
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-95-M17

"Robotic Object Recognition: Utilizing Multiple Views to

Recognize Partially Occluded Objects"

by

Neil A. Jacobson

, '.

Robotic Object Recognition: Utilizing Multiple Views to

Recognize Partially Occluded Objects

Neil A. Jacobson

Department of Computer Science

Brown University

June 1994

Robotic Object Recognition: Utilizing Multiple Views to

Recognize Partially Occluded Objects

Neil A. Jacobson

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for

the degree of Master of Science in the Department of

Computer Science at Brown University

June 1994

Professor Thomas L. Dean

Advisor

·.

Abstract

To perform real world tasks, a robot needs to know detailed information about its environment.
This information can be provided to the robot a priori, or the robot can determine this information
by using its sensors and interacting with its environment. Since all but the most constrained envi­
ronments are dynamic, the latter would be a more practical choice. One useful way of gathering
information about the environment is by performing object recognition. This however, can be
complicated by the existence of occluding objects and the need to make multiple observations to
disambiguate among possible matches. This paper describes a method of robotic 2D object recog­
nition in this type of environment. The robot is equipped with a laser light striper that returns a
relatively accurate 2D (width and depth) view of its environment. Initially, the data retrieved from
the laser light striper is passed to a curve matching algorithm which matches the data to each
object in its database. The resulting hypothesis set is passed to sensing strategy algorithm which
determines where the surface normals and distances to the hypothesized objects' poses differ, and
returns the next place to look to gather the most information. The subsequent observation is then
used to update the hypothesis set. This process continues until enough information is gathered to
disambiguate among all possible matches, or until no further information can be gained by mak­
ing additional observations.

Contents

1 Introduction 2

1.1 Related Work 2

2 Hardware Description 5

3 Algorithm Descriptions 6

3.1 CUlVe Matching 7

3.1.1 CUlVe Smoothing 7

3.1.2 Calculating Shape Signatures 8

3.1.3 CUlVe Matching Using Shape Signatures 9

3.2 Maintaining the Hypothesis Set 12

3.2.1 Combining Sensor Data 12

3.2.2 Calculating Hypothesis Measures 14

3.2.3 Eliminating Impossible Poses 16

3.3 Planning Multiple Observations 17

4 Experimental Results 20

5 Summary 30

References

1

1 Introduction

Object recognition is a useful way for a robot to learn about its surroundings. Most environments,

however, contain objects of similar shape, thus multiple views of an object would be needed to

disambiguate among the possible matches. Additionally, occlusion is very likely to occur in all

but the most constrained environments. This paper addresses the following problem: given an

unknown object, possibly occluded, and a database of known objects, determine whether the

object is in the database, and if it is, determine its pose.

The solution proposed in the paper makes use of a curve matching algorithm that can match par­

tially occluded objects [1], a sensing strategy algorithm that determines where the surface nor­

mals and distances to surfaces differ in a set of possible poses [2], and an algorithm that maintains

a set of hypotheses given the sensor readings. This system was implemented on an autonomous

robot equipped with a laser light striper. The laser light striper returns 2D (width and depth) infor­

mation about it surroundings. In conjunction with the robot's dead reckoning, the robot is able to

determine the (x, y) coordinates of objects within some error, which is a function of the dead reck­

oning and sensor error. The hardware is briefly described in section 2, the overall object recogni­

tion algorithm is described in section 3, the curve matching algorithm in section 3.1, the algorithm

for updating the hypotheses in section 3.2, and the sensing strategy algorithm is explained in sec­

tion 3.3. Section 4 contains the experimental results, and section 5 contains the summary.

Related Work

There has been a large amount of research completed in the area of matching partially occluded

objects, including [1],[3]-[6]. In [1], shape signatures are used to match partially occluded objects.

Each object and observed curve are converted into shape signatures and compared to come up

with a set of candidate matches. The least-squares distance is then calculated for each candidate

match, and the best match and its corresponding transformation is determined. This algorithm

solves the matching problem: given any two curves, find the largest matching subcurve which

appears in both curves.

