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Abstract 

The process of modeling geometric objects often entails modifica­
tion of a portion of a surface--a subsurface-which is part of a larger 
geometric shape. Most geometric modeling applications do not pro­
vide an interface that allows for user specification of arbitrarily shaped 
subsurfaces. We have developed two polygonal modeling applications 
which overcome this limitation. They employ an interaction technique 
based on 3D WYSIWYG painting which allows fine control over the 
precise shape of a subsurface; the painted region determines the sub­
surface that is to undergo geometric alteration. This correspondence 
between painting and geometric properties constitutes the basis of our 
modeling systems. And, while we operate on polygonal models exclu­
sively, we believe the technique may be generalized to higher-level 
models. 

Furthermore, this new type of modeling system has unexpected 
benefits. For instance, modeling often necessitates some form of refine­
ment prior to geometric alteration. Our modeling systems accomplish 
this by using a variety of common image processing algorithms applied 
to texture maps which are created as a bi-product of 3D WYSIWYG 
painting. Also, our established correspondence between paint and ge­
ometry, enables us to create new modeling paradigms by associating 
painting properties with geometric properties. Finally, we offer a range 
of applications that can benefit from such a technique. 

CR Categories: 1.3.5 [Computer Graphics]: Geometric Transfor­
mations and Object Modeling 1.3.6 [Computer Graphics]: Interaction 
Techniques 1.3.7 [Computer Graphics]: Texture 

Additional Keywords and Phrases: Texture Mapping, Paint­
ing, Direct Manipulation, Geometric Modeling, Image Processing. 
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1 Introduction 

There are several components involved in developing geometric modeling 
systems, some of which are: 

• an underlying model, 

• operations to perform on the model, 

• a user interface 

By an underlying model, we refer to the characteristics of the geometry that 
is to be operated on. Underlying models include such disparate models as 
polygons, spline based surfaces, volumetric data, and particle systems. 

The underlying model, however, constitutes only a portion of a modeling 
system. In the process of creating a desirable shape, many geometric op­
erations are performed on the underlying model. For example, in a spline 
based system, one operation might be moving the control points. The spline 
surface is the underlying model and the movement of control points is the 
operation. 

Finally, a modeling system usually provides a user interface. Interfaces 
can range from arcane numerical input text editors (used with a scripting lan­
guage) to sophisticated direct manipulation constraint-solving systems with 
multi-dimensional input devices. 

It is this user-interface portion of modeling systems which we wish to 
address. The end result of a modeling system is a geometric shape of some 
kind, which can usually be approximated, for visualization purposes, as a 
polygonal surface. We shall refer to this polygonal surface as the surface 
representation. Furthermore, we will speak in general terms about the un­
derlying model of the surface representation whose characteristics will remain 
unspecified. While the work we have done deals entirely with polygons, we 
discuss schemes for extending the concepts we develop to more abstract mod­
els in Section 7. 

In the process of modeling a geometric shape, a user typically performs 
operations on the underlying model of the system. At each such stage, a 
portion of the underlying model undergoes alteration, and a new polygonal 
surface representation of the underlying model is generated. We shall call 
that portion of the surface representation of the underlying model which is 
operated on at each stage the subsurface. 
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Unfortunately, most modeling systems do not provide a mechanism for 
specifying the precise size and shape of the subsurface. It is this problem 
that we hope to remedy. 

Towards this end, we offer a new modeling system. The system uses 3D 
WYSIWYG painting to allow for selection of a subsurface to be manipulated. 
Geometric operations are performed only on the subsurface-the painted re­
gion of the surface representation of the model. This relation between paint 
and geometric operations constitutes the basis of our system. This corre­
spondence yields several positive bi-products including adaptive refinement 
of the subsurface using texture maps created during WYSIWYG painting, 
and the ability to create new modeling paradigms by associating painting 
properties with geometric ones. 

