
BROWN UNIVERSITY
-' Department of Computer Science

Master's Project

CS-94-MIO

"Transaction Management for Multidatabases (Interactions):
Synchronization of Transactions Used on Planning Applications"

by

Renato C. Rocha

Transaction Management for Multidatabases (Interactions):

Synchronization of transactions used on planning applications

by

Renato C. Rocha
Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the Degree of Master of
Science in the Department of Computer Science at Brown University.

January, 1994

Multidatabase - Brown University Page 1 of 73

This research project by Renato C. Rocha is accepted in its present form by the
Department of Computer Science at Brown University in partial fulfillment of the

requirements for the Degreee of Master of Science.

May 1994
(
\

Date: 5/10 /14 ~~,8. ~/L
nle

1- Abstract

In general terms a Multidatabase [8] is a distributed heterogeneous database system. We call it

heterogeneous because the system is composed of several local databases, each of which has dis­

tinct transaction processing. Furthermore, those local databases (LDBS) need to retain as much

autonomy as possible, since they may be developed and maintained by different organizations.

Distributed homogeneous databases usually have to deal with data distribution and replication to

maintain global consistency of the data. Besides those problems (data distributions & replication),

Multidatabases have also to deal with heterogeneity and local database autonomy.

In this piece of work a concurrency control mechanism for Multidatabase System is discussed.

The problems, goals and design approach for the implementation of the Interaction [11] transac­

tion processing model are reviewed along with an overview of the Multidatabase System proto­

type developed at Brown University.

2- Introduction

With the evolution of the distributed database system, application developers faced the problem

of users that needed to query and update data from different database management systems

(DBMS), each of which may support distinct concurrency control, data model and data manage­

ment language (DML). One type of application with those characteristics is a planning application

[15] which requires access to more than one distinct database in order to achieve a given task.

In addition, such a planning application also requires reactiveness; that is, the system has to react

to any changes at those DBMS that might affect the planning task. By react we meant that the sys­

tem is given another execution path in order to achieve the planning application goal. Obviously

the system has to undo the excution of the previous path.

A Multidatabase is a collection of pre-existing heterogeneous databases called local databases

(LDBS). A Multidatabase supports applications that simultaneously access more than one local

database [4].

The basic features of a Multidatabase are:

Multidatabase - Brown University Page 2 of 73

- Heterogeneity

- Autonomous local DBMS. (i.e. the Data Model and Transaction Processing of the local

database should not be changed)

- Support to global applications that can either read or write on the local databases (in our work

the global application is called Interaction)

- Local DBMS distributed transparency.

In addition to the above features, Nodine's [11] work also addresses to reactivity as another

important feature of a Multidatabase system.

The ultimate goal of the Multidatabase Transaction Manager is to avoid inconsistency retrievals

and to preserve global consistency in the presence of Multidatabase updates. However, achieving

this goal is more complicated than simply dealing with data-distribution and replication, as in the

homogeneous distributed database systems. This is because we also have to cope with the hetero­

geneity and autonomy of local databases [5].

3- The Concurrency Control Problem.

Because of the conditions stated earlier (heterogeneity & autonomy), synchronization is not a

trivial matter. In a Multidatabase, when we want to atomically commit or abort a global transac­

tion, the subtransactions (the ones that touch the local databases) either have to all commit or all

abort following a global decision. We will briefly recall the steps of the most used commit proto­

col for distributed databases (two-phase commit). First the global transaction sends a prepared

message to every local transaction. Those transactions try to execute all instructions and reply to

the global transaction with "abort" or "prepare". At this point the local transaction is either in the

abort state or in the prepared state. After receiving every reply the global transaction makes its

decision (abort/commit) and sends a message to every participating local transaction. The local

transactions then either commit (release their locks) or abort (undo their work). One important

point in this technique is that when the local transactions are in the ready state they have all their

actions finished and all changes are written in the stable storage. Those transactions are just wait-

Multidatabase - Brown University Page 3 of 73

ing for the global decision. However, since we have no control over the transaction managers of

the local databases in the multidatabases, we cannot expect every different local database transac­

tion manager to have a mechanism for waiting for global decisions [12]. Therefore, atomic com­

mitment is one of the problems to be addressed for the synchronization of the global transactions.

The global serialization is another important issue for Multidatabases. The serializability of the

local schedules is, by itself, not enough to maintain the Multidatabase consistency. The Transac­

tion Manager of the Multidatabase needs to validate the local schedules in a way that makes the

subtransactions globally serializable. Furthermore, since the local databases are autonomous, they

might have independent local transaction that will also influence the global serialization. That is,

the MOB has to deal with conflicts between the subtransactions (direct conflicts [5]), and also

with conflicts caused by independent local transactions that create a dependency between two

subtransactions indirectly (indirect conflicts [5]). For example, if we have two global transactions

GTI and GTI that access local databases LDBI and LDB2, and an independent transaction Tl

that accesses LOBI, we could have the following local schedules: at LOBI: GTI->TI->GT2 and

at LOB2: GT2->GTI which are correct local serializable schedules, but which violate the global
\	

serialization. (GTI->GT2->GTI).

The problem is that the global transaction manager needs to be aware of the local schedule of

every local database without violating the autonomy requirement. Later we will see that even

though we can observe the execution order of global transactions, we still need to monitor the

independent transactions at the local database.

3.1- Maintaining the Global Serialization

Several proposals have been made to solve the problem of the Concurrency Control in MOBS.

Those proposals differ by the degree of autonomy given to local databases, and by the degree of

concurrency. Some proposals even reject serializability as the correctness criterion. We shall

describe below some of the main proposals from the compilation made by Georgakopoulos,

Rusinkiewicz and Sheth [5]:

Multidatabase - Brown University	 Page 4 of 73

- Monitor the execution of the global transactions at each LOBS.

Logar and Sheth [9] proposed the use of the commands of the LDBS and the Operating System to

check if the local serialization of the global transactions were consistent with the global serializa­

tion order of the multidatabase. This approach however, might potentially violate the autonomy of

the LDBS.

- Force local conflicts [5]. The basic idea is to require that every global transaction access a par­

ticular piece of data (i.e. ticket) in the local database in order to force a local conflict whenever

two global transactions access the same database. Hence, by enforcing the local serializability we

are also enforcing global serializability.

- Control the submission and execution order of the global transactions [11. The basic idea

is to have a global transaction manager which enforces the rule that if two global transactions are

accessing the same LDBS, one global transaction cannot execute until the other is done with the

LDBS. However, we still have to consider the potential of indirect conflict caused by an indepen­

dent transaction. Otherwise, we could have the global transaction violated even though global

transaction execution is enforced.

- Prevent two global transactions from executing concurrently at more then one site.

Breitbart, Silberschatz and Thompson [2] proposed a site graph where a cycle is formed every

time two global transactions access the same LDBS in two different sites. If we carefully release

locks we guarantee global serializability under direct and indirect conflicts, but the degree of con­

currency under this proposal is rather low.

- Use a less strict correctness criterion than serializability.

Du and Elmagarmid [3] proposed the concept of "quasi-serializability" which assumes no value

dependencies between two local databases. Therefore, the violation of the global serialization

caused by indirect conflicts does not generate data inconsistency.

Nodine [11] also has two proposals for the global serialization problem:

Multidatabase - Brown University Page 5 of 73

- Dictate the global serialization order to the local transaction manager.

