
BROWN UNIVERSITY
 
Department of Computer Science
 

Master's Project
 

CS-94-M6
 

"A Toolkit for the Construction of Three
 
Dimensional Interfaces"
 

by
 

Marc Stevens
 

.:i,. 



A Toolkit for the Construction of Three
 
Dimensiol1al Interfaces
 

Marc Stevens
 

Department Of Computer Science
 

Brown University
 

Submitted in partial fulfillment of the requirements for
 

the degree of Master of Science in the Department of
 

Computer Science at Brown University
 

February 1994
 

February 25,1994 



A Toolkit for the Construction of Three
 
Dimensional Interfaces
 

Marc Stevens 

mps@cs.brown.edu 

Dept. of Computer Science
 

Brown University
 

Box 1910
 

Providence, HI 02912
 

Abstract 

This paper presents a toolkit for the construction and prototyping of three 

dimensional interfaces, interactive illustrations, and three dimensional 

widgets. The toolkit provides methods for the direct manipulation of 3D 

primitives which can be linked together through a visual programming 

language to create complex constrained behavior. Features of the toolkit 

include the ability to encapsulate and parameterize complex models, exposure 

of the constraint behavior to the user, the ability to impose limits, and an 

intuitive user interface. 

February 25,1994 2 



1.0 Introduction
 

In this paper, we present a toolkit for constructing and prototyping three 

dimensional widgets, interactive illustrations, and three dimensional 

interfaces [5]. We begin with a core set of 3D primitives that can be combined 

in various ways to create more complex constructions. We add a powerful 

visual language that includes the notion of classes containing typed variables, 

upon which relational operations, e.g. «, >,... ), can be performed, and 

parametrized subroutines. Interface issues for the specification of constrained 

geometry are also addressed. Finally, we present the toolkit's architecture 

which is easily extended to add more complex functionality, enhance the 

visual language, and add new primitives. 

Interface issues involved in a constrained based 3D toolkit include presenting 

constraints that can be established on objects, visualizing which constraints 

have been established, and easily modifying constraints once they are 

established. If these issues are ignored, it forces the user to resort to trial and 

error to get the desired behavior. Over the past several years, there have been 

many other systems developed for specifying constrained geometry in both 

two [17] and three dimensions [3][7][10]. These systems have had varying 

degrees of success in providing functionality and flexibility. To a large 

measure, the degree to which these systems have succeeded or failed is 

determined by how well they have addressed the interface issues mentioned 

above. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25.1994 3 



Brown University developed one such 3D toolkit for constructing three 

dimensional widgets [5] such as deformation racks [14], interactive shadows 

[9], and other constrained three dimensional geometries using a visual 

programming language. The toolkit provides a set of 3D widget primitives for 

constructing interactive behaviors by constraining the affine transformations 

of objects, and an interactive 3D interface for combining these widget 

primitives into more complex widgets. 

Although Brown's toolkit was successful in constructing a fixed set of three 

dimensional widgets, it has many shortcomings. In every attempt to build a 

new widget, either the visual language or the primitive set was not powerful 

enough to support the new construction. The architecture of the toolkit made 

the addition of new primitives or functionality a difficult and time consuming 

task. The users of the toolkit found the interface for specifying constraints 

hard to understand and difficult to use. We address these issues in our new 

toolkit. 

In section 2.0 we give an overview our toolkit and its capabilities. In section 

3.0 we discuss the visual language. In section 4.0 we discuss the interface 

design issues in specifying constraints. Section 5.0 details the toolkit 

architecture and implementation details. 

2.0 Overview Of The Toolkit 

The toolkit provides direct manipulation of 3D primitives through a visual 

language. These primitives are used to construct widgets, interface objects, 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 4 



and application objects whose geometry is affinely constrained. Constraints 

apply not only to the geometry but may also be applied to other non-geometric 

attributes. The visual programming paradigm of our toolkit has significant 

advantages over methods used by other toolkits, such as libraries [12][15] and 

graphical networks [1][8][10]. The traditional approach to designing user 

interface toolkits is to use libraries of software objects which are created using 

standard programming languages. This makes the task of visualizing the 

complex relationships between these objects difficult. It also rilles out the 

possibility of non-programmers using them to do interface prototyping. The 

second paradigm is based on the graphical manipulation of function networks. 

In this paradigm, the developer wires together 2D boxes that have no direct 

relation to the application objects they represent. Our toolkit's direct 

manipulation paradigm has both the advantage of direct manipulation of 

application objects and a visual language that allows non programmers to use 

the toolkit for interface protoyping. 

3.0 Visual Language 

We introduce a visual language for constructing 3D interfaces. This language 

provides the framework for the construction of constraint relationships 

between toolkit primitives. The language consists ofclasses represented by 3D 

toolkit primitives. These classes contain typed variables called slots. Slots on 

classes can be linked to establish constraint relationships between primitives. 

We can then create new classes by encapsulating complex collections of 

constrained primitives. These encapsulations add new primitive classes to the 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 5 



toolkit and can be optionally parametrized and called (like a subroutine) to 

recreate complex constructions. 

3.1 Classes 

A class is an abstraction of the geometry and behavior of a toolkit primitive. A 

geometric object is associated with each class to provide a visual 

representation. The class behavior is defined by the slots on the class and the 

class's interaction technique. We define a constraint relationship between two 

classes by linking the slots on those classes. 

3.2 Slots 

Slots are typed variables in our visual language and represent the 

constrainable quantities of a class. Each primitive has a geometric 

representation and one or more slots which define its behavior. Primitives are 

constrained by their slots and are initially unconstrained. Constraints are 

defined by linking the slots on one primitive to the slots on another primitive. 