1.1 Previous Work 

Recent geometric modeling systems vary significantly in their approaches to­
wards shape design. For example, Fowler [Fow92] provides tools for sophisti­
cated direct manipulation geometric operations on tensor product surfaces. 
Users modify high level geometric properties of a surface, such as normals, 
and a sophisticated constraint solving system alters the surface to reflect 
those changes. Fowler's success lies in hiding control points from the user. 
However, Fowler does not provide a means by which a subsurface may be 
manipulated. Hsu et ai. [HHK92] and Borrell and Bechmann [BB91] both 
describe methods of modifying spline-based objects based on targets, em­
ploying the pseudo-inverse method to compute solutions. Hsu's interface lets 
a user drag a point of a surface and use a constraint solver to determine 
changes to an FFD lattice that will deform the surface accordingly. Hsu's 
alteration of the FFD lattice has its advantages. For one thing, the surface 
that is being deformed can be represented at any resolution, since the FFD 
lattice deforms the space the surface sits in. Unfortunately, while Hsu's sys­
tem does allow a user to drag a point of a surface to an arbitrary location, it 
does not provide a mechanism for dragging a subsurface. Welch and Witkin 
[WW92] advance an approach based on eliminating control point interfaces 
in favor of an interface based on constraints on B-spline surfaces. Among the 
constraints they offer is the manipulation of a curve on a surface. While the 
authors approach a subsurface manipulation scheme, arbitrary areas on the 
B-spline surface still cannot be constrained. 
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1.2 Overview 

While the aforementioned systems feature disparate paradigms and interac­
tion techniques, they share one goal: the end result is a shape. Typically, 
this shape is or can be represented as a collection of polygons-a polygonal 
surface-at some stage in the modeling process. At each such stage, some or 
all of the underlying model is modified and a new surface representation is 
generated which reflects these changes. Unfortunately, none of the systems 
described in Section 1.1 allow for explicit control of the subsurface that is 
to be modified at each stage. A polygonal modeler might allow the user to 
interactively edit a vertex or an aggregate of vertices, but not an arbitrarily 
shaped portion of the polygonal surface. This deficiency can create prob­
lems. When we move a control point of a spline, or a vertex of a polyhedron, 
or elastically stretch a portion of a physically based object, it is difficult to 
predict the final outcome of the operation, in part because the user has little 
control over or knowledge of the exact region the operation will affect. 

And, even when we do know the precise nature of the subsurface, it is 
often not enough. Indeed, knowledge of the subsurface is available in many 
systems. For instance, in CSG systems, the user knows the shape of the 
region that is being affected. Likewise, when a user moves a control point of 
a spline surface, a precise mathematically defined region is affected. However, 
knowledge of and control of the affected region are different: while the user 
may know the exact region which will undergo alteration, there may not be 
an interface for controlling it. For example, dragging a point of a surface in 
Hsu's FFD modeling system produces results that depend on the resolution 
of the underlying FFD lattice, which is invisible to the user. Even if the user 
is aware of what region of the surface will be affected, there is no means of 
controlling the shape of the region that will be affected. 

We provide an interface to remedy this problem. We utilize 3D WYSI­
WYG painting as a metaphor for selection of a portion of a surface; the 
painted portion of the surface is selected. This interaction technique offers 
many benefits. For example, the technique is easily implemented and useful 
in a wide array of applications. Furthermore, in the process of WYSIWYG 
painting we create 2D texture maps, representing the image painted on a 3D 
surface. Every point on the 3D surfaces we use corresponds to a pixel in a 
2D texture map, and vice versa. Clever use of image processing routines on 
these texture maps enables us to refine our 3D surface where necessary. We 
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use the image processing routines to reveal where detail needs to be added. 
Our prototype application is one in which the user first paints on a ge­

ometric shape to select the subsurface that is to be manipulated. Then, a 
geometric operation of some sort is chosen, and image processing routines, 
performed on the texture maps, refine the selected subsurface. Finally, the 
subsurface is operated on accordingly. As we shall see, various painting 
attributes can be used to select different geometric modeling attributes, cre­
ating novel modeling paradigms. That is, by establishing a correspondence 
between 2D texture maps and 3D geometry, we have engineered a new type 
of model, distinct from the traditional parametric model. The new model has 
its advantages (e.g., refinement through image processing routines) and its 
drawbacks (e.g., finite resolution limited by texture maps). Moreover, while 
this paradigm might in the future be applied to non-polygonal surfaces, we 
have not yet demonstrated that this is possible. 

