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Abstract
 

We present an EAT-based control strategy for the EPOQ optimizer. The EPOQ optimzer 

IS designed not only to have an extensible achitecture, but also to allow the extension of the 

control strategy. Unlike other extensible optimizers which have a fixed control strategy, the EPOQ 

optimizer with the EAT-based control strategy provides an efficient means to search the space of 

query transfomation rules by systematically decomposing the query into subqueries, optimizing 

those subqueries, and combining the results. 

The EAT-based control region implemented in this paper is responsible for carrying out the 

EAT-based control strategy. It determines the goal based on the given EAT, requests the bids from 

the child regions on the EAT and sends the EAT to the regions which satisfy the applicabilty on 

the goal. 

The leaf region apply has been developed as a child region of the EAT-based control region 

to perform the transformation of the EATs associated with the function apply. We have used this 

region, along with an existing select region, to test the EAT-based control strategy. 
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1 Introduction 

Query optimization remains one of the most important challenges to researchers and developers 

of Object-Oriented database systems[l]. Query optimization is a process of searching, given an 

input query, for equivalent queries that are efficient to execute. Thus, the goal of the optimizer 

is to examine as many equivalent queries as possible. However, an optimizer can only visit some 

portion of the space of equivalent queries because of the availability of transformation rules, the 

bound of cost for the optimization, and how long the optimization takes. Therefore, the query 

optimization is a crucial factor that determines performance of query processing. 

Many efforts have been made to implement the object-oriented query optimizers. The exten

sibility of object-oriented database systems requires that an optimizer be extensible in response 

to new types of expressions. Because new optimization strategies continue to be developed, the 

optimizer needs to be extensible so it can add these strategies. Most extensible optimizers have 

focused on the extensibility in terms of adding rules, new data access strategies, and new algebraic 

operators[2j[3][4]. These optimizers are usually based on the rewrite rules for a set of operators 

defined on the bulk types. These rules are applied to a query expression to generate equivalent, 

but hopefully more efficient, forms of expressions. The transformation expressions can then be 

evaluated based on the cost model to select an optimized plan for execution. The extensibility of 

those optimizer depends upon the ability to define a set of algebraic rewrite rules. The disadvantage 

of these optimizers are that the optimizers have to search the whole space which is defined by the 

rewrite rules in order to generate an optimized plan for selecting which rule to apply and when to 

apply. Accordingly, the efficiency of the optimizers is affected by this strategy. These optimizers 

also only provide a fixed control strategy to manipulate queries, which makes it difficult for these 

optimizers to adapt to a new control strategy. At Brown, we are developing a new optimizer, EPOQ 

[5][6], with an extensible architecture has been designed to improve the efficiency of searching the 

space for the transformation rules and to allow extension of the control strategy. 

In this paper, we present an overview of the architecture of the EPOQ optimizer, develop an 

EAT-based control strategy for the EPOQ optimizer, perform the query transformation of the 

apply-associated EAT and finally implement a test region to verify both the EAT-based control 

strategy and query transformation. 
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EAT + Goal 

Figure 1: The Region Architecture 

Transformed EAT 

2 Overview of EPOQ Optimizer 

2.1 Region Architecture 

A region is a module, a basic element in the EPOQ optimizer. A region has interfaces for the 

communication between regions, execution methods for control strategy, applicable and attain, and 

auxiliary methods, as shown in Figure 1. The auxiliary methods provide the support to the two 

methods applicable and attain, for example, to get a goal for the region, to store the goal, and to 

traverse the EAT. 

Regions have control over query transformation, and have goals to be achieved. The region 

control is carried out based on the control strategy of the region. The way to achieve some goal, 

for example, to transform a query or to lower the cost, is also embedded in the control strategy. A 

goal may have subgoals to be accomplished by child regions. For each subgoal, the region allocates 

a goal slot and expects a child region to plug in it. If there is no child region residing at the goal 

slot, the corresponding goal can not be achieved. 

2.2 Interface of a Region 

A region provides an interface to support communication between the control of a region and 

its parent or its child regions. The interface to a region's child allows the region to use the child 

region to achieve a goal or to perform a specific task. A goal is referred to as a desired result that 

has to be achieved, for example, query transformation or lower cost. 

EPOQ defines a common structure for the interface to ensure compatibility in structure. This 

approach supports communication between regions as well as the addition of new regions to the 
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optimizer. The method applicable is implemented to evaluate the applicability of the region on a 

given goal. Its performance affects the efficiency of the optimizer. 

