
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-97-Ml

"A Distributed Threads Package for Solaris 2.4+"

by

Charles G. Hoecker

A Distributed Threads Package for Solaris 2.4+

Charles G. Hoecker

Department of Computer Science
Brown University

September 1, 1996

Submitted in partial fulfillment of the requirements for the Degree of Master
of Science in the Department of Computer Science at Brown University

Profess r Thomas Doeppner

Advisor

A Distributed Threads Package for Solaris 2.4+

Charles G. Hoecker

Dept. of Computer Science

Brown University

cgh@cs.brown.edu

September 1, 1996

Abstract

Multithreaded programs have become a popular method of parallel programming,
allowing concurrent tasks to be executed by asingle process. Many multithreaded
programs will run faster on a machine with n processors than they will on a machine with
n-I processors and hence their performance is bounded above by the number of
processors on the host machine. Moreover, multiprocessor hardware is expensive and
many organizations instead have a numerous uniprocessor machines connected over a
network. As these machines and networks have become more powerful, they have
become a viable platform on which to execute distributed parallel programs. Recent
operating system improvements have allowed us to develop a distributed threads
package that simulates a "virtual process" over these networked machines, allowing
multithreaded programs access to more processors than are physically on the host
machine. While some multithreaded applications require the tight communication and
synchronization latencies provided by multiprocessor hardware, many others perform
well over the network configuration and our package.

I. Introduction

Parallel programs are written to improve the performance of solving a problem or
accomplishing a task by increasing the computational speed, throughput, responsiveness
or some combination of the three. They take advantage of the concurrency of multiple
processors in a multiprocessor system or of separate systems connected by a network.
Since multiprocessor hardware is expensive, the latter configuration is referred to as
"cheap parallelism" and employed by a number of packages such as PVM and MPI.
Programs written with these packages distribute processes across a set of machines with
inter-process communication consisting of messages sent over a network.

A multithreaded program, however, runs as a single process on a given machine
and consists of multiple threads of control that access the memory in the address space of
the process. A multithreaded program will only achieve true concurrency when run on a
multiprocessor machine where more than one thread can execute instructions at any
given time by running on a separate processor. The concurrency of a multithreaded
program, however, is limited by the number of physical processors on the machine. The
only option a multithreaded programmer has to achieve more concurrency than is
available on a single machine is to rewrite the program and use a distributed explicit

1

message-passing package such as PVM or another distributed shared memory (DSM)
system such as Treadmarks. Both options require substantial changes to the source code.

To provide the multithreaded programmer another option, we developed a
distributed threads package that takes advantage of the resources of a set of networked
computers. Our package provides distributed shared memory' and synchronization
primitives including semaphores, mutexes, read-write locks, condition variables, and
barriers and requires only minimal revisions of the source code. Currently our package
works on the Sun Sparcstation platform running Solaris 2.4 and above.

II. Multithreaded Programming

First, it must be understood that multithreaded programs, and parallel programs in
general, are very efficient and desirable in completing certain tasks but can also be
slower and inefficient in completing others. In general, multithreaded programs are
usually desired in one of two cases. The first is to perform two or more operations at the
same time. For example, a word processor does not want the user to wait for a key to
show up on the screen while it repaginates: it thus can have a thread waiting to process
input while another performs background repagination. A database client program might
have a thread waiting for a user query at all times, handing queries off to a set of slave
threads that actually execute the requests. The database server might have a separate
thread handle each incoming request so that newly arrived client requests do not have to
wait behind some prior request that is blocked on I/O. Web browsers will have multiple
threads fetching the various elements of a page. This way, a user might be able to read
the text of a page while a title graphic or advertisement is still being loaded.