A linking operation is effected by the selection of a destination primitive slot 

and a source primitive, followed by explicit user confirmation. This link sets 

up a bi-directional data flow between the slot on the destination primitive, 

and one or more slots on the source primitive. 

Interaction techniques specify how to modify a slot during user interaction 

while maintaining the constraint relationships of the other slots. For 

example, if a point's position is constrained to a line and the point is then 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 6 



manipulated, the constraint can be resolved either by moving the point along 

the line or by moving the line with the point. The interaction technique chosen 

is one of, or a combination of, these solutions. When a link is established, a 

new interaction technique is installed on the primitive to reflect this new 

constraint. The toolkit supports translational and rotational interaction 

techniques. The selection of an interaction technique could have been an 

implementation choice, but this would prevent the user from selecting the 

interaction technique best suited for their particular problem. We therefore 

leave the choice to the user. 

3.2.1 Type Conversion 

Each slot also has a type. Types are used in the system to identify different 

geometric attributes of a primitive, such as position, direction, or length. Since 

our slots represent variables that can be linked together, we must address the 

problems of linking incompatible types. 

Type checking is performed when slots are linked together to see if the data 

types are compatible. If the types are compatible, then data is passed through 

unchanged. To allow the linking of incompatible types, the toolkit supports a 

set of cast operators which convert data of one type to a compatible type. This 

is similar to the cast function in the "C" programming language. The toolkit 

links source primitives to destination primitive slots. A cast operation takes a 

primitive as an argument and produces a typed value as a result. This 

flexibility allows the casting functions the use of one or more of the slots on 

the source primitive when converting the source data to the destination slot 
A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 7 



type. This is why our cast functions take a primitive instead of a specific slot 

as input. 

Since the data flow between slots is bi-directional, we also define uncast 

operators which converts data from the destination slot of a link back to the 

type of the source primitive. For every cast operation there is an uncast 

operation. Although this cast and uncast solution has the disadvantage of 

requiring the specification of both functions for all possible combinations of 

data types, we have eliminated the need to compute inverses. Relationships in 

numerical solvers are specified by mathematical equations, not all of which 

can be inverted (i.e, they cannot necessarily be rewritten to solve for each 

variable in the equation). A typical solution in numerical solvers is to write 

further equations to represent the non-invertible cases. This is similar to 

specifying the uncast operation. 

3.2.2 Constraint Resolution 

We provide a detailed example to illustrate the linking process and how 

constraints are resolved. In this example, we link a vector primitive's position 

slot to a point primitive. We first select a vector primitive as the destination 

primitive, and then a point primitive as the source primitive. An arrow is 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 8 



drawn between the two primitives to indicate the pending link (shown in 

Figure 1). 

(a) (b) 

Figure 1 Linking Primitives (a) link pending, (b) link established. 

We then select the slot of interest (in this case, the Pos slot) on the destination 

primitive through a MOTIF window (Figure 2). We are now presented with a 

list of possible options for establishing the constraint. 

Figure 2 The Primitive's slots and the linking options. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 9 



These options combine the casting function, the interaction technique, and 

the methods for establishing the constraint. In this case we are presented 

with a single option which we select. Finally, we confirm the link by clicking 

on the glue bottle. The link is then established between the position slot on 

the vector primitive and the point primitive (as shown in Figure 3). 

Vector Primitive 
Point Primitive 

Position 

Direction 

Length 
Source 

Destination
 

Figure 3 Data flow between the vector primitive and the point primitive
 

A link is created internally by storing a pointer to the source primitive in the 

linked slot of the destination primitive and by storing a pointer to the 

destination primitive in a list on the source primitive. When the user 

translates the point, the toolkit intercepts the mouse interaction and passes 

the mouse information to the point primitive's interaction technique. Since 

there are no constraints placed on the Pos slot of the point primitive, the 

interaction technique sets the value of the position slot to the new mouse 

location. The interaction technique then calls the point's resolution method. A 

resolution method is a method defined on each primitive that first resolves the 

slots of the primitive, then updates the graphical representation of the 

primitive, and finally calls the resolution methods of all of the primitives 

linked to it. If a slot is linked, then the slot is resolved by casting the primitive 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 10 



linked to the slot to the type of the slot being updated. If the slot is not linked, 

then its value remains unchanged. 

In our example, the resolution method of the point primitive does not change 

the value of the position slot given by the point's interaction technique since 

the slot is not linked. The point is redrawn at its new position. Next, the 

point's resolution method calls the vector primitive's resolution method. When 

the vector primitive's resolution method resolves its Pos slot, it updates the 

slot by casting the point primitive to the type position, the type of the vector 

primitive's Pos slot. The return value of the cast is the value of the Pos slot of 

the point primitive (Figure 4). 

Vector Primitive Point Primitive 

Position 

Direction Position 

Length 

Destination Source 

Figure 4 The Result of casting a point primitive to a position 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 11 



Since the vector's Dir and Len slots are not linked they are not changed. The 

vector is now redrawn with its base at the position of the point primitive. A 

summary of the flow of control is depicted in Figure 5. 

Mouse interaction with point, 
Point's interaction technique, 
Point's resolution, method 

Vector's resolution method 

Resolutiontf vector's Pos slot 

Figure 5 Flow of control summary in constraint resolution 

Now when the user translates the point, the base of the vector follows the 

point. Similarly, if the user attempts to translate the vector, the interaction 

technique of the vector allows the vector to freely translate and then assigns 

the new value of the vector's position to the point through an uncast function. 

