
An Annotation System/or 3D

Fluid Flow Visualization

Maria M. Loughlin

Submitted in partial fulfillment of the requirements for the Degree of

Master of Science in the Department of Computer Science at Brown

University

May 1994

This thesis by Maria M. Loughlin

is accepted in its present form by the Department of

Computer Science as satisfying the

thesis requirement for the degree of Master Of Science

!iI%

Date..?::!~.~./~.~! .1....... . .

~ John F. Hughes

Approved by the Graduate Council

Date .

ii

1.0 Introduction

This thesis presents an annotation system to support scientific data analysis. Data analysis

can be defined as the process of distilling potentially large amounts of measured or calcu

lated data into simple observations or parameters that characterize the phenomenon under

study. One of the key activities in data analysis is recording results and histories of analy

sis sessions. However current interfaces for data analysis emphasize scientific visualiza

tion, focusing on the rendering and playback of images, and provide little or no annotation

support. We describe a means to integrate annotation to the framework of scientific visual

ization tools.

Our annotation system allows users to record information in the data visualization itself.

Annotation markers are placed in the visualization, and annotation information is associ

ated with the markers. This allows contextual information storage and retrieval, and facil

itates information sharing in collaborative environments. Thus the annotation system

becomes a form of communication as well as a history of the data analysis session. Anno

tation markers also aid analysts in navigating through the data space, by providing land

marks at interesting positions. Figure 1 shows screen snapshots from the visualization and

annotation system. The project has been implemented for three dimensional (3D) Compu

tational Fluid Dynamics (CFD) applications. However, the techniques can be applied to

visualization systems in any discipline, such as medical, geological, and business process

1

visualization. The design can also be extended to 3D stereo and virtual-reality environ

ments.

Cc) Cd)

FIGURE 1. The visualization and annotation system (a) hedgehog and streamlines in a 3D fluid

flow, (b) annotation markers at areas of high velocity, (c) annotation information-entry panel, (d)

Magic LensTM hiding annotation markers.

2

Section 2 discusses the need for annotation in data analysis, and reviews previous

approaches to annotation. Section 3 describes the design issues considered during the

development of our annotation system. Section 4 details the implementation of an annota

tion system within a 3D modeling and animation system. Section 5 discusses possible

future work, and section 6 gives some concluding remarks.

2.0 Background

2.1 The Need for Annotation in Data Analysis

Annotation was identified as a key component of the data analysis process in a study by

Springmeyer et al. [Spring92]. The study, performed with ten analysts over a period of

many months, tried to characterize the data analysis process and to consider how technol

ogy can be used to support it more effectively. The techniques of contextual inquiry and

interaction analysis were used to observe scientists analyzing their own data. The study

decomposed the scientific data analysis process into two primary activities: investigation,

or exploring the data to extract information or confirm results, and integration of insight,

or assimilating the resulting knowledge. Integration of insight was seen to involve orga

nizing information and expressing the ideas generated.

Scientists recorded notes in some form, and inspected previous notes, in every observation

session. Recording media included notebooks, scratch paper, and post-it notes. Two dis

tinct types of annotation were observed:

• recording, or preserving contextual information throughout an investigation and

3

• describing or capturing conclusions of the analysis sessions.

Thus annotations were used both for organization and as records for later reference.These

annotation operations were not directly supported by the visualization tool in any case,

except in the form of file-naming conventions and printouts of isolated figures and lists of

numbers. The authors conclude that expressing ideas is an important, but often over

looked, aspect of scientific data analysis. The report recommends that scientific data anal

ysis tools assist analysts in maintaining a record of analysis sessions, and in annotating

results of different stages of a study.

2.2 Annotation Support in Existing Systems

Scientific visualization tools typically provide little or no support for information annota

tion. Other tools developed outside the scientific data analysis domain, allow annotation in

different ways. In this section, we review annotation support in scientific visualization and

other environments.

