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1- Abstract 

In general terms a Multidatabase [8] is a distributed heterogeneous database system. We call it 

heterogeneous because the system is composed of several local databases, each of which has dis­

tinct transaction processing. Furthermore, those local databases (LDBS) need to retain as much 

autonomy as possible, since they may be developed and maintained by different organizations. 

Distributed homogeneous databases usually have to deal with data distribution and replication to 

maintain global consistency of the data. Besides those problems (data distributions & replication), 

Multidatabases have also to deal with heterogeneity and local database autonomy. 

In this piece of work a concurrency control mechanism for Multidatabase System is discussed. 

The problems, goals and design approach for the implementation of the Interaction [11] transac­

tion processing model are reviewed along with an overview of the Multidatabase System proto­

type developed at Brown University. 

2- Introduction 

With the evolution of the distributed database system, application developers faced the problem 

of users that needed to query and update data from different database management systems 

(DBMS), each of which may support distinct concurrency control, data model and data manage­

ment language (DML). One type of application with those characteristics is a planning application 

[15] which requires access to more than one distinct database in order to achieve a given task.
 

In addition, such a planning application also requires reactiveness; that is, the system has to react
 

to any changes at those DBMS that might affect the planning task. By react we meant that the sys­


tem is given another execution path in order to achieve the planning application goal. Obviously
 

the system has to undo the excution of the previous path.
 

A Multidatabase is a collection of pre-existing heterogeneous databases called local databases
 

(LDBS). A Multidatabase supports applications that simultaneously access more than one local
 

database [4].
 

The basic features of a Multidatabase are:
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- Heterogeneity 

- Autonomous local DBMS. (i.e. the Data Model and Transaction Processing of the local 

database should not be changed) 

- Support to global applications that can either read or write on the local databases (in our work 

the global application is called Interaction) 

- Local DBMS distributed transparency. 

In addition to the above features, Nodine's [11] work also addresses to reactivity as another 

important feature of a Multidatabase system. 

The ultimate goal of the Multidatabase Transaction Manager is to avoid inconsistency retrievals 

and to preserve global consistency in the presence of Multidatabase updates. However, achieving 

this goal is more complicated than simply dealing with data-distribution and replication, as in the 

homogeneous distributed database systems. This is because we also have to cope with the hetero­

geneity and autonomy of local databases [5]. 

3- The Concurrency Control Problem. 

Because of the conditions stated earlier (heterogeneity & autonomy), synchronization is not a 

trivial matter. In a Multidatabase, when we want to atomically commit or abort a global transac­

tion, the subtransactions (the ones that touch the local databases) either have to all commit or all 

abort following a global decision. We will briefly recall the steps of the most used commit proto­

col for distributed databases (two-phase commit). First the global transaction sends a prepared 

message to every local transaction. Those transactions try to execute all instructions and reply to 

the global transaction with "abort" or "prepare". At this point the local transaction is either in the 

abort state or in the prepared state. After receiving every reply the global transaction makes its 

decision (abort/commit) and sends a message to every participating local transaction. The local 

transactions then either commit (release their locks) or abort (undo their work). One important 

point in this technique is that when the local transactions are in the ready state they have all their 

actions finished and all changes are written in the stable storage. Those transactions are just wait-
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ing for the global decision. However, since we have no control over the transaction managers of 

the local databases in the multidatabases, we cannot expect every different local database transac­

tion manager to have a mechanism for waiting for global decisions [12]. Therefore, atomic com­

mitment is one of the problems to be addressed for the synchronization of the global transactions. 

The global serialization is another important issue for Multidatabases. The serializability of the 

local schedules is, by itself, not enough to maintain the Multidatabase consistency. The Transac­

tion Manager of the Multidatabase needs to validate the local schedules in a way that makes the 

subtransactions globally serializable. Furthermore, since the local databases are autonomous, they 

might have independent local transaction that will also influence the global serialization. That is, 

the MOB has to deal with conflicts between the subtransactions (direct conflicts [5]), and also 

with conflicts caused by independent local transactions that create a dependency between two 

subtransactions indirectly (indirect conflicts [5]). For example, if we have two global transactions 

GTI and GTI that access local databases LDBI and LDB2, and an independent transaction Tl 

that accesses LOBI, we could have the following local schedules: at LOBI: GTI->TI->GT2 and 

at LOB2: GT2->GTI which are correct local serializable schedules, but which violate the global 
\	 

serialization. (GTI->GT2->GTI). 

The problem is that the global transaction manager needs to be aware of the local schedule of 

every local database without violating the autonomy requirement. Later we will see that even 

though we can observe the execution order of global transactions, we still need to monitor the 

independent transactions at the local database. 

3.1- Maintaining the Global Serialization 

Several proposals have been made to solve the problem of the Concurrency Control in MOBS. 

Those proposals differ by the degree of autonomy given to local databases, and by the degree of 

concurrency. Some proposals even reject serializability as the correctness criterion. We shall 

describe below some of the main proposals from the compilation made by Georgakopoulos, 

Rusinkiewicz and Sheth [5]: 
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- Monitor the execution of the global transactions at each LOBS. 

Logar and Sheth [9] proposed the use of the commands of the LDBS and the Operating System to
 

check if the local serialization of the global transactions were consistent with the global serializa­


tion order of the multidatabase. This approach however, might potentially violate the autonomy of
 

the LDBS.
 

- Force local conflicts [5]. The basic idea is to require that every global transaction access a par­


ticular piece of data (i.e. ticket) in the local database in order to force a local conflict whenever
 

two global transactions access the same database. Hence, by enforcing the local serializability we
 

are also enforcing global serializability.
 

- Control the submission and execution order of the global transactions [11. The basic idea
 

is to have a global transaction manager which enforces the rule that if two global transactions are
 

accessing the same LDBS, one global transaction cannot execute until the other is done with the
 

LDBS. However, we still have to consider the potential of indirect conflict caused by an indepen­


dent transaction. Otherwise, we could have the global transaction violated even though global
 

transaction execution is enforced.
 

- Prevent two global transactions from executing concurrently at more then one site. 

Breitbart, Silberschatz and Thompson [2] proposed a site graph where a cycle is formed every 

time two global transactions access the same LDBS in two different sites. If we carefully release 

locks we guarantee global serializability under direct and indirect conflicts, but the degree of con­

currency under this proposal is rather low. 

- Use a less strict correctness criterion than serializability. 

Du and Elmagarmid [3] proposed the concept of "quasi-serializability" which assumes no value 

dependencies between two local databases. Therefore, the violation of the global serialization 

caused by indirect conflicts does not generate data inconsistency. 

Nodine [11] also has two proposals for the global serialization problem: 
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- Dictate the global serialization order to the local transaction manager. 

