
BROWN UNNERSITY

Department of Computer Science

Master's Thesis

CS-93-M20

" Concurrency Control and Transaction
Management in Observer2"

by

Adam R. Stauffer

Concurrency Control and Transaction

Management in Observer2

AdaIn R. Stauffer

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the

degree of Master of Science in the Department of Computer Science

at Brown University

May 1993

This research project by Adam R. Stauffer is accepted in its present form

by the Department of Computer Science at Brown University

in partial fulfillment of the requirements for the degree of Master of Science.

Date

Concurrency Control and Transaction Managenlent
in ObServer2

Adam Stauffer

This document describes the design and implementation of an optimistic con­
currency control system for ObServer2, a high performance distributed object
store. The system supports user transactions by offering three services: object
versioning, intention logging, and server coordination.

1.0 Introduction

Concurrency control is one crucial factor in the effectiveness of an object storage sys­
tem which services more than one client. Multiple users can introduce nondeterminacy
into each others work if there is no method of negotiating concurrent accesses to objects.
Transactional concurrency control has been the traditional solution to this problem; the
user brackets a set of updates and the storage service guarantees the success or failure of
the all operations within the set. The client can retry operations if the transaction fails.

The Observer2 storage service uses the transaction model to allow multiple users to
access objects in the system. The concurrency control facilities implement an optimistic
scheme in which the correctness of the updates are not verified until the end of the trans­
action. This method reduces message traffic and therefore reduces execution time. The
implementation is fairly simple in the general case: all objects in the system have associ­
ated version numbers. Locking is "lazy;" any client can use any object it has cached and
conflicts are determined when the transaction commits based on the objects' version
numbers. The concurrency control manager maintains the set of correct object version
and tracks transactions as they occur. When a client signals the end of a transaction these
stored version numbers are compared with the cached copy version numbers.

A concurrency control service has additional concerns of hardware or network failure
and latency. Server coordination can become difficult given the nondeterministic nature
of network communication and the real time constraints of a database system. The con­
currency control system must maintain a balance between the desire to wait for a mes­
sage and the desire to make forward progress. Host failure must also be considered so a
transaction can properly terminate.

1.1 ObServer2

A general understanding of the ObServer2 architecture is helpful to understand fully
the design of the concurrency control system. This section gives a brief overview of the
architecture; for a full description see [lang93].

Observer2 is a distributed object storage system which allows multiple clients to
access objects stored at many distributed servers. The system supports methods on a

2

limited set of fairly mature abstract data types such as B+trees and segments but is fully
configurable to allow additional types to be built into the system as deemed necessary.

The store is comprised of several components: a transaction management subsystem,
a logging subsystem, a memory management module, and several class modules. These
modules interact using a set of defined interfaces so the construction of additional stor­
age classes is possible. The core system maintains naming, transactional concurrency
control, and storage of the objects while the class provides the methods required for that
class. The main interface to clients is through the class interface for object methods and
through the Transaction Manager for concurrency control.

System Classes Storage Classes

Sessions Tm Nm Segment B-tree

Client
Stub

°rc
en begin create fetch insert

Network c ose commit find read delete
Stream abort write find

Server
create create

Stable
Memory

Figure 1: The Observer2 architecture.

2.0 Requirements

The concurrency control system exists primarily to support user transactions and insure
the correctness of updates to the object store. Within this general goal the requirements
can be broken into four parts:

• management of executing transactions

• maintenance of object versions

• coordination of multiple servers

• robust support for delays and failures

2.1 Tracking Executing Transactions

An Observer2 server can be providing objects for many clients, each involved in sep­
arate transactions. The server must track the state of each transaction it is a participant in
as well as the operations each client is performing. These operations are reconciled at the
time of a commit. The concurrency control system should be able to quickly determine if
a transaction is properly ordered and whether or not it can succeed given knowledge of

3

the previously committed transactions and the operations performed during the transac­
tion.

2.2 Object Versions

When a transaction is about to commit there must be a method of determining
whether or not any accesses were to inconsistent data. An object cached at a client might
be updated at the server by another host; if the cached copy is used in a subsequent
transaction then it may be inconsistent with the correct state of the system. Each object
should therefore have a version number and the concurrency control system should
know the must recent committed version of each object cached.