2.2.1 Scientific Visualization Systems

Scientific visualization systems usually provide a level of annotation support that is help

ful for making presentations from visualized data. Automatic Visualization System (AVS)

facilitates attachment of labels to an image [Up89]. AVS also allows recording of a

sequence of interactions with the visualization. Flow Analysis Software Toolkit (FAST), a

software environment for visualizing scientific data, allows users to add textual titles to

scenes and animations. Additionally, during a FAST session, all user interactions with the

4

tool are recorded in a script, which the user may choose to save and replay [Ban90]. This

support does not facilitate the recording and describing operations observed by Springm

eyer etat.

2.2.2 Document-publication and Communication Systems

Annotations of various sorts have been integrated in applications outside the scientific

visualization domain. MacDraw 1.1, a 2D paint program, introduced a notes feature,

which allows insertion of annotations using the post-it metaphor. Solutions International's

SuperGlueII [Thom89], also uses the electronic equivalent of post-its in their GlueNotes

feature. GlueNotes allows addition of textual and image-based annotations to documents.

SuperGlueII also supports printing annotated documents. This is handled by printing a

miniature view of the document in which each note's position is marked and assigned a

number. The notes themselves, identified by number, are printed below this thumbnail

vIew.

The Media View system [PhiI9:L], developed in the Next Step environment, provides a fur

ther level of annotation support. This tool extends the paradigm of the traditional docu

ment to electronic documehts that can include text, line art, images, sound, video

sequences, and computer animations. The post-it metaphor can be applied to all media

components. Media View documents can also include a data set, so that users can perform

and view a simulation wholly within Media View. There is also a facility for visualizing

data sets produced on another computer. The authors of this tool state that Media View

does not compete with systems such as AVS or APE for scientific visualization. Rather it

5

complements those systems by providing a vehicle for sharing, archiving, and further

exploring the visualizations they produce.

Document annotation is used as a key means of communication in the Wang Laboratories

multimedia communication system, Freestyle [Francik91]. Freestyle's multimedia mes

sages are based on images, including screen snapshots and hand-drawn sketches. Users

can annotate images with synchronized pointing, drawing, writing and speaking. Graphic

buttons above the image are used to play back the synchronized voice, hand-drawn and

typed messages. Synchronization of input modalities is one of the key features of this tool,

as it allows messages to contain information about the process by which they were cre

ated. The stylus cursor's movement which generated the annotation is played back with

the annotation, allowing users to point while talking, and so refer to "this" object with

coordinated hand and voice references. Francik et at. observed the use of Freestyle (and its

prototypes) in groups with targeted applications, such as law, finance, insurance, health,

travel, entertainment, commerce, engineering, and utilities. Experience showed that much

of its success relied on the seamless integration of annotation capabilities and regular

applications. Users could capture the details of what they were working on, add comments

or questions, and send the message without greatly interrupting the flow of work.

Verlinden et at. [Ver93] developed an annotation system to explore communication in Vir

tual Reality (VR) environments. In general, communication in virtual reality systems is

restricted, as the user must interrupt the simulation to take notes or get some extra infor

mation about features of the environment. Verlinden's system overcomes this problem by

embedding verbal annotations in the VR space. Users can read, write and communicate

6

using these annotations. The annotations are represented as visual 3D markers, which can

be attached to objects or locations in space. When the user activates a marker, using a ray

intersection technique, the verbal message stored with that marker is sounded. Annota

tions are created by moving to the required position and then pressing a mouse button to

create a marker and make a recording. The annotation system was tested in a prototype

VR tourist guide to locations in the city of Atlanta. Based on the success of this prototype,

the authors feel that the addition of verbal communication opens up a range of new uses

for virtual environments.

3.0 Design Issues

Before embarking on an annotation system implementation, we consider the design issues

of such a system.

3.1 How to Integrate Annotation in a Visualization System?

An annotation system for the data analysis process must fit naturally within a visualization

system. Within the framework of the visualization system, the annotation system must be

available at all times to support both the "describing" and "recording" operations observed

by Springmeyer et al.

One of the first issues is the placement and storage of annotations. Where should annota

tions be stored? Traditionally, annotations to scientific visualizations are recorded on

paper or in electronic files, and both the dataset and the files are labelled to mark their

association. Thus the analyst assumes the cognitive load of associating annotations with

7

locations and features in the visualization. However, the visualization space of many sci

entific visualization tools is three dimensional, and thus provides a 3D context in which

annotations can be placed. Recording annotations in this space provides a strong integra

tion of annotation and visualization. It also capitalizes on human's spatial senses by facili

tating the retrieval of information based on its spatial location in the visualization. Thus

the cognitive load required to associate annotations with features is reduced to a percep

tuallevel.