This approach has similarities with some of the approaches mentioned above: 

As to monitoring the execution of the global transactions, we do monitor them but instead of 

interfering with the local transaction manager, we mimic the execution of the global transactions 

at the local database so that we enforce the global serialization based on what the monitored local 

serialization order is. As to controlling the submission and execution order of the global transac­

tions, Nodine's approach also assumes that global transactions that execute at the same local data­

base conflict. However unlike the Alonso, Molina & Salem approach, the transactions are not 

prevented from executing, but are aborted if the serialization enforcer "notes" a violation to the 

global serialization. 

- Validate the local serialization order. 

This is a more optimistic version of the previous approach. Instead of dictating the global serial­

ization order to the local transaction manager, each local serialization order list from the local 

databases is reported to the global transaction manager which validates them. 

We now, discuss the implementation of those approaches on the Brown University Multidatabase 

system (Mongrel). A more complete explanation of the serialization enforcement can be found at 

[14]. The serialization is achieved through the cooperation of two modules. The first module (at 

the global level) is the concurrency control manager which coordinates the execution of the global 

transactions. The second module (on the local level) are the agents (more particularly, the serial­

ization enforcers) which coordinate the execution of each local transaction that access the local 

database. 

The first approach - Dictating the global serialization to the local transaction manager- was imple­

mented in the so called normal scheme. In that, the global transaction manager dictates the global 

serialization order and communicates the correct order to the agents. The responsibility to enforce 

this order is with the agents. The second approach - Validating the local serialization order was 

implemented in the so called "certification scheme". In this scheme, the agent manager mimics 

the serialization order at the local database according to the transaction manager's protocol. The 
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agents then report the serialization order at the local database to be validated by the global serial­

ization manager. 

In order to enforce the global serialization, the agents need to know at which point in time (serial­

ization point) the local concurrency control protocol defines the serialization order. So that, the 

agent can use mechanisms to synchronize the global serialization point with the serialization 

point. Our system provides two distinct serialization points: 

1) Begin order, that is the global serialization order is the same as the global transaction's begin. 

2) Commit order, that is the global serialization order is the same as the global transaction's com­

mit. The Implementation of the agents took into account the most common concurrency control 

used, like serialization graph test, two phase locking and timestamp. We describe below each of 

them and how the agents identify at which point the local protocol serialize the local transactions: 

The main idea behind the serialization graph test is to construct a graph where every transaction is 

a vertex. When transaction A read/writes a piece of data X that transaction B wrote/read, or when 

the transaction A writes some data X that transaction B wrote, then an edge from A to B is cre­

ated. The serialization will be violated when a cycle is formed. The serialization point with this 

protocol is not easily predicted since the graph can have edges throughout the lifetime of the 

transaction, and even after it commits. In order to be able to define the serialization point on the 

local database we use the same idea of forcing conflicts on the local database proposed by [5]. 

Since Nodine's approach assumes that all global transactions conflict with each other when 

accessing the same local database, while using the forced conflict scheme we expect a rather low 

concurrency since the step's first action is to take the "ticket". That is, the transaction that could 

not take the ticket have to wait until the transaction which took the ticket is complete. 

In the two-phase locking protocol the first phase (growing phase) tries to obtain all the locks that 

will be needed for the data that will be updated in the transaction. Once this transaction updates 

the data it releases the lock and no more locks can be granted to this transaction (shrinking phase). 

As far as the serialization point goes, it is hard to determine exactly when the last lock is granted 

and, for that matter, when the local transactions have their serialization order defined. We deter 

mined the commit time of the transaction to be the moment all locks are released, since at this 

point the transaction has done all its changes and any other transaction will see those "permanent" 
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changes. This moment is easily observed by the agent. 

The timestamp protocol defines its serialization point at the time the transactions begin, that is 

when the timestamp is issue. The problem with timestamp protocol is that local transaction man­

ager restarts an aborted transaction automatically. The agent then, will not be notified that the 

transaction was restarted and this could change the serialization order. The solution for this prob­

lem is to use the local forced conflict scheme as we did with the serialization graph test protocol. 

By doing so, we expect the agent to detect a conflict before the timestamp protocol does, and to 

issue an abort. 

3.2 . Atomic Commitment. 

As we pointed out before, atomic commitment of the global transaction is another difficult 

problem. The main problem is that on standard commit protocols the local transaction managers 

wait for a global decision. However since we are dealing with heterogeneous and autonomous 

transaction managers the local transaction managers might not wait for the global decision. For 
\ 

example, on a two-phase commit protocol when the local transactions receive the prepare mes­

sage, they answer with "ready" (if they executed the task and are ready to commit) or "abort" (if 

something went wrong). Then the local transactions wait for a global decision, which is sent by 

the global transactions. 

Peter Muth & Thomas Rakow presented two approaches to achieve atomic commit of global 

transactions. Those approaches differ by the point in time when the global decision is made in the 

commit protocol. The main proposals are either "local commit before global decision" or "local 

commit after global decision". Here we will explain the general idea; a more complete explana­

tion can be found in the Muth & Rakow [12] paper. 

The basic idea of the "commit after global decision" approach is that after receiving the prepare 

message, the local transaction executes until its last instruction. It answers with "ready" (if ready 

to commit) or "abort" (if something goes wrong). The main difference here is that the local trans­

action is not waiting for the global decision, meaning that the local transaction manager can 

decide to abort at any time even if it had replied "ready". Therefore, in order to maintain the ato-
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micity, we have to provide a way to redo this transaction if a global decision to commit is made. 

However, care must be taken not to violate the global serialization order. That is, the first local 

serialization order in which the global decision was made cannot be changed. For example, 

assume that in a given local database LDB1 we have global sub-transactions GSTI that sends a 

"ready" message to a global transaction GTl. Further assume that we have another global sub­

transaction GST2 that conflicts with GSTI on some piece of data X. The local serialization order 

then will be; GSTl->GST2. However if for any reason GSTI aborts after the global decision was 

made and GST2 reads or writes data X, then by redoing GSTI we are going to change the local 

serialization order to GST2-> GSTl. This would conflict with the global serialization order creat­

ing a cycle. The solution is to maintain a redo-log for the repeated execution of the local transac­

tions. The redo-log contains the actions of the global transactions. 

In the "commit before global decision" approach, the local transactions go all the way to commit 

or abort once the "prepare" message is received, and they reply to the global transaction with the 

appropriate answer ("abort" or "commit"). If the global decision is "abort", then a message is sent 

to all local transactions to abort. If on the other hand, the global decision is "commit", no addi­

tional message is sent to the local transactions. In this case, an undo procedure for the local trans­

actions must be provided. 

In order to achieve an atomic commitment we use the two-phase commit protocol following the 

"local commit before global decision" algorithm defined in [12]. This technique seems to be 

more optimistic and less complex than the alternative "local commit after global decision". That 

is, while the "local commit after global decision" approach requires a redo procedure and a redo­

log, the "local commit before global decision" only requires an undo procedure. Furthermore, the 

second approach also would require less communication. We assume that the local transactions 

ensure transaction atomicity. 