V\'e illustrate the usefulness of our interaction technique through two 
applications-a polygonal modeler and a trimming curve generator. Both 
run under the same application shell and incorporate many of the same im­
plementation techniques. The polygonal modeler allows a user to paint an 
image on a polygonal model and then to perform deformations on the painted 
portion of the 3D shape. Image processing techniques are applied to the tex­
ture maps generated by the 3D WYSIWYG painting to add detail to the 
polygonal model where necessary. We also illustrate the idea of mapping 
geometric properties to painting properties by establishing a correspondence 
between the intensity of a point of a painted surface and the extent to which 
that point is moved during a deformation. Our second application, a trim­
ming curve generator, allows a user to paint on a polygonal representation of 
a patch. The application uses this information to create a 2D domain space 
curve at the boundary of the painted region. This curve is then converted to 
a trimming curve and used on the original patch object. 

WYSIWYG Painting 

Both of these applications make extensive use of the 3D WYSIWYG painting 
technique developed by Hanrahan and Haberli [HH90] as a direct manip­
ulation interface for creating texture maps on 3D shapes. This technique 
enables a user to paint with a 2D input device directly on a screen ,depicting 
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a 3D shape. The painting resembles a 2D painting program, where the user's 
brush strokes are converted into painted regions in 2D texture maps. The 
technique typically uses a graphics workstation's hardware texture mapping 
to apply the texture maps to the 3D shape. Brushes are 2D pixmaps over­
layed onto the screen, with each brush pixel having a unique ray associated 
with it. Essentially, the technique approximates painting onto a 3D surface 
by ray tracing the polygonal representation of a 3D shape. By casting a ray 
for every brush pixel, 2D brushes mimic the effect of 3D painting. 

Indeed, WYSIWYG painting succeeds largely because of its similarity 
to 2D painting. In exploiting the 2D metaphor, we use a 2D "screen-space 
brush" (as describe in [HH90]) to do our painting. The notion of 3D paint 
brush sizes, styles, shapes and colors is rooted in analogs from 2D painting. 
New brushes are pixmaps and are thus easily created. Moreover, users may 
"paint" and "unpaint" a surface until a desirable result is obtained. Brush 
intensity is a parameter in the system. An eraser brush is just a zero intensity 
pixmap. This is advantageous because we use the texture maps created 
by WYSIWYG painting to determine where the original 3D shape will be 
refined. Hence, because only the final painted image is used, unnecessary 
refinement does not occur. 

In order to simulate painting directly on to the screen with the mouse, we 
must know for each pixel of our brush what portion of a 3D object is in its 
view, since ultimately each pixel on the screen corresponds to some point on 
a 3D surface, and thus some point in a 2D texture map. To accomplish this in 
real-time, we use a speedup mechanism. This speedup involves the addition 
of two windows to the application shell. The first is identical in size to the 
window which displays the 3D object. This window contains the same 3D 
shape as the original window, but each polygon of the surface representation 
(in this case we use triangles) in the speedup window is colored according to 
a unique identification number. The second window contains a texture map 
image which is scanned periodically and then wrapped around the 3D object 
using the graphics workstation's hardware texture mapping. Figure 19 shows 
the application shell with these windows. 

When the user paints on an object in the original window, the coordi­
nates of each pixel of the paint brush are recorded. Then, the corresponding 
pixel's color values in the speedup window are recorded. Then, these color 
values are converted into triangle identification numbers. Now we know au­
tomatically, for each pixel in our brush, which triangle in the 3D shape, if 
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any, is visible and should therefore be painted. (In essence we are using the 
Z-buffer capabilities of the frame buffer to do some work for us). Figure 1 il­
lustrates this. If a brush pixel lies within a triangle, the ray corresponding to 
that pixel is traced and intersected with the triangle in its path. This yields 
a point of the triangle. This point has associated with it the coordinates 
(u and v) of a point in the texture map. These coordinates are computed 
by interpolating the u and v values at the vertices of the triangle. So, for 
every pixel the user paints on the 3D shape, the program can generate the 
corresponding uv-point in a texture map in real time (see Figure 2). 

