
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-94-M16

"MOM:

A Memory Object Manager for BOSS"

by

Vincent C. Rubino

This research project by Vincent C. Rubino is accepted in its present form by the

Department of Computer Science at Brown University

in partial fulfillment of the requirements for the

Degree of Master of Science.

May 1994

(

Date: 5(10,/11­, SL.ful eJrJ.Stanley B. ~ik

MOM:
A Memory Object Manager for BOSS

Vincent C. Rubino

Department of Computer Science

Brown University

May 19, 1994

MOM provides BOSS with a subsystem to manage persistent and volatile memory using memory mapping to move

data between volatile and stable memory.

1 Introduction

\
I

Memory management is critical in an object store. The MOM subsystem was created to fill this space. What

differentiates the current MOM from the previous MOM designs is that it uses memory mapping rather than read and

write system calls. The choice pushes the details of system calls down a level while retaining control over replacement.

The MOM architecture consists of two classes, Memory Objects (MOs) and Memory Object Managers (MOMs). The

MOs reference desired volatile space while the MOM manages those MOs.

2 Architecture

The point of MOM is to provide storage classes with persistent and volatile storage. MOM manages a number of

stable stores and an area of volatile memory as shown in Figure 1. When requested, MOM maps data from the stable

store into volatile memory where it can be manipulated. Changes made to this volatile area will persist into stable

memory through the process of unmapping and synchronization. Once the storage class is done with the MO, it will

be unmapped at some later time.

There is a smoall difference between memory management at the server and client MOM. The server MOM will

never remove a MO from stable storage unless told to do so by the storage class. The client MOM can delete MO s from

stable storage once they are unpinned. Stable replacement of MOs from a server store would be inconsistent with the

mission of a server as persistent storage.

1

Volatile Memory

c:z:::::> ...
<:ill])

~
~ ...

