
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-96-M3

"Checkpointing and Migration for Quahog"

by

Alnoor Mamdani

Checkpointing and Migration

for Quahog

Alnoor Marndani

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for

the degree of Master of Science in the Department of

Computer Science at Brown University

September 1995

il~HTZt:er
Advisor

Contents

1 Introduction 3

1.1 Project Goals 4

2 Quahog 4

2.1 Quahog Components . . 4

2.1.1 Quahog Daemons · .. 4

2.1.2 Quahog Clients 5

2.1.3 Quahog State Server · . · 6

2.1.4 Quahog Commands . . . · 6

2.2 Extending Quahog · . 7

3 Checkpoints 7

3.1 Process Memory Layout . . · .. 8

3.2 Signals ; 9

3.3 setjmpO, and longjmpO · . . . · . 9

3.4 Saving Checkpointing Information · ... 9

3.4.1 Saving the Program Text . . 9

3.4.2 Saving the Data Segment. 9

3.4.3 Saving the Stack · 10

3.4.4 Saving the Process State . · . · . 10

3.4.5 Saving Open File Information ... 10

3.5 Checkpointing and Recovery Mechanics 11

3.5.1 Setup and Initialization · . 11

3.5.2 Creating the Checkpoint · .. 11

3.5.3 Recovery using the Checkpoint 14

3.5.4 Well Behaved Programs & Limitations 14

4 Improving Checkpointing Performance 15

4.1 Incremental Checkpoints . .. · . 15

4.2 Forked Checkpoints · . · 16

4.3 ••• 0Memory Exclusion 16

4.4 Synchronous Checkpoints. 17

5 Project Summary 17

5.1 Investigation Phase . . · . · .. 17

5.2 Implementation Phase · .. 17

1

5.2.1 Other Porting Issues 18

5.3 Project Status . 19

5.4 Bugs 19

6 User's Guide 20

6.1 Changes to User Sources 20

6.2 . ckptrc File 20

6.3 Quahog Requirements File .. 21

6.4 Location of Project Files .. 21

7 Further Work 21

2

Master's Project:

Checkpointing and Migration for Quahog

Alnoor Mamdani

September 8, 1995

1 Introduction

Networks of workstations offer computing resources that are often unutilized
during some parts of the day, or underutilized depending on the type of user.
Generally, in such a computing environment, a workstation is dedicated to a
single user who mayor may not be able to fully utilize all the power of the
workstation.

Workstation users have been categorized in to three types [3]. Type 1
users mostly use their workstation for word processing, sending and receiv­
ing mail. Type 1 user's machines are almost always underutilized. Software
developers can be identified as Type 2 users. Their machines are underuti ­
lized during code editing phase of their work, but more resources are required
during the compilation, running, and debugging phases of their work. Type 3
users need all the computing power of their workstations and usually more.
Type 3 users who run large simulations or searches requiring more comput­
ing power than they have are always clamoring for more computing power.
Furthermore, Type 3 users can keep their machines busy 24 hours a day,
but Type 1 and Type 2 user's machines are completely unutilized when they
go home. Quahog is a distributed process manager developed here at Brown
that allows Type 3 users to take advantage of idle CPU cycles on workstations
owned by Type 1 and Type 2 users.

3

1.1 Project Goals

The initial goal of this project was to make the Quahog system more us­
able by adding checkpointing and migration. We felt users would appreciate
being able to submit long running compute intensive jobs to Quahog with­
out the worry and irritation of their partially complete job being killed or
suspended. This Master's project investigates checkpointing and migration
of single threaded UNIX processes. We add limited migration functionality
to the Quahog system, although much work still needs to be done. This
document should serve a good starting point for another student who wishes
to take this project to completion. The Quahog system, checkpointing, and
the checkpointing library libckpt are described. Finally the current status
of the project is described.

2 Quahog

Quahog is a distributed process manager running on 160 SPARC machines
within the Computer Science Department at Brown University. Users can
submit commands or batch files that will be run on idle machines.