The decision to insert annotations in the visualization space creates an immediate conflict

between the annotation and visualization data analysis functions. Both compete for screen

territory. We do not wish to impose any restrictions on the amount of information that can

be recorded. However, since the information is contained in the data itself, we do not wish

annotations to obscure data. In fact, visual clutter is already a problem in many scientific

data visualizations. An annotation system must be designed so that it does not aggravate

this problem. Our approach is to associate each annotation with an annotation marker. The

marker is a small geometric object, positioned in the data space by the user. The geometry

and graphic attributes of the marker are chosen so that they are easily distinguished from

existing visualization tools. By clicking on the marker, a user can expand the annotation to

read or add to the annotation's content. Separation of the annotation's content from the

annotation marker in this way allows direct insertion of arbitrarily large annotations.

3.2 What Kind of Information to Store in an Annotation?

Annotations must be powerful enough to capture information considered important by the

data analyst. This prompted an investigation of the types of information that are manipu

8

lated by data analysts. Tanimoto [Tan90] distinguishes between data, information and

knowledge. Data consists of raw figures and measurements, which do not necessarily

answer the questions that users may have. Information is more refined, and may be the

result of processing crude data, or answering specific questions posed by users. Knowl

edge is a refined type of information. It can be considered as "information in context", that

is, information organized so that it can be readily applied to solving problems, perception,

and learning. Bertin [Bert8l] classifies the levels of information in a similar way. He con

siders information as a relationship which can exist between elements, subsets or sets. The

broader the relationship, the higher the level of information. We assume that an annotation

system should be able to store information at each of these levels - scientists need to

record both the data values at probe points in the data set, and a higher level qualitative

analysis of these figures. We need to consider how each of these levels of information can

be represented.

We also need to consider whether an annotation system should be customized for the

application at hand. Some aspects of an annotation, such as date of creation and author, are

likely to be relevant to all applications. It is possible, however, that the real power of an

annotation system is revealed only when it is customized. Springmeyer et al. support this

idea, stating that "a designer can apply knowledge of how domain activities are actually

practiced to improve the effectiveness and usability of software tools to support data anal

ysis." Syntactically, this means that an annotation system should be able to interact with

scientists in familiar terms. Semantically, the characteristics of the domain information

should be easily captured by the annotations. For example, if the information of a particu

9

lar application is time-varying, the annotation system should provide time-varying annota

tions that can track the features being described.

Many modalities (textual, graphical, image, video, audio, sensory), are available for infor

mation capture in an annotation system. Two dimensional text, graphics and images, are

the standard annotation modalities. Aural annotation is also an effective candidate. Chal

fonte, in an experiment on the use of annotation for collaborative document authoring,

found aural annotations a richer and more effective medium for high-level communication

[Chalf91]. Freestyle showed that coordinating hand/cursor movements with textual and

aural annotations adds a further advantage. Virtual reality environments may have annota

tion needs different from those of traditional desktop environments.

3.3 How to Interact with an Annotation System?

The graphical user interface of an annotation system is necessarily a mixture of 2D and 3D

techniques -- 2D interaction methods with 2D metaphors such as sketchpad/paper, and 3D

interaction techniques with objects in the 3D world of the data visualization. Annotations

that interface with non-graphical modalities, such as audio or tactile interaction, require

other interface types. Some of the principles of user interface design are independent of

the dimensionality and modality of the application space. For example, a good user inter

face allows its users to work with minimal conscious attention to their tools. A direct

manipulation interface, that is, an interface in which the objects that can be operated on

are represented physically, helps achieve this goal [Fo192]. Similarly, it is important for a

user interface to provide feedback on the status of user-computer interactions, the current

10

settings of domain variables etc. For example, in fluid flow visualization, a user navigating

through a data set needs feedback on his or her location in the visualization space.