This approach has similarities with some of the approaches mentioned above:

As to monitoring the execution of the global transactions, we do monitor them but instead of

interfering with the local transaction manager, we mimic the execution of the global transactions

at the local database so that we enforce the global serialization based on what the monitored local

serialization order is. As to controlling the submission and execution order of the global transac­

tions, Nodine's approach also assumes that global transactions that execute at the same local data­

base conflict. However unlike the Alonso, Molina & Salem approach, the transactions are not

prevented from executing, but are aborted if the serialization enforcer "notes" a violation to the

global serialization.

- Validate the local serialization order.

This is a more optimistic version of the previous approach. Instead of dictating the global serial­

ization order to the local transaction manager, each local serialization order list from the local

databases is reported to the global transaction manager which validates them.

We now, discuss the implementation of those approaches on the Brown University Multidatabase

system (Mongrel). A more complete explanation of the serialization enforcement can be found at

[14]. The serialization is achieved through the cooperation of two modules. The first module (at

the global level) is the concurrency control manager which coordinates the execution of the global

transactions. The second module (on the local level) are the agents (more particularly, the serial­

ization enforcers) which coordinate the execution of each local transaction that access the local

database.

The first approach - Dictating the global serialization to the local transaction manager- was imple­

mented in the so called normal scheme. In that, the global transaction manager dictates the global

serialization order and communicates the correct order to the agents. The responsibility to enforce

this order is with the agents. The second approach - Validating the local serialization order was

implemented in the so called "certification scheme". In this scheme, the agent manager mimics

the serialization order at the local database according to the transaction manager's protocol. The

Multidatabase - Brown University Page 6 of 73

agents then report the serialization order at the local database to be validated by the global serial­

ization manager.

In order to enforce the global serialization, the agents need to know at which point in time (serial­

ization point) the local concurrency control protocol defines the serialization order. So that, the

agent can use mechanisms to synchronize the global serialization point with the serialization

point. Our system provides two distinct serialization points:

1) Begin order, that is the global serialization order is the same as the global transaction's begin.

2) Commit order, that is the global serialization order is the same as the global transaction's com­

mit. The Implementation of the agents took into account the most common concurrency control

used, like serialization graph test, two phase locking and timestamp. We describe below each of

them and how the agents identify at which point the local protocol serialize the local transactions:

The main idea behind the serialization graph test is to construct a graph where every transaction is

a vertex. When transaction A read/writes a piece of data X that transaction B wrote/read, or when

the transaction A writes some data X that transaction B wrote, then an edge from A to B is cre­

ated. The serialization will be violated when a cycle is formed. The serialization point with this

protocol is not easily predicted since the graph can have edges throughout the lifetime of the

transaction, and even after it commits. In order to be able to define the serialization point on the

local database we use the same idea of forcing conflicts on the local database proposed by [5].

Since Nodine's approach assumes that all global transactions conflict with each other when

accessing the same local database, while using the forced conflict scheme we expect a rather low

concurrency since the step's first action is to take the "ticket". That is, the transaction that could

not take the ticket have to wait until the transaction which took the ticket is complete.

In the two-phase locking protocol the first phase (growing phase) tries to obtain all the locks that

will be needed for the data that will be updated in the transaction. Once this transaction updates

the data it releases the lock and no more locks can be granted to this transaction (shrinking phase).

As far as the serialization point goes, it is hard to determine exactly when the last lock is granted

and, for that matter, when the local transactions have their serialization order defined. We deter

mined the commit time of the transaction to be the moment all locks are released, since at this

point the transaction has done all its changes and any other transaction will see those "permanent"

Multidatabase - Brown University Page 7 of 73

changes. This moment is easily observed by the agent.

The timestamp protocol defines its serialization point at the time the transactions begin, that is

when the timestamp is issue. The problem with timestamp protocol is that local transaction man­

ager restarts an aborted transaction automatically. The agent then, will not be notified that the

transaction was restarted and this could change the serialization order. The solution for this prob­

lem is to use the local forced conflict scheme as we did with the serialization graph test protocol.

By doing so, we expect the agent to detect a conflict before the timestamp protocol does, and to

issue an abort.

3.2 . Atomic Commitment.

As we pointed out before, atomic commitment of the global transaction is another difficult

problem. The main problem is that on standard commit protocols the local transaction managers

wait for a global decision. However since we are dealing with heterogeneous and autonomous

transaction managers the local transaction managers might not wait for the global decision. For
\

example, on a two-phase commit protocol when the local transactions receive the prepare mes­

sage, they answer with "ready" (if they executed the task and are ready to commit) or "abort" (if

something went wrong). Then the local transactions wait for a global decision, which is sent by

the global transactions.

Peter Muth & Thomas Rakow presented two approaches to achieve atomic commit of global

transactions. Those approaches differ by the point in time when the global decision is made in the

commit protocol. The main proposals are either "local commit before global decision" or "local

commit after global decision". Here we will explain the general idea; a more complete explana­

tion can be found in the Muth & Rakow [12] paper.

The basic idea of the "commit after global decision" approach is that after receiving the prepare

message, the local transaction executes until its last instruction. It answers with "ready" (if ready

to commit) or "abort" (if something goes wrong). The main difference here is that the local trans­

action is not waiting for the global decision, meaning that the local transaction manager can

decide to abort at any time even if it had replied "ready". Therefore, in order to maintain the ato-

Multidatabase - Brown University Page 8 of 73

micity, we have to provide a way to redo this transaction if a global decision to commit is made.

However, care must be taken not to violate the global serialization order. That is, the first local

serialization order in which the global decision was made cannot be changed. For example,

assume that in a given local database LDB1 we have global sub-transactions GSTI that sends a

"ready" message to a global transaction GTl. Further assume that we have another global sub­

transaction GST2 that conflicts with GSTI on some piece of data X. The local serialization order

then will be; GSTl->GST2. However if for any reason GSTI aborts after the global decision was

made and GST2 reads or writes data X, then by redoing GSTI we are going to change the local

serialization order to GST2-> GSTl. This would conflict with the global serialization order creat­

ing a cycle. The solution is to maintain a redo-log for the repeated execution of the local transac­

tions. The redo-log contains the actions of the global transactions.

In the "commit before global decision" approach, the local transactions go all the way to commit

or abort once the "prepare" message is received, and they reply to the global transaction with the

appropriate answer ("abort" or "commit"). If the global decision is "abort", then a message is sent

to all local transactions to abort. If on the other hand, the global decision is "commit", no addi­

tional message is sent to the local transactions. In this case, an undo procedure for the local trans­

actions must be provided.

In order to achieve an atomic commitment we use the two-phase commit protocol following the

"local commit before global decision" algorithm defined in [12]. This technique seems to be

more optimistic and less complex than the alternative "local commit after global decision". That

is, while the "local commit after global decision" approach requires a redo procedure and a redo­

log, the "local commit before global decision" only requires an undo procedure. Furthermore, the

second approach also would require less communication. We assume that the local transactions

ensure transaction atomicity.

4. The Interaction Model

The Interaction model proposed by Marian Nodine [11] is a two-level open-nested transaction

Multidatabase - Brown University Page 9 of 73

model, which was conceived to support planning applications on Multidatabases. The model has

some similarities to Sagas [6] and ConTract [17].

The similarity to Sagas consists in the way the long term transactions are broken into smaller

transactions, and in the idea of having compensating transactions to undo the effects of any trans­

actions that have been committed. However, the relationships between those smaller transactions

are more complex in the Interaction Model. As an open-nested transaction model, the Interaction

has its global transactions defined as a partial order since those transactions can execute concur­

rently. Furthermore, since the Interaction model is planning application oriented two kinds of

dependencies are established between global transactions:

1- "Execution dependency" [11]. This is the dependency generated by the order in which the

open-nested transaction executes its global transactions. Using the well known travel example, an

"execution dependency" is the dependency between a global transaction which makes a flight res­

ervation, and a global transaction which makes a rental car reservation at the destination of the

flight. The execution of the second global transaction depends upon the successful completion of

the first.

