the understanding of the Implementation of the logging and recovery system.

Routine Name: log_applier

Description:
This routine Is started from log-,nlto after recovery Is complete. It goes through the

log trying to apply committed changes. It does this by looking at the Application Pointer and
checking the records pointed to by It. If the record has been committed, a check Is made to
see If the change has already been applied. If not then the registered routine Is called with the
OperatlonRecord contained In the Intention Record. After this has been done, the Appllctlon
Pointer can be moved forward.

If the transaction represented In the record pointed to by the AP has not been com
mitted, then a check to make sure that the transaction has not been aborted. If not then the
appller sleeps waiting for a transaction to commit. When a transaction does commit (or abort),
the transaction manager signals the appller (through the use of a condition variable) that a
transaction has committed (or aborted), the appller starts up again. If the transaction aborted,
then the AP can be moved forward as well.

Format:
void IOLapplier(void • temp)

Arguments:

Paul Alan Reilly 10

Logging and Recovery in ObServer2

temp - pointer to the log structure. Passed as a (void *) to satisfy C.

Routine Name: log_odd_record

Description:
Low level routine to add to the circular log. It makes sure that the whole record will

fit, Including a log record header which Is prepended by this routine. If the whole record will not
fit In this wrap of the log, then a null record Is written out, the log Is wrapped, and the space
that was remaining In the wrap Is lost. If this record won't fit In the log at all, a negative value
Indicating the difference between available space and log record size. This routine takes a
variable length arg list so that all the arguments do not need to be copied Into one buffer for
this routine to be called.

Format:
static int IOLadd_record(Log * log, LogRecordType type,

Lsn * Isn, unsigned long total_size,

unsigned long num_ar~,...)

Arguments:

log - Pointer to the log structure Initialized by 10gJnltQ.

type - type of record to be stored - INTENTION, COMMIT, etc.

Isn - Isn where the log record Is placed, only valid If status Is zero

totoLsize - size of all records to be placed In the log.

num_orgs - number of Items to be written to the log And then once for each
Item:

size - size of the next Item

buffer - pointer to the Item In memory

NOTE: THIS ROUTINE SHOULD BE MODIFIED SO THAT IT TAKES AN ADDlnONAL PA
RAMETER WHICH INDICATES WHETHER OR NOT, THE RECORD CAN CROSS A PAGE
BOUNDARY. IF NOT, AND IF THE RECORD DOES NOT FIT, WRITE A LOG_NULL RE
CORD TO FILL THE REMAINDER OF THE PAGE. THIS IS ONLY IN THE CASE THAT THE
RECORD WOULD FIT IN A PAGE TO BEGIN WITH. IF NOT, WE NEED TO DO SOME
THING DIFFERENT.

Routine Name: log_recover

Description:
Routine which restores the state of the log as close as possible to the state before

the crash/exit. This routine uses the last checkpoint and then scans forward to find all PREPARE
and COMMIT records. It uses these to update the transaction and version tables. It can do
nothing with any other record types due to the fact that we can't guarantee enough about
them to be able to recover them. Thus, If a transaction was In process, but had not yet pre
pared before the crash, the transaction will be considered to have aborted after recovery.

This routine could be extended to continue reading forward even an Invalid record
Is found. All that would be needed Is to continue to scan through the log looking for the appro
priate structure. However, this could be a lot more expensive due to the fact that we would
have to look at every byte from the Invalid record up to the tall of the log.

Paul Alan Reilly 11

Logging and Recovery in ObServer2

Format:
static int lo~recover(Log • log, Lsn • cp_lsn)

Arguments:

log - Pointer to the log structure which contains all Information pertinent to the
log.

cpJsn - pointer to the LSN of the last known checkpoint. This can be the NULL LSN
If no checkpoints have been done.

5. Multiple Session rep
5.1. Overview

One of the other packages that I wrote Included a simple package to allow multi
ple simultaneous channels (or sessions) over a single TCP/IP connection. Actually It would work
over any transport with a socket Interface given relatively minor changes, but It only makes
sense for connection-oriented protocols.

The reason for developing this package Is that we need the ability to support multi
ple logical connections from client to server. Also, the number of these connections needs to be
able to change during run-time. Although we could have used straight TCP/IP connections to
achieve this, we felt that the cost for establishing separate connections was too high both In
latency for establishing the Initial connection and In cost of keeping each connection open.