Quahog has been developed as a polite system. That is, it minimally
impacts the owner of workstations that will run Quahog jobs. When Quahog
detects that the workstation is being used by its owner, the job is guaranteed
to be killed within a fixed amount of time. The delay the workstation owner
suffers in order to regain the resources of his machine is bounded.

2.1 Quahog Components

The Quahog system consists of three parts: daemons, clients, and a state
server. See Figure 1.

2.1.1 Quahog Daemons

A daemon runs on every Quahog machine that accepts or submits tasks
for execution. Quahog daemons service local clients who wish to submit

4

WortstalioDA

WorkstatiOD C

Figure 1: Quahog Components

remote jobs. They accept remote requests from other remote daemons to
run a job locally. Finally, they keep track of local keyboard activity and
load information. Quahog clients connect to the local Quahog daemon to
submit a task for execution. The local daemon determines which remote
machine to submit the task to by consulting a local database. This database
contains information about every remote machine in the Quahog system,
and is updated periodically from a the global state server. Once the local
daemon decides the remote machine, it connects to the remote daemon to
submit the job. The job can be rejected if state conditions have changed since
the submitting machine's updating of its local information from the global
state server. The daemon also determines whether a Quahog job can be run
locally. The daemon continuously monitors system activity including the
load, CPU usage, memory usage, and interactive users by checking keyboard
activity. This information is sent by the daemon to the state server. The
local Quahog daemon will reject a remote job if there are interactive users
using the system. The other information is used by the remote machine to
decide where the job should be run. See Figure 2.

2.1.2 Quahog Clients

A Quahog client is a program that submits jobs for remote execution. If the
client is a program, then it communicates with Quahog through the Quahog
API. Alternatively, jobs can be submitted to the Quahog system through the

5

To State Server From Remote Daemon Run Job

From State Server From Local Client To Remote Daemon

Figure 2: The Quahog Daemon

utility qrun.

2.1.3 Quahog State Server

The state server is a network-wide database containing the local state in­
formation of each workstation. The daemons on each machine periodically
update the information in this database, and periodically update their local
copies of this database. Workstation information such as the CPU load, the
amount of memory, idle time, number of processors, and number of Quahog
jobs running are used to determine which remote machine to submit the the
job on.

2.1.4 Quahog Commands

• qrun allows the user to run a command or batch on a remote machine.

• qstat gives statistics on all machines running the Quahog daemon.

• qjobs lists all active Quahog jobs running on a system.

• qkill kills a Quahog job.

6

•	 The Quahog API [6] allows programs written in C to interact with the
Quahog daemon.

2.2 Extending Quahog

The Quahog system does not guarantee that a job submitted will execute
until completion. When Quahog determines that a Quahog user is interfering
with the workstation owner, in the interest of politeness, Quahog must stop
or ki~l the Quahog user's job. The Quahog user specifies how Quahog should
handle user jobs once the system becomes unavailable due to interactive
users. By default the job will be killed if the node is reclaimed by its owner,
however the user can ask Quahog to attempt to suspend the job if it does not
consume excessive resources. Killing the process is reasonable for short-lived
processes. When Quahog stops a process, although no CPU resources are
consumed, the job may still interfere with the workstation owner if excessive
swap space is being consumed, and in those cases the process is also killed.
This is not reasonable for long-lived processes. The unfortunate result of
killing the process is that all work accomplished thus far is lost, and compute
resources expended on that work were wasted. By adding checkpointing and
migration to the Quahog system, the Quahog user's job can be migrated to
other idle machines when the workstation owner needs his workstation back.

3 Checkpoints

By creating a checkpoint of the process before killing it, we save the necessary
process information required to restart the process on another machine. In
order to establish a point of recovery, we save the contents of memory, pro­
cessor registers, and the status of open files so that the process can continue
from the point of recovery.