A user interface must be designed to suit the diverse community of its users. The function

ality should be easy-to-use, so that novice users will quickly be able to use the system, and

yet flexible, so that advanced users may perform complicated tasks. This is especially

important in an annotation system, which must be simple and unobtrusive enough to be

adopted by data analysts (whose primary interest is gaining information from a dataset),

yet must be powerful enough to capture all that an analyst considers important in an anno

tation. An annotation system must also be flexible enough to support the different styles in

which its users analyze data. While scanning a large dataset, users may want to position

markers at many interesting locations, as "placeholders", without recording annotation

content. However, users who are focused on one area may prefer to perform the instantia

tion, positioning, and recording of an annotation at the same time.

There are design issues specific to 3D graphical user interfaces [Conn92]. First, they must

deal with the complexity introduced by 3D viewing projections, visibility determination,

etc. Second, the degrees of freedom in the 3D world are not easily specified with common

interface hardware. Substantial manual dexterity may be required to perform 3D interac

tion tasks. Third, the interface can easily obscure itself. The use of widgets (encapsula

tions of 3D geometry behavior used to control or display information about application

objects) allows a higher bandwidth between the application and the interface. Some of the

guidelines for successful 3D widget design [Snib92] are self-disclosure, implicit versus

11

explicit control of parameters, constraint on the degrees of freedom where appropriate,

and design for the intended use.

4.0 Implementation

This section describes the annotation system which was implemented. We begin by setting

a context for the implemented system with a description of fluid flow visualizations and

the software development environment. Then we discuss the main components of the

annotation system - the annotation markers, support for information capture, and interac

tion techniques.

4.1 Fluid Flow Visualizations

Computational fluid dynamics (CFO) involves the use of high speed computers to simu

late the characteristics of flow physics. Computed flow data is typically stored as a 30 grid

of vector and scalar values (e.g., velocity, temperature, and vorticity values), which are

static in a steady flow, and change over time in an unsteady flow. CFO visualization tools

allow a scientist to examine the characteristics of the data in 30 computer images. Interac

tion with the visual representation is essential in the exploratory process of data compre

hension and analysis. The goals of the interaction can be described hierarchically as

feature identification, scanning, and probing [Haim9l]. Feature identification techniques

help locate flow features over the entire domain, and give the scientist a feel for the posi

tion of interesting parts of the flow volume. An example of this type of technique is a vec

tor hedgehog, a three-dimensional array of velocity vectors, that may be thresholded to

12

display velocity vectors in areas of high velocity. Scanning techniques are used to interac

tively search the domain, by varying one or more parameters, through space or through

scalar and vector field values. Many scanning techniques are well established. These

include cutting planes, planar surfaces which slice the computational domain and show

scalar field value at each grid point of the plane, and iso-surfaces, which are three dimen

sional surfaces of a constant scalar value. Probing techniques are localized visualization

tools, typically used in the final step of investigating a flow feature, to gather quantitative

information. Examples of probing tools include streamlines and particle paths, which

show the path in which a particle would flow if positioned in a steady or unsteady fluid

flow.

Brown University has developed a flow visualization tool for researching new modes of

interaction with flow visualization tools. The annotation system was developed in the

framework of this flow visualization system. This provided a context for the annotation

effort, and a testbed for techniques to integrate visualization and annotation functionality.

4.2 The Development Environment

The annotation system was developed using FLESH, an object oriented animation and

modeling scripting language [Mey93], and C++. In the FLESH programming language,

scenes are described as collections of "objects". Objects belong to object classes, which

dictate their behaviors. Some object classes have a geometric representation, others, such

as the camera class, do not. As in traditional object-oriented systems, objects have meth

ods associated with them. In FLESH, objects may interact with other objects through the

13

use of dependencies. The FLESH language is interpreted by the UGA system through its

graphical modeler/animator, Trim [Hub91].

The annotation system is defined by the FLESH object classes it uses. These include geo

metric objects such as annotation markers, 3D regions, region vertices, lenses, and non

geometric objects, such as a holders for collections of annotations and an annotation filter.

Some of these FLESH classes have corresponding C++ classes, in which data is stored,

and compute-intensive operations performed. This allowed us to benefit from the power of

an interpreted interactive prototyping modeling system, and the efficiency of a compiled

language. The software was developed on Sun Sparcstation 10 and Hewlett Packard 9000

735 workstations.