2.3 Server Coordination

One transaction may involve objects from many different servers. The concurrency
control system on each server must be able to cooperate to determine whether the global
operations can succeed based on each local state. This operation must be recoverable to
insure the correctness of the database given the possibility of network or host failure.

2.4 Recovery

The system must be fault-tolerant and able to recover from system crashes, network
failures, and media loss. Any transactions that were committed must be resilient to fail­
ure. Executing transactions should be able to continue where they left off after the last
logged operation.

3.0 Design

The Transaction Manager is comprised of several major components each described
in detail below. Sharing the client's address space is a set of stubs which communicate
with the Observer2 server. The server module is comprised of a transaction and object
version

4

(Client)
Client Class Stubs IClient ™ Stubs I

Client-Server networking ~
TransactionTab

ServerTM
 I Server-Server networking I ~ I VersionTab

Figure 2: The basic outline of the Transaction Manager. Tm components are shown as rectangles.
Transaction Identifiers

table as well as a facility for communicating with other TM's (figure 2).

3.1 Client Stubs

The client stubs encapsulate all TM functionality from the user into a simple transac­
tional model consisting of begin, commit, and abort operations. When a client calls begin
to start a transaction the TM notifies each registered class with a transaction identifier to
associate to data accesses (3.1.1). The classes then notify the client TM of any objects ref­
erenced and these messages are logged to stable storage at the server (3.1.2). Finally
when a transaction commit request occurs the client TM executes the first step of the
commit protocol (3.1.3). The stubs return the result of the transaction to the client.

3.1.1 Transaction Identifiers

Each executing transaction has associated with it an identifier, a Transaction 10 (TID).
Each TID is composed of two long words, a local time field and a host number, which
together guarantee the TID's are unique throughout Observer2 (figure 3). The TID con­
structor guarantees that no two TID's on the same host have duplicate local time fields
while host numbers are the tie-breaker between TID's generated at the same time on dif­
ferent hosts. A TID is generated when the client TM receives a begin transaction request.
Each class stub on the host is then notified of the TID and that a transaction has begun.
The TID follows the transaction until completion; it is forgotten by the client TM once the
final outcome of the transaction has been learned.

5

C9 local time host number

Figure 3: Transaction Identifiers and timestamps

Each transaction also has associated with it a timestamp (Ts). The timestamp is gener­
ated by the client TM when a commit request arrives. This timestamp allows the server
TM to order transaction requests consistently at different locations. To guarantee unique
timestamps system wide they are constructed in the same manner as TID's.

3.1.2 Intention Logging

The server TM must insure two transactions are not both allowed to commit if they
have conflicting operations. The server TM therefore needs knowledge of which objects
were referenced during which transaction, and the manner of these operations. All
updates to the store flow through the TM and are noted with the transaction identifier.
The storage of this information is accomplished by use of the Observer2logging system
[reiI93]. The client TM exports a method to the classes which allow them to log an arbi­
trary length byte stream encoding the operations on an object. This is coupled with an
object identifier and the version number of the referenced object. Several of these opera­
tions can be bundled together and logged in one step to reduce the amount of messaging
in the system. At the conclusion of a transaction these operation records are sent back to
the class at the server to determine if the operation can be correctly applied within the
server's context.

While intentions are being logged the client TM is also collecting a list of servers from
which objects have been fetched. Each log operation makes certain the server to which
the request is being sent is on this list. The list of servers is used during the commit
phase.

3.1.3 Commit

When a commit is requested the client TM sends the accumulated list of servers to
each server on the list. This is the start of the two-phase commit protocol. The first server
on the list becomes the coordinator of the transaction while the rest (if there are any)
become participants. This message is the first step of the 2PC requesting the servers pre­
pare for the transaction. The client then waits for a message on any of the connections for
the result of the transaction and returns the result to the caller.

3.2 The Server TM

The server TM is the heart of the concurrency control system for Observer2. It tracks
executing transactions and the operations that are occurring within them (3.2.1). It main­
tains the version table of objects to test the ordering and success of a transaction (3.2.2).