7

Kernal Data (u area)

Stack

- Heap

Uninitialized Data

Initialized Data

Text

Oxefffffff

sbrk (0)

etext

Figure 3: Solaris 5.4 Process Memory Layout

3.1 Process Memory Layout

The memory image of a UNIX process contains three major segments. See
Figure 3.

Stack This is where the activation record for each function called is kept
and automatic variables are stored. The size of the stack varies at run
time depending on the number of functions currently called.

Text Program code executed by the CPU is kept in the text segment. The
text segment contains routines written by the user as well as the rou­
tines that are part of the checkpointing library. The contents of the
text segment do not change through the life of the process.

Data The data segment is divided into three parts. The initialized data
segment contains static variables that have been assigned values by the
programmer at compile time. The uninitialized data segment is the
area where static variables that were not assigned values at compile
time live. Variables in this area are initialized to 0 by the kernel when
the program is loaded. Finally the heap is where dynamic memory
allocation takes place. The heap grows as calls are made to the UNIX
system calls brkO and sbrkO through the C function mallocO.

8

3.2 Signals

Signals are software interrupts that provide a way of handling asynchronous
events. When a process receives a signal, the current state of the process
is saved and control is transferred to a user defined signal handler function.
When the signal handler returns, the process resumes execution at the point
it was interrupted. The UNIX kernel keeps track of the information needed
to restore the process. When creating a checkpoint file, we use the signal
handling mechanism to help save the state of a process.

3.3 setjmpO, and longjmpO

setjmp 0 and longjmp 0 are C-library routines used for non-local branching.
They provide a way to goto a label in a different function. We call setjmpO
from the point in our code that we want a corresponding longjmpO to re­
turn to in later execution. setjmpO saves the stack environment, registers,
and signal mask in a j mp_buf struct that is later used by longj mp O. During
checkpointing, we call setjmpO to save our call environment; when recover­
ing, we call1ongjmpO to restore the saved call environment.

3.4 Saving Checkpointing Information

When creating the checkpoint we must save the contents of the data and
stack segments, process state, and open file information in order to establish
a point of recovery.

3.4.1 Saving the Program Text

Since information in the text segment does not change, we get this informa­
tion from the executable. Nothing needs to be saved.

3.4.2 Saving the Data Segment

In order to save the contents of the data segment we need its beginning and
ending addresses. The beginning of the data segment is given by the system

9

variable etext which is the first address above the program text. We get the
end address of the data segment by calling sbrk(O). sbrk(O) returns the
first address past the top of the heap. The memory contents between these
two address are written to a disk file.

3.4.3 Saving the Stack

We save stack information in the following way. First we save the stack
context by using set j rnp 0 . The stack environment, including the stack
pointer and the processor state, is saved in a jrnp_buf struct in the data
segment. However, a limitation of setjrnp 0 is that it does not save the actual
contents of the stack. Thus, we must also save the area where the activation
records live. Again we need the beginning and ending addresses to write the
contents to disk. The bottom of stack for Solaris 5.4 running on SPARe
machines is Oxefffffff, and we determine the top of stack programatically
since it varies at runtime. The stack grows toward lower addresses.

3.4.4 Saving the Process State

The process state including processor registers is saved using setjrnpO and
stored in a jrnp_buf struct in the data segment.

3.4.5 Saving Open File Information

Part of the system state that we save includes the list of open file descriptors
and file positions. Each time the user opens a file, we record file information
such as the file path, file attributes, and the file descriptor in a table. When
creating the checkpoint, for each open file we record the position of the file
pointer. During recovery we used the stored information to reopen each file
and reposition the file pointer using lseekO.

10

3.5 Checkpointing and Recovery Mechanics

3.5.1 Setup and Initialization

The Quahog user must link their program with the checkpointing library
(libckpt. a) for Quahog to restart the process on a new machine. To link
with libckpt, the user must rename their main 0 to ckpLtarget O. libckpt
defines a main 0 function that will do some required setup and initialization
before calling the user's ckpt_target 0 function.