3.2.3 Dynamic Slot Creation 

A link may not constrain all of the degrees of freedom of a slot. (The degrees of 

freedom of a slot are the ways, either translational or rotational, in which a 

constrained slot is free to vary.) These remaining degrees of freedom are 

represented by a dynamically created new slot on the primitive. For example, 

if we constrain a point primitive's position slot to a vector, then the point is 

projected onto the vector. The point interaction technique allows it to move 

along the line defined by the vector. A new slot, therefore, is created on the 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 12 



point primitive, called the T slot, which represents the parametric distance of 

the point along the vector. This slot is now constrainable and can be used to 

restrict the point's location along the line. The resolution method for the point 

resolves the Pos slot by first resolving the T slot, and then using the T value 

and the vector to cast into the type position, the type of the Pos slot. It should 

be noted that these dynamically created slots are defined on the primitives on 

a case-by-case basis. 

3.3 Description of Toolkit Primitives 

In this section, we describe the set of basic primitives defined in the toolkit. 

There is a fundamental difference between this toolkit's primitives and those 

in Brown's previous widget construction toolkit [18]. The difference stems 

from the definition of a primitive. The original toolkit had primitives 

consisting of multiple pieces of geometry and constraints between these pieces 

of geometry. In some ways, the name primitive was a misnomer. In our toolkit, 

all of the primitives have exactly one piece of geometry to represent them and 

all of the slots start out unconstrained. We designed our primitives to be 

simple, but powerful enough to build the more complex primitives in Brown's 

toolkit. This approach reduces the unnecessary and confusing clutter of 

complex primitives. The philosophy of this toolkit is based on the idea that 

more complex entities can be created from the simpler primitives using the 

encapsulation methods described in Section 5.0. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 13 



As in Brown's toolkit, we base the basic primitives on the Euclidean 

coordinate system metaphor (i.e., points, vectors, planes, and volumes). 

Previous experience has shown that this allows for the expression of a wide 

variety of constructions. It should be noted that this primitive set, although it 

has a fair amount of expressive power, is by no means adequate for all 

conceivable constructions. The toolkit was designed to allow for the easy 

addition of new primitives, or the extensions of existing primitives as the need 

for new behaviors arise. 

The toolkit contains four basic primitives, the point primitive, the vector 

primitive, the plane primitive, and the graphical object primitive. Each 

primitive has an associated class which is an abstraction of the geometry and 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 14 



behavior (including interaction methods) of the primitive. Figure 6 shows the 

4 basic primitives. 

(a) (b) 

-
(c) (d) 

Figure 6 Toolkit primitive (a) point primitive, (b)vector primitive, (c) plane primitive, (d)
 
geometric object primitive.
 

The point primitive, represented by a small sphere, has one constrainable slot, 

the Pos slot, which is of the type position. The Pos slot is an abstraction of a 

three space position. The default interaction technique on this primitive is the 

free translation of the point in 3-space. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 15 



The vector primitive, represented by a small arrow, has three slots, a Dir slot 

of type direction, a Pos slot of type position, and a Len slot of type length. The 

Dir slot represents the direction of the vector, the Pos slot represents where 

the base of the vector is in three space, and the Len slot represents the length 

of the vector. The default interaction technique of the vector primitive is the 

rotation of the vector, which sets the value of the Dir slot. By default the 

vector's Pos slot is located at the origin and the Len slot is set to 1.0. 

The plane primitive, represented graphically by a flat sheet, has five slots, the 

Normal slot of type direction, the Center slot of type position, two Size slots 

for the length and width of the sheet both of type length, and the Up slot of 

type direction. The Normal slot represent the normal to the sheet, the Size 

slots represent the scale for the length and width of the sheet, and the Up slot 

represents the orientation of the sheet (similar to PHIGS VUP). 

The final primitive, the graphical object primitive, encompasses all of the 3D 

modeled objects (e.g., cubes, spheres, eSG's) available in UGA, Brown's 

modeling and animation system [16]. This primitive is similar to the plane 

primitive in that it has slots that represent the local 3D coordinate system of 

the modeled object, i.e., Normal, Up, Center, and Size in three dimensions. 

We extend these slots to include other non-geometric attributes of the modeled 

object; for example, we have added Red, Blue, and Green slots of type real to 

represent the object's color. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 16 



3.4 Encapsulation
 

Encapsulation is the process by which networks of linked primitives are 

stored and recreated by the toolkit. The toolkit supports two types of 

encapsulation, structural encapsulation and class encapsulation, both of 

which can be optionally parametrized using a technique called parametrized 

encapsulation. 

3.4.1 Structural Encapsulation 

Structural encapsulation aids the user by reproducing a network of linked 

primitives. For example, we might link a vector to two points so that the 

vector spans the two points (as shown in Figure 7). 

(b)(a) 

Figure 7 Vector primitive spanning two point primitives (a) before linking, (b) after linking 

This is a construction we will use repeatedly, so we encapsulate it and name 

the encapsulation "line". The encapsulation process creates a new "line" menu 

item (as shown in Figure 8). 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 17 



(b)(a) 

Figure 8 Primitives menu (a) before "line" creation, (b) after ''line'' creation 

A user who clicks on the "line" menu item gets a vector and two points with all 

the links of the original network that were encapsulated. The new network's 

behavior is identical to the original. 

Structural encapsulation is implemented by traversing the constraint 

network of a construction and creating copies of all of the primitives and the 

links in the network. These copies are then stored by the toolkit but not drawn 

on the screen. When a structurally encapsulated object is requested, copies of 

all the primitives and links associated with network are created. These new 

primitives are then drawn. 