2- "State dependency" [11]. In order to carry out planning applications, the Interactions keep

some "internal variables" (or "state variables") which are used by the global transactions. When­

ever two global transactions conflict on an "internal variable" a dependency is formed. As an

example of a "state dependency" we take the same two global transactions mentioned earlier, (i.e.

flight and car reservations), and add the condition that they read a variable budget. The execution

of the rental car reservation then depends upon the available budget (for example- if there is no

money left after buying the plane ticket we cannot rent a car).

The ConTract model relates to the Interaction model in terms of structure. Like the Interaction

model, ConTract consists of a group of atomic blocks of work which map into transaction on the

database. Also like the Interaction model, ConTract has conflict handling, although of a different

kind. While the Interaction model undo the transaction which caused the conflict, ConTract either

prevents the conflict operation, or adjust the data. This second method of conflict handling, called

"exit invariant", is problematic if incorporated into a multidatabase system. This is because inde­

pendent transactions on local databases could potentially have their work lost as part of an "exit

Multidatabase - Brown University Page 10 of 73

invariant" procedure. It is clear that a local user should not have his/her work interlered with

because of a multidatabase transaction. The autonomy of the local databases would thus be dis­

turbed by "exit invariant" conflict handling.

In general terms, there are two basic proposals for integrating the local database information into

the Multidatabase: 1) The restricted Model [7] where the global application is given a choice of

pre-determined tasks that can be performed at the local database. 2) The unrestricted Model which

allows arbitrary tasks to be performed at the local database by the global application. For that mat­

ter the compensation procedures have to be defined along with the transaction. The Interaction

Model uses the step approach [16]. A "Step" is an atomic procedure that can access a local data­

base in order to achieve some unit of work for a global transaction. The step approach combines

some of the characteristics of the two proposals above. Like the restricted model, the step

approach also provides a pre-determined set of procedures that can be executed at the local data­

base. Furthermore, some of the flexibility of the unrestricted model is also incorporated into the

step approach since the steps can be grouped into atomic local transactions. The steps are stati­

cally associated with the compensation steps, which are capable of undoing the effects of the

steps. By recording the sequence of compensating steps as the transaction progresses executing

steps, the recovery control is able to perform the necessary recovery procedures with no addi­

tional information.

4.1- Interaction requirements

Usually a transaction is required to have the following properties: 1) atomicity, 2) consistency,

3)isolation and 4) durability. However, in the Interaction Model, the Interaction, as a long term

transaction, relaxes the atomicity and isolation properties. The full atomicity property is replaced

by "semantic atomicity". Because a particular piece of information (i.e. state variables) can be

used during the execution of more than one global transaction, the serializability is not enough to

achieve correctness. That is, the "state dependency" which exists between global transactions

must also be considered too for the correctness of the Interactions. This can be derived from Nod­

ine's definition for Interaction correctness [10]: "An Interaction history is correct if its atomic

Multidatabase - Brown University Page 11 of 73

blocks (global transactions or single steps) are executed serializably, and each InterAction man­

ages its information consistently".

In order to enforce serializability of the global transactions, considering also the effect of the inde­

pendent local transactions ("indirect conflicts" [5]), Nodine showed on theorem 4.1 {[10] p.2?}

that two conditions were necessary:

1- The local sub-transactions serialization order on each database has to be consistent with some

unique global serialization order

2- All sub-transactions that belong to the same global transaction have to commit atomically

4.2- Interaction Features

We enumerate below some of the main features of the Interaction Model.

- Non Atomicity. Because the Interaction is a long-term transaction, atomicity is released. How­

ever even if the Interaction does not run completely, the system has a way of leaving the Interac­

tion in a state that is semantically equivalent to some state it would have reached if it had not run

at all [11]. We achieve this "semantic atomicity" by semantically undoing the undesirable

effects of the global transactions or single steps. The granularity of the compensation is at the

level of the steps. A more comprehensive explanation of the recovery issues can be found in

Nodine and Zdonik work [15].

- Persistence. The Interaction can run for an indeterminate period of time. During this time the

Interaction can be Active or Inactive. The Interaction keeps all its variables persistent to be able

to resume execution in case of a system crash or a change of status from inactive to active.

- Interactiveness. The planning applications require access to the data for long periods of time.

That might lead to situations in which the application developer needs to interact with the system

as the interaction progresses.

(

Multidatabase - Brown University Page 12 of 73

- Reactivity. One of its novel contributions to the Multidatabase world is reactiveness. Reactive­

ness allows the Interaction to take the appropriate action to regain consistency in case some

operation was performed at the local database that conflict with the Interaction's work.

- Flexibility. This is another feature which stems from the planning characteristic of the applica­

tion. The language for specification of the Multidatabase application allows the application devel­

oper to have an Interaction which executes global subtransactions under a conditional flow.

4.3- Interaction structure

IA 1 semantic atomicity
Global Level

GT2GTI semantic atomicity

I GST 11
I I

GST 12 I full atomicity I GST21 I I GST22

[STEP 11 I I STEP22 I I STEP 11 I I STEP21

I STEP21 I I STEP 13 I I STEP23

STEP23 I Figure 1 I STEP22

Figure 1 shows the Interaction structure at the global level. IAI represents an interaction (long­

term transaction) compound by two global transactions GTI and GT2 which can execute concur-

Multidatabase - Brown University Page 13 of 73

rently and cooperate to achieve some task. The global transactions have a set of global subtransac­

tions (i.e GSTll, GST12, GST21 & GST22) which perform some work on a given local database.

The global subtransaction is constructed by a group of steps which are a preset collection of

atomic local transactions defined at the step library. Each step has a compensating step associated

with it that knows how to undo the effects caused by the step. As the transactions progress in the

multidatabase, the recovery control logs information about the interdependency among the global

transactions (at the global level) as well as the sequence of compensating steps for the steps run­

ning at the local transactions. Therefore, when needed, the recovery control knows how to roll

back a global transaction by executing another global transaction formed by group of compensat­

ing steps. From the point of view of the multidatabase the global transaction issued by the recov­

ery control follows the same commit protocol as an ordinary transaction. That's why we say that

the global transactions are semantically atomic, because instead of cancelling the effects of the

aborted transaction we issue another transaction to compensate those effects, leaving the data in a

state semantically equivalent to the state prior to the aborted transaction run.

Another important characteristic is that the interactions prev.ent global subtransaction of the same

global transaction from accessing the same local database. That is because we want to ensure glo­

bal atomicity by preventing steps (from the same global transaction) from accessing globally

uncommitted data. For example, assume that we have GSTll that calls step21 and GSTl2 that

calls step22 and step23. Further assume that step21 and step22 conflicts on some data X and the

local serialization is step22 > step21 > step 23. Although step21 is accessing locally committed

data, since GSTII and GST12 belong to the same global transaction, data X is still globally

uncommitted.

Multidatabase - Brown University Page 14 of 73

STEP 11 STEP 21

STEP 12

STEP 13

Step Library STEP 22

STEP 23

LDB2LDB 1 Local database

Figure 2

Figure 2 shows a set of steps that can be provided to access the local database. The agents define

an interface that encapsulates the data in the database by the step library. From the point of view

of the multidatabase these steps are the only way to get information from the local database. This

restriction allows the multidatabase to abstract from the data manipulation issues of the local

transaction manager. Each local database provides a customized set of steps. This information is

made available to the application developer by the TASL module (see section 5).