As the user paints on the 3D shape, every triplet of adjoining pixels in 
which all three pixels hit a triangle, is converted to a triplet of uv-points. The 
new points define a triangle in 2D. This triangle is then drawn in the texture 
map window (see Figure 3). After painting, the texture map is rescanned and 
the 3D shape reflects the changes painted on it. However, scanning occurs 
only after the user changes the camera position. In the meantime, we paint 
directly onto the 2D screen representing the 3D shape. This is due to the 
fact that scanning the texture map in is relatively slow. 

Despite, the lack of speed due to rescanning the texture maps, the tech­
nique proves effective. Our 3D WYSIWYG painting framework is enhanced 
by a user interface that allows for varying brush size, styles and intensities. 

Image Processing 

Texture maps are traditionally used to add detail to objects without adding 
geometry. There is no reason we cannot reverse this process. In other words, 
why not use texture maps to determine where to add geometric complexity? 
If the color at each pixel in the texture map corresponds to some geometric 
property in that pixel's corresponding point on the 3D shape, we will assume 
a change in intensity in the texture map indicates a change in the original 
shape. Essentially, we are treating a texture map as a detail map. By main­
taining not only a mapping from the object in ~3 to the texture map in ~2 

(we need this to do the WYSIWYG painting), but also the inverse map, we 
can add detail to our 3D object in places determined by the texture map. 

We want changes in the texture map to reflect changes in the painted 
object. One method of determining where change is occurring is to compute 
the gradient of the texture map. Figure 4 illustrates a painted region in the 
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Figure 1: Enlargement of pixels of a paint brush over speedup window. 
Squares represent pixels of the Z-buffered speedup window, the dashed-line 
square is the brush, the circles in the pixels represent the encoded triangle 
colors of the pixel, and A, Band C denote pixels whose corresponding U1r 

points will be converted into a polygon in a texture map. By scanning the 
frame buffer, and reading in color values, we can predetermine, for each pixel, 
which triangle, if any is visible. 
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Figure 2: Left: The intersection point of a ray and a triangle produces a 
uv-point. This point is obtained through interpolation of the uv-values at 
the vertices of the triangle. Right: The uv-point in the texture map. 
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Figure 3: Triplets of uv-points from the intersected triangles are converted 
to a region in the texture map. The points A, Band C shown in the speedup 
window are ultimately converted to a triangle in the texture map. Subse­
quently, the texture map is rescanned and applied to the object. The end 
result is the illusion that the user is actually painting on the 3D shape. 
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Figure 4: Left: The painted image in a texture map. Right: The texture 
map after gradient computation. 

texture map, and the subsequent image after gradient calculation. Equa­
tion 1 approximates the magnitude of the gradient where t(x, y) denotes the 
intensity of the texture map at pixel (x, y): 

D(t(x,y)) =	 Ilt(x,y) - t(x + 1,y + 1)11 + 
Ilt(x + 1, y) - t(x, Y + 1)11 (1) 

The calculation of the gradient yields a new map, which we will refer to as 
our detail map (see the right side of Figure 4). What we do with this map 
depends on the application. 

One useful operation, used by both of our applications, is the calculation 
of all of the contours of the detail map. This operation is useful because the 
3D analog of a 2D contour is a 3D curve which bounds the subsurface selected 
by the user. With the 3D curve in hand, we can, for instance, retessellate 
the surface along the curve bounding the selected subsurface. This is what 
we do in both our polygonal modeler, and the trimming curve generator. 

By setting a threshold value, Tva/' for the gradient, as described by Equa­
tion 2, we obtain a binary image of pixels on which we can use contouring 
algorithms. 

Thresh(D(t(x ))) = {I if V'(t(~,y)) > Tval (2), y 0 otherwIse 

Many sophisticated contouring algorithms exist [KWT88], but we are 
dealing with simple texture images, which do not require powerful algorithms. 
A contouring algorithm yields an ordering of points defining a curve. In our 
case, we generate a contour of pixel coordinates whose pixels bound a painted 
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Figure 5: The original painted region is converted to a bounding curve of the 
region, using our image processing techniques. 

region. The 2D contour is converted to a 3D contour (using the 3(2 to 3(3 

map), which represents a bounding curve on the 3D shape of the area of 
interest, as illustrated in Figure 5. 