2

In [3] and [4], curve matching is performed by computing the least squares fit of the observed

curves to a database of previously known objects. The matching must be performed on proper

subcurves of the database objects only. Therefore, to match partially occluded objects, the

observed curves are split up along breakpoints, which are areas of the curve where the tangent

changes rapidly. These sharp changes usually occur where objects occlude each other. These sub­

curves are then matched to the objects in the database. It's possible, however, that a breakpoint

might not exists at a point where two or more objects are in contact. In such a case, the observed

curve could not be split up into proper subcurves of the database objects, and the curve matching

could fail.

In [5], a Landmark-based shape recognition is used. A landmark is a point of interest of an object

that has an important shape attribute. Given a scene of occluded objects, the landmarks are

extracted and matched to the landmarks of the database objects. A measure called sphericity is

used to determine the similarity between landmarks and to determine the best match.

Recognition based on tracing feature points is described in [6]. In this method, objects are repre­

sented by linked lists of nodes composed of a consecutive pairs of feature points (corners) along

with their distances and angles from each other. Initially, a set of candidate matches is extracted

from the inputted scene by comparing pairs of feature points from the database object (nodes in

the linked list) to pairs of feature points in the scene. If the distance and angle between the scene

points lie within some error bounds of the feature point pair from the database object, then a can­

didate match is made. Each candidate match is then verified by tracing the remaining feature

points. That is, given the candidate match node in the database object's linked list, iterate through

the remaining list nodes while determining where the corresponding feature points should lie in

the inputted scene, and test whether they exist and if their distance and angle are with some given

error bounds.

Some research relating to planning multiple views can be found in [2],[7]-[9]. Given a set of sen­

sory data points on an object and a set of possible poses, [2] disambiguates among the poses by

determining where the surface normals and distances to the surfaces of the poses differ, and get­

ting sensory data at these points. The sensory data is compared to the calculated values of the

3

transfonned objects, and the correct pose is determined.

In [7], a Bayes Net and a maximum expected decision rule were used to decide where to position

a camera over a scene. Their sensors were composed of a low resolution camera that provided a

peripheral view and a small high resolution camera that could be positioned anywhere within the

peripheral view, but neither camera could view the whole scene at one time.

The goal of [8] was to describe a random arrangement of unknown objects in a scene. They used

a laser light striper and scanned the scene from above and the sides. The scene was rotated so that

multiple views could be taken. Occluded regions were approximated by polygons, and based on

the height infonnation of the border of the occluded regions, the next view was determined.

A Vision Algorithm Compiler was used in [9] to analyze predicted object appearances and create

an aspect resolution tree off-line. The resolution tree was composed of three types of nodes, con­

gruent-set, move, and resolved nodes. Congruent-set nodes contained the possible poses of the

object, move nodes contained positions to move to, and resolution nodes contained the correct

object pose. The resolution tree was traversed based upon the observed aspects, and sensor moves

were made until a resolution node (a leaf node) was reached.

4

2 Hardware Description

An autonomous robot was used for this experiment which had an on-board 486DX2 processor. Its

sensors included infareds, sonars, a laser light striper, and dead reckoning. The dead reckoning

has been calculated to be accurate within .015 x total distance traveled. The infareds and sonars

were used for obstacle avoidance, and the laser light striper was used for object recognition. The

laser light striper has an effective viewing angle of 45 degrees and distance over 3 meters, how­

ever only a distance of up to 1.5 meters was accurate enough to be used for the object recognition.

The accuracy of the laser light striper within the limited area has been measured at ±3 cm. The

laser light striper is composed of a laser emitter, which emits a horizontal plane of light, and a

512x256 resolution camera angled downward towards the laser. When the laser light hits objects

at different distances, the light appears at different pixel heights in the camera image. A look up

table is used to determine the distance of the object given the height of the brightest pixel (see fig­

ure 1). By combining the laser light striper information with the base's dead reckoning position,

the (x,y) coordinates of object surfaces can be determined.

object 1

object 2 255

! 255
159

159
pixels 133 133

80cm

o
511

I

120
I

80
I

I

Overhead view of robot Camera image Look up table

Figure 1: Calculating distances with the laser light striper.