4. The Interaction Model 

The Interaction model proposed by Marian Nodine [11] is a two-level open-nested transaction 
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model, which was conceived to support planning applications on Multidatabases. The model has 

some similarities to Sagas [6] and ConTract [17]. 

The similarity to Sagas consists in the way the long term transactions are broken into smaller 

transactions, and in the idea of having compensating transactions to undo the effects of any trans­

actions that have been committed. However, the relationships between those smaller transactions 

are more complex in the Interaction Model. As an open-nested transaction model, the Interaction 

has its global transactions defined as a partial order since those transactions can execute concur­

rently. Furthermore, since the Interaction model is planning application oriented two kinds of 

dependencies are established between global transactions: 

1- "Execution dependency" [11]. This is the dependency generated by the order in which the 

open-nested transaction executes its global transactions. Using the well known travel example, an 

"execution dependency" is the dependency between a global transaction which makes a flight res­

ervation, and a global transaction which makes a rental car reservation at the destination of the 

flight. The execution of the second global transaction depends upon the successful completion of 

the first. 

2- "State dependency" [11]. In order to carry out planning applications, the Interactions keep 

some "internal variables" (or "state variables") which are used by the global transactions. When­

ever two global transactions conflict on an "internal variable" a dependency is formed. As an 

example of a "state dependency" we take the same two global transactions mentioned earlier, (i.e. 

flight and car reservations), and add the condition that they read a variable budget. The execution 

of the rental car reservation then depends upon the available budget (for example- if there is no 

money left after buying the plane ticket we cannot rent a car). 

The ConTract model relates to the Interaction model in terms of structure. Like the Interaction 

model, ConTract consists of a group of atomic blocks of work which map into transaction on the 

database. Also like the Interaction model, ConTract has conflict handling, although of a different 

kind. While the Interaction model undo the transaction which caused the conflict, ConTract either 

prevents the conflict operation, or adjust the data. This second method of conflict handling, called 

"exit invariant", is problematic if incorporated into a multidatabase system. This is because inde­

pendent transactions on local databases could potentially have their work lost as part of an "exit 
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invariant" procedure. It is clear that a local user should not have his/her work interlered with
 

because of a multidatabase transaction. The autonomy of the local databases would thus be dis­


turbed by "exit invariant" conflict handling.
 

In general terms, there are two basic proposals for integrating the local database information into
 

the Multidatabase: 1) The restricted Model [7] where the global application is given a choice of
 

pre-determined tasks that can be performed at the local database. 2) The unrestricted Model which
 

allows arbitrary tasks to be performed at the local database by the global application. For that mat­


ter the compensation procedures have to be defined along with the transaction. The Interaction
 

Model uses the step approach [16]. A "Step" is an atomic procedure that can access a local data­


base in order to achieve some unit of work for a global transaction. The step approach combines
 

some of the characteristics of the two proposals above. Like the restricted model, the step
 

approach also provides a pre-determined set of procedures that can be executed at the local data­


base. Furthermore, some of the flexibility of the unrestricted model is also incorporated into the
 

step approach since the steps can be grouped into atomic local transactions. The steps are stati­


cally associated with the compensation steps, which are capable of undoing the effects of the
 

steps. By recording the sequence of compensating steps as the transaction progresses executing
 

steps, the recovery control is able to perform the necessary recovery procedures with no addi­


tional information.
 

4.1- Interaction requirements 

Usually a transaction is required to have the following properties: 1) atomicity, 2) consistency, 

3)isolation and 4) durability. However, in the Interaction Model, the Interaction, as a long term 

transaction, relaxes the atomicity and isolation properties. The full atomicity property is replaced 

by "semantic atomicity". Because a particular piece of information (i.e. state variables) can be 

used during the execution of more than one global transaction, the serializability is not enough to 

achieve correctness. That is, the "state dependency" which exists between global transactions 

must also be considered too for the correctness of the Interactions. This can be derived from Nod­

ine's definition for Interaction correctness [10]: "An Interaction history is correct if its atomic 
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blocks (global transactions or single steps) are executed serializably, and each InterAction man­

ages its information consistently".
 

In order to enforce serializability of the global transactions, considering also the effect of the inde­


pendent local transactions ("indirect conflicts" [5]), Nodine showed on theorem 4.1 {[10] p.2?}
 

that two conditions were necessary:
 

1- The local sub-transactions serialization order on each database has to be consistent with some
 

unique global serialization order 

2- All sub-transactions that belong to the same global transaction have to commit atomically 

4.2- Interaction Features 

We enumerate below some of the main features of the Interaction Model. 

- Non Atomicity. Because the Interaction is a long-term transaction, atomicity is released. How­

ever even if the Interaction does not run completely, the system has a way of leaving the Interac­

tion in a state that is semantically equivalent to some state it would have reached if it had not run 

at all [11]. We achieve this "semantic atomicity" by semantically undoing the undesirable 

effects of the global transactions or single steps. The granularity of the compensation is at the 

level of the steps. A more comprehensive explanation of the recovery issues can be found in 

Nodine and Zdonik work [15]. 

- Persistence. The Interaction can run for an indeterminate period of time. During this time the 

Interaction can be Active or Inactive. The Interaction keeps all its variables persistent to be able 

to resume execution in case of a system crash or a change of status from inactive to active. 

- Interactiveness. The planning applications require access to the data for long periods of time. 

That might lead to situations in which the application developer needs to interact with the system 

as the interaction progresses. 

( 
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- Reactivity. One of its novel contributions to the Multidatabase world is reactiveness. Reactive­

ness allows the Interaction to take the appropriate action to regain consistency in case some 

operation was performed at the local database that conflict with the Interaction's work. 

- Flexibility. This is another feature which stems from the planning characteristic of the applica­

tion. The language for specification of the Multidatabase application allows the application devel­

oper to have an Interaction which executes global subtransactions under a conditional flow. 

4.3- Interaction structure 

IA 1 semantic atomicity 
Global Level 

GT2GTI semantic atomicity 

I GST 11 
I I 

GST 12 I full atomicity I GST21 I I GST22 

[ STEP 11 I I STEP22 I I STEP 11 I I STEP21 

I STEP21 I I STEP 13 I I STEP23 

STEP23 I Figure 1 I STEP22 

Figure 1 shows the Interaction structure at the global level. IAI represents an interaction (long­

term transaction) compound by two global transactions GTI and GT2 which can execute concur-
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rently and cooperate to achieve some task. The global transactions have a set of global subtransac­

tions (i.e GSTll, GST12, GST21 & GST22) which perform some work on a given local database. 

The global subtransaction is constructed by a group of steps which are a preset collection of 

atomic local transactions defined at the step library. Each step has a compensating step associated 

with it that knows how to undo the effects caused by the step. As the transactions progress in the 

multidatabase, the recovery control logs information about the interdependency among the global 

transactions (at the global level) as well as the sequence of compensating steps for the steps run­

ning at the local transactions. Therefore, when needed, the recovery control knows how to roll 

back a global transaction by executing another global transaction formed by group of compensat­

ing steps. From the point of view of the multidatabase the global transaction issued by the recov­

ery control follows the same commit protocol as an ordinary transaction. That's why we say that 

the global transactions are semantically atomic, because instead of cancelling the effects of the 

aborted transaction we issue another transaction to compensate those effects, leaving the data in a 

state semantically equivalent to the state prior to the aborted transaction run. 