Part of the initialization is to set up a timer and signal handler for
SIGALRM. Each time the process receives a SIGALRM, it checkpoints itself.
When a checkpoint signal is delivered, the signal handler will save the data
segment, the stack contents, and the stack context by calling setjmpO.

Another part of the initialization for libckpt is to read a configuration
file . ckptrc that lets the user change default checkpointing options. For
example, the user can change how often they wishe their process to be check­
pointed.

3.5.2 Creating the Checkpoint

When the user process receives a SIGALRM, the signal handler will do the
following:

1.	 Save process state information in the jmp_buf struct by calling setjmp O.

2.	 Record positions of open files.

3.	 Save the contents of the data segment (including the jmp_buf struct)
to a disk file.

4.	 Save the contents of the stack to a disk file.

In Figure 4a we see the memory contents of a typical process while it is
executing function foo O. Figure 4b shows the contents of memory after the
process has received the SIGALRM signal and called setjmp O.

11

maine)

ckpUarget()

bare)

foo()

~SP

~
PC

DATA

(main 1
(ckpUarget

_ckpCalrm_handler

~
(E)

(main 1

jmp_buf.SP
jmp_buf.PC

(ckpCtarget

maine)
ckpuarget()
barO
foo()
SIGALRM signal frame
_ckpCalnn_handler()

•

(a) (b)

Figure 4: Creating the Checkpoint

12

main()
recover()

DATA

~ [recover W~PC
Ickpuarget 1 ~

(a)

- ­
(c)

main()

ckpuarget()

bar() I-sp

foo()

SIGALRM signal frame

3kpcalrm_handler()

main()
recover()

_ckpCalnn_handler

PC

main()

ckpuarget()

bar()

foo()

SIGALRM signal frame

3kpCalnn_handler()

•
~ [recover I~

3kpUlirI1\...handier

IckpUarget I ~

(d)

Figure 5: Recovery from Checkpoint

13

3.5.3 Recovery using the Checkpoint

Recovery proceeds in the following way:

1.	 Quahog will restart the command with a command line argument

=recover. The text segment is automatically restored when the pro­

cess is started, but stack and data segment contents need to be restored

to their values at the time of the checkpoint.

2.	 Libckpt detects the =recoverflag and restores the contents ofthe data

and stack segments by reading the disk files containing their contents

at the time of the last checkpoint.

3.	 The processor state is restored by calling longjrnpO using the saved

jrnp_buf struct. The processor registers including the stack pointer and

the program counter are restored. At this point, execution resumes in

libckpt code where setjrnpO was called.

4. Finally, files	 that were open at checkpoint time are now opened and

their file pointers repositioned.

In Figure 5a we see the memory contents of the restarted process execut­ \

ing the recover () function. At this point only the text segment has been
restored. When libckpt detects the =recover flag it calls the recoverO
function. Figure 5b shows the memory contents after the data segment has
been restored, and Figure 5c shows the contents after the stack has been
restored. Finally, Figure 5d shows the contents after the call to longj rnp 0
and the process state restored. At this point the process is ready to resume
execution.

3.5.4 Well Behaved Programs & Limitations

Not all types of programs may be checkpointed. The following are limitations
of jobs that can be checkpointed:

1.	 Currently libckpt can only support a single process job. Programs

that make calls to forkO and execO cannot be checkpointed.

2.	 Programs that use signals and signal handlers cannot be checkpointed.

A signal could be delivered during the generation of the checkpoint and

14

corrupt the contents of the checkpoint files if the system state has been
changed.

3.	 Libckpt cannot restore the system state of processes that communicate
with other processes through the use of sockets or pipes since it cannot
ensure that peer processes are extant at the time of recovery.

4.	 File operations must be idempotent. Read-only and write-only file
accesses work correctly, but programs that read-write the same file
may not.