5

3 Algorithm Descriptions

Initially the robot is supplied with a database of known objects. Each object is stored as a shape

signature and a list of evenly spaced points (1 per cm) defining its curve. Both are used in the

matching process. The shape signature is used to find a set of candidate matches, and a least

squares fit method is used on the point list to find the best match and its transformation. For the

purpose of this project, the algorithm discussed in [1] was modified to return a set of matches

instead of a single best match. Section 3.1 describes the matching algorithm in greater detail.

The sensing strategy algorithm is used differently than described in [2]. In [2], the set of possible

poses was disambiguated by determining places where their surface normals or the distances to

their surfaces differ and taking sensor readings at those locations. The sensor readings were then

compared to the expected values for each pose, and the inconsistent poses were eliminated. This

process was continued until a single pose remained. If this algorithm were used in an environment

with occluding objects, false positives and negatives could result. Therefore, for this project, the

sensing strategy algorithm is used only to find the places were the poses differ, and does not use

the sensor readings to disambiguate among the possible poses. Instead, a module called the Evi­

dence Manager uses the sensor information to maintain a set of hypotheses. The hypothesis set

contains a list of possible objects and their poses along with a measure of how well it fits to the

viewed object. Section 3.2 describes the Evidence Manager, and the sensing strategy algorithm is

described in section 3.3.

The initial position of the robot is (0,0) with a heading of °degrees, and all coordinates returned

by the object recognition system are with respect to this coordinate system.

The general flow of control of the object recognition system is as follows:

1.	 Get sensor data from laser light striper
2.	 Convert sensor data into curves in the robot coordinate system

(the sensor data is smoothed and the curves' shape signatures are calculated)
3.	 For each object in the database do
4. Match sensor curves to the database object

6

5.	 Update all hypotheses for this object to take the new data into account
6.	 Test ending conditions:

If number of hypotheses == 1, return hypothesis's object and pose as a "match"
If number of hypotheses == 0, return "object not in database"
If one hypothesis's measure is an order of magnitude greater than all others,

return that hypothesis's object and pose as a "match"
7. If any new hypotheses were added or deleted in step 5, compute new sensing strategy
8. Test ending conditions:

If no more information gain is possible (no sensing positions returned),
return all hypotheses as "ambiguous match"

8. Move the robot to the next position which has the most potential for information gain
(the position where the greatest number of surface normals or distances differ)

9. Goto 1

3.1 Curve Matching

Before any curve matching can be performed the curves must be smoothed to remove any sensor

noise and their shape signatures must be calculated. When the curves are created, either by read­

ing them in from disk into the database, or by reading data from the laser light striper, this is per­

formed. The curve matcher takes as input these curves and doesn't need to perform any curve

smoothing or shape signature calculations. Section 3.1.1 describes the curve smoothing algorithm

from [3], section 3.1.2 describes how the shape signatures are calculated, and 3.1.3 describes the

matching algorithm.

3.1.1 Curve Smoothing

The curve smoother is used to help filter out any sensor noise that might exist. It calculates a

polygonal approximation of the noisy curve by finding the shortest path lying within the curve's

epsilon neighborhood. Since the basic smoothing algorithm in [3] only applies to curves mono­

tonic in at least one direction, the first step is to break the noisy curve into maximal monotonic

sections. In this implementation, the noisy curves were split up into segments monotonic in the x­

axis and y-axis directions.

The next step in the smoothing process is to define the epsilon neighborhood. In [3], the epsilon

7

neighborhood is define as follows: Let y =c(x), X E [a, b] be the noisy curve with endpoints a

and b, and let c1(x) = c(x) - e and c2(x) = c(x) + e be the epsilon neighborhood boundaries. This,

however, can lead to inconsistent smoothing results since this epsilon neighborhood depends on

the curve slope. Figure 2 shows an example of this on a x-axis monotonic curve. Therefore, for

this project, it was decided to calculate the true epsilon neighborhood, also shown in figure 2.