Another important characteristic is that the interactions prev.ent global subtransaction of the same 

global transaction from accessing the same local database. That is because we want to ensure glo­

bal atomicity by preventing steps (from the same global transaction) from accessing globally 

uncommitted data. For example, assume that we have GSTll that calls step21 and GSTl2 that 

calls step22 and step23. Further assume that step21 and step22 conflicts on some data X and the 

local serialization is step22 > step21 > step 23. Although step21 is accessing locally committed 

data, since GSTII and GST12 belong to the same global transaction, data X is still globally 

uncommitted. 
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STEP 11 STEP 21 

STEP 12 

STEP 13 

Step Library STEP 22 

STEP 23 

LDB2LDB 1 Local database 

Figure 2 

Figure 2 shows a set of steps that can be provided to access the local database. The agents define 

an interface that encapsulates the data in the database by the step library. From the point of view 

of the multidatabase these steps are the only way to get information from the local database. This 

restriction allows the multidatabase to abstract from the data manipulation issues of the local 

transaction manager. Each local database provides a customized set of steps. This information is 

made available to the application developer by the TASL module (see section 5). 

The Interaction model also defines "events" and "weak conflicts". An "event" signals whenever 

some update external to the Interaction occurs on some specific data that causes a violation of 

some condition. We can use an event as a flow control of the Interaction as well (i.e. delaying the 

execution of the Interaction until some event occurred). 

A "weak-conflict" defines which condition should be monitored, the event to be signaled and the 

set of operations that should be executed in case this condition is violated. We shall discuss next 

the modules of the system which implement the Interaction module. 
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Multidatabase Architecture
 

Master 
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System 
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ALD 
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Logger 
Daemon 

I Local Database 

Figure 3. 
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5 - Design Overview 

The structure of our system is shown on figure 3. We divided the figure in two parts to distinguish 

the global from the local components. We shall briefly describe each of the modules. 

5.1- TASL Interpreter 

This module provides an XII user interface and a specification language to write the Interaction 

application. The Tasl module is the one which drives the system and, ultimately, supports the 

reactiveness of the system. It is Tasl's responsibility to maintain the consistency of the data (state 

variable) due to state dependencies. Tasl provides the application developer with the set of ser­

vices (Steps) which can be executed in each of the local databases. There is one Tasl shell for 

every Interaction. 

5.2- Interaction Recovery System 

The Interaction Recovery System logs the dependency tree of execution, and the order in which
 

the global transactions were executed. When a transaction needs to be undone the recovery sys­


tem figures the order in which the "compensating steps" have to be performed.
 

The Recovery System starts a global transaction in order to compensate the effects of some global
 

transaction.
 

5.3 - Interaction Manager 

The Interaction Manager (1M), as its name says, manages the Interaction throughout the lifetime 

of an Interaction. The 1M handles all the communication between the agents, Tasl and recovery 

system. It is also the Interaction Manager who requests the local agents to monitor the occur­

rence of a determined event at the local database. In addition, the Interaction Manager receives 

a signal from the agents notifying the occurrence of a particular event 

The 1M creates an object (IA) for every Interaction started, which contains information about the 
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Interaction and a list of global transaction running under this Interaction. Each IA is associated 

with one Tasl shell, and will only service and communicate with this Tasl shell which requested 

the creation of the IA. Every time a global transaction begins, a global transaction object is cre­

ated containing information about every global subtransaction started and the correspondent local 

database where the global subtransaction is running at. The 1M starts up the concurrency control 

manager which takes care of the synchronization of the global transaction. 

5.4 - Concurrency Control Manager 

The concurrency control manager synchronizes the global transaction started by the distinct Inter­

actions. As we presented before, there are two basic schemes for achieving global serialization: 

normal and certification schemes. Furthermore we also presented two mechanisms which define 

the global serialization point: The "begin" or "commit" order. All combinations of those schemes 

and mechanisms have advantages and drawbacks. It is not clear which of them has the best perfor­

mance on average. Therefore, we decide to implement all cases in order to compare them. 

There are two modules that cooperate to achieve global serialization in our Multidatabase system: 

1- Concurrency Control Manager, 2- Serialization Enforcer. The first is responsible for dictating 

(normal scheme) or validating (certification scheme) the global serialization order. The second, is 

responsible for ensuring that the global serialization order has been followed at the local data­

bases. The serialization enforcers mimic the behavior of the local concurrency control and can 

determine what is the serialization order. Figure 06 shows the concurrency control manager and 

its interface with the rest of the interaction manager. We create a uniform interface for the concur­

rency control manager, and by using inheritance we can chose at runtime which scheme (normal 

or certification) and serialization point (begin or commit time) are to be used. For that matter there 

are four cases to be considered: 1) normal scheme with serialization point at begin time 

(CCM_BO), 2) normal scheme with serialization point at commit time (CCM_CO), 3) Certifica­

tion scheme with serialization point at begin time (CCM_C_BO), and 4) Certification scheme 

with serialization point at commit time (CCM_C_CO) figure 07. 

The concurrency control provides three basic services that in cooperation with the serialization 
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enforcer ensure proper synchronization among the global serializations. We describe below each 

of the services.
 

1- beginChkOso - called by the time we start a global transaction. If the second case was chosen
 

CCCM_BO), the CCM dictates the serialization order and passes it to the serialization enforcer.
 

Otherwise nothing has to be done by this procedure but return OK.
 

2- CommitChkOso - called by the time we commit a global transaction. It checks if the global
 

transaction is prepared to follow the serialization order to commit. In the normal schemes it dic­


tate the order and wait for the replies of the serialization enforcer to check if the order was fol­


lowed. In the certification schemes it requests the local serialization order from the local databases
 

to be checked.
 

3- AbortChkOso - called to abort a non committed global transaction in order to remove the given
 

global transaction from the serialization order.
 

The Concurrency Control Manager is, also, responsible for keeping track of the handlers to com­


municate with each of the agents at the local databases. The CCM provides therefore distribution
 

transparency.
 

5.5 - Agent Manager 

The Agent Manager, basically, interfaces with the global level encapsulating the local database 

data model and transaction processing algorithms. The agent channels all requests from the global 

level forwarding to the proper modules to be handled. The modules that the agent has to commu­

nicate with are: 1) serialization enforcer in order to synchronize the global subtransactions. 2) 

activator to request an event set. 3) agent logger daemon to log what has been done in the local 

database and to get the compensate steps to reverse the effects of an global subtransaction. The 

Agent manager, also, starts up a server COST) for every global subtransaction that needs to exe­

cute in the local database. This OST manages the global subtransaction, and evokes the proce-
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dures to be performed at the local database from the step library. 