An interface supports the implementation of both a goal and an applicability. Applicability 

refers to the ability of a region to attain a goal. Thus, applicability is directly related to the 

control strategy of a region. The applicability is used to find the regions that are able to execute 

the assigned goal. Thus, the efficiency of the optimizer has been improved by encapsulating the 

applicability into the control strategy. 

However, applicability does not guarantee that a region can achieve a goal, but only indicates 

a probability that the region can achieve the goal. If a region sends a request to a child region 

ba.'3ed upon the applicability of the child region to achieve a particular goal on a query, the child 

region may fail to achieve the goal. Applicability can be represented by a bid, which estimates the 

probability that a region can achieve a given goal on a query. Implementation of Bids may depend 

upon given queries and goals. 

The messages pa.'3sed through interfaces between regions are goals and bids along with queries 

to be optimized. 

2.3 Attain of a Region 

Attain is an execution unit for a region. Once a region is selected to achieve a goal, the 

attain method is called to process the query. In a control region, attain may involve some complex 

algorithm to pass a query back and forth to its child regions to collect bids on the query or to 

transform the query, to sort the transformed queries in order of cost, and to prune the transformed 

queries. In leaf region, attain may only perform specific query transformations. 

2.4 Interactions Between Regions 

The interactions between regions are carried out by means of bidding and branching[71. 

Bidding is an action that a region takes to request bids from its child regions. Branching 

represents the decision to send a query selectively to child regions which satisfy the requirement 

for the applicability on the query to attain a goal. Bidding is always performed first, and then 

Branching. 
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Select Apply 

Figure 2: The EPOQ Architecture 

2.5 Architecture of EPOQ Optimizer 

An EPOQ optimizer is a collection of regions, each of which embodies one strategy for the 

optimization of the queries, as shown in Figure 2. The EPOQ architecture integrates the regions 

through a common interface and a global control that combines the actions of subordinate regions 

to process a given query. The way to achieve some goal resides in the control strategy. 

There are two kinds of regions in an EPOQ optimizer: interior regions (including the top 

region) and leaf regions. The difference between the two kinds of regions is that an interior region 

can manipulate queries by passing them to other regions, whereas the action of a leaf region is 

accomplished within the region. 

In an EPOQ optimizer, query transformation is performed by a set of regions, each with its own 

strategy for manipulating query expressions. Different regions will perform different tasks, such as 

bidding and branching (in control regions) and query transformation (in leaf regions). 

The regions are organized hierarchically, with a parent region controlling its child regions. The 

top region of the optimizer communicates with the query processing system. It receives a query to 

optimize, and produces a set of optimized queries. These queries are obtained with the assistance 

of its child regions. The child regions may also act as parents by using their child regions to assist 

with this transformation. 
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Data Node 

DFArc 

Function Node 

FDArc 

apply(A(x) set(x)) (A) 

Figure 3: The EAT Representation of an AQUA query, where A is a set, x is a variable and set is 
a function. 

2.6 The AQUA Query Algebra and its EAT Representation 

The query language used in the EPOQ optimizer is the AQUA (A QUery Algebra) query 

algebra. AQUA is designed to be an input language to a broad class of object-oriented query 

optimizer[l. AQUA is intended to be an intermediate language between the user's query and the 

query optimizers. as shown in Figure 2. A query in the EPOQ optimizer is represented as 

an Extensible Annotated Tree (an EAT) which is similar to a parse tree. An EAT consists of 

alternating layers of function nodes and data nodes, connected by labeled arcs. Arcs in the EAT 

represent the relationship between functions and data. The EAT representation for the AQUA 

algebra 

apply(f)(A) = {f(a)la E A}, where A is the input set, 

is shown in Figure. In the figure, the data nodes are represented by the ovals, the function node 

is represented by the rectangle, and the arcs by the lines. The arcs are classified into two kinds, 

FDArc and DFArc, which are directional. The FDArc stands for a arc which connects the parent 

function node with the child data node, and the DFARc stands for a arc which which connects the 

parent data node with the child function node. A FDArc indicates that an argument of the parent 

function node is provided by its child data node. A DFArc indicates that the parent data node is 

generated by its child function node. 
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The data nodes represent either an object (set A) in the database or an object built by a query, 

subquery, or functions, (e.g., the data node labeled by "set[x]"). The function nodes represent the 

execution that is performed on the data, such as "apply" and "select", and usually return some 

values that are stored in the data nodes, for example in this case, the function "select" returns a 

value "set[x]" and put it in the data node. Thus, A function node always has a parent data node 

for storing the returned value of the function. 