Doing so is computationally more expensive, however the smoothing algorithm still runs in linear

time, and the results are improved.

The final step of the smoothing algorithm is to calculate the shortest distance within the epsilon

neighborhood, which is fully explained in [3]. An epsilon value of 1.5cm was selected for this

project based on sample tests.

Upper epsilon boundary, c2

Noisy curve, c
Lower epsilon boundary, cl
Smoothed curve

Epsilon neighborhood defined by:
c1(x) =c(x) - e, c2(x) =c(x) + e True epsilon neighborhood

Figure 2: Effects of different epsilon neighborhood definitions on curve smoothing.

3.1.2 Calculating Shape Signatures

The shape signatures described here are strings of real numbers that represent curves. The shape

signatures are translationally and rotationally invariant, and stable in the sense that small changes

in the curves have small effects on the shape signatures [1]. The first step in calculating the shape

signature is creating an arc length vs. total turing angle graph. Figure 3 shows this type of graph

for an L-shaped object that was used in testing.

8

"

Denote the arc length vs. total turing angle graph by 8(s). To calculate the shape signature, 8(s) is

sample at equally spaced points by arc length, and at every such point Si (i =1, ... ,n), the differ­

ence is calculated: A8(sD =8(Si + As) - 8(Si)' Actually, to make the method more robust the aver-

k-l

aged difference is used to calculate the shape signature~: ~i =Average A8(sD = iL ~e (si +jS) .
j=O

For this project, the value for n was selected to be (curve's total arc length) / As, and the values,

k = 5, () = 11k x (average length of polygonal approximation edge = 16cm), and As =() were

empirically detennined to work well with polygonal objects, which were used for testing. Figure

3 also contains a portion of the shape signature for the L-shaped object.

8[80] = 0
8[81] = -0.314159
8[82] = -0.314159
8[83] = -0.314159
8[84] = -0.314159
8[85] = -0.314159
8[86] =0

Arc Length vs. Total Turing Angle Graph 8[87] =0
8[88] = 0 (Not to scale)'Vi'	 8[89] = 0
8[90] = 0 ~ 95cm 8[91] = 0
8[92] = 0

360

56.5cm 38.5cm ~ 8[93] = 0
~ 270 8[94] = 0

curve starting~ 56.5cm ..5 8[95] = 0
8[96] =0
8[97] =0

and ending poinf 74.5cm 180

56.5cm	 .S 90 8[98] = 0 ~
8[99] = 0.314159 38.5cm ~ 0_....... ----1	 8[100] = 0.314159
8[101] = 0.314159

E8
'5 o 56.5 95 169.5 226 264.5 359.5 416 8[102] = 0.314159

8[103] = 0.314159 Are Length (em)
8[104] =0

This shape signature portion
approximately corresponds t
!fie L-shaped object's curve
from points a to b.
The values are in radians.

Figure 3: Sample shape signature calculation.

3.1.3 Curve Matching Using Shape Signatures

Curve matching is performed is two main steps. First, a set of candidate matches are found by

comparing the shape signatures of two curves, and second, the candidate matches are verified by

9

"

calculating the least squares fit on the real curve points corresponding to the shape signature

match.

Since the shape signature strings may be noisy, a standard string matching algorithm can't be used

to find matches. Instead, we need an algorithm that treats elements of a string as equivalent if their

difference is at most e. In [1], these differences are called e-coincidences. Assume two strings

have a long matching substring, starting at position i for the first string and position j for the sec­

ond. If the first string is shifted j-i positions relative to the second, then many e-coincidences

would be expected. Therefore, the first step in finding candidate matches is to find shifts with a

high number of e-coincidences. A simple algorithm for doing this is explained in [1]. The next

step is to take the K best shifts, align each pair of shape signature strings accordingly, and com­

pare their elements looking for long substrings where the difference of the aligned elements is at

most e. If the length of this substring surpasses some minimum threshold, then the candidate

match is passed to the next step, verification. For this project, the threshold for the minimum sub­

string length was set at 3.