4.3 Annotation Markers

Annotations are represented in the 3D space of the flow visualization as small geometric

objects, known as annotation markers. Each marker is associated with an annotation

recording, which the user can edit at any time. In this section, I describe the annotation

markers in terms of their geometry and behavior.

When an annotation marker is created, it is respresented as a small sphere. Feedback from

data analysts indicated that this icon's lack of self-disclosure hindered their acceptance of

the annotation system. Thus, the geometry of a marker is now designed to give some

visual feedback on the content of the annotation. In the context of fluid flow visualiza

tions, the user can define annotation keywords (such as plume, vortex, eddy, bifurcation),

and associate a geometry with each keyword. When the user assigns a keyword to the

14

annotation, the marker takes the associated shape. It is likely that other mappings between

graphical attributes of markers and annotation content would also be usefuL For example,

the color saturation of a marker could depend on the age or priority of the annotation.

Annotations are organized hierarchically in containing objects known as annotators. The

size and color of all markers of an annotator can be changed, to highlight the fact that they

belong to separate hierarchies. If many scientists work collaboartively on a data set, for

example, each scientist can define a unique color and size for her markers.

Since the function of a marker is simply to identify points of interest in the visualization,

its behavior is quite simple. A marker is created when the user presses the annotation

push-button. It appears at the point at which the current camera is focused. If the camera is

focused at or near the feature of interest, this greatly simplifies the user's task of position

ing the marker. Users can translate and rotate markers with simple mouse movements. The

user can also project "interactive shadows" of the marker on the planes defined by the

principal axes [Hern92]. Each shadow is constrained to move in the plane in which it lies.

If a user moves a shadow, the marker moves in a parallel plane. This constrained transla

tion helps in precisely positioning a marker. Markers can be highlighted in response to a

filter request. In the current system, the color of a marker changes to a luminescent yellow

when highlighted. This simple approach seems adequate. However, the user may change

this highlight behavior, by, for example, having highlighted markers flash between alter

nating colors.

Since the features of unsteady fluid flows move over time, a user would like the annotation

describing a particular feature to follow the feature's movement in the visualization. The

15

current annotation system provides partial support for this by allowing the user to specify

the position of an annotation at any number of points in time. The annotation markers then

linearly interpolate between the specified positions as time runs forward.

4.4 Knowledge Stored

Our first prototype annotation system allowed storage of keyword, textual summary and

description, author, and date information. Some of this information (author and date) are

captured implicitly when the annotation is created. The rest must be explicitly added after

the author has "opened" the annotation by clicking on it. This data entry is performed via

a 2D Motif-based panel of buttons and text widgets. In an effort to customize the annota

tion system to fluid flow visualizations, we consulted with fluid flow analysts during the

course of the project, to gain insight into the types of information that should be captured

in this context.

4.4.1 Saving Visualization Snapshots

One of the key additions to the annotation system results from the interactive nature of

flow data analysis. As described earlier, a scientist must insert flow visualization tools in

the flow space to "see" the underlying data. Much time is spent determining which tools

most effectively highlight a feature, and positioning and orienting both the tools and cam

era to best show off the feature being described. Springmeyer et at. observed this activity

of the data analysis process, and described it as orientating the data, or altering a represen

tation to gain perspective. To support this activity, our concept of an annotation was

expanded to include "snapshots" of the flow tools which display a feature. To take a snap

16

shot, the annotator simply clicks on flow tools relevant to the feature being described. Any

number of snapshots can be stored with an annotation. When an annotation is restored at a

later time, the analyst is presented with a list of all saved snapshots, and can simply restore

each snapshot to see how the annotated feature is displayed by flow visualization tools.

Figure 2 shows a user saving a snapshot of visualization tools with the annotation system.

FIGURE 2. Saving a snapshot of visualization tools

4.4.2 Describing 3D Volumes

It also became obvious that annotation markers, which are appropriate for locating point

features in a visualization, are not suited to marking larger-scale features of a fluid flow.