The basic model of this package mlmlcks TCP/IP when Initial connections are made.
After that. everything Is done with unl-dlrectlonal session. The fact that sessions are uni
directional allows them to be created much more cheaply than If they were bl-dlrectlonal.

Clle~
Uni-directional
Session:/A
............ 3>

TCPjlP
Connection

y . v

Figure 3

Figure 3 shows a sample configuration with one connection between the client and
server. However, these connection has three logical one-way sessions within It. Two that go from
the client to the server and one from the server to the client.

5.2. Interface

Paul Alan Reilly 12

Logging and Recovery in ObServer2

Routine Name: create_server_end

Description:
This routine Is used on the server side to set up an Initial endpoint for recelng con

nection requests from clients. This routine Is the one that actually sets up the TCP socket that Is
lused to accept connection requests. An Inltal session number 0 Is created automatically which
the client can write to and the server can read from.

Format:
int create_server_conn(Connection * conn, int sock)

Arguments:

conn - pointer to the log structure. Passed as a (void *) to satisfy C.

Routine Name: create_clienCconn

Description:
This routine Is used on the client side to set up an Initial connection to the server.

Format:
int create_clienCconn(Connection * conn, char *hostname, int port)

Arguments:

conn - pointer to the connection structure. filled In by this routine

hostname - hostname on which the server Is executing

(port - port of the server to be connected to
\

Routine Name: create_session

Description:
This routine Is used on either endpoint and creates an endpoint that can be used to

receive messages. Typically, one side will call this routine and then pass the session number to
the other side to be used when responding to certain messages.

Format:
int create_session(Session * session, Connection *conn)

Arguments:

session - pointer to the session structure. Filled In by this routine

conn - pointer to the connection structure which was Initialized by cre
ate_client_connO or create_server_endO.

Routine Name: write_session

Description:
This routine Is used on the client end of a session to write to the end which created

the session. This routine may block If the message can not be sent Immediately.

Format:
int write_session(Connection * conn, Session * session, int type, int size, Message *msg)

Arguments:

Paul Alan Reilly 13

Logging and Recovery in ObServer2

conn - pointer to the connection structure which was Initialized by cre
ate_cllent_connO or create_server_endO.

session - pointer to the session structure. Filled In by this routine

type - type of the message being passed. Used at the other end for whatever
purpose It wants.

size - size of the message to be sent

msg - pointer to the message structure containing the message being sent.

Routine Name: read_session

Description:
This routine Is used on the creating end of a session to read any messages sent to

the session. This routine will block until there Is a message received for this session.

Format:
lnt read_session(Connection • conn, Session • session, Message • msg)

Arguments:

conn - pointer to the connection structure which was Initialized by cre
ate_cllenCconnO or create_server_endO.

session - pointer to the session structure. Filled In by this routine

type - type of the message being passed. Used at the other end for whatever
purpose It wants.

size - size of the message to be sent

msg - pointer to the message structure containing the message being sent.

6. Threads Abstraction Layer
6.1. Overview

This piece of the project was an attempy to Isolate our use of threads from any par
ticular threads package. To do this, we wanted to closely model something similar to the Poslx
threads package. The main requirements of a package needed are the ability to round-robin
schedule the threads and some way to support non-blocking I/O (this Is one of the main reasons
that threads are being used In ObServer2). Other than that some way to create threads, and a
way to create mutexes or locks Is required. The condition facility could easily be Implemented
on top of this, but If provided reduces the amount of work needed to be done to replace the
layer.

6.2. Threads

The threads abstraction Is a simple model of threads which are round-robin sched
uled. There Is currently no way to control the size of the stack of the threads or the priority of the
threads (they are all the same priority). This Implementation uses Sun's Light Weight Process
(LWP) pacakge to provide threads support. However, It would be very easy to use Brown
Threads or Poslx Threads to provide the same support.

Due to the fact that LWP threads are not preemptlvelty scheduled, some additional
work Is needed. In order to support round-robin scheduling, a scheduler had to be used. This
scheduler runs at a higher priority than all of the other threads and reschedules the threads

Paul Alan Reilly 14

Logging and Recovery in ObServer2

every Quantum. This provides the effect of round-robin scheduling.

6.3. Interfaces

Routine Name: threadsjnit

Description:
This routine Is used to do any Initialization that Is required for the threads package.

There should also be a threads_rundown routine which would release all resources. However,
this has not been Implmented yet

Format:
int threads_initO

Arguments:

None

Routine Name: thread_create

Description:

This routine Is used to create a new thread.