There are, however, many other schemes for adding detail to a 3D shape. 
Most involve the gradient operation. However, not all involve computing 
contours. For instance, we can add vertices to a 3D polyhedron, or rows of 
control points to a spline surface, wherever the corresponding texture map 
gradient exceeds some threshold value. The choice of which image processing 
routines ought to be used and in what manner they ought to be utilized are 
dictated by an individual application's needs. 

Polygonal Modeling 

Our first application allows a user to paint an image on a 3D polygonal shape 
and then translate the region that is painted on. This application features 
two stages of operation. The first stage is a WYSIWYG paint mode in which 
the user is free to move the camera about and paint on an object with several 
different brush shapes and styles. 

Once the user is satisfied with the image on the shape, the application 
switches to deform mode. We first refine our polygonal object using the 
techniques in Section 3 to create a 3D curve on the surface of the object, 
based on the previously described contouring scheme. 

The resulting curve is actually an ordered collection of 3D points on the 
surface of the 3D shape. Figure 6 depicts a cross section of this shape, with 
the points of the generated curve and the corresponding surface normal at 
each point. For each point on the shape we create two correspondiI).g points: 
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Figure 6: The points of the generated 3D curve and the corresponding normal 
at each point. 
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Figure 7: Two points are added for each curve point by traversing the surface 
normal. 

one below the surface of the object and one above (see Figure 7). This is 
accomplished by traversing the normal of the 3D surface at each point on 
the curve. Attaching the ordered points together as illustrated in Figure 8 
produces a polygonal object. 

\Ve shall call this polygonal object a cutter (see Figure 9). The cutter 
object is so called because it is used much like a cookie cutter. We use the 
cutter to cut the 3D object (the dough), and then return the cut dough to 
its place. This operation is accomplished using standard CSG routines which 
have been slightly altered. The operation is similar to a boolean subtraction 
operation in that the cutter object is subtracted from the 3D shape. In our 
case, what is cut out is then added back in. The resulting tessellation has 
edges and vertices along the boundary of the painted region on the shape. 
These vertices will eventually be translated, producing an extrusion in the 
shape of the boundary of the painted region. For this reason, this polygonal 
operation yields the correct tessellation of the object that enables us to ex­
trude the shape we painted. The upper left hand portion of Figure 19 shows 
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Figure 8: Connecting the curve points yields a polygonal object. 

Figure 9: The cutter object and its placement on the 3D shape. 

the speedup window with a retessellation of the object in accordance with 
the painted region. 

Next, each vertex on the 3D surface is assigned a weight according to its 
corresponding texture map color [Bry92]. By weight, we mean a numerical 
value between 0 and 1 which is used as multiplication factor in applying 
deformations to the vertex. In this example, vertices whose corresponding 
texture map color is white are selected and thus receive a weight of 1. The 
rest are not selected and thus carry a weight of O. 

At this stage, the application behaves much like a conventional polygo­
nal modeler. When the user wishes to deform the 3D shape, the application 
applies the desired deformation (in this case translation) to each vertex, mul­
tiplying by each vertex's weight. Hence, vertices with weight 0, those whose 
corresponding texture map pixels remain unpainted, will not be deformed. 
Those vertices which are painted will feel the effects of the deformation. The 
user may interactively translate the selected vertices. The result of this is an 
extrusion of the image painted on the polygonal object. 