~

I -...
~
c([(J)l~ ~

~~~ F-9te---.....
~ 

"---=--' I.=-I~.......... (S,'S)

...-' 

Stable Memory
 

Figure 1: An illustration of mapping between stable and volatile memory.
 

For example, consider a server MOM controlled by a storage class. The storage class has a great need for memory, 

but does not need all of it all the time. It creates MOs, uses the memory and signals the MO when the data is not 

needed in volatile space. At any time, the storage class can ask for the MO to be moved back into volatile space for 

manipulation. MOM can move the MO out of volatile memory during the time it is no longer needed. 

Client 
Stub 

NetwoIk 
Stream 

Server 

Stable 
Memory 

'\ 
Storage Class 

Client 

BOSS 
RPC 

Memory 
Object 

Management 

Storage Class 
Server 

Memory 
Object 

Management 
\. 

Figure 2: A layered view of a storage class. 

A more complicated example is shown in Figure 2 which reflects the usage of BOSS. Each MOM manages its own 

stable store. The two MOM s function as in the above example, however, the top MOM is a client site which can remove 

its MOs from stable space. When this occurs, the client storage class might want a MO which has been removed from 

stable storage. In this case, the client storage class must get the MO from the server storage class. The client makes 

an RPC call to the server who asks its MOM to move the MO into volatile space where it can be copied into the given 

buffer. The buffer is then copied by the client storage class into a new MO at the client MOM. 

2 



3 Interface
 

Storage 
Class SMfoss 

VMfoss 

MO MOM 

Figure 3: A view of the MOM storage class interface. 

Calling these classes are a storage class which desires some volatile memory to be persistent. The interface between 

the three is shown in Figure 3. 

A MO provides several access functions to the storage class. The primary functions include creation, deletion and 

location. Creating a MO provides the storage class with immediate access to volatile space. Deleting the MO will 

remove it from both volatile memory and from the stable store. The loc call provides the caller with a pointer to the 

volatile memory location secured by the MO. With these three calls, the storage class retains complete control over the < 
MOM. 

To enable the replacement policy of MOM the storage space is provided with three additional calls: pin, unpin and 

mark. To move a MO into volatile memory and keep it there, the storage class has the pin command. As with loc, 

a pointer accessing the volatile memory location is returned by the call. When a MO is no longer needed in volatile 

memory, but still might be needed, the unpin command is called. If the storage class wishes to give a MO a higher 

chance of remaining in memory once unpinned, the MO should be marked periodically. This call raises the priority 

of the MO with regards to replacement. Again, it should be noted that client MOMs have a policy enabling stable 

replacement of unpinned MO s. 

The following interface tools provide a storage class with a bookkeeping mechanism to manage MOs solely via 

OID s. There is a one for one relationship between MOs and OID s. The OID of a MO can be both obtained and changed 

by calls to its MO. Furthermore, MOM keeps track of its MO s in terms of the OID. Thus, the storage class can obtain a 

pointer to a MO given the OID and the associative operator ([]) of MOM. 

The storage class is also provided with a mechanism by which it is notified when a MO is moved out of memory. 

The storage class is expected to provide vmtoss and smtoss calls which the MOM will make whenever it moves a MO 

from memory. When a MO is removed from volatile memory, vmtoss is called. Similarly, smtoss is called whenever a 

MO is removed from stable memory. These callbacks serve as a notification to the storage class of an already removed 

3 



MO. 

4 Implementation Issues 

The interface of MOM hides a number of implementation issues from the storage class. To understand completely 

what is happening within MOM it is useful to look at these issues. They include: mapping, replacement, recovery and 

expansion. 

4.1 Mapping 

Rather than relying on direct read and write system calls, MOM makes use of mapping of stable memory into volatile 

space. The calls used are the mmapO, munmapO and msyncO UNIX system commands. 

MmapO, munmapO and msyncO provide a simple interface for mapping pages of stable memory into volatile 

memory. MmapO maps a specified stable location into the process's address space. Once pages are mapped into volatile 

memory, the user can manipulate those pages as any other type of memory with the added assurance that changes 

will persist in stable memory. MunmapO closes the mapping opened through mmap while msyncO asynchronously 

synchronizes volatile with stable memory. 

These operations are used to forego the need for double buffering. The bookkeeping of reading and writing is 

pushed down a level while the control over replacement policies is held by MOM. Furthermore, MOM control makes 

mapping and unmapping invisible to the storage classes. Thus, the higher packages can just deal with MOs and OlD s 

and not have to worry about addresses, offsets and file descriptors. 

4.2 Replacement 

• Read Object 

o Unread Object 

Figure 4: An illustration of the replacement clock hands. 

Replacement is a complex issue that is handled similarly, but with some differences by the volatile and stable memory 

managers. The general policy for replacement is least recently used. It is simple to implement and is relatively quick. 

4 



The policy is effected through the movement of two pointers through the appropriate list ofMOs. The cleaning pointer 

marks MOs as unread while the allocation pointer looks for unread MOs. MOs found by the allocation pointer are 

removed from their memory state unless prevented by some policy such as being pinned or being at a server MOM. 

These two pointers are illustrated in Figure 4. 

MOs are deallocated by volatile replacement only when they are found to be unread and unpinned. Pinned MOs 

can be removed from volatile memory only when they are deleted. When MOs are deallocated, the vmtoss callback is 

made to notify the storage class. 

Stable replacement can only occur on a client MOM site. MOs can be replaced in stable memory when they are 

found to be unread and are unpinned. The method of deallocation deletes the MO and then notifies the storage class 

via smtoss of the event. 

4.3 Recovery 

Most recovery issues in BOSS are handled outside the MOM package, but there are some basic things that need to 

be brought back on line when a site comes up. Namely, the MOM needs to be reloaded, repopulated and readied for 

action. To this end, anything that changes before a site goes down needs to be persistent. 

( 
The MOM has a small persistent file. This file holds irreplaceable information. Total size of volatile memory, 

client/server site status and pointers to managed stable stores are all in this file. Changes to this file are shadowed as 

changes are infrequent and the information in the file rarely referenced. 

The call to make a new MOM will first check if a MOM file already exists. If it does, it recovers that file, repopulates 

MOM by following the pointers therein, and readies MOM for action. If a MOM file does not exist, a new MOM and a 

new MOM file are created. 

Once the MOM file is safely loaded, the pointers are followed to recover the stable stores where the MO space and 

headers are actually stored. These stores are mapped into memory using mmapO as outlined above. 

4.4 Expansion 

Clearly, more stable memory will be needed at some point or another by servers and possibly by clients. To take 

care of the problem of expandability, two expansion commands are provided to the user. The two commands are 

createExtentO and removeExtentO reflecting the fact that the stable store class is called the extent. 