The annotation about information on the scope and use of lambda variables within the query 

is represented in a way such that the definition def:x represents the variable x is defined for the 

entire subquery, and used:x represents the variable is actually used in the subquery. This is shown 

in Figure 3. 

For more details about AQUA and EAT, see [8]. 
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3 The EAT-Based Regions 

3.1 Implementation of the EAT-Based Control Region 

The EAT-based control strategy is implemented in a way such that the control strategy depends 

upon the given EAT. The EAT is traversed bottom up, optimizing the subqueries rooted at different 

FDArcs. For each subquery, the goal chosen depends on the name of the top function in the 

EAT. For instance, an optimizer has a "select" and"join" leaf regions which are responsible for 

transforming the select-associated and join-associated queries respectively. The goals from the two 

regions are "select" and "join" respectively. Thus, it is reasonable to choose the top function name 

as a goal. 

The responsibility of the EAT-based control region is to determine the goal based on the given 

EAT, to request the bids from the child regions on the EAT and to branch the EAT to the regions 

which return the required bids for further processing. The transformation of an EAT is carried 

out from bottom to top, i.e. the entire EAT is optimized only after all the subtrees have been 

optimized. The control strategy for optimization is executed in the following sequence: 

1.	 Traverse the EAT to a leaf and get a copy of the leaf. 

2.	 Derive a goal from the leaf tree, which is the name of the top function of the leaf. 

3. Send	 the leaf tree for bidding to the leaf regions whose in-goal match the goal of the control 

region for bidding. 

4. Branch	 the leaf tree to the child regions which satisfy the applicability on a goal. If several 

region return the same bid, branch the leaf tree to those regions. 

5. If the returned leaf EAT from the child region is not NULL, we know that more efficient 

subqueries were found. Truncate the old leaf and insert the new leaf at same location. If 

more than one EAT are returned, make a number of copies of the original EAT, delete the 

old arcs and insert new arcs at same location on the separate copied EATs respectively. All 

of the modified EATs are stored in a query set. 

6.	 Get a copy of another leaf from the EAT, and repeat the steps from 1 to 5 until all the leaves 

of the EAT are optimized. 
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apply (A (x) "c" ) (select ( A(z) (z.firscname = "Mary")) (select (A (y) (y.age =32 )) (People))) 

Figure 4: The Working Mechanism of the EAT-Control Region (1) 

7. Now all	 of the transformed subqueries are in the query set. compare the queries in the set 

with the original query, and return the set that contains the queries with the lower cost than 

the original one. 

8.	 The control goes to the higher level of the EAT, and repeat the procedure from 1 to 7. 

9. When	 the entire EAT is optimized, the set which contains these optimized queries is sorted 

by cost (lowest to highest) and pruned. The pruned set is eventually returned. 

The Figures 4 to 14 have illustrated how the control region manipulates the query transforma

tion. It is assumed that the optimizer has the leaf regions, "select" and "apply" where the region 
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(a) 

~
 
(b) 

apply(A.(x) "c" ) (select (A.(z) (z.firscname = .. Mary" » (select (A.(y) (y.age = 32» (People »)
 

Figure 5: The Working Mechanism of the EAT-Control Region (2), where arrow in (a) indicates
 
the location where we get the subquery, and the query in (b) is the one we send to the child region.
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(a) 

(b) 

apply(A,(x) "c" ) (select (A,(z) (z.firscname =.. Mary" » (select (A,(y) (y.age =32» (People ») 

Figure 6: The Working Mechanism of the EAT-Control Region (3), where arrow in (a) indicates 
the location where we get the subquery, and the query in (b) is the one we send to the child region. 
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(a) 

(b) 

apply(A,(x) "c" ) (select (A,(z) (z.firscname =.. Mary")) (select (A,(y) (y.age =32)) (People ))) 

Figure 7: The Working Mechanism of the EAT-Control Region (4), where arrow in (a) indicates 
the location where we get the subquery, and the query in (b) is the one we send to the child region. 
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(a) 

(b)
 

apply(A,(x) "c" ) (select (A,(z) (z.firscname =.. Mary" » (select (A.{y) (y.age =32» (People »)
 

Figure 8: The Working Mechanism of the EAT-Control Region (5), where arrow in (a) indicates 
the location where we get the subquery, and the query in (b) is the one we send to the child region. 
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(a) 

(b)
 

apply(A,(x) "c" ) (select (A,(z) (z.firscname =.. Mary" » (select (A,(y) (y.age =32» (People »)
 