Figure 12 depicts a "squiggly" painted on a cylinder. Figure 13 shows 
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the extruded squiggly after refinement of the cylinder. The original cylinder 
had approximately 20 faces. The refined version has approximately 700. 
There was not enough detail in the original cylinder to extrude the squiggly, 
without prior refinement. Similarly, Figure 14 depicts a ring painted on 
a cube, while Figure 15 shows the ring after the translation deformation. 
Figure 16 illustrates the differences between a solid colored brush and a 
brush with tapering intensity. In this case, the color of the paint is used as 
a weight for the extrusion-the whiter the color of a vertex, the more it gets 
extruded. This is an example of associating paint properties with geometric 
ones. We can think of many more such paradigms. For instance, we could 
associate different paint colors with different translational directions. Under 
this paradigm, blue could be mapped to the X direction, green to the Y 
direction and red to the Z direction. Users could paint with any color paint 
brush, and vertex weights would be assigned for each translational direction 
according to colors in the texture map. 

Similarly, this application need not be restricted to translation opera­
tions. Indeed, we could just as easily implement scales, twists, or any other 
polygonal deformations using the vertex weights [Bar84] (we could even map 
different paint colors to different types of deformations). 

Finally, we should note a way that our refinement scheme might be im­
proved. A simpler form of the application omits the contouring and cutter 
objects and simply adds vertices where the gradient of the texture map is 
high. This succeeds, provided the original object was tessellated sufficiently 
finely. Perhaps more sophisticated schemes would yield better results. 

Trimming Curves 

A similar application, using many of the techniques described in Section 4, 
generates trimming curves for patches. In this application, an image is 
painted onto a patch by the user. Once the user is satisfied with the im­
age on the patch, the program calculates a contour curve for the area on the 
patch. By curve we refer to an ordered collection of points. For modeling, 
the points may be converted to a Co, C 1 or C2 continuous curve. This curve 
is then use as a trimming curve. In Figure 17, we see an image painted onto 
the patch. Figure 18 illustrates the trimmed patch. Naturally, the painted 
area may act as either a cutout or a mask. Smoothing of the trimming curve 
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may be performed as well. 

Limitations 

Despite the strides we have made in developing a practical, useful inter­
face for selecting subsurfaces, the techniques we describe suffer from many 
drawbacks-some practical and some theoretical. The most glaring deficien­
cies in the applications stem from the polygonal nature of our models. After 
performing the cutter operations on a polygonal object, the newly retessel­
lated object often contains many ragged edges which are due to the fact that 
our polygonal cutter object is not necessarily smooth. The upper left hand 
portion of Figure 19 illustrates the new tessellation and its rough character. 
Perhaps a triangle smoothing algorithm like Turk's [Tur92] applied to the a 
retessellated object would remedy the situation. 

Similarly, in implementing tapered brushes, we found the cutter method 
was less effective than other techniques in producing a smooth retessellation 
of the polygonal object. We employed several strategies for retessellation of 
a surface painted on with a tapered brush. Most suffered from uneven edges 
as well, although different techniques met with varying degrees of success. In 
one strategy we omitted the contouring and cutter steps of the retessellation 
altogether. Instead, we mapped every texture map pixel whose gradient value 
surpassed a certain threshold value, back onto the original surface, just as 
we did with the contour points. Then every such point was used to split the 
triangle in which it lay into three new triangles. Unfortunately, performing 
this task for every pixel whose gradient exceeded the threshold resulted in 
numerical errors due to degenerate triangles. When we restricted the oper­
ation to some random subset of potential pixels, the technique fared better. 
We then formulated another technique using the standard contouring and 
cutter methods to retessellate the object. Once the standard retessellation 
was performed, every triangle inside the painted region was further retes­
sellated (the eSG cutter operations mark every triangle as being inside or 
outside the cutter object). This worked well, but again suffered from ragged 
edges. We can devise many other schemes to retessellate polygonal shapes 
for tapered brush use. While we have met with some success, we believe 
there is still room for improvement through research. 

Finally, we wish to point out a problem that is theoretical as well as 
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practical. After we deform a polygonal object, certain polygons may expand, 
while others may shrink. When the user paints on these polygons to select a 
new subsurface, the ratio of the size of a polygon's area to its corresponding 
area in the texture map may have changed. This causes resolution problems. 
As a solution, we could continually increase the size of the texture map after 
every deformation step. Obviously this has a practical limit, but it might 
work in some cases. Indeed, we attempted this solution with reasonable 
results. We also tried to couple it with relaxation techniques applied to the 
texture map. Under this system, we treat the polygons in the texture map 
as a system of springs, where each edge of each polygon behaves as a spring. 
The natural rest length of every edge is proportional to its corresponding 
edge length in the 3D polygonal object. We let the system go, and allow 
the simulation to run until the system is reasonably static. We found this 
solution to improve the situation, but it was not a complete solution. 