CreateExtentO is the command called when the user wishes to add a large chunk of stable memory to the MOM 

space. Calls to this command will be infrequent at best as it will create files in the hundreds of megs and gigs. The call 

5 



will initially update the MOM file so that in the event of failure later in the call, stable space will be added on recovery. 

In the event that creation is impossible rather than not completed, the reference to the new stable store will be removed 

from the MOM file. 

RemoveExtent() is the other command provided to the user for dealing with expansion of MOM space. In this case, 

the space provided by an extent will be removed. As the user cannot know where MOs actually reside, this command 

should never be called from a server site. RemoveExtent() will merely remove the path from the MOM file (not deleting 

the extent file), so the stable space can be recovered at a later time by a call of createExtent() with the appropriate path. 

5 Implementation Classes 

Three classes are used in the implementation of the MOM subsystem. They are the MO, the MOM and the extent. The 

MO stores the information related to memory objects; the MOM manages MOs, stable memory stores and movement 

between stable and volatile memory; and the extent manages MO s use of stable memory. 

5.1 Memory Objects 

The implementation of the MO is straightforward. The MO stores data related to its state and provides hooks to the 

other two classes to access this information. In addition, it provides the public functions in the interface section. 

Volatile Memory 

Slate 
Location 

Offset I I 

e,tent
 
Oid
 Sizeof( 
Size 

MO 

Figure 5: The relationship of MO with volatile and stable memory. 

As a MO is persistent, the data ofeach instance is a chunk ofstable memory mapped into volatile memory. To obtain 

this memory, the new operation is overloaded to obtain stable memory from the MOM. In addition to the instance space, 

6 



--------

there is a block of memory which is also allocated by the new operation. This block is the memory manipulatable by 

the storage class. An instance of a MO in relation to its stable space is shown in Figure 5. 

The public functions of the MO check the MO s state and call MOM functions to enact major changes. For example, 

the MO changes its state values, but calls MOM to be mapped into volatile memory. 

5.2 Memory Object Manager 

MOM r--------------------------------, 
I 

Mapped MOS Managed MOs Extents I 

r-- ­

~- ~ f-­

NUIL 

'"_. "'­

I l ~ 
I 1 

I 

I 
f-­ I 
f-- I 
I-­ I 

I 
I 
I 

--' 

r­1 I 
I 

'--------'" 
Volatile Memory Stable Memory 

Figure 6: The structure of MOM with relation to memory. 

MOM s implementation focuses on the management of MOs, management of stable stores where the MO s reside, and 

the management of volatile memory. An inkling to the complexity of this job can be seen in Figure 6. It provides 

a number of hooks for the other two classes to enact its managerial roles and update it on changes. Furthermore, it 

provides a public indexing hook returning the MO associated with a given OlD. 

The management of MOs consists of dealing with their construction and destruction, changes to their OlD and 

requests to move the MO into volatile memory. When asked for stable space for a new MO, MOM asks its extents for 

a MO space until one is found or no space is found. In addition, the MO will be added to the list of managed MOs. 

During deletion of a MO, the appropriate stable store will be informed of the change, and the MO is removed from the 

list of managed MOs. As the list of MOs is indexed by OlD, MOM needs to be informed of a change to the OlD of a 

MO. The list location is updated upon a change. The mapping management hook is provided for a MO to ask that it be 

mapped into volatile memory. 

In order to manage stable stores, MOM keeps a list of them and allows creation of additional stores only through 

the MOM public functions. The stable stores are asked for persistent space whenever a new MO is constructed. The 

7
 



stable stores are kept in a list which is saved in the MOM file and recovered when the site comes up. Whenever a new 

store is created, the list is appended and the MOM file modified. 

The role of manager of volatile memory requires that MOM handles volatile replacement. A list of MOs which are 

currently mapped is kept by MOM. A replacement policy works through this list of MOs, unmapping them to ensure 

that volatile memory is available when needed. 

As the list of MOs managed by MOM is indexed by OlD, the associative operation indexing function is provided 

for free. 

5.3 Extents 

I I 22""------__
 
Extent MO Header Array MoSpace
 
Header
 

Figure 7: The structure of the extent's stable space. 

The management of stable space is the role held by the extent class implementation. The extent allocates stable space 

for MOs and enacts a replacement policy over this space. As the extent deals with stable space, each extent has a 

stable file associated with it. This file is broken down as in Figure 7. An array of MO headers is mapped by the extent 

from the extent file into volatile memory at all times as shown by the stable memory element in Figure 5. Beyond the 

allocation of a MO header from this array during the construction of a MO, stable space is allocated from the MO space 

at the end of the extent file. Each MO header is permanently associated with a fixed sized block of stable memory from 

this MO space. This space can be reallocated to a MO of an equal size following deletion of the MO. 

Part of management involves removal of unused resources. Provided the extent is working under a client MOM 

a stable replacement policy is enacted. The policy works through the array of MO headers, deleting MOs which are 

unused. 

6 Conclusion 

MOM provides an interface to storage classes which use the BOSS system. MOM provides a two simple classes in a 

simple metaphor. The bookkeeping of manually mapping has been hidden from the storage class, and the functionality 

is cleaner. As an additional bonus, MOM has an indexing function, so callers have no need to remember MOs ifthey 

already have the OlD. 

8 



A Users Guide 

The users guide describes the public functions available to the user. Everything related to the MOM is contained in 

<mom/Mom.h> and <mom/Mo.h>, so inclusion of those files is necessary to use these functions. The users guide is 

split into three sections, the first contains the standard operations that will be sufficient for most storage classes. The 

next section touches on a few more functions which are not strictly necessary, though useful. The last section contains 

unusual functions which are public, but whose invocation will be highly irregular. 

A.I Standard Operations 

This section includes all operations that will typically be needed by the average user. The commands include the MOM 

constructor, MO constructor/destructor, MO pin/unpin, MO 10c/size/oid/mark1ead. 

Mom: :Mom(int flag, II 0 for client, 1 for server 
int virt, II Amount of volatile memory mom can populate 
int stable, II Amount of stable memory to create if not extant 
int maxmos, II Maximum number of mos in initial extent 
char *path) II Name of the initial path

( 

The standard operation to fire up a MOM is to create or reload a MOM. The new operation will search if a MOM 

already exists. If it does, it will ignore all other given arguments and load the existing file. The procedure will also 

load any stable memory files which are named in the file. 

If the file does not exist, the operation will assume that it is to create a new MOM file by the pathname given as the 

fifth argument. The given arguments are used in this case. The first argument flags whether the new MOM is to be a 

client or server. The second argument tells the amount of volatile memory the MOM should constrain herself to. The 

third and fourth arguments are only used in the event that an extent of the given path does not exist. When creating a 