5.	 It is assumed that the machine that the process is restarted on has
access to the same file system.

4 Improving Checkpointing Performance

The most straightforward way to checkpoint a process is to write the entire
contents of the data and stack segments to disk files. These types of check­
points are called sequential because execution of the process being check­
pointed is suspended while the checkpoint files are written to disk. Disk
transfers are not interleaved with program execution. Four optimization
techniques have been implemented in libckpt that can offer improved per­
formance over vanilla sequential checkpointing. These optimizations have
been implemented by the authors of libckpt [5].

4.1 Incremental Checkpoints

Incremental checkpoints save only the information that has changed since
the last checkpoint. Since the amount of information in the checkpoint file
is reduced, the size of the file and checkpointing overhead are also reduced.

Page protection is used to implement incremental checkpoints. During
the initialization phase, the mprotect 0 call is used to mark each page in
the data segment as read-only. In addition, signal handlers for SIGSEGV

and SIGBUS are installed. When the process tries to change a data item,
a SEGV signal is generated, and the signal handler is invoked. The signal

15

handler marks the page dirty, and changes the protection for that page to
read-write. When the process receives a checkpoint signal, only the dirty
pages are written to the checkpoint file.

Non-incremental checkpoint files can overwrite previous versions since all
information required for recovery are in the new checkpoint files. Incremen­
tal checkpoint files, however, cannot be deleted since they contain necessary
information required to restore the process. The system state is restored
by using the first checkpoint, and then adding the information in each sub­
sequent checkpoint file incrementally. To keep a bound on the number of
checkpoint files, libckpt will coalesce incremental checkpoint files into a sin­
gle file when a user defined threshold is reached.

4.2 Forked Checkpoints

Forked checkpoints improve performance by interleaving application program
execution with the creation of the checkpoint file. When forked checkpointing
is specified, libckpt creates an asynchronously executing thread of control
to write the checkpoint file using the fork 0 primitive. The fork 0 system
call creates a new child process with a copy of the parents data space to write
the checkpoint file, and lets the parent resume. Writing of the checkpoint file
by the child is interleaved with the parent application program execution.

4.3 Memory Exclusion

Memory exclusion allows the user to explicitly mark areas of memory that do
not need to be saved to the checkpoint file. These areas can be categorized
as either clean or dead. Dead locations are areas of memory that will never
be read nor written and thus do not need to be saved. Clean locations are
areas of memory that exist in a previous checkpoint and have not changed.
These locations do not need to be written to the checkpoint file.

Memory exclusion can be used in the following way to improve perfor­
mance. Suppose the user allocates a large temporary array to make a compu­
tation. Each time the user makes the calculation the old values in the array
are written over. Thus, the values in the array are dead between calculations
and can be safely excluded from a checkpoint.

16

4.4 Synchronous Checkpoints

Synchronous checkpointing allows the user the specify the points in the code
where a checkpoint can be taken. These checkpoints are called synchronous
because they are not initiated by asynchronous timer interrupts. The over­
head of taking a checkpoint depends on the amount of data that must be
written to disk. If the user can force a checkpoint when the size of the stack is
small, and when the amount of excluded memory is high, then performance
will improve.

5 Project Summary

This section describes some of the approaches used to investigate the prob­
lem, the porting issues, and the current status of the project.

5.1 Investigation Phase

Initially I started with a list of projects that are implementing recoverable
processes for PVM. I started poking around the web sites on the list to
find out about checkpointing in general. One of these sites had a link to
the Condor Web Page at the University of Wisconsin-Madison. Initially,
this was probably the most helpful resource I came across since they had
a few papers that describe the basics of checkpointing a UNIX process [3].
In a paper at another web site, I also found a reference to the Litzkow [4]
paper that explained the fundamental concepts of checkpointing I needed to
know. Finally, Juan Leon at CMU sent me a pointer to a checkpointing web
site http://warp.des.st-and.ae .uk/warp/systems/eheekpoint where I
found libckpt.