The Interaction model also defines "events" and "weak conflicts". An "event" signals whenever

some update external to the Interaction occurs on some specific data that causes a violation of

some condition. We can use an event as a flow control of the Interaction as well (i.e. delaying the

execution of the Interaction until some event occurred).

A "weak-conflict" defines which condition should be monitored, the event to be signaled and the

set of operations that should be executed in case this condition is violated. We shall discuss next

the modules of the system which implement the Interaction module.

Multidatabase - Brown University Page 15 of 73

Multidatabase Architecture

Master
Multidatabase

logclients

State variables

Global

Level

Interaction Manager

Concurrency Control

Manager

Serialization

Enforcer

IRS
Interaction
recovery
System

GST

Step Library

Agent
Manager

ALD
Agent
Logger
Daemon

I Local Database

Figure 3.

Multidatabase - Brown University Page 16 of 73

5 - Design Overview

The structure of our system is shown on figure 3. We divided the figure in two parts to distinguish

the global from the local components. We shall briefly describe each of the modules.

5.1- TASL Interpreter

This module provides an XII user interface and a specification language to write the Interaction

application. The Tasl module is the one which drives the system and, ultimately, supports the

reactiveness of the system. It is Tasl's responsibility to maintain the consistency of the data (state

variable) due to state dependencies. Tasl provides the application developer with the set of ser­

vices (Steps) which can be executed in each of the local databases. There is one Tasl shell for

every Interaction.

5.2- Interaction Recovery System

The Interaction Recovery System logs the dependency tree of execution, and the order in which

the global transactions were executed. When a transaction needs to be undone the recovery sys­

tem figures the order in which the "compensating steps" have to be performed.

The Recovery System starts a global transaction in order to compensate the effects of some global

transaction.

5.3 - Interaction Manager

The Interaction Manager (1M), as its name says, manages the Interaction throughout the lifetime

of an Interaction. The 1M handles all the communication between the agents, Tasl and recovery

system. It is also the Interaction Manager who requests the local agents to monitor the occur­

rence of a determined event at the local database. In addition, the Interaction Manager receives

a signal from the agents notifying the occurrence of a particular event

The 1M creates an object (IA) for every Interaction started, which contains information about the

Multidatabase - Brown University Page 17 of 73

Interaction and a list of global transaction running under this Interaction. Each IA is associated

with one Tasl shell, and will only service and communicate with this Tasl shell which requested

the creation of the IA. Every time a global transaction begins, a global transaction object is cre­

ated containing information about every global subtransaction started and the correspondent local

database where the global subtransaction is running at. The 1M starts up the concurrency control

manager which takes care of the synchronization of the global transaction.

5.4 - Concurrency Control Manager

The concurrency control manager synchronizes the global transaction started by the distinct Inter­

actions. As we presented before, there are two basic schemes for achieving global serialization:

normal and certification schemes. Furthermore we also presented two mechanisms which define

the global serialization point: The "begin" or "commit" order. All combinations of those schemes

and mechanisms have advantages and drawbacks. It is not clear which of them has the best perfor­

mance on average. Therefore, we decide to implement all cases in order to compare them.

There are two modules that cooperate to achieve global serialization in our Multidatabase system:

1- Concurrency Control Manager, 2- Serialization Enforcer. The first is responsible for dictating

(normal scheme) or validating (certification scheme) the global serialization order. The second, is

responsible for ensuring that the global serialization order has been followed at the local data­

bases. The serialization enforcers mimic the behavior of the local concurrency control and can

determine what is the serialization order. Figure 06 shows the concurrency control manager and

its interface with the rest of the interaction manager. We create a uniform interface for the concur­

rency control manager, and by using inheritance we can chose at runtime which scheme (normal

or certification) and serialization point (begin or commit time) are to be used. For that matter there

are four cases to be considered: 1) normal scheme with serialization point at begin time

(CCM_BO), 2) normal scheme with serialization point at commit time (CCM_CO), 3) Certifica­

tion scheme with serialization point at begin time (CCM_C_BO), and 4) Certification scheme

with serialization point at commit time (CCM_C_CO) figure 07.

The concurrency control provides three basic services that in cooperation with the serialization

Multidatabase - Brown University Page 18 of 73

enforcer ensure proper synchronization among the global serializations. We describe below each

of the services.

1- beginChkOso - called by the time we start a global transaction. If the second case was chosen

CCCM_BO), the CCM dictates the serialization order and passes it to the serialization enforcer.

Otherwise nothing has to be done by this procedure but return OK.

2- CommitChkOso - called by the time we commit a global transaction. It checks if the global

transaction is prepared to follow the serialization order to commit. In the normal schemes it dic­

tate the order and wait for the replies of the serialization enforcer to check if the order was fol­

lowed. In the certification schemes it requests the local serialization order from the local databases

to be checked.

3- AbortChkOso - called to abort a non committed global transaction in order to remove the given

global transaction from the serialization order.

The Concurrency Control Manager is, also, responsible for keeping track of the handlers to com­

municate with each of the agents at the local databases. The CCM provides therefore distribution

transparency.

5.5 - Agent Manager

The Agent Manager, basically, interfaces with the global level encapsulating the local database

data model and transaction processing algorithms. The agent channels all requests from the global

level forwarding to the proper modules to be handled. The modules that the agent has to commu­

nicate with are: 1) serialization enforcer in order to synchronize the global subtransactions. 2)

activator to request an event set. 3) agent logger daemon to log what has been done in the local

database and to get the compensate steps to reverse the effects of an global subtransaction. The

Agent manager, also, starts up a server COST) for every global subtransaction that needs to exe­

cute in the local database. This OST manages the global subtransaction, and evokes the proce-

Multidatabase - Brown University Page 19 of 73

dures to be performed at the local database from the step library.

5.6- Activator

The activator sets an event which should be monitored at the local database. The activator does

this by polling the local database so often to check if some particular data update (that is an event)

has occurred. When this event occurs the activator signals to the 1M module. Other options were

also considered to achieve the activator task, but the one just described is simpler and provides

great deal of local database autonomy.

5.7- The Step Library

The step library has a set of procedures that can be performed by the local transaction processing.

Each local database has its own step library tailored for it. The step is the finer granularity of the

Interactions. For each step there is a compensate step associate with it that reverse its effect.

(

\

6- Design Issues

The System just described, was implemented in C++, on top of UNIX™, following the Client!

Server architecture. We used ObjectStore™ DBMS to store for each Interaction, its entire defini­

tion, its execution state, and the state of its variables.

Some issues remain to be considered in the attempt to increase performance. These are asynchro­

nous remote procedures calls, and threads usage. Furthermore, the original idea was to run exper­

iments to compare the performance of the four different cases implemented in the concurrency

control manager, so we could decide which one is more suitable.

7- Conclusion

Multidatabases meet the needs of applications which require to query and update data from dis­

tinct DBMS simultaneously. The most important features are heterogeneity and autonomy.

Multidatabase - Brown University Page 20 of 73

Those same features are also the ones which cause most of the problems faced on the implemen­

tation of a multidatabase. In particular on issues like global serialization and atomic commitment.

The Interaction Model [11] follows a two level open-nested transaction model. The top level

(Interaction) is defined as a sequence of atomic tasks (i.e. global transaction). The global transac­

tion is composed by a set of atomic operations on the local databases called steps. We recall that

Interactions and global transactions are semantically atomic. That is by compensating the effect of

the operations, the data will be left in a state that is semantically equivalent to the state before the

operations have ran.