new stable space, the third argument is its stable size, and the fourth argument is the maximum number of MO s allowed 

in the stable array. 

One warning when creating a MOM. The stable memory should exceed the available volatile memory by the size 

of the largest block that can be anticipated. Ifnot, stable replacement might not occur as all replaceable MO s could be 

held by the volatile memory manager and be thus unavailable to the stable memory manager. 

new (size) Mo::Mo(oid)
 
Mo: : -Mo ()
 

9 



Construction and destruction of a Memory Object is fairly straightforward, however the new operation for a MO is 

overloaded presenting a possibly bizarre syntax. When a new MO is desired the user should use the following format: 

new ((int) size) Mo( (ObjID) oid) 

This syntax will give the storage class a MO which has a storage space of size size and an ObjID of oid. A stable 

memory location will first be allocated, and then the MO will be pinned into volatile memory. Due to the operation of 

the constructor, the user should unpinO or delete the MO as soon as its immediate use is done. If the MO is left pinned, 

the volatile memory space held by the MO cannot be replaced by MOM. Unpinning the MO will keep the MO in stable 

storage for an indeterminate amount of time on a client site or until deleted on either type of site. 

The delete operation should be used whenever the MO is no longer needed. 

void *Mo: :pin () 
void Mo:: unpin ( ) 

The pinO operation will pin the MO into volatile memory. If the object is not in volatile memory, it will map 

the MO in from stable storage before pinning it. If it is unable to pin the MO, a pointer to NULL will be returned. 

Otherwise, a pointer to the volatile memory location will be returned. This memory space can be cast or used any way 

the user desires provided it does not exceed the size of the MO (obtainable via Mo: :sizeO). The MO will stay in volatile 

memory until it is unpinned or deleted. 

The unpinO operation frees the pin keeping the MO into volatile memory. In addition, it calls an operation to 

asynchronously synchronize the page in case of a crash. Once the unpinO operation is called, there is no guarantee as 

to whether the MO is mapped from stable into volatile memory, is only in stable memory, or, in the case of a client site, 

no longer exists at the site. UnpinO should be called whenever the immediate need for a MO is gone. 

void *Mo:: loc ( ) 
int Mo::size() 
ObjID Mo: :oid() 
void Mo: :rnark_read () 

Calling locO on a MO will give the volatile memory location of the MOs memory space, if the MO is in volatile 

memory. As a result of multi-threading, locO can theoretically return a memory location which will not be valid by 

the time the storage class accesses it as locO does not guarantee a pinned MO. In the event that the MO is not in volatile 

memory, it will return a pointer to NULL. 

SizeO will return the size of the memory space associated with the MO. 

10 



OidO will return the object identifier associated with the MO in question. 

MarkJeadO has the effect of telling the MO that the storage class has touched it recently. This operation will lower 

the probability that the MO will be cleaned out of memory by MOM replacement policies. A MO should be marked as 

read even if the user has the object pinned, since an unread, pinned MO has a lower replacement priority than read MO 

s, though it will not be arbitrarily removed from memory. 

A.2 Advanced Operations 

The advanced operations are not needed by all users, but are useful nonetheless. Commands include the [] indexing 

function, an assignment operation for oids, a command to query if the MO is pinned and a command to unpin all MOs 

currently pinned by the MOM. 

Mo *Mom::operator [] (ObjID) 

Every MOM holds a dictionary associating all its MOs with their object identifiers. The user can avail themselves 

of this dictionary by specifying an oid to the MOM as follows: 

( 
\ 

Mo *mo=mom[oid]; 

This command will check the given oid to see if there is a corresponding Mo. If there is, the MO will be returned. 

If there is not, a pointer to NULL will be returned. This function was often used as follows: 

if (! (Mo *mo=mom[oid]))
 
II doesn't exist, deal
 

else if	 (! (void *loc:mo->pin()))
 
II can't pin, deal
 

else {
 
II manipulate Mo space at loc as desired
 
mo->unpin()i
 

These lines will pin the MO associated with the given oid into volatile memory where the memory space can be 

manipulated however the user desires. 

ObjID Mo::oid(ObjID)
 
bool Mo::is-pinned()
 

11 



The oid(ObjID) function allows the user to assign a new oid to a MO. The new value will be recorded in the MO, 

the assignment will be persistent and the MOM will be appropriately notified. 

Is_pinnedO returns a boolean value as to whether the MO in question is pinned into volatile memory. It returns a 1 

if it is, and a 0 if not. 

void Mom::massunpin() 

MassunpinO is called on the MOM and is a possibly destructive act. It tells the MOM to unpin all MOs which are 

currently mapped. The danger lies with multiple threads connected to the same MOM when one thread unpins MOs 

which might be needed by another thread. This occurrence could result in a segment violation. 

A.3 Unusual Operations 

int Mom::createExtent(int size, II size of extent stable memory 
int maxmos, II maximum mos allowed 
char *path) II pathname of extent 

int Mom::removeExtent(char *path) 

These two operations will be called by storage classes infrequently at best. CreateExtentO creates an extent by the 

given pathname. If the pathname already exists, a new extent will not be created, the path there will merely be loaded. 

In the other case, an extent of the given path with a stable memory size of the given size and a maximum number of 

MO s equal to maxmos will be created. MOM will know about the new extent until the extent is removed. The eventual 

size of this new extent will be equal to size+getpagesizeO+maxmos*sizeof(MO). A negative return value signifies an 

error. 

RemoveExtentO will remove all MOM knowledge of the specified pathnamed extent. If the file does not exist to 

MOMs knowledge, a 0 will be returned. The extent file is not removed from the filesystem. RemoveExtentO should 

almost never be called as the user cannot know which extents hold which MOsand MOs would be mistakenly deleted 

. from MOM knowledge. 

void Mom:: ~Mom ( ) 

The MOM destructor is the safe way to shut it down. All MOs are unpinned, everything is unmapped, extents are 

closed and the MOM shuts down. When the MOM is brought back up again via new, all the extents and MOs will be 

reloaded. 

12 



B Acknowledgments 

The author would like to thank David E. Langworthy for the gracious pennission to use some of his many graphic 

elements in the production of this paper, and for his direction and management throughout this project. It would have 

been at least poorly written, if not impossible without him. 

References 

[1]	 D. Langworthy. Memory Object Management in the Brown Object Storage System. Unpublished paper (as of 
yet), Department of Computer Science, Brown University, 1994. 

( 
\ 



II This may look like C code, but it is really -*- c++ -*­

#ifndef MO_H
 
#define MO_H
 

1************************************************************************1 
II Memory Object Sub (Mosub) Header 
II February 10, 1994 
II 
II Vincent C. Rubino 
II 
II The point of a Mo is to provide persistent memory to the user that can 
II be moved in and out of volatile memory quickly. 
1************************************************************************1 

1* Include BOSS Headers *1 
#include <bo/BOSS.h> 
#include <mom/Mom.h> 

/************************************************************************/ 

1* *1 
1* Class Mo *1 
1* *1 
/************************************************************************/ 

class Mo 
( 
friend class Mom;
 
friend class Extent;
 

i 

\ public: 

void *operator new(size_t, II get memory from Mom for class, 