Figure 9: The Working Mechanism of the EAT-Control Region (6), where arrow in (a) indicates 
the location where we get the subquery, and the query in (b) is the one we send to the child region. 
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(c) 

(d)
 

apply(A,(x) "c" ) (select (A,(z) (z.first_name = .. Mary" )) (select (A,(y) (y.age = 32)) (People )))
 

Figure 10: The Working Mechanism of the EAT-Control Region (7), where arrow in (a) indicates 
the location where we get the subquery, and the query in (b) is the one we send to the child region. 
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applt(A,(x) "e") ( select (A.(z) (z.firscname ="Mary") and (z.age = 32 )))(People)) 

Figure 11: The Working Mechanism of the EAT-Control Region (8) 
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T2
 

apply(A,(x) "c") ( select (A,(z) (z.firscname) = "Mary") and (z.age =32») (people) ) 

Figure 12: The Working Mechanism of the EAT-Control Region (9) 
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Figure 13: The Working Mechanism of the EAT-Control Region (10) 

"select" and "apply" have goals "select" and "apply" respectively. The sequence of traversing the 

EAT is other arc first, and then input arc at the same level. The EAT is traversed bottom up. For 

the clarity of the presentation, all the FDArcs are labeled with numbers. 

1.	 At first, we reach the leaf arc, arc 1, as shown Figure 4. we know a leaf arc is reached because 

the arc does not have any function node as its child. Clearly, it is not necessary to transform 

this arc. 

2.	 Next we go to the arc 5 because the arc 7 is a leaf arc, as shown in Figure 5, and take the 

name of the function node "first-name" as a subgoal. Since no match on the subgoal can be 

found, no further action is taken on this arc. As the arc 6 is a leaf, we go to the arc 3, a.c; 

shown in Figure 7. The subgoal for the EAT is '=', no match is found. 

3. Next the arc 4 is traversed. Obviously, in this arc only the name of the top function "select" 

matches the goal of the child region "select". We make a copy of this arc and send the copied 

EAT, as shown in Figure 8, to the child regions for bids, and choose the select region for the 

transformation. In the child region, the pattern of the EAT is compared with the predefined 

patterns. However, no match is found, and a null value is returned. 

4.	 The control returns to the arc 2. Make a copy of the arc, as shown in Figure 9, collect the bids 

from the child regions, and send the EAT to the select region. In the child region, the pattern 

of the EAT matches two predefined patterns. Thus, two equivalent queries are returned, as 

shown in Figures 10. In the control region, make the two copies of the original EAT To, 

truncate the old arcs from the copied trees, and insert the two queries at the same location 

on the separate trees, Thus, we have totally stored a set of three trees, To, T 1 , T 2 in the 

control region, as shown in Figures 11 to 12. 
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5. Go to the root arc of the entire EAT. 

6.	 At this moment, we have to send all the queries in the query set one by one to the apply 

region for the transformation. This time, the child region transforms the inputs into identical 

EATs for all the input EATs to the region, as shown in Figure. All the returned EAT are 

put into the query set, and the duplicate EATs are eliminated. Therefore, there are a total 

offour EATs in the query set, To, T I , T 2 and T3 

7. In	 the control region, the returned query set is sorted and pruned based on the cost. This 

leaves us with the EAT representing the query "set[c]" as the best equivalent query. 

3.2 Class of the EAT-Based Control Region 

3.2.1 REControIRegionEATBased::public REControlRegion 

This class is implemented to carry out the EAT-based control strategy. 

Public Methods: 

•	 REControlRegionEATBased
 

Constructor.
 

•	 rvREControlRegionEATBased
 

Destructor.
 

Protected Methods: 

•	 virtual int CustomApplicable(RPFDArc* TheEat, const char* Goal) ; 

If the given goal matches the predefined the goal of the region, return a non-zero bid, otherwise 

a zero bid. 

•	 virtual REQuerySet* CustomAttain (RPFDArc* TheEat, const char* Goal, WORD 

MaxReturnSize); 

Call the EatTraverse method to optimize the EAT from bottom up, sort the transformed 

EAT in order of cost, prune the query set, and finally return the pruned query set. 

•	 REQuerySet* EatTraverse(RPFDArc *TheEat) = OJ
 

This is a pure virtual function, and the user must implement it.
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3.2.2 SR_Optimizer::public REControlRegionEATBased 

This class is a user-defined class to carry out the EAT-based control strategy. 

Public Methods: 

•	 SR_Optimizer
 

Constructor.
 