Fluid flows contain volume features, such as vortices (mass of flow with a whirling or cir

cular motion), plumes (mass of rapidly descending flow) and eddys (current of flow run

ning contrary to the main current). Annotators may want to associate an annotation with a

17

region of the visualization space, rather than a single point in the space. To achieve this,

the user needs some way to sketch the 3D volume in the visualization space. The volume

sketching method must be intuitive, so that flow analysts (who may not be interested in

becoming artistic volume sculptors!), can easily describe the volume. Also, the resolution

of the volumes sketched need not be too precise. A sketched volume need only be as pre

cise as the grid on which the flow field is defined, as it is not meaningful to refer to vol

umes at any greater resolution.

3D volume sketching is difficult in the traditional graphics workstation environment for a

number of reasons. The most fundamental problem is that traditional 2D input devices are

not expressive enough to sketch out a 3D volume easily. During the course of this project,

we experimented with two approaches to 3D volume sketching.

The first approach uses a 3D input device to control a 3D paintbrush widget, and uses the

voxel representation of the flow volume. In these respects, it resembles the free-form

sculpting system developed by Galyean and Hughes [Gal92]. When in paint mode, the

cursor of the 3D mouse is depicted as a 3D paintbrush. A boolean value "on" or "off' is

associated with all voxels of the visualization. At the start of a volume-sketching opera

tion, all voxels are set "off." Subsequently, all voxels touched by the paintbrush are turned

"on." The resulting volume is the union of all the "on" voxels. The paintbrush itself is a

user-controllable 3D widget. When the user wishes to change the paintbrush parameters,

he or she displays the paintbrush affordances. These include extent handles for each of the

three principal axes of the brush. The brush is resized (at voxel resolution) by dragging on

18

the extent handles. Similarly, the brush can be alternated between additive and subtractive

(erasing) modes via a button on the widget.

This 3D paint implementation proved very difficult to use. It is not easy to sweep out a

desired volume with the brush, without constantly changing the view perspective. The 3D

volumes created tend to be irregular, with large indentations and holes at voxels missed by

the 3D paintbrush. Perhaps this implementation coupled with some "intelligent" space

filling algorithm would be more useful.

Our second attempt at 3D volume sketching is easier to use, but more restrictive in the

volumes that can be defined. In this implementation, the user positions "pegs" that define

the extreme vertices of the region to be drawn. The pegs are created and moved within the

visualization in a way similar to the creation and translation of annotation markers. When

the user is done positioning pegs, the system can draw the convex hull of the pegs. Verti

ces can be added, deleted and moved, and the volume redrawn, until the user is happy that.

the volume is accurate. The quickhull algorithm, as implemented at the Geometry Center,

University of Minnesota [Barb93], is used to compute the 3D convex hull ofthe pegs. The

convex hull code generates the voronoi triangulation of the facets, which can then be

drawn in outline or transparent mode. This implementation provides a simple means to

draw 3D regions. However, since it uses the convex hull of the pegs, certain shapes, such

19

as a 3D "L" shape, can not be sketched. Figure 3 shows a 3D region being sketched by the

convex hull method.

FlGURE 3. Sketching a 3D region by the convex hull method

4.5 Retrieving the Annotations

Effective information retrieval and communication requires that a user can easily identify

annotations relating to a specific topic, by a specific author, etc. The annotation system

facilitates such data filtering in two ways.

Firstly, a traditional database filter is provided. The user can specify data selection criteria

(such as the annotation creation date, author, or keyword), via a 2D Motif panel. Annota

tions that satisfy the search criteria are highlighted.

A second filter uses a Magic Lens™ as described by Bier et al. [Bier93]. A Magic Lens is

a rectangular frame, placed in front of the visualization, which defines both a screen

20

region and an operation. The geometry of the lens is a 2D frame. It is constrained to move

and scale only in a plane between the viewer and the film plane, parallel to the film plane.

The lens performs some operation on the data behind it. Traditional lenses provide pixel

based operations, such as magnification. Magic lenses can access application-specific data

structures, and so can perform qualitatively different operations. Four functions are

defined for the lens in the annotation system. The first sets the color of all FLESH objects,

except annotation markers, to gray. This facilitates finding markers in a cluttered scene.