5.2 Implementation Phase

To understand the methods used to checkpoint UNIX processes, I had to first
consult a few texts [1, 7] on the UNIX operating system. Before starting my
graduate studies at Brown, all of my software experience was in the PC world

17

on single user systems such as MS Windows and MSDOS. UNIX processes,
signals, and checkpointing were all new concepts for me. I also spent much
time reviewing the Sun Linker and Libraries manual and the Solaris l.x to
Solaris 2.x Transition Guide.

Initially I started looking at the Condor checkpointing code for Solaris
1.x. I planned to extract the checkpointing code from Condor and then port
it to Solaris 2.x. During this effort I found a generic checkpointing library
libckpt at the University of Tennessee, Knoxville, and scraped the work I
had done with the Condor code.

Initially, when porting libckpt I tried to use the compatibility libraries
and compilers that allow developers to create executables for Solaris 2.x from
code written for Solaris Lx. After adjusting the makefiles and compiling, the
executables produced strange results even before any checkpointing code was
reached. Weird behavior like pointer alignment problems while reading the
. ckptrc file convinced me to quit using the compatibility libraries and do a
full port to Solaris 2.x.

5.2.1 Other Porting Issues

The major changes required to port libckpt to Solaris 2.x included the fol­
lowing:

1.	 Compiler. I changed the compiler from GNU C to the Sun C com­
piler in order to take advantage of all the developer tools for the Sun
environment. In addition, I was more familiar with the Sun compiler.
This required adding prototypes and changing some types since the
Sun compiler is a little more picky.

2.	 Signals. In Solaris 2.x, in order to get extra information to the signal
handler via the siginfo_t structure, the sigactionO call should be
used instead of the signal () call.

3.	 File 10. The syscallO system call is not available in Solaris 2.x.
Libckpt used syscallO to trap file system calls such as openO and
read 0 so it could reopen and reposition files open at the time of a
checkpoint. I renamed libckpt file system calls to begin with the prefix
libckpt_ So openO becomes libckpLopenO, etc. Unfortunately,
the user is forced to change his source to take advantage of this feature

18

of libckpt. However, he can easily include #define's in his headers to
rename open 0 in his source to 1ibckpLopen 0 .

4.	 Incremental Checkpoints. There were some bugs in the function
protect-.a.ll 0 that is called after an incremental checkpoint is writ­
ten to disk. This function remarks every page in the data segment as
read only. It was incorrectly computing the starting and stopping ad­
dresses for the data segment. This was a difficult bug to find since the
error returned by mprotect 0 was not being checked and there was no
indication of error.

5.	 Address Alignment. The start address data segment needed to be
aligned with the beginning of the page. The system variable etext
gives the first address past the text segment, but it is not page aligned.

5.3 Project Status

Currently we have basic checkpointing working. The user can restart his
process with the =recover flag. Forked and incremental checkpoints are also
working, but have not been rigorously tested.

When a job has been checkpointed, it cannot be restarted on just any
machine in the department. The hardware, ego SPARC10 or SPARC2, of
the machines must be the same, and also the OS version must be identical,
ego Generie-101945-13. The number of processors for multiprocessor systems
does not matter.

A flag -m has been added to the qrun Quahog utility that will migrate the
process when Quahog kills the job. When this flag is specified and the job
has been linked with the checkpointing library, Quahog will automatically
restart the job on another idle machine.

5.4 Bugs

There are a number of known bugs:

1.	 Quahog requirements file. A Quahog user can specify a requirements
file with the qrun utility. However, qrun currently ignores the field

19

Q_OSVERSION so the job may be run on a system with a different version
and the restart will fail.

2.	 Incremental checkpoints. When coalescing incremental checkpoints on
new machine, a segfault is generated. Incremental coalescing works
however on the same machine.