3.4.2 Class Encapsulation 

Class encapsulation is similar to structural encapsulation in that the 

constraint network is traversed and copies of all the primitives and links in 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 18 



the network are created. It differs in that we associate a new class with the 

collection of primitives in the encapsulated construction. We can think of this 

as creating a new primitive in the toolkit. Let's change our "line" example 

above to use class encapsulation. Now when we encapsulate the vector and 

points construction we also specify a class for the encapsulated construction, 

in this case the class "Line". The point and vector primitives' classes are 

changed to the class Line. This class modification changes the linking 

behavior of the primitives. When we link to a structurally encapsulated 

construction, we link directly to the primitive the user clicks on. For example, 

if we link a primitive to the vector primitive in the structurally encapsulated 

line, we are actually linking to the vector primitive, which is of the class 

vector. In class encapsulation, when we link to the vector primitive within the 

line, we actually link to the Line primitive. This allows new constraint 

behavior to be defined on the class encapsulated primitive. The new class 

encapsulated primitive behaves identically, during interaction, to a primitive 

created with structural encapsulation, but its behavior can be overridden as 

described below. 

New classes are implemented by creating a new primitive which has slots for 

each primitive in the encapsulated network. These slots can optionally be 

named by the user when the object is encapsulated. In the line example, a 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 19 



Line primitive is created with slots for the two points and the vector called, 

respectively, start-point, end-point, and center_span (see Figure 9). 

start_point point primitive 

end_point 
point primitive 

center_span 

vector primitive 

Line Primitive 

Figure 9 The slots on the line primitive created by class encapsulation 

Assigning new classes to networks of primitives provides a mechanism for 

changing the interactive behavior associated with a network of primitives. For 

example, if we try to rotate an endpoint of the structurally encapsulated line, 

nothing happens because a point primitive has no rotational interaction 

technique. If we use class encapsulation, then when we refer to the point 

primitive, we are actually referring to the Line primitive. Perhaps we want 

the Line primitive to rotate around its center when we rotate an endpoint. 

Since the Line primitive knows about all of its components, we can install a 

rotational interaction technique on the Line primitive that rotates the line 

about its center, maintaining the constraints associated with the construction. 

Now a user who tries to rotate an endpoint of the Line gets the desired 

behavior. 

Class encapsulation also helps us to address the problem of visually linking 

our interface objects to our application objects. For example, the rack widget 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 20 



[14] is an interactive tool that allows the user to deform geometric objects 

using the deformation operations described in [2]. The interactive behavior of 

the rack is easily constructed with the toolkit. When the rack is applied to 

geometric objects, we must somehow create a link between the interface 

object, in this case the rack, and the geometric object we are deforming. In 

Brown's previous toolkit this operation was done through a clumsy additional 

primitive called a black box [18]. In our toolkit, we can use the normal toolkit 

mechanisms of linking primitives (as shown in Figure 10). 

Figure 10 Linking the rack to a geometric object. 

We interactively build the behavior of the rack with the toolkit and then use 

class encapsulation to create a new rack primitive. The toolkit can treat 

application objects as primitives if slots are defined on the objects. We can also 

define the type of the slots which allows us to define the behavior of the slot 

when it is linked to other primitives. In this example, we create a slot on our 

application object which we call the deformation slot. We also define a 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 21 



behavior for the deformation slot when a rack primitive is linked to it. The 

behavior passes the values from the rack primitive to the deformation 

operations defined on the application object. Now when we link a rack 

primitive to the deformation slot of the object and the rack is manipulated, the 

rack's resolution method calls the resolution method of the application object, 

which in turn deforms the object. When we are finished deforming the object, 

we can break the link (unlinking is described in section 5.4). 

3.4.3 Parametrized Encapsulations 

The ability to encapsulate and recreate constructions can be thought of as 

invoking a subroutine to create a complex primitive. We introduce the ability 

to parameterize these subroutines which we call parametrized encapsulation. 

Often when we encapsulate a new class there are primitives in the network 

that we would like to keep as parameters. In our visual programming 

language, the primitives are the parameters to our subroutines. For example, 

if we create a line primitive as illustrated above, we might want to create it in 

such a way that we can create a line between any two points. In effect, we 

create a "line subroutine" that takes two endpoints as parameters. In our line 

subroutine, the endpoints can be any two points or any other primitives with 

the following restriction: the parameter passed must have a slot with the 

same slot type as the original primitive in the encapsulation. In this example, 

the parameters must each have a Pos slot. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 22 



To create a parametrized encapsulation, we specify the primitives which are to 

be parameters and then name them. When the class is created, the named 

primitives are marked as parameters. When users create a new primitive 

from a parametrized class, they are first prompted for primitives for the 

parameters. Ifno parameters are specified when the new primitive is created, 

then a duplicate of the primitive with which the encapsulation was originally 

created is used. One could say that the original parameters act as defaults for 

the parameters of the encapsulated object. 

Parametrized encapsulations are created and stored in a manner similar to 

that described in structural and class encapsulation, but they differ in the 

method by which they are instantiated. As the toolkit begins to copy 

primitives and links from the stored copy of the primitive, it looks for 

primitives marked as parameters. When it encounters a primitive marked as 

a parameter, it prompts the user for the parameter. Mter the user specifies 

the parameter (or a default is provided), all link information from the 

primitive stored by the toolkit is copied into the parameter. 

The ability to parametrize encapsulations greatly increases the usability of 

widgets like the interactive shadow widget [9]. The interactive shadow widget 

creates a shadow of an object by creating a scaled copy of the object and 

projecting it onto a shadow plane. These shadows are then used to 

interactively position objects. In Brown's toolkit, there was no way of creating 

a shadow widget on different objects without re-specifying all of the linking 

operations. In our toolkit, we might use a structurally encapsulated class, but 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 23 



this would create fixed primitives for the shadowed object and the shadow 

plane, which is of limited usefulness. By using parameterization we can 

specify that both the object to be shadowed and the shadow plane are 

parameters to the encapsulation. Now the user creates a shadow widget by 

specifying an object to be shadowed and a plane onto which to project the 

shadow. This makes it very easy for the user to create a shadow widget for any 

object in a scene. 