5.6- Activator 

The activator sets an event which should be monitored at the local database. The activator does 

this by polling the local database so often to check if some particular data update (that is an event) 

has occurred. When this event occurs the activator signals to the 1M module. Other options were 

also considered to achieve the activator task, but the one just described is simpler and provides 

great deal of local database autonomy. 

5.7- The Step Library 

The step library has a set of procedures that can be performed by the local transaction processing. 

Each local database has its own step library tailored for it. The step is the finer granularity of the 

Interactions. For each step there is a compensate step associate with it that reverse its effect. 

( 

\ 

6- Design Issues 

The System just described, was implemented in C++, on top of UNIX™, following the Client!
 

Server architecture. We used ObjectStore™ DBMS to store for each Interaction, its entire defini­


tion, its execution state, and the state of its variables.
 

Some issues remain to be considered in the attempt to increase performance. These are asynchro­


nous remote procedures calls, and threads usage. Furthermore, the original idea was to run exper­


iments to compare the performance of the four different cases implemented in the concurrency
 

control manager, so we could decide which one is more suitable.
 

7- Conclusion
 

Multidatabases meet the needs of applications which require to query and update data from dis­


tinct DBMS simultaneously. The most important features are heterogeneity and autonomy.
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Those same features are also the ones which cause most of the problems faced on the implemen­

tation of a multidatabase. In particular on issues like global serialization and atomic commitment. 

The Interaction Model [11] follows a two level open-nested transaction model. The top level 

(Interaction) is defined as a sequence of atomic tasks (i.e. global transaction). The global transac­

tion is composed by a set of atomic operations on the local databases called steps. We recall that 

Interactions and global transactions are semantically atomic. That is by compensating the effect of 

the operations, the data will be left in a state that is semantically equivalent to the state before the 

operations have ran. 

The approach taken to solve the atomic commitment is the "local commit before global decision" 

described in [5]. The Interaction model proposes two schemes for ensuring serialization. In the 

first (normal scheme) the global transaction manager dictates the serialization order to the local 

agents which make sure the order is followed. In the second (certification scheme) the global 

transaction request the local serialization order list from all local agents to be validated. 

The Interaction model introduces two new features on the multidatabases systems. The first is 

reactiveness. The second is the concept of the step library at each local database. The step concept 

is a mix of the two approaches for integrating local databases (restricted and unrestricted model). 

The steps differ from the restricted model in that we can construct a local transaction based on the 

set of steps available for the local database. furthermore, the step also differ from the unrestricted 

model because only these set of steps can access the local database. 

We now, present the top level design for the transaction manager of our multidatabase. 
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8- Appendix: Design Documentation 

I - Class Diagram 

1.1- Interaction Manager 

1M 

r 

IA 

"
 

OT
 

Figure 4. 

Figure 4 shows the class diagram of the Interaction Manager. The class 1M abstracts the data nec­
essary to keep track of all Interactions on the system. Every time a Interaction begins, an instance 
of class IA is constructed and its address put into a linked list. There is only one instance of the 
1M on the system. The class IA has the address of every transaction started by the Interactions. the 
Interaction class also keeps a handle to communicate with the TASL shell which requested the 
Interactions' start. The global transaction class (OT) maintain the database's names of the local 
databases that are being query or updated by the global transactions. 

/ 
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1.2- Concurrency Control Manager 

CCM_Norm CCM_Cert 

CCM_C_BOCCM_CO CCM_BO CCM_C_CO 

Figure 5. 

The class CCM abstracts the global serialization order list which represents the serialization order 
that has to be followed by the global transactions. It also keeps a list of all local databases and 
handles available at the system. Figure 6 and 7 show the methods of every class and its relation­
ship. 
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II- Description of the Main Classes 

11.1- Global level 

1- Class 1M 

- Abstraction: 

This Class is part of the Interaction Manager module. It keeps track off all the InterActions run­
ning at the system and start-up the concurrency control manager. 

- Data Members: 

1.0bjList im_ia_List; II list of active IA oids 

- Private Member Functions: 

- Public Member Functions: 

1. IMO II Constructor of Class 1M 
2. Oid beginIA(char* serverName) II begins Interaction 
3. Status finishIA(signComAbort flag) II finish interaction 
4. -IMO II destructor 

-Relationships: 

f 
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1.1 - Member Functions of Class 1M 

1.1.01- Member Function: IM::im 

-Semantics: 

Constructs 1M class initializing im_ia_list . 

-Called by: 

Tasl module 

-Calls: 

-Parameters: 

-Returns: 
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1.1.02- Member Function:IM::begin IA 

-Semantics: 

This function call the constructor of class IA to create another Interaction and add the object id 
to the im_ia_list. It creates handlers to communicate with TASL module and the IRS module 
Request service IALOG_LOG_IA_BEGIN to the IRS server to log IA begin at the master log 
Returns IA oid if succeed or NULL if fails. 

\ -Called by: 

Tasl Interpreter 

-Calls: 

ObjList: :append(oid) 
IA::IA(Tasl handler) 
IALOG_LOG_IA_BEGIN 

-Parameters: 

char* servername- server name where 1M server is running 

-Returns: 

IA * iaoid if succeed otherwise Null. 

"
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1.1.03- Member Function:IM::finish IA 

-Semantics: 

Calls abortIA or commitIA according to the flag passed. If function (abortIA or commitIA) suc­
ceed, call the destructor -iaO and remove iaOid from the im_ia_list. Otherwise return NOT_OK. 

-Called by: 
Tasllnterpreter 

-Calls: 

ObjList::remove(Oid iaoid)
 
IA::-iaO
 
IA: :abortIAO
 
IA:: commitIAO
 
IALOG_LOG_IA_ABORT
 
IALOG_LOG_IA_COMMIT
 

-Parameters: 

Old iaoid- object id of the Interaction
 
SignComAbort flag- indicates which function to call (abortIA or commitIA)
 

-Returns: 

OK if succeed or NOT_OK if fails. 
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1.1.04- Member Function:IM::.....im 

-Semantics: 
This function calls emptyP to check if some interaction still active. If not, destroy instance of 

class 1M. 

/
\ -Called by: 

Tasl Interpreter 

-Calls: 
ObjList::emptyPO 

-Parameters: 

none 

-Returns: 

nothing 
( 
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2- Class IA 

- Abstraction: 

This Class manages the InterAction running at the system and its Global Transactions. 