int) ; II cleaning Mo\'s if insuff space 

II also get block of size int 

void operator delete(void *p);	 II free memory for 
II class. 

Mo(ObjID) ;	 II get a virtual and stable pinned block 
II of size int from Mom; 

-Mo () ;	 II release the stable block and clean 
II up extraneous; 

enum { read_v = 0, unread_v, read_s, unread_s}; 
enum { pinned=O, unpinned, doomed}; 

void *loc ()	 { if (-pinned==doomed) return NULL; 
else return _virtual location; 

void *pin () ; II pin the Mo 
void unpin () ; II unpin the Mo 

ObjID oid ()	 { return _oid; } 
ObjID oid (Obj ID oid);	 II changed the oid of the Mo 

void mark_read(); II mark the Mo as having been recently read 
int size() return _size; 

static void set_mom(Mom *m) _mom = m;} 

int virtsize();	 II returns the virtual memory 
II taken by mapping the mo. 



bool is-pinned() { return (-pinned==pinned); } 

private: 
void doom ( ) -pinned=doomed; 

void set_size(int s) { _size=s; } 
void set_stable(off_t 1) {_stablelocation=l;} 
void set_loc(void *newloc){ _virtuallocation=newloc; 

off_t stableloc() return _stablelocation; 

Extent *extent() return _extent; 
void extent(Extent *ext) _extent=ext; } 

void 
void 
void 
void 

void 

void 

mark-pinned ( ) 
mark_unpinned() 
force_reads ( ) 
force_unread ( ) 

force_unreadv ( ) 

force_unreads() 

{ -pinned=pinned; } 
{ -pinned=unpinned; 
{ _state=read_s; } 
( force_unreadv(); 

force_unreads() ; 
if (is_readv()) 

_state=unread_v; 
if (is_reads()) 

_state=unread_s; 

void 
void 

*unsafePin(); 
unsafeUnpin(); 

II 
II 

calls made 
calls made 

if the 
if the 

lock is known 
lock is known 

to be held 
to be held 

void 
void 
void 

mark_unread(); 
mark_unreads() ; 
mark_unreadv() ; 

II mark 
II mark 
II mark 

as 
as 
as 

being unread 
being unreads 
being unreadv 

bool 

bool 
bool 
bool 
bool 
bool 
bool 

is_read ( ) 

is_reads () 
is_readv( ) 
is_unreadv ( ) 
is_unreads ( ) 
is_doomed ( ) 
is_unpinned ( ) 

{ 
{ 
{ 
{ 
{ 
{ 

return 

return 
return 
return 
return 
return 
return 

«_state==read_v) I I 
(_state==read_s)); 

(_state==read_s); } 
(_state==read_v); } 
(_state==unread_v); 
(_state==unread_s); } 
(-pinned==doomed); } 
(-pinned==unpinned); } 

protected: II This space is obtained from _mom 
static Mom *_mom; 

ObjID _oid;
 
off_t _stablelocation;
 
Extent *_extent;
 
void *_virtuallocation;
 
int _size;
 
unsigned int _state : 3;
 
unsigned int -pinned: 2;
 
unsigned int _rank : 27;
 

} ; 

#endif 1* MO_H *1 



II This may look like C code, but it is really -*- c++ -*­

#ifndef _MOM_H
 
#define _MOM_H
 

1************************************************************************1 
II Memory Object Manager (MOM) Header 
II February 10, 1994 
II 
II Vincent C. Rubino 
II 
II The point of the MOM is to manage the flow of stable to volatile memory 
II via the extent and MO constructs. It takes care of volatile replacement. 
1************************************************************************1 

#include <LEDA/dictionary.h>
 
#include <fcntl.h>
 
#include <sys/mman.h>
 

1* Include BOSS Headers *1
 
#include <bo/BOSS.h>
 
#include <nm/ObjID.h>
 
#include <mtcp/MTCP_Thread.H>
 

extern "C" (
 
int getpagesize();
 

} ;
 

extern int compare(const ObjID&, const ObjID&);
( 

1************************************************************************1 
1* *1 
1* Class Mom * I 
1* * I 
1************************************************************************1 

const int _MAX_CACHED_MOS = 2*1024; 

class Mom {
 
friend class Mo;
 
friend class Extent;
 

public:
 
enum { client = 0, server };
 
static int _PAGE_SZ;
 

Mom(int flag, int virt, II open/create Mom file 
int stable, int maxmos, 
char *name); 

-Mom ( ) ;	 II clean up the destruction of the Mom 

int createExtent(int=100*1024*1024, II Create extent of specified path 
int maxmos=1024*1024, 
char* =1_testExt"); 

int removeExtent(char* =1_testExt");11 Close extent from Mom 

Mo *operator [] (ObjID);	 II Return the meMory object for 
II the oid 

int isserver ()	 { return (_isserver==TRUE); 



static void lock()
 
static void unlock()
 

void massunpin(); 

private: 
void *initMo(size_t, 

int=4*1024); 

void delMo (void *); 

void changeObjld(ObjID, ObjID); 
void registerObjld(ObjID, Mo *); 

void *mapBlock(Mo *); 

void unrnapBlock(Mo *);
 
void unrnapBlock(Mo *, int);
 

int addPinnedList(Mo *); 

void dumpMomfile(); 

void loadMomfile(); 

off_t alignOffset(off_t); 
int alignSizeModifier(off_t); 

void checkForCleaning(int); 
void prepareForCleaning(int); 

void repopulateMolist(); 

protected: 

II Persistent information
 
int _vsize;
 
int _numextents;
 
int _isserver;
 

II Volatile information
 
char _Mompath[lOO];
 
int _virtfree;
 
int _currentextent;
 
int _num_mapped_mos;
 

static Thread_Lock _ext lock; 
static Thread_Lock _molistlock; 

dictionary<int, Extent*> _extents; 

dictionary<ObjID, Mo *> _molist; 

_mom_lock.acquire();
 
_mom_lock.release();
 

II unpin every mo associated 
II with the thread 

II get stable space for Mo information 
II also get a block of size int 

II delete stable space for Mo 
II information after clearing it 
II from volatile memory 

II set first ObjID Mo to second value 
II register ObjID for the given Mo 

II Notifies Morn that Mo needs to 
II be in volatile memory. 
II Morn will clear up volatile 
II space, rnrnap the block and return 
II pointer to block 

II get Mo * out of virtual memory 
II unrnap mo from virt mem from given 
II place in pinnedarray 

II open space in pinnned list, then 
II add mo to it. 

II will dump the morn file to disk ! 

II will trash any file that is there \ 

II loads the morn file from disk 
II trashing all info in volatile 
II memory 

II gives the page offset before off_t 
II gives the distance of off_t to 
II beginning of its page 

II clean given mo if it can be cleaned 
II mark mo as unread 

II Hack to get around thread package 

II Some are persistent, 
II most are calculated 

II size of total Morn virtual memory 
II number of extents 
II flag if it is a server or a client 

II path of the Morn file 
II size of allocable Morn virtual memory 
II current extent for walking 
II number of mapped mos 

II lock for extent dictionary 
II lock for molist dictionary 

II head of the list of extents 
II iterate* and search for name 
II list of managed Mo\'s 



II search on ObjID 

Mo *-pinnedarray[_MAX_CACHED_MOSJ;11 head of list of cached Mo\'s 

static Thread_Lock _mom_lock; II lock for mom status stuff 

int 
) ; 

_currentmo; II current rna in the pinned array 

#endif I*_MOM_H *1 

(
 

{ 
\ 



II This may look like C code, but it is really -*- c++ -*­

#ifndef _EXTENT_H 
#define _EXTENT_H 

1************************************************************************1 
II Extent Header 
II March 15, 1994 
II 
II Vincent C. Rubino 
II 
II The point of the Extent object is to keep track of the stable memory space 
II for the mom. Basically a mom will have at least one extent and will 
II be the only location where extents can be added. Extents can 
II be loaded, created and allocated from. The extent package takes 
II care of cleaning out the stable memory. 
II 
II Quick overview on the file structure of an extent: 
I I I_I I I , _ 
II EI MoIndex Memspc 
II 
II EI contains persistent extent information 
II MoIndex is the space allocated for internal Mo information 
II Memspc is the memory space given given to Mo\'s. 
II 
II For each MoIndex entry there is one memory space. memspc is a multiple 
II of 8 bytes. 
1************************************************************************1 

1* Include BOSS Headers *1
 
#include <bo/BOSS.h> (
 
#include <sys/types.h>
 
#include <mom/Mo.h>
 
#include <mom/Mom.h>
 

1************************************************************************1 
1* *1 
1* Class Extent *1 
1* *1 
1************************************************************************1 

class MOj 

static char *_testExtent=l/tmp/test.ext"j 

class Extent 
{ 
friend Momj 

public: 
Extent(char* =_testExtent, II path for the extent
 

int=50*1024*2, II maximum number of mo\'s
 