The approach taken to solve the atomic commitment is the "local commit before global decision"

described in [5]. The Interaction model proposes two schemes for ensuring serialization. In the

first (normal scheme) the global transaction manager dictates the serialization order to the local

agents which make sure the order is followed. In the second (certification scheme) the global

transaction request the local serialization order list from all local agents to be validated.

The Interaction model introduces two new features on the multidatabases systems. The first is

reactiveness. The second is the concept of the step library at each local database. The step concept

is a mix of the two approaches for integrating local databases (restricted and unrestricted model).

The steps differ from the restricted model in that we can construct a local transaction based on the

set of steps available for the local database. furthermore, the step also differ from the unrestricted

model because only these set of steps can access the local database.

We now, present the top level design for the transaction manager of our multidatabase.

Multidatabase - Brown University Page 21 of 73

8- Appendix: Design Documentation

I - Class Diagram

1.1- Interaction Manager

1M

r

IA

"

OT

Figure 4.

Figure 4 shows the class diagram of the Interaction Manager. The class 1M abstracts the data nec­
essary to keep track of all Interactions on the system. Every time a Interaction begins, an instance
of class IA is constructed and its address put into a linked list. There is only one instance of the
1M on the system. The class IA has the address of every transaction started by the Interactions. the
Interaction class also keeps a handle to communicate with the TASL shell which requested the
Interactions' start. The global transaction class (OT) maintain the database's names of the local
databases that are being query or updated by the global transactions.

/

Multidatabase - Brown University Page 22 of 73

1.2- Concurrency Control Manager

CCM_Norm CCM_Cert

CCM_C_BOCCM_CO CCM_BO CCM_C_CO

Figure 5.

The class CCM abstracts the global serialization order list which represents the serialization order
that has to be followed by the global transactions. It also keeps a list of all local databases and
handles available at the system. Figure 6 and 7 show the methods of every class and its relation­
ship.

Multidatabase - Brown University Page 23 of 73

/---...........,.. /~-...-...,

. GLobal Level: Interaction Manager & Concurrency Control

Class Diagram - Base Classes

[

i
~
G ,
I:C a CCM
~
::I

~
:;:­

~.
-<

1M

(jCj
G

'"I1~ I
0Cl

0 ~ I (I)

• 0
0\-.J

w

1>1 private member functions

Note: For information about parameters please consult header files.

CCM_Nonn
CCM

Class Diagram: Derivate Classes

IMg:
e:
55­
§.
~

I

to a
::E =
~ :;:­
~
~.
~

GT !-GT ~
:fwoPhase@h~Wriiti CCM_Cert

I I>E~~~~j~ml·1 (' rc
IremoveWeak

I
I

.."
"I1&

('P O'Q

~
~I G

0
-...l

0....,

-...J I "",,U~lJ.J.,U_U.
UJ

I I
abortGT

~

C I I

doCsStep I ~ Inheritance

----.. Is part of

II- Description of the Main Classes

11.1- Global level

1- Class 1M

- Abstraction:

This Class is part of the Interaction Manager module. It keeps track off all the InterActions run­
ning at the system and start-up the concurrency control manager.

- Data Members:

1.0bjList im_ia_List; II list of active IA oids

- Private Member Functions:

- Public Member Functions:

1. IMO II Constructor of Class 1M
2. Oid beginIA(char* serverName) II begins Interaction
3. Status finishIA(signComAbort flag) II finish interaction
4. -IMO II destructor

-Relationships:

f

Multidatabase - Brown University Page 26 of 73

1.1 - Member Functions of Class 1M

1.1.01- Member Function: IM::im

-Semantics:

Constructs 1M class initializing im_ia_list .

-Called by:

Tasl module

-Calls:

-Parameters:

-Returns:

Multidatabase - Brown University Page 27 of 73

1.1.02- Member Function:IM::begin IA

-Semantics:

This function call the constructor of class IA to create another Interaction and add the object id
to the im_ia_list. It creates handlers to communicate with TASL module and the IRS module
Request service IALOG_LOG_IA_BEGIN to the IRS server to log IA begin at the master log
Returns IA oid if succeed or NULL if fails.

\ -Called by:

Tasl Interpreter

-Calls:

ObjList: :append(oid)
IA::IA(Tasl handler)
IALOG_LOG_IA_BEGIN

-Parameters:

char* servername- server name where 1M server is running

-Returns:

IA * iaoid if succeed otherwise Null.

"

Multidatabase - Brown University Page 28 of 73

1.1.03- Member Function:IM::finish IA

-Semantics:

Calls abortIA or commitIA according to the flag passed. If function (abortIA or commitIA) suc­
ceed, call the destructor -iaO and remove iaOid from the im_ia_list. Otherwise return NOT_OK.

-Called by:
Tasllnterpreter

-Calls:

ObjList::remove(Oid iaoid)

IA::-iaO

IA: :abortIAO

IA:: commitIAO

IALOG_LOG_IA_ABORT

IALOG_LOG_IA_COMMIT

-Parameters:

Old iaoid- object id of the Interaction

SignComAbort flag- indicates which function to call (abortIA or commitIA)

-Returns:

OK if succeed or NOT_OK if fails.

Multidatabase - Brown University Page 29 of 73

1.1.04- Member Function:IM::.....im

-Semantics:
This function calls emptyP to check if some interaction still active. If not, destroy instance of

class 1M.

/
\ -Called by:

Tasl Interpreter

-Calls:
ObjList::emptyPO

-Parameters:

none

-Returns:

nothing
(

Multidatabase - Brown University Page 30 of 73

2- Class IA

- Abstraction:

This Class manages the InterAction running at the system and its Global Transactions.

- Data Members:

I.Oidlist ia_gclist II list of active GTs with respectives GT oids

- Private Member Functions:

- Public Member Functions:

1. IA(CLIENT* taslhandle) II Constructor of Class IA
2. Status commitIAO; II commit Interaction
3. Status abortIAO; II abort interaction
4. int declareWeak(char* ldbname, ACtype evenCtype, int gtoid, int stepid"int

argc,char** argv,ACcond cond,char* value) II returns event id
5. Status removeWeak(char* ldbname, int eventid); II remove weak conflict
6. void eventOcurred(int evId) II infonns the ocurrence of a event
7.0id beginGT(intlist predList) II starts new GT
8. Status retryGT(Oid gtOid) II abort and retry GT
9. Status commitGT(Oid gtOid) II commit GT and destroy GT instance

10. Status abortGT(Oid gtOId) II calls IRS (major abort)
11. Status quickAbortGT(Oid gtOid) II aborts running GT and destroy GT instance
12. ~IAO II destroy instance IA class

-Relationships:

(

Multidatabase - Brown University Page 31 of 73

2.1- Member Functions of Class IA

2.1.01- Member Function: IA::ia

-Semantics:

This function creates an instance of class IA and stores the handler to communicate with TASL.

-Called by: "
1M::beginlAO

-Calls:

-Parameters:

CLIENT* taslhandler- handler to communicate with TASL.

-Returns:

(

Multidatabase - Brown University Page 32 of 73

2.1.02- Member Function: IA::commitIA

-Semantics:
This function checks for running GTs at the ia~clist. Request service AC_REMOVE _ALL to
the agent server to remove weak conflicts from this lA. Returns OK if succeed or NOT_OK if
fails.