- Data Members: 

I.Oidlist ia_gclist II list of active GTs with respectives GT oids 

- Private Member Functions: 

- Public Member Functions: 

1. IA(CLIENT* taslhandle) II Constructor of Class IA 
2. Status commitIAO; II commit Interaction 
3. Status abortIAO; II abort interaction 
4. int declareWeak(char* ldbname, ACtype evenCtype, int gtoid, int stepid"int 

argc,char** argv,ACcond cond,char* value) II returns event id 
5. Status removeWeak(char* ldbname, int eventid); II remove weak conflict 
6. void eventOcurred(int evId) II infonns the ocurrence of a event 
7.0id beginGT(intlist predList) II starts new GT 
8. Status retryGT(Oid gtOid) II abort and retry GT 
9. Status commitGT(Oid gtOid) II commit GT and destroy GT instance 

10. Status abortGT(Oid gtOId) II calls IRS (major abort) 
11. Status quickAbortGT(Oid gtOid) II aborts running GT and destroy GT instance 
12. ~IAO II destroy instance IA class 

-Relationships: 

( 
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2.1- Member Functions of Class IA 

2.1.01- Member Function: IA::ia 

-Semantics: 

This function creates an instance of class IA and stores the handler to communicate with TASL. 

-Called by: " 
1M::beginlAO 

-Calls: 

-Parameters: 

CLIENT* taslhandler- handler to communicate with TASL. 

-Returns: 

( 
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2.1.02- Member Function: IA::commitIA 

-Semantics: 
This function checks for running GTs at the ia~clist. Request service AC_REMOVE _ALL to 
the agent server to remove weak conflicts from this lA. Returns OK if succeed or NOT_OK if 
fails. 

-Called by: 

Tasl 

-Calls: 

ObjList::emptyPO 
AC_REMOVE_ALL 

-Parameters: 

None 

-Returns: 

OK if succeed 
NOT_OK if fails 
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2.1.03- Member Function: IA::abortIA 

-Semantics: 

Request service ILD_ABORT_IA to IRS server to procede the abortion of the IA. 

( -Called by: 
\ 

Tasl 

-Calls: 
ILD_ABORT_IA 

-Parameters: 

None 

-Returns: 

OK if succed or NOT_OK if fails 

( 
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2.1.04- Member Function: IA::declareWeak 

-Semantics: 
Request service AC_ASSIGN_EVENT_ill to the agent server to set a weak: conflict. 

-Called by: 

Tasl 

-Calls: 
AC_ASSIGN_EVENT_ill 

-Parameters: 

char* ldbname - local database name 
AcType eventType­
int gtoid - Global transaction rd. 
int stepId- step identification to the step library 
int argc 
char** argv 
AcCond cond ­
char* value 

-Returns: 

int evid- event id. 
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2.1.05- Member Function: IA::removeWeak 

-Semantics: 

Request AC_REMOVE_EVNT service from the agent server to remove a weak conflict from 
the activatore given the local database name anda the event rd. 

\ 

-Called by: 

Tasl 

-Calls: 

AC_REMOVE_EVNT 

-Parameters: 

char * 
int 

ldbname- local database name 
eventId. 

( 

-Returns: 

OK if succeed or NOT_OK if failed 
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2.1.06- Member Function: IA::eventOcurred 

-Semantics: 

Signals to Tasl that an event occured in the local database by requesting service TS_EVEN­
T_OCCURRED to the Tasl server for this particular IA. 

-Called by: 

Activator 

-Calls: 

TS_EVENT_OCCURRED 

-Parameters: 

int evId- event id. 

-Returns: 

void 
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2.1.07- Member Function: IA::beginGT 

-Semantics: 

Calls the constructor of class GT. Calls the beginChkGso at the CCM to check serialization 
according to the policy used. 
If beginChkGso succeed: 

request service GTLOG_LOG_GTBEGIN at the IRS server 
if service succeed: 

adds an GT oid at the ia_gclist 
return OK 

else 
destroy instance of GT 
return NOT_OK 

-Called by: 

Tasl( 
IRS 

-Calls: 

OidList: :append(gtoid) 
CCM:: beginChkGso(gtOid)
 
IRS: :logBeginGT
 
GT::gtO
 
GT::-gtO
 

-Parameters: 

IntList preList - previous list of GTs in the execution order. NULL if this is a 
compensating GT only. 

-Returns: 

gtOId if succeed or NULL if fails. 

Multidatabase - Brown University Page 38 of 73 



2.1.09- Member Function: IA::commitGT 

-Semantics: 

Ckeck If GToid is in ia_gclist
 
if found:
 

calls GT: :CommitGT
 
if succeed:
 

request service GTLOG_GT_COMMIT at the IRSserver 
call destructor for GT 
remove gtoid from ia~clist 

return OK 
else 

request service GTLOG_GT_ABORT at the IRSserver 
call destructor for GT 
remove gtoid from ia_gclist 
return NOT_OK
 

else
 
return NOT_OK
 

-Called by: 

Tasl Interpreter
 
IRS
 

-Calls: 
OidList: :remove(gtoid)
 
GT::-GTO
 
GT: :commitGT(ccmOid)
 
GTLOG_LOG_GT_ABORT
 
GTLOG_LOG_GT_COMMIT 

-Parameters: 

GT * gtOid - object identity of the global transaction 

-Returns: 

OK if succeed or NOT_OK if fails 

Multidatabase - Brown University Page 39 of 73 



2.10- Member Function: IA::abortGT 

-Semantics: 

Request service ILD_ABORT_GT from IRS to perform abortion of the GT. 
if succeed: 

request GTLOG_LOG_GT_ABORT from the IRS server 
return OK 

else 
return NOT_OK 

-Called by: 

TASL 
( IRS 
\ 

-Calls: 

ILD_ABORT_GT 
GTLOG_LOG_GT_ABORT 

-Parameters: 

GToid - global transaction id. 

-Returns: 

OK if succeed or NOT_OK if failed 
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2.11- Member Function: IA::quickAbortGT 

-Semantics: 

Check GToid at the ia_gclist. 
if found 

call GT::abortGT 
if GT::abortGT succeed 

destroy GT object 
remove GToid from ia_gclist 
request service GTLOG_LOG_GT_ABORT to IRS. 
return OK 

else 
return NOT_OK 

else 
return NOT_OK 

-Called by: 

TASL 

-Calls: 

GT: :abortGTO 
GTLOG_LOG_GT_ABORT 
oidList: :remove(gtoid) 

-Parameters: 

Oid gtoid- Global transaction id. 

-Returns: 

OK - if succeed 
NOT_OK - if failed 
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2.12- Member Function: IA::....ia 

-Semantics: 

Calls destructor of OidList to destroy ia_gclist 
destroy instance of IA 

-Called by: 

1M::finishIA(iaOid,flag) 
( 

" 

-Calls: 

-Parameters: 

none 

-Returns: 

OK if succeed 
NOT_OK - If failed 

(
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3- Class GT 

- Abstraction: 

This class manages the excution of the Global Transaction and its Global Sub-Transactions. 