The verification of the candidate matches are performed on the actual curves rather than their less

robust shape signatures. The first step is to calculate the actual curve segments given the starting

and ending points of the matching shape signatures. Once this is performed, the least squares fit

method is used to calculate the curves' fit as well as to determine the transformation of the first

curve onto the second. This method from both [1] and [3] is described below:

Let the first curve be denoted by C, and the second by C' (Note: C corresponds to the
matching subcurve of the database object and C' to the sensor input), and let them be

represented by a sequence of evenly spaced (by arclength) points denoted (uj) 1;=1 and

(v.) I~ respectively. Matching then amounts to finding an Euclidean transformation E
J J = 1

which minimizes the least-squares distance between the sequences (Eu) 1;= 1 and (vj) 1;= 1 :

~ = min L
n

IEuj - vj l2 • To simplify the calculation, first translate C so that L
n

u j = O.
E j =l j=l

Next write E as Eu = Reu + a, R denoting a counterclockwise rotation by eand a ae
n

translation. In such a case, as it is shown in [3], the best match is obtained when, a = ! ~ v.,
n £.J J
j=l

10

object's interior. Since there's error associated with the positioning of the observed curves and

laser rays, points simply lying within an object or rays intersecting the interior of an object can't

eliminate the possibility that the pose is still consistent. Therefore, the maximum error between

each observed curve and the object being tested is calculated. Then an error circle is calculated for

each point tested. This error circle is centered at the point's location and has a radius of the maxi­

mum error value. If this error circle lies completely within the object, then the hypothesis can be

eliminated. This same method is used with the laser rays. Several points are sampled from each

section of the ray that lies within the object and are tested as mentioned above.

-
W,ffl

Laser ray
Laser plane

Overhead view of robot

Figure 5: Laser plane and rays.

3.1.2 Planning Multiple Observations

After the sensor data is matched to the database objects and the hypotheses updated, the next

viewing position is determined. A modified version of the sensing strategy algorithm from [2] is

used to find the next best position to look. This algorithm works by determining where the surface

normals and distances to the surfaces of the poses differ. The position with the greatest number of

differences that hasn't been viewed before has the best potential for information gain, and there­

fore is selected as the next viewing position.

The original algorithm in [2] assumes that an initial set of sensing directions exists, and uses these

17

positions to compute sensing lines, which are lines perpendicular to the sensing directions and are

used to determine where the poses differ. In this implementation, this is not assumed. Instead, the

sensing directions are artificially computed by determining a circle that encloses the entire set of

possible poses. Sensing directions are then selected from points along the enclosing circle. This

was necessary since for this project only one sensing direction would exist initially. Therefore,

only one sensing line would be created and only the object surfaces facing this sensing line would

be used to determine next views. By artificially creating sensing directions surrounding the set of

poses, all surfaces could be used. See figure 6a for an example of sensing directions and sensing

lines for two possible poses of a T-shaped object.

Next, for each sensing line, select one pose and project the boundaries of all its visible surfaces

facing the sensing line onto the sensing line, and label these resulting line segments with the sur­

face normal and distance ranges (see figure 6b). This is repeated for each pose, giving different

disjoint partitions of the sensing line for each pose (see figure 6c).

Next, the set of all such partitions are intersected and the resulting partition is labeled by the union

of the labels of the corresponding segments of the individual partitions. The labels of the resulting

segments are then compared to find differing surface normals or distances. Figure 6d shows the

resulting segments which contain differing labels. The midpoints for each segment are selected

for the viewing positions. This set is sorted by the number of differing poses per viewing position,

and the position with the highest number is selected as the next sensing location.