•	 ",SR_Optimizer
 

Destructor.
 

Protected Methods: 

•	 REQuerySet* EatTraverse(RPFDArc *TheEat); 

This method is called from the method CustomAttain. It is called recursively in order to 

traverse the entire EAT. This method slices each of the child arcs of the current function 

node and makes a recursive call to itself to traverse the EAT from the current function node 

one level down to all its child function nodes. The call to this method returns a set of 

transformed EATs to its parent, and the parent inserts the returned EATs into where they 

COllle from. Finally, the transformed EATs are sent to a child region for the transformation, 

and the transformed queries are returnd in a set. 

•	 REQuerySet* InputTreeTraverse(RPFDArc *TheEat,REQuerySet * QSStorage); 

This method is called from the method EatTraverse to traverse the input arc of the current 

function node. In this method, the input arcs of the given query TheEAT are optimized on 

by one. If a non-null value is returned for each input arc, the old input arc is removed and 

the optimized one is inserted at the same location. 

•	 REQuerySet* OtherTreeTraverse(RPFDArc *TheEat, REQuerySet * QSStor

age); 

This method is called from the method EeaTraverse to traverse the other arc of the current 

function node.In this method, the other arcs of the given query TheEAT are optimized on by 

one. If a non-null value is returned for each other arc, the old other arc is removed and the 

optimized one is inserted at the same location. 
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I SR_Op~zerTOpTest I
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I SR_OptimizerT~
 
i 

I SR_Test I 
Figure 14: Architecture of Test Regions 

3.3 Testing Strategy 

The testing strategy in the EPOQ optimizer is developed to determine the performance of both 

the control region strategy and query transformation. The approach used is to have a control 

region slice a piece of EAT and send the EAT to a child region. The child takes in the EAT, deletes 

all the child nodes of the given EAT's the top data node, and returns the top data node to the 

control region. The control region inserts the transformed EAT back into the arc where the EAT 

came from. The iteration is implemented to keep slicing the EAT and sending the spliced EAT to 

the child region, so we can observe by means of GrOOVE 1 that the entire EAT is shrinking until 

its top data node is left. 

3.3.1 Test Regions 

The testing strategy is implemented by a test module, a collection of test regions. The architecture 

of the test regions is shown in Figure 14, in which both SR_OptimizerTopTest and SR_OptimizerTest 

are control regions. The reason we use two control regions is that it facilitates the display of the 

movie in GrOOVE. GrOOVE only displays an updated EAT when the EAT enters or leaves a 

I A movie displaying panel for the EAT[9] 
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region. In our test regions, the control region SR_OptimizerTest has a direct control over the leaf 

region, and keeps the information on the updated (transformed) EATs, but the updated EAT in 

this region can not be displayed without leaving the region. By using two control regions, the 

control strategy is performed by both of the regions, and both of the regions communicate with 

each other all the time, including sending the EAT back and forth between the two two regions. 

Thus, the EAT will be displayed as it leaves and enter either of the regions. In this approach the 

top control region SR_OptimizerTopTest only serves as a receiver and sender of an EAT. 

Figure 8 has demonstrated the working mechanism of test regions. The order of traversing an 

EAT is traversing the Other arc first, and then the Input arc. A leaf arc to be sent to the leaf 

region is always FDArc. In this example, the control flow first reaches the arc 6 as well as node 7, 

and send the arc to the leaf region. Since this arc has no child function node to be truncated, the 

unattached arc is returned. The control will go to one level up to the arc 4, and send the arc to 

the leaf region. The leaf region only keeps the data node 9, deletes the arc5, and returns the arc 4. 

The value of the left data node is reassigned based on the type of this node. For instance, if the 

type is a boolean, the value of the node will be "true", and if the type is an integer, the value will 

be "0". After the control region receives the new arc4, it deletes the old arc 4, insert the new one, 

and returns to the higher level. This time the control sends the arc 2 to the leaf region, and the 

leaf region returns a arc with a data node whose value is "true". The old arc 2 is deleted and the 

new arc is inserted. The same working mechanism is applied to the transformation of the Input 

arc 14. 
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select ( A(z) (z.first_name = "Mary" )) (select (ACY) (y.age = 32)) (people )) 

• 
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(0 

• dD 
Figure 15: Query Transformation in the Test Regions 

3.3.2 Test Region Classes 

class SR_OptimizerTopTest : public REControlRegionEATBased 

This is a class only responsible for sending and receiving an EAT. 

Public Methods: 

•	 SR_OptimizerTopTest(char* FileName)
 

Constructor.
 