The second lens operator shows only the annotations that satisfy the criteria specified in

the Motif-based database filter. The third lens function undraws all annotation markers

behind the lens. Finally, the default function hides all annotation markers and all interac

tion handles on the visualization tools behind the lens. This is useful when a scientist

wishes to remove all clutter and focus on the visualization data only. Many other interest

ing lens functions could be defined. One such function could be to remove all fluid flow

tools except those in the user-sketched volume behind the lens.

We believe that the magic lens alleviates the problem of visualization and annotation func

tions sharing the same screen space. Using the lens, a scientist can tightly integrate the two

functions when appropriate. When she wishes to focus exclusively on either visualization

or annotation, however, the clutter introduced by the other component can be hidden.

5.0 Future Work

This thesis has laid down the foundations for an annotation system for fluid flow data anal

ysis. The work can be expanded in many ways.

21

An annotation associates information with a graphical marker. The FLESH annotation

object controls the geometry and behavior of the visible annotation marker. The corre

sponding C++ object contains the annotation's content - date, author, description etc. If the

user has stored one or more snapshots with the annotation, these are stored with the

FLESH annotation object. Similarly, any regions associated with the annotation are stored

in the C++ and FLESH objects.

8.3 Motif Interface

UGA provides an interface to simple Motif widgets such as scroll bars, buttons, and text

windows. This interface, contained in the mox package, allows us to define a Motif

interface as UGA objects in the FLESH language. A callback function, written in FLESH,

can be associated with each widget. This allowed rapid prototyping of the 2D Motif inter

face. Figure 5 shows a simple panel of Motif widgets created with the mox package.

... Menubar

Push button ~

... Toggle button

FIGURE 5. Sample mox Motif panel

27

8.4 Other Interesting Modules

8.4.1 The Save and Restore Mechanism

An annotation system must provide a way to save and restore annotations. We made this

save/restore mechanism as generic as possible, so that the same scheme can be used to

save snapshots of visualization tools. We achieved this by defining a prototype saver, or

savery, object in FLESH. One of the methods defined for a savecp, the Save method,

takes a list of objects to save, and adds to its own definition a field per object. The field for

a specific object records the value of key attributes of that object. All objects can define a

save list with the names of the key attributes that should be saved. If an object does not

have a custom save_list, a default list of attributes -- translation, rotation, scale, and color

-- is used. The savecp also has a Restore method. This method recreates each of its saved

objects, and restores each object to its original state, based on the values in the save_list.

A savecp can store any collection of objects. When a tool snapshot is associated with an

annotation, a savecp is created to store the tools. This savecp is then added to the anno

tation's list of snapshots. When a user saves an annotator, a savecp is created to contain

the save_list of each annotation in the annotator. Then this savecp and the saver_p's of

the snapshots associated with these annotations are written to a text file using the UGA

FILEwrite command. When the annotator is imported at a later time, the savecp's are

parsed, and the restore method applied to each to recreate the annotations and any tool

snapshots that were saved.

28

The information stored in C++ data structures must be saved and restored in a different

way. This is achieved by simply looping through all annotations and writing their content

to a text file. When the annotations are imported, a C++ annotator and annotation is cre

ated for each saved object, and the saved text written into the new structures.

8.4.2 Magic Lens

The geometry of the magic lens is implemented as the CSG (Constructive Solid Geome

try) difference of two cubes, scaled such that they are very shallow relative to their height

and width. The lens's position is initialized to a plane in front of the film plane. From

there, it is constrained to translate only in the plane in which it lies. In the current imple

mentation, the lens cannot be rotated.

When the lens is active in the visualization, we perform two actions on each camera

update. First, we determine what objects in the 3D scene are in the frustum behind the

lens. This is achieved by finding the projection of each object on the camera's film plane

and determining which of the projected objects lies within the projection of the lens on the

film plane. Second, we apply the current lens callback function, which is stored as a field

of the lens object, to the enclosed objects. Typical callback functions are hiding annotation

markers, hiding widget handles, and highlighting selected annotation markers.

8.4.3 3D Regions

The three-dimensional sketched regions are formed as OD objects. OD is a library of

drawing primitives within UGA that provides architecture-independent access to hard

ware-accelerated 3D graphics. When the vertices of a region are positioned by the user,

29

FLESH passes the list of vertices to a C++ routine. The routine then uses the qhull algo

rithm to determine the vertices in the convex hull. An ODobject is then formed from a tri

angulation of the resulting faces. All visible regions are added to the current viewer's list

of displayed objects.