3.5 Limits 

There are many problems for which equality constraints are insufficient. As 

an example, consider a color picker made from three lines with points 

constrained to each of the lines. The three points slide up and down their 

respective lines, representing each point's distance from the start of its line as 

a fraction of the total line length. This fraction represents the percentage of 

red, blue, and green that are in the color of an object. In the standard RGB 

color model, color values are restricted to the interval between zero and one, 

but the toolkit allows the point to slide freely on the line. This produces values 

that can be greater than one or less than zero, which results in the color 

functions receiving invalid parameters. 

There are two possible solutions to this problem. First, we could check the 

values being passed to the color functions and clamp them between zero and 

one. This solves the problem of passing invalid values to the color routines, 

A Toolkit for the Construction of Three Dimensional Interfaces February 25.1994 24 



but does not provide the user with any visual feedback on the valid color 

ranges. Second, we could impose limits on the constrained primitives. 

We have taken the second approach in our visual language. We support 

comparison operators on slot variables, such as "greater than" and "less than", 

through limits. Limits impose additional restrictions on the data that flows 

between slots in the toolkit. 

Limits are imposed by associating limiting functions to slots. When a 

primitive's resolve method is called, it in turn calls methods to resolve each 

slot on the primitive. Mter the slots have been resolved, the slots are then 

limited. The limiting methods checks the slot value to insure that it falls 

within a given range. If it does not, the value is adjusted to be within the 

desired range. 

To continue with our color picker example, we can limit the point to lie on the 

line between the endpoints (as shown in Figure 11). This is accomplished by a 

limiting function which limits the value of the T slot of the point to the values 

between zero and the length of the vector. If the line segment is of unit length, 

then the color routines will receive valid values. An additional benefit to limits 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 25 



is that the point does not move past the ends of the line, providing the user 

with visual feedback on the valid point positions. 

(a) (b) 

Figure 11 Limiting a point (a) point primitive without limits (b) point primitive with limits
 
imposed.
 

With this ability to limit values we can enhance the representation of our color 

picker by making an RGB cube and limiting a point to lie within that cube, or 

making an HSV cone with a point limited to lie within the cone. This greatly 

extends our flexibility for interactive widget design. 

4.0 Interface Design 

User interfaces for specifying constraints [3][7][10][17][18] are often based on 

gestural pointing and clicking on the objects to be constrained. In the design of 

an interface for specifying geometric constraints the following problems must 

be addressed: What constraints can be applied to these objects? How can the 

constraints on these objects be visualized? What is the behavior of constrained 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 26 



objects under interaction? Is this behavior modifiable? Can we remove 

constraints? 

In most of the current systems the interface for specifying constraints fails to 

address one or more of these issues. Usually the behavior is implicitly defined 

by the implementation of the constraint solver. 

4.1 Linking Options 

It is often desirable to know what the linking behavior will be when two 

objects are constrained. For example, if we link a vector to a point, does this 

implicitly mean the vector is now based at the point or that the vector's 

direction points in the direction of the point? There are many potential 

possibilities, all of which can be the "correct" behavior depending upon what 

the user is trying to do. 

In commercial applications such as Intellidraw [17] on the Macintosh, the 

user is provided with hints in the form of icons that represent the constraint 

operations. Although this provides some help, the meaning of the icons is 

often difficult to decipher because the icons are too abstract. Additionally, 

when a user places multiple constraints on objects, the icon's meaning may 

become ambiguous. 

In our toolkit, all the slots that represent a primitive are formally defined. For 

example, the point primitive is defined entirely by its position in three space. 

A more complex primitive, such as the vector primitive, is defined by a 

position, direction, and a length. These attributes, or slots, on primitives are 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 27 



what is presented to the user through the interface as constrainable 

quantities. This allows the user to choose which of the slots of a primitive are 

to be constrained. 

The slot abstraction provides the user with a method for breaking a 

component down into its primitive behaviors. For example, the user who 

wants to constrain the location of a vector constrains the position slot of the 

vector. The user who wants to constrain the vector's direction uses the 

direction slot. In our toolkit, the slots are presented to the user in a Motif [12] 

window (see Figure 12). 

Figure 12 Motif Window for presenting the slots to the user. 

The toolkit provides a default selection of slots to be used in the linking 

operation. For example, if we link a vector to a point we normally want to link 

their respective positions. A user may, however, want to link the vector's 

direction, not its position, to the point. In this case the defaults can be 

overridden. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 28 



Currently the slots have no visual representation on the primitive. A possible 

future enhancement is the addition of a visual representation for the slots. 

This would allow the user to directly wire slots together and reduce the 

amount of movement between windows during slot selection. 

4.2 Interactive Behavior of Constrained Objects 

When objects are constrained, the resulting interactive behavior is often 

ambiguous. For example, if a point is first constrained to a line and then to a 

plane, there are several interaction behaviors possible when the point is 

moved. The point could stay fixed, the point could move along the line and the 

plane move with it, the plane and the line could move with the point, or the 

point could move in the plane and the line move with the point. All of these 

behaviors are acceptable, but the correct choice depends upon the 

expectations of the user. In most systems, the behavior is chosen by the 

underlying implementation of the constraint solver. 