-Called by:

Tasl

-Calls:

ObjList::emptyPO
AC_REMOVE_ALL

-Parameters:

None

-Returns:

OK if succeed
NOT_OK if fails

Multidatabase - Brown University Page 33 of 73

2.1.03- Member Function: IA::abortIA

-Semantics:

Request service ILD_ABORT_IA to IRS server to procede the abortion of the IA.

(-Called by:
\

Tasl

-Calls:
ILD_ABORT_IA

-Parameters:

None

-Returns:

OK if succed or NOT_OK if fails

(

Multidatabase - Brown University Page 34 of 73

2.1.04- Member Function: IA::declareWeak

-Semantics:
Request service AC_ASSIGN_EVENT_ill to the agent server to set a weak: conflict.

-Called by:

Tasl

-Calls:
AC_ASSIGN_EVENT_ill

-Parameters:

char* ldbname - local database name
AcType eventType­
int gtoid - Global transaction rd.
int stepId- step identification to the step library
int argc
char** argv
AcCond cond ­
char* value

-Returns:

int evid- event id.

Multidatabase - Brown University Page 35 of 73

2.1.05- Member Function: IA::removeWeak

-Semantics:

Request AC_REMOVE_EVNT service from the agent server to remove a weak conflict from
the activatore given the local database name anda the event rd.

\

-Called by:

Tasl

-Calls:

AC_REMOVE_EVNT

-Parameters:

char *
int

ldbname- local database name
eventId.

(

-Returns:

OK if succeed or NOT_OK if failed

Multidatabase - Brown University Page 36 of 73

2.1.06- Member Function: IA::eventOcurred

-Semantics:

Signals to Tasl that an event occured in the local database by requesting service TS_EVEN­
T_OCCURRED to the Tasl server for this particular IA.

-Called by:

Activator

-Calls:

TS_EVENT_OCCURRED

-Parameters:

int evId- event id.

-Returns:

void

Multidatabase - Brown University Page 37 of 73

2.1.07- Member Function: IA::beginGT

-Semantics:

Calls the constructor of class GT. Calls the beginChkGso at the CCM to check serialization
according to the policy used.
If beginChkGso succeed:

request service GTLOG_LOG_GTBEGIN at the IRS server
if service succeed:

adds an GT oid at the ia_gclist
return OK

else
destroy instance of GT
return NOT_OK

-Called by:

Tasl(
IRS

-Calls:

OidList: :append(gtoid)
CCM:: beginChkGso(gtOid)

IRS: :logBeginGT

GT::gtO

GT::-gtO

-Parameters:

IntList preList - previous list of GTs in the execution order. NULL if this is a
compensating GT only.

-Returns:

gtOId if succeed or NULL if fails.

Multidatabase - Brown University Page 38 of 73

2.1.09- Member Function: IA::commitGT

-Semantics:

Ckeck If GToid is in ia_gclist

if found:

calls GT: :CommitGT

if succeed:

request service GTLOG_GT_COMMIT at the IRSserver
call destructor for GT
remove gtoid from ia~clist

return OK
else

request service GTLOG_GT_ABORT at the IRSserver
call destructor for GT
remove gtoid from ia_gclist
return NOT_OK

else

return NOT_OK

-Called by:

Tasl Interpreter

IRS

-Calls:
OidList: :remove(gtoid)

GT::-GTO

GT: :commitGT(ccmOid)

GTLOG_LOG_GT_ABORT

GTLOG_LOG_GT_COMMIT

-Parameters:

GT * gtOid - object identity of the global transaction

-Returns:

OK if succeed or NOT_OK if fails

Multidatabase - Brown University Page 39 of 73

2.10- Member Function: IA::abortGT

-Semantics:

Request service ILD_ABORT_GT from IRS to perform abortion of the GT.
if succeed:

request GTLOG_LOG_GT_ABORT from the IRS server
return OK

else
return NOT_OK

-Called by:

TASL
(IRS
\

-Calls:

ILD_ABORT_GT
GTLOG_LOG_GT_ABORT

-Parameters:

GToid - global transaction id.

-Returns:

OK if succeed or NOT_OK if failed

Multidatabase - Brown University Page 40 of 73

2.11- Member Function: IA::quickAbortGT

-Semantics:

Check GToid at the ia_gclist.
if found

call GT::abortGT
if GT::abortGT succeed

destroy GT object
remove GToid from ia_gclist
request service GTLOG_LOG_GT_ABORT to IRS.
return OK

else
return NOT_OK

else
return NOT_OK

-Called by:

TASL

-Calls:

GT: :abortGTO
GTLOG_LOG_GT_ABORT
oidList: :remove(gtoid)

-Parameters:

Oid gtoid- Global transaction id.

-Returns:

OK - if succeed
NOT_OK - if failed

Multidatabase - Brown University Page 41 of 73

2.12- Member Function: IA::....ia

-Semantics:

Calls destructor of OidList to destroy ia_gclist
destroy instance of IA

-Called by:

1M::finishIA(iaOid,flag)
(

"

-Calls:

-Parameters:

none

-Returns:

OK if succeed
NOT_OK - If failed

(

Multidatabase - Brown University Page 42 of 73

3- Class GT

- Abstraction:

This class manages the excution of the Global Transaction and its Global Sub-Transactions.

- Data Members:
1. SysLdbList 10cal_Idb_List II list of all Local Databases being accessed by the

global transaction thru its GTS

- Private Member Functions:

1. Status twoPhaseCommitO II executes prepare & commit phase
2. Status beginGST(Ldbname) II begin Gst at the local database
3. Status commitGst(1dbname) II commit Gst at the local database	 '\

4. Status abortGST(Ldbname) II aborts Gst at the local database

- Public Member Functions:

1. gtO	 II Constructor of class GT
2. Boolean commitGT(sysldblist) II commit GT
3. Boolean abortGTO	 II abortGT
4. Boolean	 doStep(char* ldbname,

int stepid,

int argc,

char** argv) II request AM to execute step

5. Boolean	 doCsStep(char* ldbname,
int Csid,
int argc,
char** argv) II request AM to execute Compensate step

6. -gtO	 II Destructor

-Relationships:

Multidatabase - Brown University	 Page 43 of 73

3- Member Functions of Class GT

3.01- Member Function: GT::gt

-Semantics:

This function creates an instance of the class GT .. Remote procedure calls createGTdir at II..D.

-Called by:

IA: :beginGT(predList)

-Calls:

ILD::createGTdir ?????

-Parameters:

none

-Returns:

none.
(
\

Multidatabase - Brown University Page 44 of 73

3.02- Member Function: GT::twoPhaseCommit

-Semantics:
For every local database that participates at the GT, get agent handler at the CCM and rpc AM for
vote at the local database. (prepare phase) If any local database answer no return NOT_OK. If all
answers OK, for every local database rpc AM to commit. If successful comit return OK.

-Called by:

GT::CommitGTO

-Calls:

SysLdbList: :findFirst(ldbname,agHandler)

SysLdbList: :findNext(ldbname,agHandler)

CCM::getHandler(ldbname)

rpc : GST_Vote

rpc: AM_Finish_Gst

-Parameters:

none

-Returns:
OK, NOT_OK

Multidatabase - Brown University Page 45 of 73

3.03- Member Function: GT::commitGT

-Semantics:
Call CCM::commitChkGso(gtoid,ldblist) to ditacte seialization (according with the serialization
policy used). If serialization succed call GT::twoPhaseCommitO otherwise return NOT_OK

-Called by:

(IA:: finishGT(gtOid,flag)

-Calls:

GT:: twoPhaseCommitO
GT::AbortGTO
CCM: :commitCheckGso(gtOid,ldblist)

-Parameters:

none

-Returns:

OK,orNOT_OK.