•	 ",-,SR_OptimizerTopTest(void) 

( Destructor.
\ 

•	 int CustomApplicable(RPFDArc* TheEat, const char* Goal) 

Return a non-zero bid, if the goal is matched, otherwise zero. 

•	 REQuerySet* CustomAttain (RPFDArc* TheEat, const char* Goal, WORD 

MaxReturnSize) 

Keep sending the EAT to its child region for slicing the EAT until only the top node of EAT 

is left. 

class SR_OptimizerTest : public REControlRegionEATBasedTest 

This is a class responsible for branching the EAT to the test leaf region for query transformation. 

(slicing the EAT) 

Public Methods: 

•	 SR_OptimizerTest(char* FileName)
 

Constructor.
 

•	 "'-'SR_OptimizerTest (void)
 

Destructor. ;
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•	 int CustornApplicable(RPFDArc* TheEat, const char* Goal)
 

If the given goal matches the goal "test", return a non-zero bid.
 

•	 REQuerySet* CustornAttain (RPFDArc* TheEat, const char* Goal, WORD 

MaxReturnSize) 

Keep sending the EAT back and forth to the other control region until the EAT shrinks to a 

arc with a single data node. 

class REControlRegionEATBasedTest: public REControlRegionEATBased 

This class is responsible to test the performance of control region strategy and query transfor

mation. 

Public Methods: 

•	 REControlRegionEATBasedTest ();
 

Constructor.
 

•	 REControlRegionEATBasedTest (char * FileNarne); 

Constructor. It opens a file which specifies the goal which the child region has to achieve. 

•	 REControIRegionEATBasedTest();
 

Destructor.
 

•	 RPFDArc* TestTraverse(RPFDArc *TheEat, int &fiag); 

This method is called recursively in order to traverse an entire EAT. This method is the 

same as the method EatTraverse0 in the class REControlRegionEATBased, except that one 

more parameter, flag, is added to the TestTraverse. Flag indicates an action whether or not 

to transform a query. In the recursive call to this method, only a leaf of the given EAT 

is transformed. Once the transformation is done on the leaf, no further transformation is 

performed, and flag is set to zero (the initial value of flag is 1). Finally, the input EAT 

returns. 

class SR_Test : public RELeaffiegion 

This is a class responsible for branching the EAT to the test leaf region for query transformation 

(truncating the EAT). 

Public Methods: 
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•	 SR_Test(char* FileName) 

Constructor. 

• '"'-'SR_Test(void) 

Destructor.; 

•	 int CustomApplicable(RPFDArc* TheEat, const char* Goal) 

If the given EAT contains a function node, return a non-zero bid because this EAT should 

be sent to the child region for transformation (truncation). 

•	 REQuerySet* CustomAttain (RPFDArc* TheEat, const char* Goal, WORD 

MaxReturnSize) 

This is a method to do the actual transformation (truncation). The given EAT is truncated 

into a smaller size, that is, delete the child nodes of the top data node. The value of the data 

node is re-set based on the type of the data. For example, if the data type is a boolean, the 

value is set to "true", and if the data type is a integer, the value is set to "0", etc. Finally 

we return the new EAT. 
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4 The Query Transformation 

4.1 Implementation of Query Transformation 

Query transformation is the responsibility of child regions. Each child region is assigned a task 

to transform the queries which match certain patterns. In this paper, pattern refers to as a sequence 

of function nodes that appear in a EAT, with specification of the location for each function node. 

In the EPOQ optimizer, the pattern is hard-coded into the application code. 

As stated in previous chapter, once a query matches a pattern, the query will be sent to a child 

region for transformation. The transformation is based on reordering of the input query. In the 

child region, the given query is reorganized into an equivalent query but that is expected to execute 

efficiently. In this chapter, we will focus on the transformation of the queries that contain the top 

function node apply. 

In AQUA query algebra, the definition of function apply is: 

apply(f)(A) = {f(a)la E A}. 

where A is the input set. 

Apply applies the function f to each element in the set A. The result is a set with one element 

corresponding to each element in set A, derived from applying f to the element (with duplicates 

eliminated) . 

For the definitions of other operators in the AQUA, see [8]. 

The query transformation associated with the operator apply is classified into the following: 

1.	 applY(A(x)x)(A) => A
 

where A is a set.
 

2. applY(A(x)	 const)(A) => set (const) 

where A is a set, and 'const' is a constant function that does not depend on the the input.. 