- Data Members: 
1. SysLdbList 10cal_Idb_List II list of all Local Databases being accessed by the 

global transaction thru its GTS 

- Private Member Functions: 

1. Status twoPhaseCommitO II executes prepare & commit phase 
2. Status beginGST(Ldbname) II begin Gst at the local database 
3. Status commitGst(1dbname) II commit Gst at the local database	 '\ 

4. Status abortGST(Ldbname) II aborts Gst at the local database 

- Public Member Functions: 

1. gtO	 II Constructor of class GT 
2. Boolean commitGT(sysldblist) II commit GT 
3. Boolean abortGTO	 II abortGT 
4. Boolean	 doStep(char* ldbname,
 

int stepid,
 
int argc,
 
char** argv) II request AM to execute step
 

5. Boolean	 doCsStep(char* ldbname, 
int Csid, 
int argc, 
char** argv) II request AM to execute Compensate step 

6. -gtO	 II Destructor 

-Relationships: 
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3- Member Functions of Class GT 

3.01- Member Function: GT::gt 

-Semantics: 

This function creates an instance of the class GT .. Remote procedure calls createGTdir at II..D. 

-Called by: 

IA: :beginGT(predList) 

-Calls: 

ILD::createGTdir ????? 

-Parameters: 

none 

-Returns: 

none. 
( 
\ 
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3.02- Member Function: GT::twoPhaseCommit 

-Semantics: 
For every local database that participates at the GT, get agent handler at the CCM and rpc AM for 
vote at the local database. (prepare phase) If any local database answer no return NOT_OK. If all 
answers OK, for every local database rpc AM to commit. If successful comit return OK. 

-Called by: 

GT::CommitGTO 

-Calls: 

SysLdbList: :findFirst(ldbname,agHandler)
 
SysLdbList: :findNext(ldbname,agHandler)
 
CCM::getHandler(ldbname)
 
rpc : GST_Vote
 
rpc: AM_Finish_Gst
 

-Parameters: 

none 

-Returns: 
OK, NOT_OK 
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3.03- Member Function: GT::commitGT 

-Semantics: 
Call CCM::commitChkGso(gtoid,ldblist) to ditacte seialization (according with the serialization 
policy used). If serialization succed call GT::twoPhaseCommitO otherwise return NOT_OK 

-Called by: 

( IA:: finishGT(gtOid,flag) 

-Calls: 

GT:: twoPhaseCommitO 
GT::AbortGTO 
CCM: :commitCheckGso(gtOid,ldblist) 

-Parameters: 

none 

-Returns: 

OK,orNOT_OK. 
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3.04- Member Function: GT::abortGT 

-Semantics: 

Check in the LDB_List which Local Databases Id the Global Transaction is executing on. For 
each Local Database calls AborcGSTO. If abortGST(ldbid) returns OK then remove IdbId from 
the ldb_list. 

" -Called by: 

TASL Interpreter 

-Calls: 

abortGST(gtOid) 
removeIntList 

-Parameters: 

-Returns: 

True if suceed or False if Fail. 
/ 
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3.05- Member Function: GT: :doStep 

-Semantics: 

Get agent handler to comunicate with the agent of the local database. If ok get self-pointer to class 
GT. Executes a RPC to the Agent Manager to execute step. Returns OK if succeed or NOT_OK 
if fails. It also calls IRS to log 

\ 
( 

-Called by: 

Tasl Interpreter 

-Calls: 

writeAgtLogGSTrec 

-Parameters: 

-Returns: 

{ 
I' 
\ 

char * 
Oid * 
int 

char* 

ldbname - local database name 
setpid - step library Id. 
argc - Number of arguments 
argv - arguments for the step libraryl 

OK if succeed or NOT_OK if fails 
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3.06- Member Function: GT::doCsStep 

-Semantics: 

Calls (function-name ???) at the serialization enforcer to execute a compensate step to undo 
the effect of a global sub-transaction and ultimately the global transaction. 
QUESTION: should we log this execution? 

-Called by: 
ILD (who at the ILD?) 

-Calls: 

? 

-Parameters: 

int ldbld - local database ID. 
int CsNu - Compensate step number. 

-Returns: 

True if succeed or False if fails 
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3.07- Member Function: GT::beginGST 

-Semantics: 

Calls addIntList to add another IdbId. It also remote procedure call to record begin of Global 
Sub-Transaction at the Agent -log (gstFileCreate) 

( -Called by: 

Tasl Interpreter 

-Calls: 

addIntList 

-Parameters: 

int IdbId - Local Transaction ID 

-Returns: 

True if succeed or False if fail. 
(
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3.08- Member Function: GT::abortGST 

-Semantics: 

Send message to local Database ( RPC function) to abort the given Global Transaction. If 
Aborted successfuly call removeIntListt to remove ldbid. 

-Called by: 

abortGT(ccmOid) 

-Calls: 

removeIntList(ldbId) 

-Parameters: 

int IdbId- Local Database 

-Returns: 

True if succeed or False if Fail 
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3.09- Member Function: GT::-gt 

-Semantics: 
Checks for some IdbID at Idb_List. If empty destroy instance of class GT. 

-Called by: 
, 

( 
( 

\ finishGT(gtOid,flag) 

-Calls: 
getIntList 

-Parameters: 
int GTID - Global Transaction ill. 

-Returns: 

True if succeed or False if fails. 
(
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4- Class CCM 

- Abstraction: 
This is virtual class that is the base class for the classes CCM_CO, CCM_BO, CCM_CercCO, 
CCM_CercBO. 

- Data Members: 

- Private Member Functions: 

- Public Member Functions: 

1. ccmO II Constructor of class CCM generates by the compiler 
2. Boolean beginChkGso(gtOid) II virtual function 
3. Boolean commitChkGso(gtOid) II virtual function 

-Relationships: 
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5- Class CCM Norm 

- Abstraction: 

This class ensures Global Serialization Order by calling member functions of one of the two 
serialization order (Commit Order or Begin Order). 

- Data Members: 

1. ObjIdList ccm_nofffi_gso_list 

- Private Member Functions: 

( 

" 

- Public Member Functions: 

Boolean addGsoList(GTID) II add Global Transaction to the list of Global 
II Serialization order 

Boolean removeGsoList(GTID) II remove Global Transaction of the list of 
II Global Serial ization 

-Relationships: 

Super Class of CCM_CO and CCrvCBO 
f Sub Class of: CCM_Core 
" 
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5.1- Member Functions of Class CCM Norm 

5.1.01- Member Function: CCM Norm::addGsoList 

-Semantics: 
Add Global Transaction oid to the list ccm_norm_gso_list.. 

-Called by: 

CCM_BO::beginChkGso 
or CCM_CO::commitChkGso 

-Calls: 

addObjIdList(oid) note: probably uses templates 

-Parameters: 

GT * gtOid - global transaction object id.. 

-Returns: 

True if succeed or False if fails 
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5.1.02- Member Function:CCM Norm::removeGsoList 

-Semantics: 

Remove the global transaction object id from the ccm_norm_gso_list. 

-Called by: 

! commitChkGso\ 

-Calls: 
removeObjList(oid) Note: probably uses templates 

-Parameters: 

GT * gtOid- object identity of GT class. 

-Returns: 

True - if succeed and False if fails 
( 
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6- Class CCM CO 

- Abstraction: 
This class ensures Global Serialization Order as the same as the global transaction commit 

order. 