3.	 File repositioning has not been tested.

6 User's Guide

6.1 Changes to User Sources

Libckpt users must include the file checkpoint.h and rename their mainO
to ckpLtarget O. Optionally, they can append the prefix libckpL to the
following system calls if they wish to have open files repositioned on recovery:
open(),read(),write(),close(), dupe), and dup2().

exclude_bytes 0 and include_bytes 0 are used to exclude and include
memory regions from the checkpoint file.

checkpointJJ.ere 0 is used to generate user-directed checkpoints within
the code.

6.2 . ckptrc File

A . ckptrc can be placed in either the users home directory or the directory
containing the executable. It can contain the following entries:

checkpointing <on Ioff> turns checkpointing on or off.

incremental <on Ioff> turns incremental checkpoints on or off.

fork <on Ioff> turns forked checkpointing on or off.

maxtime <seconds> defines the interval between checkpoints.

20

mintime <seconds> defines the minimum time between check­
points. This is useful when both user-directed and asynchronous
checkpoints are used. If the amount of time specified has not
elapsed, then a checkpoint will not be generated.

maxf i les <n> is the maximum number of incremental checkpoint
files generated before they are coalesced.

directory <dir> specifies directory that checkpoint files will be
found in.

verbose <on Ioff> turns debugging information on or off.

6.3 Quahog Requirements File

The Quahog requirements file specifies requirements for the machine the job
will be run on. It is important to specify the hardware and as version for
the job to be restarted correctly.

QJMACHINEHW=sun4m

Q_OSVERSION=Generic~01945-13

6.4 Location of Project Files

The sources for libckpt can be found /pro/quahog/src/migration. See
the README file.

7 Further Work

As it stands currently, the system is still incomplete. There is work to finish
in fixing known bugs, and better testing of the system. Performance testing
and monitoring are areas that can also be explored.

•	 Bug Fixes and Testing. Not much work has been done in testing the
system. File repositioning is an area that has not been tested at all.

21

•	 Checkpoint Naming Scheme. Currently the file names given to check­
point disk files are static. Only one copy of a program can be concur­
rently checkpointed since multiple concurrently running copies of the
same executable would overwrite each others checkpoint files. By cre­
ating checkpoint files with unique names, multiple copies of the same
executable can be checkpointed and migrated.

•	 Performance testing. By putting hooks in the library we can measure
the overhead due to checkpointing, and the amount of time it takes to
migrate a process. These times will depend on the type of application
being checkpointed, the settings in the . ckptrc file, network traffic,
and the number of other Quahog jobs running.

•	 Monitoring. It would be nice to graphically view Quahog usage across
the network. We could look at how much time a workstation is used
by its owner, and how much time is used by Quahog. Also, we could
track long running jobs, and follow how much time they spend at each
node.

References

[:I.]	 Maurice Bach, The Design of the UNIX Operating System, Prentice Hall,
Englewood Cliffs, New Jersey, 1986.

[2]	 John Bazik, "Quahog: Polite Remote Processing", Computer Science
Department, Brown University.

[3]	 Allan Bricker, Michael Litzkow, Miron Livny, "Condor Technical Sum­
mary", Computer Science Department, University of Wisconsin - Madi­
son, 10/9/91.

[4]	 Micheal Litzkow and Marvin Solomon, "Supporting checkpointing and
process migration outside the UNIX kernel" , Proceedings of the USENIX
Winter Conference, San Francisco, CA, January 1992, pp. 283-290.

[5]	 James Plank, Micah Beck, Gerry Kingsley, Kai Li, "Libckpt: Traspar­
ent Checkpointing under UNIX", Proceedings of the USENIX Winter
Conference, New Orleans, Louisiana, January 1995.

22

[6]	 Kevin Regan, "Quahog API", Computer Science Department, Brown
University.

[7]	 W. Richard Stevens, Advanced Programming in the UNIX Environment,
Addison-Wesley, Reading, Massachusetts, 1992.

23