6

Finally it communicates with other servers to determine if the transaction can succeed in
the global context (3.2.3).

3.2.1 The Transaction Table

The Transaction Manager maintains a list of its currently executing transactions in the
transaction table (figure 4). This table has one entry for each outstanding transaction
with a status of in progress, prepared or committed. Aborted entries are removed once
all participants in the transaction have been notified. The table stores a timestamp which
corresponds to the time of the commit at the client. Finally there is a log sequence num­
ber which has a different meaning depending on the table state (figure 4).

Tid State Timestamp LSN

I I--+--I--I::

State

In progress
Prepared
Committed

LSN value

Intentions ~ Intentions ----... ...
Prepare Record ----.. Intentions
Commit Record --.... Prepare Record -. Intentions

Figure 4: The transaction table and the row locks. The structure contains all of the information
associated with a transaction(top). The LSN in the table points to a different log record depend­
ing on the state (bottom).

The LSN refers to the log record for the transaction and this record varies with the
row state. Once a transaction begins and until the client signals its end the LSN in the
table points to an intention record in the log. Intention records contain an LSN field so
they can be strung together as a linked list. Once a client has ended a transaction there
are two phases entered by the row (the commit algorithm is described in more detail
below, but they are prepare and commit). First the transaction determines if it can com­
mit based upon local information. The LSN refers to the log record recording the times­
tamp of the change to this state and the intention records which comprised the
transaction. The second state occurs when the global system state has been negotiated
and the transaction succeeds. Another record is logged with the final timestamp and a
reference to the LSN of the prepare record.

The transaction table has some other supported features to insure transaction correct­
ness. Each row in the transaction table can be locked and allows the lock to be held
between lookup and update to insure the correctness of the returned data. The table also

7

has locks on important data structures to allow multithreaded access to the methods.
The table maintains a timestamp for the last transaction flushed from the table. It cannot
accept any late transactions with timestamps before this one because it cannot determine
the possibly conflicting set of objects referenced.

3.2.2 The Version Table

Each object in the system has a version number which is the LSN of the most recently
committed copy of an object, or the operation that when applied to the copy of the object
in the database partition which would create the most up-to-date version. Logging oper­
ations allows the server to increase throughput by applying operations asynchronously.
See [lang93] for more information. The version number is used to verify the correctness
of updates. This table is just like the transaction table in that it supports row locking,
concurrent access and updates. Version numbers are updated when a transaction com­
mits and the operation has been applied to the object.

3.2.3 Messaging

Due to the high overhead of initiating a TCP connection and the transient nature of a
set of servers involved in a transaction the server TM use a lightweight UDP based mes­
saging system. The system allows several threads to wait for a message on one port and
be awoken when a message arrives addressed to that particular thread.

3.3 Multiple Servers

Since ObServer2 transactions can potentially involve objects from multiple stores, the
Transaction Manager must be able to coordinate operations between these stores to
insure correctness. The two-phase commit protocoJ.[grey90] allows multiple servers to
negotiate the outcome of a transaction. The general protocol is outlined in (3.3.1) while
special cases are covered in the following sections.

3.3.1 The Protocol

Server synchronization is accomplished through the use of a two-phase commit algo­
rithm. Each server determines independently whether their portion of the transaction
can successfully complete and then votes on the transaction in the prepare phase (3.3.2).
A coordinator tallies the votes and determines if the transaction is ordered properly or
not (3.3.3). If all servers return positive responses then a consensus has been reached and
the transaction will commit. Transactional concurrency control relies on the ability to
order the application of operations at each server. If one server orders transaction 1'1
before T2 while another reverses this order then clearly one or both might be in error.
This problem is solved with a timestamp mechanism. If a transaction arrives out of order
late it still may be possible to retry with a later timestamp (3.3.4).