18

to the L-shaped and T-shaped objects respectively. No matches were found for the square object,

and all matches to the C-shaped and H-shaped objects were removed from the hypothesis set

since the laser rays passed through their poses (see figure ge). Figure 9f shows the sensing lines

determined for the matches. The eight lines forming a circle around the poses are the sensing

lines, and the lines perpendicular to them represent the set of viewing directions where the surface

normals or distances to the surfaces differ. The small circle represents the next viewing position.

The second view eliminates one of the T-shaped object matches, and a new sensing strategy is

computed (figure 9g). With the third view, several new hypotheses are ascertained, and once again

a new sensing strategy is computed (figure 9h). The following two observations deleted all but

one hypothesis. Figure 9i shows this remaining hypothesis along with all the observed curves,

laser rays, and robot viewing positions. The final results are listed in table 1. Due to some laser

light striper noise that could not be smoothed out, part of the last curve viewed could not be

matched to the hypothesis and was determined to be an occluding object. This effected the

hypothesis's measure, but it didn't effect the overall outcome of the experiment. Although this

experiment ended with only one possible hypothesis, it is not always possible for this to occur as

is shown by experiment #2.

Experiment #2

Figure lOa shows the approximated scene and starting robot position for the second experiment.

In figure lOb, the first observation is shown along with the three determined hypotheses, and the

next viewing position. In figure lOc, one of the T-shaped hypotheses is deleted, and figure lOd

shows all the observations made. This experiment ended with two hypotheses, and as can be seen

from tables 2 and 3, the hypothesis for the T-shaped object had a higher measure than the hypoth­

esis for the L-shaped object.

Experiment #3

This experiment had one occluding object in the scene and is displayed in figure lIa. Figure lIb

shows the second observation and the sensing strategy computed after that view. The results of the

first observation were similar to figures 9f and lOb. The third and fourth view was of the occlud­

21

ing object, and the last observation eliminated the T-shaped object hypothesis. The final results

are shown in table 4. The clustering algorithm used actually clustered the nonmatching curves

into two occluding objects instead of only one. This only effected the measure of the hypothesis

and not the overall matching.

Experiment #4

Experiment 4 had three occluding obstacles lying around a L-shaped object (see figure 12a). Fig­

ure 12b shows the first and second observations. The third observation (shown in figure 12c)

results in one of the T-shaped object hypotheses to be deleted. Based on the fifth observation,

numerous new hypotheses are created and a new sensing strategy is computed (figure 12d). Since

there were so many possible hypotheses, over 100 viewing positions were computed. For each

iteration, the robot moves to the closest viewing position with the greatest potential for informa­

tion gain. Additionally, each observation position is recorded so that the robot doesn't make more

than one observation from the same general area. After a total of 13 observations, the hypothesis

set was reduced back to the 2 hypotheses as shown in figure 12e along with all the observed sur­

faces. The results are listed in tables 5 and 6.

Experiment #5

In this experiment the matching algorithm failed to make the correct match. Figure 13a shows the

approximate scene and figures 13b and 13c show the matches given the first observation. The

occluding object makes it appear that the L-shaped object is at a different location than it actually

is. Since the subsequent observations result in only line matches, no new hypotheses are created

and an incorrect match results.

22

..... __...._-­

, i

\"'--//

Figure 9a Figure 9b Figure 9c Figure 9d

/\
)

Figure ge Figure 9f

I

~
I",

,)
,j

i

\ i
....../

.... ~;

Figure 9g Figure 9h

23

Figure 9i

Table 1: Experiment 1 results

)

Hypothesis 1: L-shaped object

Percentage matched: .606715

Average distance per point: 2.84435

Max average distance per point: 6.39442

Number of occluding objects: 1

Hypothesis measure: .080841

24

Figure lOa Figure lOb

)