- Data Member: 

- Private Member Functions: 

( 
\ 

- Public Member Function: 
1. Boolean beginChkGso(gtOid); 
2. Boolean commitChkGso(gtOid); 

-Relationships: 

Sub Class of: CCM_Norm 
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6.1- Member Functions of Class CCM CO 

6.1.01- Member Function:CCM_CO::beginChkGso 

-Semantics: 

do nothing... 

( -Called by: 
beginGT(prevList) 

-Calls: 

-Parameters: 

GT * gtOid- Global Transaction object id. 

-Returns: 

True - if succeed and False if fails 
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6.1.02- Member Function:CCM CO::commitChkGso 

-Semantics: 
Calls addGsoList to add the global transaction in the ccm_norm_gso_list. For each local 

database of the ldb_list calls serializeGT(gtOid). If some of the calls of the serializeGT returns 
false then return false otherwise return true. 

-Called by: 
commitGT(ccmOid) 

-Calls: 

addGsoList(GT * gtOid)
 
serializeGT(gtOid)
 

-Parameters: 

GT * gtOid - global transaction object id. 
intList * ldb- pointer to list of local databases of the system ?? 

-Returns: 

True - if succeed and False if fails 
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7- Class CCM BO 

- Abstraction: 

This class ensures Global Serialization Order as the same as the global transaction Begin 
order. 

- Data Member: 

- Private Member Functions: 

( 

- Public Member Function: 
1. Boolean beginChkGso(gtOid); 
2. Boolean commitChkGso(gtOid); 

-Relationships: 

( Sub Class of: CCM_Norm
" 
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7.1- Member Functions of Class CCM BO 

7.1.01- Member Function: CCM_BO::beginCbkGso 

-Semantics: 
Calls addGsoList(gtOid) to add the gtOid at the ccm_nortn_gso_list. Calls serializeGT for all 

local databases of the system 

-Called by: 
beginGT(predList) 

\ 

-Calls: 
addGsoList(gtOid)
 
serializeGT(gtOid)
 

-Parameters: 

GT * gtoid- global transaction object id
 
intList * ldb- local database list
 

-Returns: 

true if succeed or false if fails 
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7.1.02- Member Function: CCM BO::commitChkGso 

-Semantics: 

For each local database at the local database list, calls checkSerializeGT(1dbid). If some 
function return false exit returning false. To all local databases that do not participate at the ldb 

list call abortGST. if some function return false exit returning false. 

-Called by: 

commitGT(ccmOid) 

-Calls: 

checkSerializeGT(gtOid) 
abortGST(ldbld) 

-Parameters: 

GT * gtOid- global transaction oid 

-Returns: 
( true if succeed or false if fails.\ 
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8- Class CCM Cert 

- Abstraction: 
This class uses Certification to ensure that GSO is maintained. 

- Data Member: 
1. ListObjIdList ccm_cerCldb_gso; lithe GSO lists of the LDBs 

- Private Member Functions: 

- Public Member Function: 
1. Boolean addGsoList(gtOid); 
2. Boolean removeGsoList(gtOid); 

-Relationships: 

Sub Class of: CCM_Norm 
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8.1.- Member Function of Class CCM Cert 

8.1.01- Member Function: CCM_cert::appendGsoList 

-Semantics: 

Appends the local global transaction id list sent by the agent to the proper list at the 
ccm_cerCldb_gso 

-Called by: 

CCM_C_BO::beginchkGso 
( or CCM_C_co: :commitChkGso\ 

-Calls: 

addObjldList 

-Parameters: 

int ldbld - local database id. 
objldList * gtList- list of gtOids of the running at the local database 

-Returns: 

true if succeed or false if fails 
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8.1.02- Member Function: CCM Cert::removeGsoList 

-Semantics: 

for each local database calls removeObjIdList to delete gtOid from every list. 

-Called by: 

commitChkGso 

-Calls: 

removeObjIdList(gtOid) 

-Parameters: 

GT * gtOid - global transaction oid. 

-Returns: 

true if succeed or false if fails 
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9- Class CCM C CO 

- Abstraction: 
This class ensures Global Serialization Order as the same order as the Commit order of the 

Global Transactions. 

- Data Member: 

( 

\ 

- Private Member Functions: 

- Public Member Function: 
1. Boolean beginChkGso(gtOid); 
2. Boolean commitChkGso(gtOid); 

-Relationships: 

Sub Class of: CCM_Cert 
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9.1- Member Function of Class CCM C CO 

9.1.01- Member Function:CCM_C_CO::beginChkGso 

-Semantics: 
do nothing (returns true) 

-Called by: 
beginGT(predList) 

\ 

-Calls: 

-Parameters: 

GT * gtOid - Global transaction Oid. 

-Returns: 

true if succeed 
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9.1.02- Member Function: CCM C CO::commitChkGso 

-Semantics: 

Checks in the ccm_CerCldb_List which ldb participate at the given GT. For each ldb calls 
requestGsoList. Calls appendGsoList(ldbid,Gtlist) for update the ccm_CerCldb_List for every 
list of global transaction received. Check at the participating ldbs on the ccm_cerCldb_List if the 
gtOid of the first GT is the same as the given GT. If not call abortGT for all transactions that pre­
ceed the given GT. 

-Caned by: 

commitGT(ccmOid) 

( 

-Calls: 

requestGSOList 
appendGsoList 
checkGsoList 
abortGT 

-Parameters: 

Gt * gtOid- global transaction Id. 

-Returns: 

true if succeed or false if fails 
(
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10- Class CCM C BO 

- Abstraction: 
This class ensures Global Serialization Order as the same as the Begin orders of the Global 

Transactions. 

- Data Member: 

- Private Member Functions: 

" 

- Public Member FUllction: 
1. Boolean beginChkGso(gtOid); 
2. Boolean conunitChkGso(gtOid); 

-Relationships: 

Sub Class of: CCM_Cert 
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10.1- Member Functions of Class CCM C BO 

10.1.01- Member Function: CCM_C_BO::beginChkGso 

-Semantics: 
do nothing (return true) 

-Called by: 

beginGT(predList) 
( 

-Calls: 

-Parameters: 

GT * gtOid- global transaction Oid. 

-Returns: 

true 
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10.1.02- Member Function: CCM C BO::commitChkGso 

-Semantics: 
Checks in the ccmCertGsoList which ldbs participate at the given GT. For each ldb calls 

requestGsoList. Calls appendGsoList for each list of gtOid received from the function requestG­
soList. Check at the participating ldbs on the ccm_cerCldb_;list if given gT is the firstGT of the 
list. If not call abortGT for the given GT. . 

-Called by: 
commitGT(ccmOid) 

-Calls: 
requestGsoList
 
appendGsoList
 
checkGsoList
 
abortGT 

-Parameters: 

GT * gtOid- global transaction oid. 

-Returns: 
true if succeed or false if fails. 
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