9.0 Bibliography

[Ban90] Gordon V. Bancroft, Fergus J. Merritt, Todd C. Plessel, Paul G. Kelaita. R. Kevin

McCabe, Al Globus, FAST: A Multi-Processed Environment for Visualization of

Computational Fluid Dynamics, Proceedings of the First IEEE Conference on

Visualization 1990, pp. 14-27.

[Barb93] C. Bradford Barber, David P. Dobkin, Hannu Huhdanpaa, The Quickhull Algo

rithmfor Convex Hull, Geometry Center Technical Report GCG53, U. Minne

sota, July 1993.

[Bert81] Jacques Bertin, Graphics and Graphic Information-Processing, Walter de

Gruyter & Co.

[Bier93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, Tony D. DeRose,

Toolglass and Magic Lenses: The See-Through Interface, Proceedings of the

ACM Computer Graphics Conference, 1993

[Chalf91] Barbara L. Chalfonte, Robert S. Fish, Robert E. Kraut, Expressive Richness: A

Comparison ofSpeech and Text as Media for Revision, Proceedings of the ACM

Computer Human Interaction Conference 1991, pp. 21-26.

30

[Conn92] D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins,

Robert C. Zeleznik, Andries van Dam, Three-Dimensional Widgets, Proceedings

of the 1992 Symposium on Interactive 3D graphics, pp. 183-188.

[Fo192] James Foley, Andries van Dam, Steven Feiner, John Hughes, Computer Graphics

Principles and Practice, Addison Wesley 1992.

[Francik91] Ellen Francik, Susan Ehrlich Rudman, Donna Cooper, Stephen Levine, Put

ting Innovation to Work: Adoption Strategies for Multimedia Communication

Systems, Communications of the ACM, Dec 1991, VoL 34, No. 12, pp. 53-63.

[Ga191] Tinsley A. Galyean, John F. Hughes, Sculpting: An Interactive Volumetric Model

ing Technique, Proceedings of the ACM Siggraph 1991, pp. 267-274.

[Haim91] Robert Haimes and Dave Darmofal, Visualization in Computational Fluid

Dynamics: A Case Study, Proceedings of the Second IEEE Conference on Visu

alization 1991, pp. 392.,397.

[Hern92] Kenneth P. Herndon, Interactive Shadows, 1992 UIST Proceedings, November

1992, pp 1-6.

[Hub91] Philip M. Hubbard, Matthias M. Wloka, Robert C. Zeleznik, UGA: A Unified

Graphics Architecture, Technical Report CS-91-30, Department of Computer

Science, Brown University, Providence, RI 1991.

[Mey93] Tom Meyer and Nate Huang, Programming in FLESH, Computer Science

Department, Brown University, April 1993.

31

[Phil91] Richard L. Phillips, An Interpersonal Multimedia Visualization System, IEEE

Computer Graphics and Applications, May 1991, pp. 20-27.

[Snib92] Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins, D. Brookshire Conner

and Andries van Dam, Using Deformations to Explore 3D Widget Design, Pro

ceedings of the ACM SIGgraph 1992, pp. 351-352.

[Spring92] Rebecca R. Springmeyer, M. M. Blattner, N. L Max, A Characterization ofthe

Scientific Data Analysis Process, Proceedings of the Second IEEE Conference

on Visualization 1991, pp. 235-242.

[Thom89] Tom Thompson, Save and Annotate Your Mac Output, BTYE, September 1989,

pp.82-84.

[Tan90] Steven L. Tanimoto, The Elements of Artificial Intelligence, Computer Science

Press 1990.

[Up89] C. Upson et aI., The Application Visualization System: A Computational Environ

ment for Scientific Visualization, IEEE Computer Graphics and Applications,

Volume 9, Number 4, July 1989, pp. 60-69.

[Ver93] Jouke C. Verlinden, Jay David Bolter, Charles van der Mast, Voice Annotation:

Adding Verbal Information to Virtual Environments, Proceedings of the Euro

pean Simulation Symposium 1993.

32