int=50*1024*1024)j II maximum total space for extent
 

-Extent()j 

void *allocMo(int=512)j	 II try to allocate space for Mo
 
II and memspc of size int
 
II return Mo or NULL--NULL chk errno
 
II -1 err; 0 can\'ti 1 canj
 
II -2 overlunder totblk ie next Ext
 

bool is-path(char *path) return (!strcmp(path, -path»j }
 
char *path ( ) return -pathj }
 
int size () return *_sizej }
 



int vsize(); II return virtual space taken by ext 
int fd () ( return _fd; ) 

static void set_mom(Mom *m) (_mom=m; ) 
static void set-page(int pg) LPAGE_SZ=pg; } 

void sync(); II asychronously sync the _mo1ist 
void sync (Mo *); II synch the specified Mo 

private: 
int cleanMo(int monum); II mark mo as cleaned 

II -1 err; a can\'t; 1 can; 
int canDoAllocMo(int monum, int sz);11 check if mo can be allocated 

II -1 err; a can\'t; 1 can 

void assignExtentVars(); II set all the int *\'s to the 
II correct locations 

void initializeExtentVars(char * , I I put initial values into extent 
int, int) ; 

int mapExtentVars(); II map extent information 
int mapMolist () ; II map molist 
void fillMomMolist(); II fill mom with mo\'s 
void unsafeFillMomMolist(); II file mom with mo\'s once locked 
void unsafeRecoverMos(); II called as part of recovery 
int createExtentFile(char *, int); II make a new extent 
void *alloclnitialMo(int); II Allocate a mo from free space 
void dumpMos () ; II dump extent information 

II for debugging 

I 
protected: 

\ static Mom *_mom; II pointer to mom 
static int _PAGE_SZ; II page size for the process 

int _fd; II file descriptor of Extent 
int *_size; II total size of extent (xxx save) 
off_t *_memspcoffset; II offset of start of memory space 
int *_maxnummos; II maximum number of mo\'s in extent 
int *_nummos; II current number of mo\'s in extent 
off_t *_freememspcoffset; II starting pointer of free memspace 
int _currentmonum; II current mo for allocation 

char *-path ; II the name of the path 

void *_mappedindex; II total mapped index area 

Mo *_molist; II Mo\'s wlin the extent 
} ; 

#endif 1* _EXTENT_H *1 



II This may look like C code, but it is really -*- c++ -*­

/************************************************************************/ 

II MeMory Object (Mo) Source 
II February 10, 1994 
II 
II Vincent C. Rubino 
II 
II The point of a Mo is to provide persistent meMory to the user that can 
II be Moved in and out of volatile meMory quickly. 
/************************************************************************/ 

#include <mom/Mo.h> 
#include <mom/Extent.h> 
#include <signal.h> 

#ifdef Mo_DEBUG 

Thread_Lock PRINT_LOCK; 
FILE *DEBUG_file = 0; 

#endif 

/************************************************************************/ 

1* *1 
1* Class Mo *1 
1* *1 
1* Syntax for creating: new (size) Mo(objid); *1 
/************************************************************************/ 

void *Mo::operator new(size_t mosize, int size) 
{ 

void *temp=_mom->initMo(mosize, size); 
if (temp==NULL) 

cerr « "Could not Allocate!" « endl; 
return (temp); 

void Mo::operator delete(void *mo) 
{ 

_mom->deIMo(mo); 

Mo::Mo(ObjID objid) 
{ 

_oid=objid; 
_mom->registerObjId(objid, this); 
-pinned=unpinned; 
_virtuallocation=NULL; 
pin () ; 

int Mo::virtsize() 
{ 

return _size; 

Mo: :-Mo() 
{ 
} 

void *Mo::unsafePin() 
{ 

if ((-pinned==pinned) && (_virtuallocation)) 



_state=read_v; 
return _virtuallocation;
 

}
 

if (-pinned==doomed) {
 
II Cant do anything with a doomed object. 
cerr « "Attempt to pin doomed object" « endl; 
return NULL; 

}
 
if (_virtuallocation==NULL) {
 

if ((_virtuallocation=_moro->mapBlock(this» == NULL) 
cerr « "mapBlock failed on " « _oid « endl; 
return NULL; 

}
 

-pinned=pinned;
 
_state=read_v;
 
return _virtual location;
 

void *Mo:: pin ( ) 
{ 

if «(-pinned==pinned) && (_virtuallocation»
 
_state=read_v;
 
return _virtual location;
 

}
 
_mom->lock();
 
if (-pinned==doomed) {
 

II Cant do anything with a doomed object.
 
cerr « "Attempt to pin doomed object" « endl;
 
_mom->unlock();
 
return NULL;
 

}
 

if (_virtuallocation==NULL) {
 
if ((_virtuallocation=_mom->mapBlock(this» == NULL) 

cerr « "mapBlock failed on " « _oid « endl; 
_mom->unlock(); 
return NULL; 

}
 

-pinned=pinned;
 
_state=read_v;
 
_mom->unlock();
 
return _virtual location;
 

void Mo: :unpin() 
{ 

if (-pinned!=pinned) 
return;
 

_mom->lock();
 
if (-pinned!=doomed)
 

-pinned=unpinned;
 
_mom->unlock();
 
_extent->sync();
 

void Mo::unsafeUnpin() 
{ 

if (-pinned!=doomed) 
-pinned=unpinned; 

_extent->sync() ; 

void Mo:: mark_read () 



if (_state==read_v) 
return; 

_mom->lock(); 
if (_state==unread_v) 

_state = read_v; 
else if (_state==unread_s) 

_state = read_s; 
_mom->unlock(); 

void Mo: :mark_unread ( ) 
{ 

if ((_state==unread_v) 
return;
 

_mom->lock();
 
force_unread();
 
_mom->unlock();
 

void Mo::mark_unreads() 

if (_state!=read_s) 
return; 

_mom->lock(); 
force_unreads(); 
_mom->unlock(); 

void Mo: :mark_unreadv () 
{ 

if (_state!=read_v) 
return; 

_mom->lock(); 
force_unreadv(); 
_mom->unlock() ; 

ObjID Mo::oid(ObjID oid) 
{ 

_mom->lock(); 
_mom->changeObjld(_oid, 
_oid=oid; 
_mom->unlock(); 
return _oid; 

I I (_state==unread_s)) 

oid); 



II This may look like C code, but it is really -*- c++ -*­

1***************************************************** ******************* 
* Memory Object Manager (MOM) * 
* February 10, 1994 * 
* * 
* Vincent C. Rubino * 
* * 
************************************************************************1 

#include <mom/Mom.h>
 
#include <class/StorageClass.h>
 
#include <signal.h>
 
#include <mom/Mo.h>
 
#include <mom/Extent.h>
 
#include <nm/ClsID.h>
 

#ifdef MOM_DEBUG 

Thread_Lock PRINT_LOCK;
 
FILE *DEBUG_file = 0;
 

#endif 

#define MOM_MAX_MOS_STABLE 2000 
Mo *_moarray[MOM_MAX_MOS_STABLEJ; II vcr hack replacing molist 

1************************************************************************1 
1* *1 
1* Class Mom *1 

( 1* *1 
1************************************************************************1 
Thread_Lock Mom::_mom_lock;
 
Thread_Lock Mom::_extlock;
 
Thread_Lock Mom::_molistlock;
 

#ifndef SOLARIS
 
int Mom::_PAGE_SZ = getpagesize();
 
#else
 
#include <unistd.h>
 
int Mom::_PAGE_SZ = sysconf(_SC_PAGESIZE);
 
#endif
 

Mom::Mom(int flag, int virtualmemsize, int maxmos, int stablememsize, 
char *path) 

:_currentmo(O) 
( 

cerr « "Calling Mo::set_mom and Extent::set_mom setting them to: 
« (u_long) this « endl;
 

Mo::set_mom(this);
 
Extent::set_mom(this);
 
Extent::set-page(_PAGE_SZ);
 

for (int i=O; i<_MAX_CACHED_MOS; i++)
 
-pinnedarray[iJ=NULL;
 

I I open Mom file 

sprintf (_Mompath, "%s .mom", path);
 
int test=open(_Mompath, O_RDWR, 666);
 
if (test<O) ( II file probably doesn't exist
 

cerr « "Mom cannot be opened, creating "; 
if (flag==client) cerr « "client" « endl; 
else cerr « "server" « endl; 



II Initialize internal Morn information 

_currentextent=_nurnextents=O;
 
_virtfree=_vsize=virtualmemsize;
 
if (flag==client)
 

_isserver=FALSE;
 
else
 

_isserver=TRUE;
 

II save information to the file
 
durnpMomfile () ;
 

II check for error 
if (createExtent(maxmos, stablememsize, path) <0) ( 

perror("Fatal: Cannot create extent in new Morn"); 
kill(getpid(), SIGSTOP); 
return; 

cerr « "Morn file and initial extent have been created" « endl; 
} II end if file doesn\'t exist 
else ( 

cerr « _Mompath « " Morn file exists. Loading morn" « endl;
 
close(test);
 
loadMomfile () ;
 
_currentextent=O;
 
II end if file does exist
 

Morn: : -Morn ( ) 
( 

II unpin all the mo\'s
 
massunpin();
 

II Just delete all the extents
 
lock () ;
 
for (int i=O; i<_nurnextents; i++) (
 

Extent *ext=_extents.inf(_extents.lookup(i»;
 
if (ext!=NULL)
 

delete ext;
 
} 
unlock(); 

void Mom::massunpin() 
( 

lock () ;
 
for (int i=O; i<_MAX_CACHED_MOS; i++)
 

if (-pinnedarray[i] !=NULL) (
 
Mo *mo=-pinnedarray[i];
 
mo->unsafeUnpin();
 

}
 
unlock () ;
 

int Mom::createExtent(int size, int maxmos, char *path) 
(
 

char buff[lOO];
 
sprintf (buff, "%s. extent", path);
 
cerr « "Creating new extent" « endl;
 