\
" l................../

Figure 10e Figure 10d

Table 2: Experiment 2 results

Hypothesis 1: T-shaped object

Percentage matched: .55283

Average distance per point: 3.61282

Max average distance per point: 5.84602

Number of occluding objects: 0

Hypothesis measure: .0591313

25

Table 3: Experiment 2 results

Hypothesis 2: L-shaped object

Percentage matched: .402878

Average distance per point: 3.49585

Max average distance per point: 5.66362

Number of occluding objects: 1

Hypothesis measure: .0370087

ooccluding object

)
(;0

Figure 11a Figure 11b

Figure 11c

26

Table 4: Experiment 3 results

Hypothesis 1: L-shaped object

Percentage matched: .258993

Average distance per point: 2.09154

Max average distance per point: 3.71033

Number of occluding objects: 2

Hypothesis measure: .0412369

)

occluding objects

Figure 12a Figure 12b

Figure 12c Figure 12d

27

\

Figure 12e

Table 5: Experiment 4 results

Hypothesis 1: T-shaped object

Percentage matched: .262264

Average distance per point: 3.67816

Max average distance per point: 4.87336

Number of occluding objects: 6

Hypothesis measure: .00257284

Table 6: Experiment 4 results

Hypothesis 2: L-shaped object

Percentage matched: .266187

Average distance per point: 3.05045

Max average distance per point: 4.53378

Number of occluding objects: 6

Hypothesis measure: .00348356

28

./
../ I"~ '-, -.,

/"-.. -';'/0'-·'

/~~~'-

/1J~'occluding object v6
\,._--j

Figure 13a Figure 13b

)
\

.~/
Figure 13c Figure 13d

/'.",
\.J./

Figure 13e

29

6 Summary

The method presented in this paper allows a robot to plan multiple observations of partially

occluded objects and combine the data from these views to preform object recognition. Although

all tests were performed on polygonal objects, this method can be applied to any set of objects by

using their polygonal approximations. In this method, hypotheses are only created when a curved

segment returned from the sensor matches to an object in the database. This unfortunately can

lead to incorrect matches if the initial data is of occluding objects that are in a formation that

resembles real objects in the database and if no other data is retrieved that can create new hypoth­

eses. This is a hard problem to avoid however, since it is infeasible to maintain a hypothesis for

every possible line match.

30

References

[1]	 H. Wolfson. On Curve Matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 12, No.5, pp. 483 - 489, 1990.

[2]	 W. E. Grimson. Sensing Strategies for Disambiguating Among Multiple Objects in Known
Poses. IEEE Journal ofRobotics and Automation, Vol. RA-2, No.4, 1986.

[3]	 J. T. Schwartz, and M. Sharir. Identification of Partially Obscured Objects in Two and
Three Dimensions by Matching Noisy Characteristic Curves. The International Journal of

Robotics Research, Vol. 6, No.2, pp. 29 - 44, 1987.

[4]	 A. Kalvin, E. Schonberg, J. T. Schwartz, and M. Sharir. Two Dimensional, Model Based,
Boundary Matching Using Footprints. The International Journal ofRobotics Research,
Vol. 5, No.4, pp. 38 - 55, 1986.

[5]	 N. Ansari and E. Delp. Partial Shape Recognition: A landmark-Based Approach.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No.5,
pp. 470 - 483, 1990.

[6]	 J. Z. Lai, and J. M. Lin. Recognizing Partially Occluded 2-D Parts Based on Tracing
of Feature Points. Proceedings of the 1991 IEEE International Conference on Robotics
and Automation, pp. 1796 - 1801, 1991.

[7]	 R. D. Rimey, and C. M. Brown. Where to Look Next Using a Bayes Net: Incorporating
Geometric Relations. Proceedings ofthe European Conference on Computer Vision,
pp. 543 - 550, 1993.

[8]	 J. Maver, and R. Bajcsy. How to Decide From the First View Where to Look Next.
Proceedings of the Image Understanding Workshop, pp. 482 - 496,1990.

[9]	 K. D. Gremban, and K. Ikeuchi. Planning Multiple Observations for Object Recognition.
CMU-CS-92-146, Carnegie Mellon University, 1992.

31