3.3.2 Prepare

Each server is notified by the client that a transaction will commit and that they
should determine their local state. A thread is started to handle all messaging and opera­
tions for this transaction for its duration. The list of servers sent in this prepare message

8

has the coordinator of the transaction listed first. The servers log to stable storage
whether or not the transaction can continue and reply to the coordinator. Once the a pos­
itive vote for the transaction has been sent the participant must be prepared to commit
the transaction so no conflicting operations can be applied before a result is received.
With the vote the participants also send a list of transactions which were committed with
later timestamps than that of the currently committing transaction. This conflict set is
used to determine ordering.

At the coordinator a thread is started within the server to execute the messaging
primitives and tally the results, also for the duration of the transaction. This coordinator
simply tallies the votes of the participants and returns a message to commit if there is
consensus or abort otherwise. It also uses the conflict set to determine if the transaction is
properly ordered (3.3.3) and can abort a transaction if there is a conflict.

3.3.3 Transaction Ordering

It may be the case that a transaction prepare request arrives at a server after some
number of transactions with later timestamps have been committed. These transactions
are termed late because the servers expect operations to arrive in the order of their times­
tamps. There are rules the server can check to determine if the transaction can proceed.

Let 1be a late transaction and T be the nonempty set of prepared or committed trans­
actions with timestamps later than 1. There are several situations the Transaction Man­
ager might encounter.

1.	 1can proceed if the set of objects referenced by 1has no objects in common with
the sets of objects referenced by each transactions in T, or any common operations
are reads.

2.	 1and t E T do not conflict if the transactions have no common remote participants.

3.	 1and t E T do not conflict if for all common remote participants 1arrived after t.

The Transaction Manager can evaluate these clauses for a given transaction to determine
whether or not the transaction can continue or must be aborted or retried.

3.3.4 Retry

When a transaction prepare message is determined to be late there are two possibili­
ties for its resolution. The coordinator has a list of conflicting TID's which it can use to
exercise rules 2 and 3 in the previous section. The participant checks rule 1 and could
possibly return a new timestamp with its vote for the transaction. This new timestamp is
a retry time and the transaction is retried with that value.

3.4 Recovery and Persistence

Persistence and recovery from failure is achieved through a checkpointing mecha­
nism. Periodically the Logging subsystem requests that the Transaction Manager save its
internal state. The version and transaction tables are then collected and flushed to the
stable logging system. An atomic update to system metadata records the position of the
new checkpoint. The recovery of the system after a failure then involves finding the last

9

checkpointed version of the system and replaying the log activities to construct the latest
consistent state. The Log Manager performs the replay and utilizes the recovery interface
to the Transaction Manager to inform it of the new state.

4.0 Implementation

This section describes each modules interfaces in more detail.

4.1 The Architecture.

The transaction manager is composed of several classes (figure 5). Each class interface
is described in detail in the following sections.

TmClient ClassClient

~
TmStubs

TmRPC

TmHandler

TmServer

TmNetwork

Figure 5: The general class description

TmClient C

~
TmStut

TmRPC

TmHan

TmServ

--IV'-- TmNetwork

Udp

There are two interfaces exported at the client side of the system, one to the client
application (TmClient) and one to the classes built into the store (TmStubs). The client
has the ability to begin and commit a transaction. The class can notify the TM of updates
to objects by sending collections of operation records which are bundled and put into the
log. The TmStubs module communicates via TmRPC to the server.

The TmServer module is given the task of tracking and logging the operations that
arrive from the clients and determining the correctness of transactions as they occur. The
TTab and VTab allow the management of transactions and object versions, respectively.
the server receives messages from the client via a buffered TCP connection (Network­
Streams). The connection medium is encapsulated in the TmRPC module which defines
messages with send and receive methods. These messages are created, sent and received
in the TmStubs and TmHandler.

10

The UDP messaging is accomplished with the TrnNetwork subsystem sending mes­
sages defined in TmMesg.