Extent *ext=new Extent (buff, maxmos, size);
 
if (ext==NULL)
 



return -1; 

II add Extent to list of Momextents
 
_extlock.acquire();
 
_extents. insert (_numextents++, ext);
 

durnpMomfile () ; 

_extlock.release(); 

cerr « "extent created" « endl;
 
return 1;
 

void Mom::dumpMomfile() 
{
 

cerr « "Dumping Morn file" « endl;
 

II shadow morn file
 
char tmpbuf[100l;
 
sprintf(tmpbuf, "%s.tmp", _Mompath);
 

FILE *momfd=fopen(tmpbuf, Ow"); 
if (momfd==NULL)
 

II deal with error
 
return;
 

fprintf(momfd, "%d\t%d\t%d\n", _isserver, _vsize, _nurnextents); 
for (int i=O; i<_nurnextents; i++) { 

dic_item it=_extents.lookup(i);
( if (it) { 

Extent *ext=_extents.inf(it); 
if (ext) 

fprintf(momfd, "%s\n", ext->path()); 
else 

fprintf (momfd, "%s \n", "NULL_EXTENT"); 
} 
else 

fprintf (momfd, "%s \n", "NULL_EXTENT"); 
} 
fclose (momfd) ;
 
II unshadow momfile
 
if (rename (tmpbuf, _Mompath) <0)
 

perror("Problem in dumpMomfile()");
 
cerr « "Morn file dumped" « endl;
 

void Mom::loadMomfile() 
{
 

char buf[100l;
 
cerr « "Loading Morn file" « endl;
 

II See if a previous shadow of morn file exists
 
sprintf(buf, "%s.tmp", _Mompath);
 
FILE *momfd=fopen(buf, Or");
 
if (momfd!=NULL) {
 

cerr « "Morn file probably out of date" « endl; 
fclose (momfd) ; 

I I open MOM file
 
momfd=fopen(_Mompath, "r+")i
 
if (momfd==NULL) {
 

cerr « "Cannot load morn file" « endli 



kill (getpid(), SIGSTOP};
 
II deal with error
 
return;
 

II load information from MOMfile
 
fscanf(momfd, "%d%d%d\n", &_isserver, &_vsize, &_nurnextents};
 

cerr « "Loaded Morn: ";
 
if (_isserver) cerr « "server, ";
 
else cerr « "client, ";
 
cerr « "virtmemsize: " « _vsize « " and" « _nurnextents
 

« " extents" « endl; 

II load extent names, and load extents
 
_virtfree=_vsize;
 
for (int i=O; i<_nurnextents; i++)
 

fscanf(momfd, "%s\n", buf};
 
cerr « "Loading" « buf « endl;
 
if ((strcmp(buf, "NULL_EXTENT")}!=O} {
 

Extent *ext=new Extent((char *} buf}; 
_extents.insert(i, ext}; 
II_virtfree-=ext->vsize(} ; 

}
 
fclose (momfd) ;
 
cerr « "Morn file loaded" « endl;
 

int Mom::removeExtent(char *path} 
{ 

int i; 
int found=FALSE; 
Extent *ext; 

II check if path exists and in Morn extents
 
II remove from extent list
 
_extlock.acquire(};
 
for (i=O; i<_nurnextents; i++) {
 

ext=_extents.inf(_extents.lookup(i}};
 
if (ext!=NULL)
 

if (ext->is-path(path})
 
found=TRUE;
 
break;
 

} 

if (! found) {
 
_extlock.release(} ;
 
return 0;
 

}
 
_extents.del(i};
 

II save change to MOMfile
 
dumpMomfile () ;
 
_extlock.release(};
 

II close extent
 
delete ext;
 
return 1;
 

Mo *Mom::operator[] (ObjID objid) 
{ 



II fixes multi-threading problem. 

static firsttime=li
 
static counter=Oi
 
if (firsttime) {
 

lock () i 

if (counter<3) {
 
repopulateMolist()i
 
_currentmo=Oi
 
firsttime=Oi
 
counter++i
 

} 

unlock()i
 
}
 
return (_moarray[(objid.SegINT())])i
 

void Mom::repopulateMolist()
 
{
 

II fixed multi-thread problem
 

for (int i=Oi i<MOM_MAX_MOS_STABLEi i++)
 
_moarray[i]=NULLi
 

for (i=Oi i<_numextentsi i++)
 
Extent *exti
 
dic_item it=_extents.lookup(i)i
 
if (it) {
 

ext=_extents.inf(it)i
 
ext->mapMolist()i
 
II ext->unsafeRecoverMoS()i
( ext->unsafeFillMomMolist()i 

void *Mom::initMo(size_t, int blocksize) 
{
 

int startext=_currentextent-li
 
Extent *ext=NULLi
 
void *mo=NULLi
 
dic_item iti
 
int iterations=Oi
 

if (startext<O) startext=_numextents+2j
 

II Allocate stable space for Mo from extents
 
II go through all extents at least twice before giving up.
 
_extlock.acquire()i
 
while (iterations<2) {
 

while ((_currentextent!=startext) && (mo==NULL)){ 
Ilcerr « "Looking at extent" « ext « endl; 
if (ext==NULL) { 

if (it=_extents.lookup(_currentextent)) 
ext=_extents.inf(it)i 

else { 
_currentextent++i 
if (_currentextent>(_numextents+2)) _currentextent=Oi 

f }\ 
if (ext!=NULL) { 

void *mo=ext->allocMo(blocksize)i 
if (mo==NULL) { 

_currentextent++i 
if (_currentextent>(_numextents+2)) _currentextent=Oi 



ext=NULL; 
else {
 

_extlock.release();
 
II cerr« "Extunlock" « endl;
 
return mo;
 

_currentextent++; 
iterations++;
 

}
 

_extlock.release();
 
kill(getpid(), SIGSTOP);
 
return NULL;
 

void Mom::delMo(void *loc) 
{ 

II view loc as a Mo * 

Mo *mo=(Mo *) loc; 

II unpin/doom the mo 

mo->doom(); 

II delete Mo from _molist 

_molistlock.acquire();
 
_moarray[(mo->oid()) .SegINT()]=NULL;
 
_molistlock.release(); I 

\
 

II if object is in virtual memory
 
if ((mo->loc() !=NULL) I I (mo->is_unreadv()) I I (mo->is_readv())) {
 

unrnapBlock(mo);
 

II smtoss it
 
mo->oid() .ClsID() .getInstance()->smtoss(*mo);
 

II set size to -size to signify that it has been deleted
 
int tmpsz=-(mo->size());
 
mo->set_size(tmpsz);
 

void *Mom::mapBlock(Mo *mo) 
{ 

int mospc=addPinnedList(mo); 
if (mospc<O) { 

cerr « "Cannot allocate space for mo in virtual memory" « endl; 
return NULL; 

II rnrnap mo into virtual memory
 
Extent *ext=mo->extent();
 
void *location=rnrnap(NULL,
 

(mo->size()+ 
alignSizeModifier(mo->stableloc())), 

PROT_READ I PROT_WRITE, 
MAP_SHARED, ext->fd(), 
alignOffset(mo->stableloc())) ; 

if (! location) {
 
cerr « "Fatal Error: Cannot map Mo" « endl;
 



return NULL; 

II take away total virtual memory
 
_virtfree-=mo->virtsize();
 

II return the location
 
return (void *) ((int)location+alignSizeModifier(mo->stableloc()));
 

void Mom::unrnapBlock(Mo *mo) 
(
 

II find mo in pinned list
 
for (int i=O; i<_MAX_CACHED_MOS; i++)
 

if (-pinnedarray[i]==mo)
 
unrnapBlock(mo, i);
 

void Mom::unrnapBlock(Mo *mo, int cachedloc) 
(
 

II pull mo from pinnedarray[cachedloc]
 
-pinnedarray[cachedloc]=NULL;
 

II increment size of available virtual memory
 
_virtfree+=mo->virtsize();
 

II vrntoss it
 
mo->oid() .ClsID() .getInstance()->vrntoss(*mo);
 

II munrnap mo from virtual memory
/
\ munrnap((caddr_t) ((int) (mo->loc())-alignSizeModifier(mo->stableloc())), 

mo->size()+alignSizeModifier(mo->stableloc())) ; 

II set mo->_virtuallocation to NULL
 
mo->set_loc(NULL);
 

II set mo to read_s and unpinned.
 
mo->force_reads() ;
 
mo->mark_unpinned() ;
 

int Mom::addPinnedList(Mo *mo) 
(
 

int temp=_currentmo-l;
 
if (temp<O) temp=_MAX_CACHED_MOS-l;
 
while ((_currentmo!=temp) 1* II (isserver() !=TRUE) */) (
 

II if extant, mark 50% away from currentmo for cleaning 
prepareForCleaning(_currentmo); 

if (-pinnedarray[_currentmo] !=NULL) II clean if possible 
checkForCleaning(_currentmo) ; 

II if (_currentmo==NULL && enough volatile space) 
II assign and return 
if ((-pinnedarray[_currentmo]==NULL) && 

(_virtfree>=mo->virtsize())) { 
-pinnedarray[_currentmo]=mo; 
return 0; 

}
 
II increment currentmo;
 
if ((++_currentmo»=_MAX_CACHED_MOS)
 

_currentmo=O;
 
} II end endless
 
II virtual memory is full
 



return -1; 

void Mom::checkForCleaning(int mo) 
{ 

II if unreadv and unpinned, doom it 
if (-pinnedarray[mo]==NULL) 

return;
 
if ((-pinnedarray[mo]->is_unreadv(» &&
 

(-pinnedarray[mo]->is_unpinned(»)
 

-pinnedarray[mo]->doom() ; 

II unrnapBlock
 
unrnapBlock(-pinnedarray[mo], mo);
 
II end if statement
 

void Mom::prepareForCleaning(int mo) 
{ 

int temp=(mo+(_MAX_CACHED_MOS»1»&(_MAX_CACHED_MOS-1); 

if (-pinnedarray[temp] !=NULL)
 
if (-pinnedarray[temp]->is_readv(» {
 

-pinnedarray[temp]->force_unreadv();
 

off_t Mom::alignOffset(off_t loc) 
{ 

II align the given offset to the start of the appropriate page 
return ((10c»12)«12); 

int Mom::alignSizeModifier(off_t loc) 

II return size modifier for the given offset
 
II ie 10c==200 aligns to 0, so size modifier is 200.
 
return (10c&4095);
 

void Mom::changeObjld(ObjID old, ObjID changed) 

_molistlock.acquire();
 
_moarray[changed.SegINT()]=_moarray[old.SegINT()];
 
_moarray[old.SegINT()]=NULL;
 
_molistlock.release() ;
 

void Mom::registerObjld(ObjID oid, Mo *mo) 
{
 

_molistlock.acquire();
 
_moarray[oid.SegINT()]=mo;
 
_molistlock.release();
 



II This may look like C code, but it is really -*- c++ -*­

/************************************************************************/ 

II Extent Source 