3.	 applY(A(x) f(x»)(union ( =)(A, B» => union(=)(applY(A(x)f(x»)(A), applY(A(x) 

f(x) )(B» 

where A and B are sets. 

4.	 applY(A(x) f(x»)(applY(A(x) g(x»)(A» ==> applY(A(x) f(x).g(x»)(A) 

where f(x) and g(x) are unary functions (path expression), . is the composition operator and 

A is a set. 
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apply(A,(x) x) (A) -> A 

where A is a set. 

Figure 16: Query Transformation 1 

• 

apply(A,(x) const )(A) -> set (const) 
where A is a set, and const is a constant function that 
does not depend on the input. 

Figure 17: Query Transformation 2 

5.	 apply(-X(x) f(x))(apply(-X(x) g(x))(A)) => apply(-X(x) f(g(x))(A)
 

where f(x) and g(x) are any functions, and A is a set.
 

4.1.1 The First Transformation of the Query Containing the Root Function apply 

In this transformation, as shown in Figure 9, We simply make a copy of the FDArc which is 

connected with the top data node of set [A] , and return that arc. 

4.1.2 The Second Transformation of the Query Containing the Root Function apply 

In this transformation, as shown in Figure 10, we make a copy of the top arc to the constant data 

node, delete the annotations for the lambda variable "x', and use it as the bottom FDArc of the 

constant set. Next thing to do is to build a new set. Since the EAT is a double-linked tree, the 

algorithm to build a relationship between two nodes A, B is as follows. 
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apply(A(y) f)(union(=) (A, B» -> union«=) (apply(A(x) f)(A), apply(A(X) f)(B» 

where f is a function, and A, B are sets. 

Figure 18: Query Transformation 3 

• Set B as the A's child . 

• Set A as the B's parent. 

4.1.3 The Third Transformation of the Query Containing the Root Function apply 

Figure 11 demonstrates the transformation 3. In this case, we make a copy of both set A arc and 

set B are, a copy of union are, and delete the two input arcs of union function. Subsequently, we 

make two copies of apply arcs, delete their input arcs, and insert the set A arc and set B arc in 

the input arcs of the two apply arcs respectively. Finally, we insert the two new apply arcs in the 

input arcs of the new union arc. When building the new EAT, we ensure that both parent and 

child relationship are set up, annotations are adjusted, and types are re-inferred. 

4.1.4 The Fourth Transformation of the Query Containing the Root Function apply 

In this transformation, as shown in Figure 12, we make a copy of set A are, and a copy of the 

other arc of the second apply function, which contains function g. Next we delete the input arc of 
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apply(A,(Y) t)(apply(A,(x) g)(A) =apply(A,(x) f.g)(A) 
where f and g are unary functions (path expression) 

Figure 19: Query Transformation 4 

the top function apply, and insert the set A arc. Finally, we insert the function g arc as the child 

arc of the function f. An example is shown in Figure 13. 

4.1.5 The Fifth Transformation of the Query Containing the Root Function apply 

In this transformation, as shown in Figure 14, the variable x in the entire other Arc of the top 

apply function in the EAT is required to be replaced with a new function value, i.e. the variable x 

in the function f(x) is required to be replaced with the function g(y) in the AQUA query algebra. 

Thus, a method, ReplaceDataNode, is implemented to deal with the replacing variable with the 

function and adujsting the annotations. 

The variable replacement is performed from the bottom up. The way to deal with variable 

replacement is to make a copy of the other Arc (a tree), to recursively traverse down the copied 

tree to the leaf, and to start the variable replacement by determining whether the defined variable 

on the top arc of the copied tree matches the name of the current data node. If a match is found, 

the current data node will be replaced with the new data node which contains the new function 

value (here the new data node may have its child function node whose value is kept at the new data 

node). Once the replacement has finished at this level, the recursive call will return to an upper 
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apply(A,(x) (x.city) ) (apply (A,(P) (p.address) (People) ) -> apply(A,(P) (p.city.address) (People)
 

Figure 20: The Example of Query Transformation 4
 

•
 

apply(A.{x) 1 + x * x )(apply(p) p.age ) (Students» -> apply(A,(P) 1 + p.age * p.age) (Students) 

Figure 21: The Example of Query Transformation 5
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level, and the replacement will continue all the way up to the top arc of the tree to be replaced. 

After the variable replacement has been accomplished, the old other Arc will be deleted and the 

replaced arc will be inserted at the same location. The algorithm is given as follows. 

In the following function, 

•	 Var stands for the value of a data node to be replaced, which is defined on the top FDArc of 

Tree. 