4.1.1 Tid and Ts

These modules build transaction identifiers and timestamps, respectively. They are
currently implemented identically; both have comparison methods and methods to send
and receive over the NetworkStream. Both also provide preprocessor macros to marshall
the representation into a structure which can be sent to the log. Given a structure
TIDrawtid and a Tid the macros extract the representation into/from the raw representa­
tion by copy.

struct TIDrawtid {
time_t local_time;
unsigned int hostid;

} ;

#define RAWTOTID(RAW, TID)

#define TIDTORAW(TID, RAW)

4.1.2 TmClient

This module is linked into the client and exists simply to pass calls into the TmStub.
A new transaction identifier is constructed when a begin transaction is called and a
timestamp is constructed during a commit, but otherwise this module does not contrib­
ute to the operation of the transaction.

4.1.3 TmStub

The TmStub translates client calls into RPC calls to the server via NetworkStreams. It
constructs messages defined in TrnRPC and calls the send method on the objects.

4.1.4 TmRPC

TmRPC defines the messages that can be sent over the NetworkStream and encapsu­
lates the sending and receiving from the rest of the Tm. If primary client-server messag­
ing system is modified this package will need to be updated as well.

4.1.5 TmHandler

.The TrnHandler registers with the dispatcher the individual handlers for the Tm
messages. These handlers are called when a message arrives to decode and dispatch the
message to the appropriate methods within the TmServer. The result of the function calls
are returned to the sender also via a message defined in TmRPC. The dispatcher creates a
new thread within the server to handle the message.

4.1.6 TmServer

The TmServer class is the heart of the transaction system. It is the control for the rest
of the code within the system.

11

Commit (Tid, Ts, SidList)

This method is the main public hook into the TmServer module. The real work of the
transaction is performed in the following three methods. Commit updates the Transac­
tion table with the result of the prepare and either participate or coordinate.

Prepare (Tid&, Ts&, TidList&, int loner, Ts& lastTs);

This method performs the prepare step of the 2PC. It looks into the transaction table
for the provided Tid and walks the logged intentions. For each operation request within
the set of intention records the appropriate class is called to determine the success of the
operation. If the classes all can correctly apply the operations then the conflict set is built
(by calling the TIab) and the ordering of the transaction is considered.

Participate (Tid&, Ts&, unsigned long c_addr, ClassServer: :Sta­
tus, TmMesgBuf&);

If the server is a participant in the currently executing transaction then this method is
called to perform the necessary communications. This is a simple routine because it just
marshalls the messages and waits for a response from the coordinator.

Coordinate (Tid&, Ts&, sidList&, ClassServer: :Status, TmMesg­
Buf&) ;

This method accepts the votes of participant servers and determines if there is a con­
sensus. It also examines the intersection of the conflict sets for the same purpose. The
participants are notified of the result of these operations and the appropriate log mes­
sages are applied.

Coordinate uses a LEDA dictionary to store the tallies from each participant. Prepare
uses a LEDA stack to traverse the linked list of intentions in reverse.

4.1.7 TIab

These tables encapsulate the storage of executing transactions. A list of committed
transactions sorted on timestamp is stored to allow quick construction of a conflict set
when ordering transactions. Also a timestamp of the last deleted transaction is stored for
the ordering of transactions. (See 3.3.3)

int getRow (Tid& tid, Lsn& lsn, TT_rowstate& st, Ts& ts);
int setRow (Tid& tid, Lsn& lsn, TT_rowstate newstate, Ts& ts);
int unlockRow (Tid & tid);

Rows are accessed and updated through the above interface. A lock is taken on a call
to getRow and is not released until setRow or unlockRow is called. This is to allow cor­
rect access to the table data. If the row entered is a committed transaction then the com­
mitted list is updated.

void conflict (Ts& ts, TidList& early, Ts& maxts);

Conflict returns the list of transactions (a LEDA list) which were committed before TS
but had later timestamps than TS. It also returns the maximum timestamp of the set so
an advisory can be sent to the late client.

13

6.0 References

[gray90] Gray, J.N. Notes on Data Base Operating Systems. In Lecture Notes in Computer
Science, R. Bayer, R. Graham and G. Seegmuller, Eds., Springer-Verlag, 1978, pp 293-48l.

[lang93] Langworthy, D.E. Observer2: Extensible High Performance Support for Persis­
tence, PhD. Thesis Proposal (Draft).

[reil93] Reilly, P.A. Logging and Recovery in ObServer2.