Format:

int thread_create(Thread * tid, void (* runc) (void *), void * arg)

Arguments:

tid - pointer to the thread strucutre to be filled In by this routine.
\

func - pointer to the routine to be called when the thread storts up. The routine
tokes one argument which Is specified by arg below.

arg - the argument passed to tunc upon startup of the thread.

Routine Name: thread_yield

Description:

This routine Is used to yield the cpu to another thread.

Format:

int thread-yieldO

Arguments:

None

Routine Name: threadJoin

DescrIption:

This routine Is used to walt for a thread to exit.

Format:

Int threadJoin(1bread * tid)

Arguments:

tid - pointer to the thread structure of the thread to walt for.

Paul Alan Reilly 15

Logging and Recovery in ObServer2

Routine Name: thread_sleep

Description:
This routine Is used to put a thread to sleep for a time.

Format:
int thread_sleep(struct timeval * timeout)

Arguments:

timeout - pointer to the tlmeval strucutre specifying the sleep duration.

Routine Name: threads_exit

Description:
This routine Is used a program which uses threads to exit Immediately. This occurs

even If there are threads stili running.

Format:
int threads_exitO

Arguments:

None

Routine Name: lock_create

Description:
This routine Is used to Initialize a lock (mutex).

Format:
int lock_create(Lock * lock)

Arguments

lock - pointer to the lock structure to be filled In by this routine.

Routine Name: lock_acquire

Description:
This routine Is used to acquire a lock (mutex). It will block until It can get the lock.

Format:
int lock_acquire(Lock * lock)

Arguments

lock - pointer to the lock structure.

Routine Name: lock_release

Description:
This routine Is used to release a lock (mutex).

Format:
int lock_release(Lock • lock)

Arguments

Paul Alan Reilly 16

Logging and Recovery in ObServer2

lock - pointer to the lock structure.

Routine Name: lock_free

Description:
This routine Is used to free the resources associated with a lock (mutex). In other

words, destroy the lock.

Format:
int lock_free(Lock - lock)

Arguments

lock - pointer to the lock structure to be freed.

Routine Name: condition_create

Description:
This routine Is used to create a condition variable. A condition variable Is used In

conjunction with a lock. The lock must be acquired before any other condition functions can
be called.

Format:
int condition_create(Condition - cond, Lock - lock)

Arguments

cond - pointer to the condition structure to be filled In by this routine.

lock - pointer to the lock structure to be used with this condition variable.

Routine Name: condition_wait

Description:
This routine Is used to walt for a condition. The lock associated with the condition

must be acquired before this function can be called. This routine will block. If It does, It releases
the lock, until the condlatlon Is satisfied. However, the lock Is reacquired before returning.

Format:
int condition_wait(Condition - cond)

Arguments

cond - pointer to the condition structure to be waited for.

Routine Name: condition_notify

Description:
This routine Is used to signal a condition. The lock associated with the condition must

be acquired before this function can be called.

Format:
int condition_notify(Condition - cond)

Arguments

cond - pointer to the condition structure to be notified

Paul Alan Reilly 17

Logging and Recovery in ObServer2

Routine Name: condition_free

Description:
This routine Is used to release the resources associated with a condition. The lock as

sociated with the condition must be acquired before this function can be called.

Format:
int condition_notify(Condition * cond)

Arguments

cond - pointer to the condition structure to be freed

Makeflle

7. Modules
The following Is a list of modules and what they are used for:

Makefile - used to build the system

log.c - contains all of the logging routines

log.h - contains all definitions for the logging routines

mtcp.c - contains all of the routines for the multiple session tcp/lp, and the
threads package.

mtcp.h - conatlns all of the definitions for the mtcp and threads stuff.

client.c - client side test program for mtcp and threads.

server.c - server side test program for mtcp and threads.

log_test.c - test program for some simple log functions.

8. References
1. Franklin, Michael J., Zwillng, Michael J., Tan, C. K., Carey, Michael J., DeWitt, David, Crash Re
covery In Client-Server Exodus. In ACM SIGMOD, 1992.

2. Langworthy, David E., ObServer2: Extensible High Performance Support for Persistence, Ph.D.
Thesis Proposal (Draft).

3. Mohan, Coo Haderle, Don, Lindsay, Bruce, Plrahesh, Hamid, and Schwarz, Peter, ARIES: A Trans
action Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write
Ahead Logging, In ACM TODS, March 1992.

Paul Alan Reilly 18