The user should be able to choose from any of these options, and switch 

between them at will. In our toolkit, networks of primitives can be 

encapsulated into higher level classes which then have knowledge of the 

entire constraint network. Interaction techniques for these classes can be 

developed to exhibit behavior different from the behavior of the individual 

networked primitives while maintaining the constraint relationships. In the 

example given above we can build interaction techniques for each of the 

behaviors the user might want. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 29 



Currently these interaction techniques are developed by the toolkit author as 

new classes are created. It would be desirable in the future to automatically 

analyze the network and determine the degrees of freedom so that these 

interaction techniques could be automatically generated. 

4.3 Visualization of Constraints 

Once a network of constrained objects has been constructed, we would like to 

be able to examine the links in the network. In most constraint systems, the 

only way to accomplish this is to interactively move objects and deduce the 

constraints from their behavior. There are some systems such as Intellidraw 

in which a second window can be popped up to display the constraint network. 

This is helpful, but it still has the drawback of requiring a secondary window 

that is detached from the application objects. The user must still visually 

match the objects in the application window to the objects in the secondary 

window. Usually the entire constraint network is displayed, adding to the 

visual clutter on the screen and making it even more difficult to find the 

objects of interest. 

A more effective approach is to move the visualization of the constraints back 

into the same scene as the application objects. We accomplish this by drawing 

arcs between primitives to show constraint relationships. The user specifies 

the primitive of interest by clicking upon it with the mouse (see Figure 13). 

Outgoing arcs are drawn from the primitive to the primitives to which it is 

constrained. Incoming arcs represent primitives constrained to the specified 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 30 



primitive. Incoming and outgoing arcs are colored differently for visual clarity. 

The information display could be enhanced by adding text to the arc which 

clarifies the constrained slot. The advantage of this approach is that the user 

can focus directly on the object of interest without needing a second window. 

Figure 13 Visualizing links (a) cone's links, (b) point primitives' links. 

(a) (b) 

One visualization issue we have not addressed is that of indicating how a 

constrained object may move. For example, when we constrain a point to a 

line and then try to move the point, does the point move along the line or does 

the line move with the point keeping its same relative location? At this time 

we do not know of a toolkit which is capable of visually representing what the 

constrained interactive behavior is, nor do we have any ideas for a good visual 

representation for this. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 31 



4.4 Unlinking 

In Brown's toolkit, there is no mechanism for unlinking primitives. The 

widget designer is forced to restart after any mistake. This deficiency makes 

the toolkit very frustrating and difficult to use. 

In a system designed to allow the user to rapidly prototype different ideas, the 

user must easily be able to add and remove constraints from the primitives. 

There are several useful mechanisms for removing constraints from a system. 

A history mechanism is useful for undoing several past actions, an arbitrary 

removal of constraints allows the user to pick a specific constraint of interest 

to remove from a primitive, and a removal of all of the constraints frees a 

primitive from all its constraint relations. 

In our toolkit, we provide an unlinking history mechanism on a per primitive 

basis, as well as the other two unlinking methods listed above. With the 

history mechanism, each primitive keeps an ordered list of constraints 

involving itself as they are added. A global history mechanism is easily added 

by maintaining a list of primitive-slot constraint pairs. To implement the 

second undo mechanism, we note that primitives are constrained by slots, so it 

is easy to present the user with a list of constrained slots. For the final 

mechanism we can free all of the constrained slots on a primitive by removing 

all of the constraints on each slot. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 32 



4.4.1 Slot deletion 

As discussed earlier, when slots are linked together, new slots might be 

created to represent the remaining degrees of freedom on the slot. Care must 

be taken when primitives are unlinked to remove any slots created by that 

link. For example, when we link a point's position to a vector, we create a T 

slot. If we unlink the position slot of the point, the T slot no longer has any 

meaning for the point and so is removed. 

5.0 Implementation Details 

The toolkit is implemented in Brown's modeling and animation system, UGA 

[16]. UGA supports an object oriented scripting language called FLESH. We 

use an object oriented approach to constraint solving which takes advantage 

of UGA's delegation based sharing and FLESH's multiple inheritance and 

dynamic parenting. 

5.1 Object Inheritance 

Here we describe the object model for the toolkit primitives (Figure 14). The 

primitive object inherits from a geometric object and a behavioral object. The 

geometric object is modeled in UGA and defines the primitive's geometry. The 

behavioral object defines the class of the primitive. The class defines the 

default slots, resolution and limiting methods, and interaction techniques for 

the primitive. Behavioral objects in turn inherit from a constraint object 

A Toolkit for the Construction of Three Dimensional Interfaces February 25.1994 33 



which defines any additional fields and methods needed to establish and solve 

the constraints. 

(constraint Object) 

(geometriC Object) behavioral object 

~~ 
(Primitive Obje0
 

Figure 14 The toolkit primitive's object model.
 

5.2 Constraining Slots 

A slot is constrained by the dynamic addition of a slot constraint object to the 

end of the parent list of a primitive (Figure 14). 

constraint object 

behavioral object (geOmetric Object) slot constraint object 

~~/ 
primitive object
 

Figure 15 The object model after a constraint has been added.
 

The slot constraint object defines the new resolution and limiting methods for 

the slot, a method for establishing the constraint, and the new interaction 

techniques for the slot. These objects are presented to the user as options 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 34 



when primitives are linked (section 3.2.2). As other slots on a primitive are 

constrained, additional slot constraint objects are added to the parent list of 

the primitive. As slot constraint objects are added to a primitive, new slot 

resolution, limiting, and interaction methods occlude the previously defined 

methods. This is due to the multiple inheritance method lookup mechanism of 

UGA. 

These slot constraint objects combine the resolution methods, limiting 

methods, and interaction techniques. This a convenient way to bundle the 

various objects of constraint behavior together. In the future, it may be more 

flexible to break these apart into separate objects called slot resolution objects, 

slot limiting objects, and slot interaction objects. 