•	 NewVar for a arc that contains the new value to replace. 

•	 Tree for the EAT whose data node's value matching Var will be replaced by the newvar. 

ReplaceDataNode(Tree, Var, NewVar) 

1.	 Get a copy of Tree, RetTree. 

2.	 If the Top data value = Var,
 

return New Var;
 

3.	 For each of other Arc of the RetTree's top function, OtherArc, 

(a) Traverse the Other Arc and replace variables.
 

ReplaceDataNode(OtherArc, Var, NewVar);
 

(b) Delete the old Other Arc, and insert the new Other Arc.
 

4· For each of input Arc of the RetTree's top function, InputArc,
 

(a) Traverse the Input Arc and replace variables.
 

ReplaceDataNode(InputArc, Var, NewVar);
 

(b)	 Delete the old Input Arc, and insert the new Input Arc. 

5.	 Return RetTree. 

Thf' algorithm for the transformation 5 is as follows. 

1.	 Make a copy of the EAT for the given EAT, RetEAT. 

2.	 Make a copy of the other arc of RetEAT, OtherArc, in which the values of the variables are 

to be replaced with a new value. 
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3.	 Get the value of the defined variable on the OtherArc, Var, with which all of the variables are 

to be replaced. 

4.	 Get the arc which contains the new value. Here, the other arc of the second apply function. 

5.	 ReplaceDataNode(OtherArc, Var, NewVar). 

6.	 delete the old other arc of the RetEAT, and insert the new one at the same location. 

7.	 Make a copy of the set[A] arc. 

8.	 Delete the input arc of the top apply function, and insert the set [A] arc at the same place. 

9.	 Return RetEAT. 

4.2 Class of Leaf Region 

class SR_ApplyLeaf: public RELeaffiegion 

This class is responsible for the transformation of queries which are associated with the operator 

apply. 

Public Methods: 

•	 SR_ApplyLeafO;
 

Default constructor.
 

•	 SR_ApplyLeaf(char * FileName); 

Constructor. It opens a file which specifies the goal which the child region has to achieve. 

•	 rvSR_ApplyLeafO;
 

Destructor.
 

•	 int CustomApplicable (RPFDArc* TheEat, canst char * Goal); 

If the top function of the given EAT is apply, return a non-zero bid. Otherwise, return zero. 

•	 REQuerySet* CustomAttain (RPFDArc* TheEat, canst char* Goal, WORD 

MaxReturnSize); 

In this method, a given query is transformed based the five predefined transformation rules. 

One transformation is done for each pattern that the query matches. The transformed queries 

are stored in a query set. Finally, all the transformed queries in the query set are returned 

to the parent region. 
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Private Methods 

•	 RPFDArc DoTransforml(RPFDArc TheEat);
 

Transform the query which matches the transformation rule 1.
 

•	 RPFDArc DoTransform2(RPFDArc TheEat);
 

Transform the query which matches the transformation rule 2.
 

•	 RPFDArc DoTransform3(RPFDArc TheEat);
 

Transform the query which matches the transformation rule 3.
 

•	 RPFDArc DoTransform4(RPFDArc TheEat);
 

Transform the query which matches the transformation rule 4.
 

•	 RPFDArc DoTransform5(RPFDArc TheEat);
 

Transform the query which matches the transformation rule 5.
 

•	 RPFDArc *ReplaceDataNode(RPFDArc *TheEat, char *defvar, RPFDArc *Arc); 

In the given tree TheEat, replace the arc whose data nodes' values match defvar with Arc. 

( For details, see the algorithm in section 4.1.5. 
\ 
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5 Conclusion 

In this project, the EAT-based control region was implemented to carry out a bottom-up EAT

based control strategy. The EAT-base control strategy is the strategy that the control decision is 

made based on the given EAT, i.e. the goal chosen depends on the name of the top function of the 

current EAT subquery. Unlike other extensible optimizers which have a fixed control strategy, the 

EPOQ optimizer using the EAT-based control strategy provides the efficient means in searching 

the space of transformation rules by modularizing the rule base by the top AQUA operation in the 

EAT, and the flexibility in making a decision based on the given query. 

The responsibility of the EAT-based control region is to determine the goal, based on the given 

EAT, to request the bids from the child regions on the EAT and to branch the EAT to the regions 

which return the required bids for further processing. 

The leaf region apply has been developed, which is responsible for the query transformation 

of the EATs associated with the function apply. The Test regions are also built to determine the 

performance of both the control region strategy and query transformation. 
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