II February 10, 1994 
II 
II Vincent C. Rubino 
II 
II The point of an Extent is to provide stable meMory to the mom that can 
II be allocated easily and cleaned up without her knowing 
1************************************************************************1 

#include <mom/Extent.h>
 
#include <fixed/Fixed.h>
 
#include <signal.h>
 
#include <errno.h>
 
#include <sys/mman.h>
 
#inc1ude <sys/types.h>
 
#include <syscall.h>
 

extern "C" {
 
int syscall(int code, ... );
 

int Mom::_PAGE_SZ; 

#ifdef Mo_DEBUG 

Thread_Lock PRINT_LOCK;
 
FILE *DEBUG_file = 0;
{ 

\ 

#endif 

#define MAP_FAILED -1 

1************************************************************************1 
1* *1 
1* Class Extent *1 
1* *1 
1************************************************************************1 

Extent::Extent(char *path, int maxmos, int size)
 
{
 

II open path
 

cerr « "opening an extent. Args:"« path « ", " « maxmos « " 
« size « endl; 

int initial=_fd=syscall(SYS_open, path, O_RDWR, 0666); 
if (_fd<O) { II file probably doesn\'t exist 

cerr « "extent does not exist, will create" « endl;
 
II create file
 
if (createExtentFile(path, (size+_PAGE_SZ+maxmos*sizeof(Mo»)<O)
 

kill(getpid(), SIGSTOP); 

II mmap _freeblocks, _firstfreeblock, _maxblocks and _size 
II save _size _freeblocks by mapping ... 

if (mapExtentVars()<O)
 
kill(getpid(), SIGSTOP);
 

II make pages a little more accessible 

assignExtentVars() ; 



if (initial<O) (
 
II initialize size, firstfreeblock, freeblocks and maxblocks
 
II init _size, memspcoffset, maxnummos, nurnrnos, freememspcoffset
 

initializeExtentVars(path, maxmos,
 
(size+_PAGE_SZ+maxmos*sizeof(Mo»);
 

_molist=NULL; 

if (mapMolist()<O)
 
kill(getpid(), SIGSTOP);
 

if (initial>=O) (
 
II fill up morn with all the current Mo\'s
 
_mom->lock();
 
unsafeRecoverMos();
 
fillMornMolist();
 
_mom->unlock();
 

}
 

else
 
cerr « "$ initial == O\n";
 

II initialize information
 

_currentmonurn=O; 

Extent::-Extent() 
{ ( 

II -Extent is used to close the Extent file. 
\ 

II munmap mapped index and list of mo information 
if (munmap((caddr_t) _molist, *_maxnummos*sizeof(Mo»<O)
 

II deal with error;
 
return;
 

if (munmap((caddr_t) _mappedindex, _PAGE_SZ) <0)
 
II deal with error
 
return;
 

II close Extent file
 
close(_fd);
 

int Extent::createExtentFile(char *path, int size) 
( 

_fd=syscall(SYS_open, path, O_CREAT I O_RDWR, 0666); 
if (_fd<O) (/* II major error *1 

perror("Cannot create extent file"); 
return -1;
 

}
 

if (ftruncate(_fd, size)<O) (
 
perror("Cannot truncate file"); 
return -1;
 

}
 
return 1;
 

void Extent::initializeExtentVars(char *path, int maxmos, int size) 
( 

*_size=size; 
*_nurnrnos=O; 
*_maxnurnrnos=maxmos; 
strcpy(-path, path); 



*_freememspcoffset=*_memspcoffset=
 
(_PAGE_SZ+*_maxnummos*sizeof(Mo)) ;
 

void Extent: :assignExtentVars() 
( 

_size=(int *)_mappedindexi 
_memspcoffset=(off_t *) ((int)_size+sizeof(int)); 
_maxnummos=(int *) ((int)_memspcoffset+sizeof(off_t)); 
_nummos=(int *) ((int)_maxnummos+sizeof(int)); 
_freememspcoffset=(off_t *) (_nummos+sizeof(int))i 

-path=(char *) (_freememspcoffset+sizeof(off_t))i 

int Extent::mapMolist() 
{ 

if (_molist!=NULL) { 
if ((_mappedindex = (int *) mmap((caddr_t) _mappedindex, 

perror("Cannot remap 
return -1; 

} 

assignExtentVars(); 
munmap((caddr_t) _molist,

{ 

_PAGE_SZ,
 
PROT_READ I PROT_WRITE,
 
MAP_SHARED IMAP_FIXED,
 
_fd,
 
0)) == (int *) MAP_FAILED) (
 

Extent header"); 

*_maxnummos*sizeof(Mo))i 
Mo *tmp= (Mo *) mmap((caddr_t) _molist, 

*_maxnummos*sizeof(Mo)," PROT_READ I PROT_WRITE,
 
MAP_SHARED IMAP_FIXED,
 
_fd,
 
_PAGE_SZ) i
 

if (tmp==(Mo *) MAP_FAILED) { 
perror ("Extent: :mapMolist () failed: unable to mmap") i 
return -1; 

}
 

else {
 
_molist=tmpi
 

}
 

else (
 
_molist=(Mo *) mmap((caddr_t) _molist,
 

*~axnummos*sizeof(Mo), 

PROT_READ I PROT_WRITE,
 
MAP_SHARED,
 
_fd,
 
_PAGE_SZ) i
 

cerr « "Mo list stable at " « _PAGE_SZ « " and virtual at " 
« (void *) _molist « endl; 

return 0 i 

int Extent::mapExtentVars()
 
{
 

if ((_mappedindex = (int *) mmap(NULL, 
_PAGE_SZ, 
PROT_READ I PROT_WRITE, 
MAP_SHARED, 
_fd, 



0)) == (int *) MAP_FAILED 
perror("Cannot nunap within extent constructor"); 
cerr « errno « endl; 
return -1; 

}
 

return 0;
 

void Extent::fillMornMolist() 
{ 

II fill up mom with all the current Mo\'s 
_mom->_molistlock.acquire(); 
unsafeFillMornMolist(); 
_mom->_molistlock.release() ; 

void Extent::unsafeFillMornMolist() 
{ 

int i; 
Mo *mo; 

cerr « "Filling MornMolist" « endl; 
for (i=O; i<*_nununos; i++) {
 

mo= _molist + i;
 
if (mo->size () >0) {
 

II inserts the mo in the momlist as a side effect 
_mom->registerObjId(mo->oid(), mo); 

} 

else 
cerr « "Neg SZ: $ " « mo->oid() « endl; 

void Extent::unsafeRecoverMos() 
{ 

int i; 
Mo *mo; 
cerr « "RecoveringMos" « endl; 
for (i=O; i<*_nununos; i++) { 

mo= _molist + i; 
if (mo->size(»O) { 

mo->set_loc(NULL); 
mo->_extent=this; 
II vcr what if it died while doomed? 
mo->mark_unpinned(); 
mo->force_reads(); 

} 

else 
cerr « "Neg SZ: $ " « mo->oid() « endl; 

void Extent::sync() 
{ 

msync((caddr_t) _molist, *_maxnununos*sizeof(Mo), MS_ASYNC); 

void Extent::sync(Mo *mo) 
{ 

II implemented, but not necessary. 

void *Extent::allocInitialMo(int size) 
{ 



_rnorn->lock();
 
cleanMo(*_nurnrnos) ;
 

Mo *rno=_rnolist + *_nurnrnos;
 
rno->set_size(size);
 
rno->_extent=this;
 
rno->_stablelocation=*_freernernspcoffset;
 
*_nurnrnos+=l;
 
*_freernernspcoffset+=size;
 
_rnorn->unlock() ;
 

return (void *) rno;
 

void Extent::durnpMos() 
{ 

cerr	 « "Dumping all" « *_nurnrnos 
« " Mas in Extent " « this « endl; 

for (int i=O; i<*_nurnrnos; i++) {
 
Mo *trnprno=_rnolist+i;
 
i f (trnprno ) {
 

cerr « trnprno->oid(); 
cerr «"Size: "« trnprno->size(); 
if (trnprno->is-pinned()) 

cerr « ", pinned"; 
if (trnprno->is_unpinned()) 

cerr « ", unpinned"; 
if (trnprno->is_doorned()) 

cerr « ", doomed"; 
if (trnprno->is_readv())

( cerr « ", readv"; 
if (trnprno->is_unreadv()) 

cerr « ", unreadv"; 
if (trnprno->is_reads()) 

cerr « ", reads"; 
if (trnprno->is_unreads()) 

cerr « ", unreads"; 
cerr « endl; 

cerr	 « "Mo's dumped" « endl; 

void	 *Extent::allocMo(int size) 
{ 

II deal with initial allocation 
if (size%8!=O) { 

cerr « "Not size of character" « endl; 
kill(getpid(), SIGSTOP); 
II is not the size of a character 
return NULL; 

bool nornos= (*_nurnrnos>=*_rnaxnurnrnos);
 
bool nospc= (size> (*_size-(int) *_freernernspcoffset));
 

static int firsttirne=l;
 
if (firsttirne) {
 

if (rnapMolist()<O)
 
kill(getpid(), SIGSTOP);
 

firsttirne=O;
 

II Do the allocation part now. 



if (nomos I I nospc) (
 
II clean up some space for the Mo
 
_rnorn->lock() ;
 
while (_currentrnonurn < *_nurnrnos)
 

cleanMo(_currentrnonurn); 
if (canDoAllocMo(_currentrnonurn, size) == 1) 

II We have found a slot! 
_rnorn->unlock(); 
return (_rnolist + _currentrnonurn++); 

} 
_currentrnonurn++; 

} 
II We are at the end of this extent. Let Morn try another. 
_currentrnonurn = 0; 
_rnorn->unlock(); 
return NULL; 

} 
else (
 

II still some space in extent for a new rno
 
return (alloclnitialMo(size));
 

int Extent::cleanMo(int block) 
( 

II Inital conditions 
if (*_nurnrnos < 2) ( 

return 1; 

II Real code
 
int cleanrno=((block+(*_nurnrnos/2))%(*_nurnrnos));
 

Mo *rno;
 
if (rno = _rnolist + cleanrno)
 

rno->force_unreads();
 

return 1; 

int Extent::canDoAllocMo(int block, int size) 
( 

II calculate Mo * from block 
Mo *rno= _rnolist + block; 

bool deleted_good_size=(rno->size()==-size); 
bool candelete=((_rnorn->isserver()==FALSE) &&
 

(rno->is_unreads()) &&
 
(rno->is_unpinned()));
 

II decide if block has been deleted or can be deleted 

if (deleted_good_size) ( II rno has been deleted 
rno->set_size(size); 
return 1; 

} 

if (candelete) II rno can be deleted 
delete rno; 

II check if deleted rno is the right size
 
if (rno->size() !=-size)
 



return 0;
 
}
 
mo->set_size(size);
 
return 1;
 

}
 

return 0;
 

int Extent::vsize() 
{ 

return (_PAGE_SZ+*_maxnummos*sizeof(Mo)); 

(
 

( 

\ 