5.3 Interface details 

The user interface is managed by both the Snapper and the Solver objects. 

The Snapper object sets up all of the mouse mappings and tracks the user's 

choices of source primitives and destination slots. After the user has selected a 

source primitive and a destination slot, the Snapper object passes this 

information on to the solver object. The Solver object finds the appropriate 

constraint object to enforce the constraint requested by the user, and adds this 

information to the source and destination primitives. It then calls the 

establish and resolve method for the constrained primitive. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25.1994 35 



-- ----------------------------

5.4 Unlinking 

Unlinking is implemented through the use of dynamic parenting by removing 

the necessary constraint object from the parent list of the constrained 

primitive. An unlink method is also called before the object is removed. This 

method removes any slots created by the addition of this constraint. 

5.5 Adding new constraint behavior 

This section describes how to add new constraint behavior to a toolkit 

primitive. The addition of a new behavior to the toolkit involves creating a 

new slot constraint object (slot constraint objects are described in section 5.2.). 

Slot constraint objects have the following naming convention: 

"class::slot[::::class_extensionLClass". Everything in brackets is optional. 

The first class is the class of the primitive we are developing behavior for. The 

slot is the slot on the primitive which we are constraining. Optionally, we can 

specify a second class. This class is the class of the primitive the slot is 

constrained to. This optional second class is used to develop a behavior for a 

link in a specific source-destination class combination. If a second class is 

explicitly specified, the resolve method for the slot can use this information to 

create behavior for a specific type of link. Without this second class the 

resolve method for the slot must call a cast function to convert the data since 

it can accept any class. The extension field is used to describe the behavior of 

the class. For example, we may want to develop two different behaviors when 

linking a point's Pos slot to a vector (Point::Pos::::Vector_Class). This would be 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 36 



ambiguous, so we use the extension field to uniquely identify the behaviors 

(Point::Pos::::Vector_XXX_Class and Point::Pos::::Vector_YYY_Class). 

There are three types of methods which can be defined on the slot constraint 

object. The first method is a resolution for the slot named ResolveSlot, where 

Slot identifies the slot being resolved. This method updates the value of the 

slot. An example of this type of method is the ResolvePos method of the 

Point::Pos_Class. The ResolvePos method calls a casting function which 

takes the object the slot is constrained to and returns a value of type position 

(the type of the Pos slot), and then assigns it to the Pos slot. 

The second type of method is the LimitSlot method, where Slot identifies the 

name of the slot. This method is called after the ResolveSlot method and is 

used to restrict the value of a slot to a certain range. In our example in Section 

#3.5, we limited a point's position to lie between the endpoints of the line. We 

accomplished this by writing a LimitT method which limits the value of the T 

slot of the point primitive. The T slot in turn is used to determine where the 

point lies on the line. 

The final method is the interaction technique for the slot; these methods are 

called the TransMouse and the RotMouse methods. TransMouse and 

RotMouse both take the mouse information and update the slot maintaining 

the constraint on the slot. For example, the TransMouse method on the 

Point::Pos::::Vector_Class constraint object computes a new value for the T 

slot for the point based on the closest point on the line to the mouse. The 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 

.- ~------~-~~--~---~~ 

37 



interaction technique then calls the resolve method of the primitive. The 

resolve method of the point resolves the Pos slot by using the vector and the 

new T value assigned in the interaction technique. The point is then updated 

to its new position on the line. 

5.6 Adding new primitives 

To add a new primitive to the toolkit, an object must be created to represent 

the primitive. This object must adhere to the object model described above in 

Section 5.1. This means we must create a geometric object and a behavioral 

object for the primitive. The geometric object can be any arbitrary piece of 

geometry created in UGA. The behavioral object must inherit from the 

constraint object, define the slots and their types for the primitive, and give a 

class to the primitive. If these slots have new slot types, then new casting 

functions must be written from each class in the toolkit to the new slot type. 

We must also create cast functions from the new primitive's class back to each 

existing slot type in the toolkit. We can then start writing slot constraint 

objects for the primitive (described above in section 5.5) to define its 

constrained behavior. 

6.0 Conclusions 

Our toolkit provides a framework for the construction of a wide variety of 

interactive 3D models used in modeling, animation, and scientific 

visualization. The visual language provides an environment for both non­

programmers and programmers to conceive and rapidly prototype these 3D 

A Toolkit for the Construction of Three Dimensional Interfaces February 25, 1994 38 



models. Encapsulation and limiting mechanisms allow interface designer to 

build more complex models than were possible in the past. The visual 

interface also provides a method for linking and unlinking interface object to 

application objects. Constraints are specified in an interface that is 

understandable and easy to use for both non-programmers and programmers. 

7.0 Future Work 

Currently, when the user requests an encapsulation the entire network is 

encapsulated. A user may wish to encapsulate a subcomponent of a complex 

network. An interface for specifying the encapsulation of a sub component of 

the network needs to be developed. 

At this point we have no method for the visualizing how a constrained 

primitive can be interacted with. For example, when a point is constrained to 

lie on a line there is no visual feedback to indicate that the point can only 

translate in the direction of the line or that the point cannot rotate. 

Possibilities for this visualization are arrows indicating in which direction the 

primitive may move, or altering the geometric shape of a primitive when it is 

constrained (e.g., changing the point's sphere to a flat disk when the point is 

constrained to lie in a plane). 