Multidatabase - Brown University Page 46 of 73

3.04- Member Function: GT::abortGT

-Semantics:

Check in the LDB_List which Local Databases Id the Global Transaction is executing on. For
each Local Database calls AborcGSTO. If abortGST(ldbid) returns OK then remove IdbId from
the ldb_list.

" -Called by:

TASL Interpreter

-Calls:

abortGST(gtOid)
removeIntList

-Parameters:

-Returns:

True if suceed or False if Fail.
/

Multidatabase - Brown University Page 47 of 73

3.05- Member Function: GT: :doStep

-Semantics:

Get agent handler to comunicate with the agent of the local database. If ok get self-pointer to class
GT. Executes a RPC to the Agent Manager to execute step. Returns OK if succeed or NOT_OK
if fails. It also calls IRS to log

\
(

-Called by:

Tasl Interpreter

-Calls:

writeAgtLogGSTrec

-Parameters:

-Returns:

{
I'
\

char *
Oid *
int

char*

ldbname - local database name
setpid - step library Id.
argc - Number of arguments
argv - arguments for the step libraryl

OK if succeed or NOT_OK if fails

Multidatabase - Brown University Page 48 of 73

3.06- Member Function: GT::doCsStep

-Semantics:

Calls (function-name ???) at the serialization enforcer to execute a compensate step to undo
the effect of a global sub-transaction and ultimately the global transaction.
QUESTION: should we log this execution?

-Called by:
ILD (who at the ILD?)

-Calls:

?

-Parameters:

int ldbld - local database ID.
int CsNu - Compensate step number.

-Returns:

True if succeed or False if fails

Multidatabase - Brown University Page 49 of 73

3.07- Member Function: GT::beginGST

-Semantics:

Calls addIntList to add another IdbId. It also remote procedure call to record begin of Global
Sub-Transaction at the Agent -log (gstFileCreate)

(-Called by:

Tasl Interpreter

-Calls:

addIntList

-Parameters:

int IdbId - Local Transaction ID

-Returns:

True if succeed or False if fail.
(

Multidatabase - Brown University Page 50 of 73

3.08- Member Function: GT::abortGST

-Semantics:

Send message to local Database (RPC function) to abort the given Global Transaction. If
Aborted successfuly call removeIntListt to remove ldbid.

-Called by:

abortGT(ccmOid)

-Calls:

removeIntList(ldbId)

-Parameters:

int IdbId- Local Database

-Returns:

True if succeed or False if Fail

Multidatabase - Brown University Page 51 of 73

3.09- Member Function: GT::-gt

-Semantics:
Checks for some IdbID at Idb_List. If empty destroy instance of class GT.

-Called by:
,

(
(

\ finishGT(gtOid,flag)

-Calls:
getIntList

-Parameters:
int GTID - Global Transaction ill.

-Returns:

True if succeed or False if fails.
(

Multidatabase - Brown University Page 52 of 73

4- Class CCM

- Abstraction:
This is virtual class that is the base class for the classes CCM_CO, CCM_BO, CCM_CercCO,
CCM_CercBO.

- Data Members:

- Private Member Functions:

- Public Member Functions:

1. ccmO II Constructor of class CCM generates by the compiler
2. Boolean beginChkGso(gtOid) II virtual function
3. Boolean commitChkGso(gtOid) II virtual function

-Relationships:

Multidatabase - Brown University Page 53 of 73

5- Class CCM Norm

- Abstraction:

This class ensures Global Serialization Order by calling member functions of one of the two
serialization order (Commit Order or Begin Order).

- Data Members:

1. ObjIdList ccm_nofffi_gso_list

- Private Member Functions:

(

"

- Public Member Functions:

Boolean addGsoList(GTID) II add Global Transaction to the list of Global
II Serialization order

Boolean removeGsoList(GTID) II remove Global Transaction of the list of
II Global Serial ization

-Relationships:

Super Class of CCM_CO and CCrvCBO
f Sub Class of: CCM_Core
"

Multidatabase - Brown University Page 54 of 73

5.1- Member Functions of Class CCM Norm

5.1.01- Member Function: CCM Norm::addGsoList

-Semantics:
Add Global Transaction oid to the list ccm_norm_gso_list..

-Called by:

CCM_BO::beginChkGso
or CCM_CO::commitChkGso

-Calls:

addObjIdList(oid) note: probably uses templates

-Parameters:

GT * gtOid - global transaction object id..

-Returns:

True if succeed or False if fails

Multidatabase - Brown University Page 55 of 73

5.1.02- Member Function:CCM Norm::removeGsoList

-Semantics:

Remove the global transaction object id from the ccm_norm_gso_list.

-Called by:

! commitChkGso\

-Calls:
removeObjList(oid) Note: probably uses templates

-Parameters:

GT * gtOid- object identity of GT class.

-Returns:

True - if succeed and False if fails
(

Multidatabase - Brown University Page 56 of 73

6- Class CCM CO

- Abstraction:
This class ensures Global Serialization Order as the same as the global transaction commit

order.

- Data Member:

- Private Member Functions:

(
\

- Public Member Function:
1. Boolean beginChkGso(gtOid);
2. Boolean commitChkGso(gtOid);

-Relationships:

Sub Class of: CCM_Norm

Multidatabase - Brown University Page 57 of 73

6.1- Member Functions of Class CCM CO

6.1.01- Member Function:CCM_CO::beginChkGso

-Semantics:

do nothing...

(-Called by:
beginGT(prevList)

-Calls:

-Parameters:

GT * gtOid- Global Transaction object id.

-Returns:

True - if succeed and False if fails

Multidatabase - Brown University Page 58 of 73

6.1.02- Member Function:CCM CO::commitChkGso

-Semantics:
Calls addGsoList to add the global transaction in the ccm_norm_gso_list. For each local

database of the ldb_list calls serializeGT(gtOid). If some of the calls of the serializeGT returns
false then return false otherwise return true.

-Called by:
commitGT(ccmOid)

-Calls:

addGsoList(GT * gtOid)

serializeGT(gtOid)

-Parameters:

GT * gtOid - global transaction object id.
intList * ldb- pointer to list of local databases of the system ??

-Returns:

True - if succeed and False if fails

Multidatabase - Brown University Page 59 of 73

7- Class CCM BO

- Abstraction:

This class ensures Global Serialization Order as the same as the global transaction Begin
order.

- Data Member:

- Private Member Functions:

(

- Public Member Function:
1. Boolean beginChkGso(gtOid);
2. Boolean commitChkGso(gtOid);

-Relationships:

(Sub Class of: CCM_Norm
"

Multidatabase - Brown University Page 60 of 73

7.1- Member Functions of Class CCM BO

7.1.01- Member Function: CCM_BO::beginCbkGso

-Semantics:
Calls addGsoList(gtOid) to add the gtOid at the ccm_nortn_gso_list. Calls serializeGT for all

local databases of the system

-Called by:
beginGT(predList)

\

-Calls:
addGsoList(gtOid)

serializeGT(gtOid)

-Parameters:

GT * gtoid- global transaction object id

intList * ldb- local database list

-Returns:

true if succeed or false if fails

Multidatabase - Brown University Page 61 of 73

7.1.02- Member Function: CCM BO::commitChkGso

-Semantics:

For each local database at the local database list, calls checkSerializeGT(1dbid). If some
function return false exit returning false. To all local databases that do not participate at the ldb

list call abortGST. if some function return false exit returning false.