Our relaxation technique is rather simple, so perhaps a more sophisticated 
algorithm could yield more useful results [BVI91]. The correct solution of 
course may be to use manifold structures to cover our polygonal object with 
a collection of texture maps, one per chart, and associated correspondence 
functions [HSBB93]. Ideally, we could generate a new set of charts every 
time the object is deformed, allowing painting in virtually limitless detail. 
Manifold structures might also help address the "seam problem" encountered 
when using 3D WYSI\VYG painting with a single texture map per polygonal 
object. When the user paints onto an object at a polygon or polygons whose 
uv-values straddle the border of the texture map, we encounter an ambiguity 
when painting a polygon in the texture map (see Figure 10). Given points 
A, Band Cas uv-points forming a triangle, do we paint the triangle in the 
middle picture or the one on the right? As it currently stands, the program 
opts for the solution shown on the right. 

Future Work 

We have developed an interaction technique that can be used in a variety of 
modeling paradigms. We feel WYSIWYG painting is a very natural, intuitive 
means by which users can select portions of shapes with a great degree of 
accuracy. The technique may be used with many underlying models that can 
take the form of a polygonal representation. For instance, we can envision a 
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Figure 10: An ambiguity arises when painting across the seam of a texture 
map. When painting into the texture maps, what is the polygon defined by 
the points A, Band C? Is it the polygon in the middle or the triangle on the 
right? 

spline-based version of our polygonal modeler, in which control points instead 
of vertices are added to a spline surface. Just as in the polygonal modeler, 
control points are assigned weights according to corresponding color values 
in a texture map. They are then manipulated interactively. A clever use 
of hierarchical B-splines [FB88] might avoid the explosion of control points 
often encountered when adding detail to patches. 

It might also be possible to use our interaction technique to provide a 
user-friendly interface for generating EFFD's [Coq90]. EFFD's are a useful 
modeling tool for creating bumps on surfaces. Unfortunately creating the 
lattices necessary for EFFD modeling requires expert knowledge. By ex­
panding on our cutter notion, we can generate EFFD's by painting. After 
painting has occurred, contouring of the texture maps is performed, and cut­
ter objects are generated. By scaling the cutter objects (about the center 
point of the object) up and down slightly, we can form a series of cutter 
objects in the shape of the contour of the painted region. We join the scaled 
cutters together connecting corresponding vertices. Instead, we connect cor­
responding points. In other words, each vertex of the cutter is connected to 
its scaled-up and scaled-down analogs. We scale by traversing the normal 
at each point. The newly connected structure is the EFFD lattice, with the 
vertices of the cutter object acting as the lattice's control points. Figure 11 
illustrates what an EFFD generated by painting might look like. Finally, 
the user can interactively move the lattice control points, while the original 
texture map color values act as weights for the control points. 
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Figure 11: A painted S on a sphere is converted into its corresponding EFFD 
lattice. 

Other applications that might fit well into our scheme involve specifying 
constraints and snapping using WYSIWYG painting. Joint specification by 
painting axes of freedom on objects might be a possibility, as might snapping 
shapes to each other based on the color of their surfaces. We can also foresee 
an updated version of Williams' 3D painting program [WiI90] in which each 
paint color connotes a different direction of deformation. 
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Figure 12: A cylinder with a squiggly painted on it. 

Figure 13: A cylinder with the squiggly extruded. 
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Figure 14: A cube with a ring painted on it. 

Figure 15: A cube with the ring extruded. 
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Figure 16: Two different brushes yield different results when extruded from 
the sheet. 

Figure 17: A patch with a trimming region painted on it. 
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Figure 18: The newly trimmed patch. 
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the main window. The user interface is to the lower right, and the texture 
map which is scanned and wraps around the cube is shown in the lower left. 
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