To date, the slots on a primitive can only be linked to a single primitive. It 

would be useful to be able to constrain a slot on one primitive to a slot on 

another primitive or a slot on a primitive to more than one primitive. 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 39 



In our toolkit constraints are solved procedurally. Although this has 

advantages, such as the elimination of problems related to numerical error 

that numerical solvers suffer, its main disadvantage is that it leads to a 

combinatorial explosion in the number of procedures as we add more 

primitives and types to the toolkit. To date we have not been able to find a 

numerical solver that is stable or interactive enough to use for our toolkit. If 

one is found in the future, the current procedural method for solving 

constraints should be changed. 

All of our primitives constrain geometric attributes of objects. Primitives that 

represent abstract non-geometric quantities could be useful. For example, 

temporal primitives might be useful in specifying how primitives change over 

time, allowing us to build animations visually. 

Slots on primitives are presented to the user via a Motif window. Slots should 

be visual quantities on the primitive (perhaps depicted as a little socket). The 

user could then wire the slots together directly instead of going through the 

auxiliary window. 

8.0 Acknowledgments 

I would like to thank my advisor John Hughes for all his comments and 

suggestions during this project, Andries van Dam and the Brown Computer 

Graphics group for providing such an incredible environment to learn and 

grow, a special thanks to Robert Zeleznik for the discussions we had during 

the design phase of this project, Nate Huang who was always willing to help 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 40 



whenever I had any problem at all, to Cindy Grimm for anytime I had a tough 

math question and for helping review this document, and finally to my family 

who have been so supportive throughout this experience. 

9.0 Bibliography 

[1] AVS, Inc. AVS Developer's Guide, v. 3.0, 1991. 

[2]	 A.H. Barr. Global and local deformations of solid primitives. Computer 

Graphics (SIGGRAPH '84 Proceedings), 18(3):21-30, July 1984. 

[3]	 Eric A. Bier. Snap-dragging in three dimensions. Computer Graphics 

(1990 SYmposium on Interactive 3D Graphics), 24(2):193-204, 

March 1990. 

[4]	 Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The 

information visualizer, and information workspace. In Proceeding 

of ACM CHI '91 Conference on Human Factors in Computing 

Systems, pages 181-188, 1991. 

[5]	 D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon, Daniel C. 

Robbins, Robert C. Zeleznik, and Andries van Dam. Three­

Dimensional Widgets. Computer Graphics (1992 Symposium on 

Interactive 3D Graphics), 25(2):183-188, March 1992. 

A Toolkit for the Construction of Three Dimensional Interfaces	 February 25,1994 41 



[6]	 James D. Foley, Andries van Dam, Steven Feiner, and John F. Hughes. 

Computer Graphics: Principles and Practice. Addison-Wesley, 2nd 

Edition, 1990. 

[7]	 Michael Gleicher and Andrew Witkin. Through-the-Iens camera 

control. Computer Graphics (SIGGRAPH '92 Proceedings), 

26(2):331-340, July 1992. 

[8]	 Paul E. Haeberli. Conman: A visual programming language for 

interactive graphics. Computer Graphics (SIGGRAPH '88 

Proceedings), 22(4):103-111, August 1988. 

[9]	 Kenneth P. Herndon, Robert C. Zeleznik, Daniel C. Robbins, D. 

Brookshire Conner, Scott S. Snibbe, and Andries van Dam. 

Interactive Shadows. 1992 UIST Proceedings, pages 1-6, 

November 1992. 

[10]	 Michael Kass. CONDOR: Constraint-based dataflow. Computer 

Graphics (SIGGRAPH '92 Proceedings), 26(2):321-330, July 1992. 

[11]	 Brad A. Myers, Dario A. Guise, Roger B. Dannenberg, Brad Vander 

Zanden, David S. Kosbie, Edward Pervin, Andrew Mickish, and 

Philippe Marchal. GARNET: comprehensive support for graphical, 

highly interactive user interfaces. IEEE COMPUTER magazine, 

pages 71-85, November 1990. 

[12] Open Software Foundation. OSF /MotifReference Guide. 

A Toolkit for the Construction of Three Dimensional Interfaces	 February 25,1994 42 



[13] Steve Sistare. Graphics Interaction Techniques in constraint based 

geometric modeling. In Steve MacKay and Evelyn M. Kidd, 

editors, Graphics Interface '91 Proceedings, pages 161-164. 

Canadian Man-Computer Communications Society, March 1991. 

[14]	 Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins, D. Brookshire 

Conner, and Andries van Dam. Using deformations to explore 3D 

widget design. Computer Graphics (SIGGRAPH '92 Proceedings), 

26(2):351-352, July 1992. 

[15]	 Paul S. Strauss and Rikk Carey. An object-oriented 3D graphics toolkit. 

Computer Graphics (SIGGRAPH '92 Proceedings), 26(2):341-349, 

July 1992. 

[16] Robert C. Zeleznik, D. Brookshire Conner, Matthias M. Wloka, Daniel 

G. Aliaga, Nathan T. Huang, Philip M. Hubbard, Brian Knep, 

Henry Kaufman, John F. Hughes, and Andries van Dam. An 

object-oriented framework for the integration of interactive 

animation techniques. Computer Graphics (SIGGRAPH '91 

Proceedings), 25(4):105-112, July 1991. 

[17] Aldus Inc. IntelliDraw. User Manual v. 1.0, 1992. 

[18]	 Robert C. Zeleznik, Kenneth P. Herndon, Daniel C. Robbins, Nate 

Huang, Tom Meyer, Noah Parker and John F. Hughes. An 

A Toolkit for the Construction of Three Dimensional Interfaces	 February 25, 1994 43 



Interactive 3D Toolkit for Constructing 3D Widgets. Computer
 

Graphics (SIGGRAPH '93 Proceedings), 27(4):81-84, July 1993.
 

A Toolkit for the Construction of Three Dimensional Interfaces February 25,1994 44 