-Called by:

commitGT(ccmOid)

-Calls:

checkSerializeGT(gtOid)
abortGST(ldbld)

-Parameters:

GT * gtOid- global transaction oid

-Returns:
(true if succeed or false if fails.\

Multidatabase - Brown University Page 62 of 73

8- Class CCM Cert

- Abstraction:
This class uses Certification to ensure that GSO is maintained.

- Data Member:
1. ListObjIdList ccm_cerCldb_gso; lithe GSO lists of the LDBs

- Private Member Functions:

- Public Member Function:
1. Boolean addGsoList(gtOid);
2. Boolean removeGsoList(gtOid);

-Relationships:

Sub Class of: CCM_Norm

Multidatabase - Brown University Page 63 of 73

8.1.- Member Function of Class CCM Cert

8.1.01- Member Function: CCM_cert::appendGsoList

-Semantics:

Appends the local global transaction id list sent by the agent to the proper list at the
ccm_cerCldb_gso

-Called by:

CCM_C_BO::beginchkGso
(or CCM_C_co: :commitChkGso\

-Calls:

addObjldList

-Parameters:

int ldbld - local database id.
objldList * gtList- list of gtOids of the running at the local database

-Returns:

true if succeed or false if fails

Multidatabase - Brown University Page 64 of 73

8.1.02- Member Function: CCM Cert::removeGsoList

-Semantics:

for each local database calls removeObjIdList to delete gtOid from every list.

-Called by:

commitChkGso

-Calls:

removeObjIdList(gtOid)

-Parameters:

GT * gtOid - global transaction oid.

-Returns:

true if succeed or false if fails

Multidatabase - Brown University Page 65 of 73

9- Class CCM C CO

- Abstraction:
This class ensures Global Serialization Order as the same order as the Commit order of the

Global Transactions.

- Data Member:

(

\

- Private Member Functions:

- Public Member Function:
1. Boolean beginChkGso(gtOid);
2. Boolean commitChkGso(gtOid);

-Relationships:

Sub Class of: CCM_Cert

Multidatabase - Brown University Page 66 of 73

9.1- Member Function of Class CCM C CO

9.1.01- Member Function:CCM_C_CO::beginChkGso

-Semantics:
do nothing (returns true)

-Called by:
beginGT(predList)

\

-Calls:

-Parameters:

GT * gtOid - Global transaction Oid.

-Returns:

true if succeed

Multidatabase - Brown University Page 67 of 73

9.1.02- Member Function: CCM C CO::commitChkGso

-Semantics:

Checks in the ccm_CerCldb_List which ldb participate at the given GT. For each ldb calls
requestGsoList. Calls appendGsoList(ldbid,Gtlist) for update the ccm_CerCldb_List for every
list of global transaction received. Check at the participating ldbs on the ccm_cerCldb_List if the
gtOid of the first GT is the same as the given GT. If not call abortGT for all transactions that pre­
ceed the given GT.

-Caned by:

commitGT(ccmOid)

(

-Calls:

requestGSOList
appendGsoList
checkGsoList
abortGT

-Parameters:

Gt * gtOid- global transaction Id.

-Returns:

true if succeed or false if fails
(

Multidatabase - Brown University Page 68 of 73

10- Class CCM C BO

- Abstraction:
This class ensures Global Serialization Order as the same as the Begin orders of the Global

Transactions.

- Data Member:

- Private Member Functions:

"

- Public Member FUllction:
1. Boolean beginChkGso(gtOid);
2. Boolean conunitChkGso(gtOid);

-Relationships:

Sub Class of: CCM_Cert

Multidatabase - Brown University Page 69 of 73

10.1- Member Functions of Class CCM C BO

10.1.01- Member Function: CCM_C_BO::beginChkGso

-Semantics:
do nothing (return true)

-Called by:

beginGT(predList)
(

-Calls:

-Parameters:

GT * gtOid- global transaction Oid.

-Returns:

true

Multidatabase - Brown University Page 70 of 73

10.1.02- Member Function: CCM C BO::commitChkGso

-Semantics:
Checks in the ccmCertGsoList which ldbs participate at the given GT. For each ldb calls

requestGsoList. Calls appendGsoList for each list of gtOid received from the function requestG­
soList. Check at the participating ldbs on the ccm_cerCldb_;list if given gT is the firstGT of the
list. If not call abortGT for the given GT. .

-Called by:
commitGT(ccmOid)

-Calls:
requestGsoList

appendGsoList

checkGsoList

abortGT

-Parameters:

GT * gtOid- global transaction oid.

-Returns:
true if succeed or false if fails.

Multidatabase - Brown University Page 71 of 73

References:

[1] R. Alonso, H. Garcia-Molina, and K. Salem. Concurrency Control and Recovery

for global procedures in federated database systems. A quarterly bulletin of the

computer society of the IEEE technical committee on data engineering 10(3)

September 1987

[2] Y Breitbart, A. Silberschatz, and G. Thompson. An update mechanism for

multidatabase systems. A quarterly bulletin of the Computer Society of the IEEE

technical committee on Data Engineering, September 1987.

[3] W. DU and A. Elmagarmid. QSR: A correctness criterion for global concurrency

control in Interbase. In proceedings of 15th International conference very large.

Databases 1989.

([4] Ahmed K. Elmagarmid, Jin Jing & Won Kin. Global Commitment In Multidatabase

Systems. Department of Computer Sciences Purdue University. March 1991

[5] Dimitrios Georgakopoulos, Marek Rusinkiewicz, and Amit Sheth. On serializability

of multidatabase transactions through forced local conflicts. In 1991 Data Engineer­

ing Proceedings, pages 314-323, 1991.

[6] Hector Garcia Molina and Kenneth Salem. Sagas. In ACM SIGMOD proceedings,

pages 249-259. ACM, 1987.

[7] Dennis Heimbinger and Dennis Mclead. A Federated Architecture for Information

Management. ACM transactions on office Automation Systems 273-278. July 1985.

t
\

[8] W. Litwin. From database systems to Multidatabase systems: Why and How. In

British National Conference on Databases. Cambridge Press, 1988.

Multidatabase - Brown University Page 72 of 73

[9] T. Logan & A. Sheth. Concurrency Control Issues in Heterogeneous Distributed

Database Management Systems. Unpublished July 1986. :k
.J

~
"

[10] Marian H. Nodine. InterActions: Multidatabase Support for Planning Applications.

Technical Report CS 91-64. Brown University, December 1991.

[11] Marian H. Nodine. Interactions: Multidatabase Support for Planning Applications.

Phd Thesis - Department of Computer Science, Brown University, May 1993

[12] Peter Muth and Thomas G, Rakow. Atomic commitment for integrated database

systems. In 1991 Data Engineering Proceedings, pages 296-304, 1991.

[13] Noela V. Nakos. Specification Environment For Multidatabase Applications.

Department of Computer Science. Brown University, May 1993

[1.4] Sergio Nakai. The Concurrency Control Mechanism of the Mongrel System.

Design & Implementation. Department of Computer Science. Brown University

May 1993

[15] Marian H. Nodine and Stanley B. Zdonik. Supporting Reactive Planning Tasks On

An Evolving Multidatabase. Technical Report Brown University December 1992

[16] Marian H. Nodine and Stanley B. Zdonik. Automating Compensation in

Multidatabase. Proceedings of the 27th. Annual Hawaii International Conference

on System Sciences, Volume II pp. 293-302. January 1994.

[17] Helmut Waechter and Andreas Reuter. The ConTract model. In A. Elmagarmid

editor. Database Transaction Models for Advanced Applications.

Morgan-kauffman, 1991

Multidatabase - Brown University Page 73 of 73