The second desirable use for parallel programs is performing computationally
intensive tasks where the work for a problem can be divided amongst several threads or
processes in a manner that the different threads or processes spend most of their time
running independently and not synchronizing their efforts. A good example of this is a
matrix multiplication program. In this case, the only operation that need be synchronized
is the building of the solution matrix at the end of all computation as the threads do not
need to synchronize the reading of the two input matrices as no thread modifies them.
Many iterative algorithms, where the output of one iteration becomes the input of a
subsequent iteration, require that all threads performing the first iteration finish before a
subsequent iteration is performed. In some cases this synchronization happens
infrequently and the threads spend most of their time working. In others, however, it
occurs often in which case the cost of synchronization can outweigh the benefit of
"parallelization."

In general, any task where the synchronization time would be a small fraction of
the computation time is a good candidate for being performed in parallel while others
should remain serial. It should be noted, too, that the development and debugging of
multithreaded (and parallel) programs can be significantly more challenging than that of
serial programs and this, too, should be a factor in deciding which method to use.

2

III. Performance

Network communication between the remote threads is responsible for retarding
the performance of an application using our package and is the result of thread
synchronization and memory segment transfer. Thus, in general, multithreaded
applications whose threads largely run independent of one another - both in the amount
of synchronization performed and the memory they access - perform better with our
package than applications with threads whose execution and data access are tightly
interwoven.

The following programs were used to test the package:

•	 Quicksort - Performs a quicksort of an array of integers. The data set is not large
and threads constantly access each other's data. There is also a fair amount of
synchronization. . .

•	 Jacobi - Performs a jacobi iteration on a matrix. At each iteration, every cell of the
matrix becomes the average value of four cells adjacent to it and threads synchronize
at a barrier at the end of each iteration. The matrix is divided up by rows evenly
amongst the threads which run largely independent of each other. However, the first
and last rows of each thread's set are shared by other threads which do not
synchronize their access. This leads to a "ping-pong" effect where a page is rapidly
transferred between one thread which is writing to it and another which is reading
from it. Performance would improve if synchronization were added to avoid this
situation.

•	 Matrix - Matrix multiplication. This program constantly calculates the matrix
multiplication of Ax B =C. At the end of each iteration, one thread substitutes
different values for A requiring all threads to re-read the matrix. Like jacobi, the
rows are divided evenly amongst the threads but as they do not read each other's data
there is no "ping-pong" effect.

•	 Shortest Path - Shortest Path algorithm'. This program computes the shortest path
between two vertices in a directed graph with weighted edges. The threads
constantly read and write to the same memory locations and make many
synchronization calls. There is so much synchronization involved that, in fact, the
Solaris threads version runs significantly faster on a uniprocessor machine than a
multiprocessor machine'.

I _ Written by Peng Dai (ped@cs.brown.edu). According to the author, the program is in an

"experimental" stage.

2 _ Since only one thread is running at a time on a uniprocessor there is less interruption and, in this case,

better performance. It is very likely that this program would run faster if there was only one thread.

3

Thread Completion Times (sec) Performance
Program Threads Data Size Solaris Distributed Gain I Loss

Shortest Path 4 2.50 507.00 -20180%
Quicksort 2 100000 0.84 9.20 -995%

3 100000 0.72 12.40 -1622%
4 100000 0.60 15.40 -2467%
2 100000o 10.40 60.00 -477%
3 100000o 7.80 102.00 -1208%
4 1000000 7.80 132.00 -1592%

Jacobi 2 500x500 49.60 58.00 -17%
3 500x500 35.40 64.20 -81%
4 500x500 31.60 82.40 -161%

Matrix 2 500x500 141.00 139.80 1%
3 500x500 136.00 93.00 46%
4 500x500 75.80 70.40 8%
8 500x500 37.00 281%
4 1OOOx1000 1125.00 683.00 65%
8 1OOOx 1000 338.00 233%
12 1OOOx1000 224.00 402%
16 1OOOx1000 181.00 522%
4 2000x2000 9020.00 5262.00 71%
16 2000x2000 1279.00 605%

Figure 1 • Performance results. The first three programs highlight the pitfalls of using our
package. The first two rely on tight communication and/or synchronization amongst the threads
and do not perform well with the communication latency inherent in our implementation. Jacobi
has sections where the threads rapidly swap pages of memory amongst themselves. The Matrix
application using our package narrowly outperforms its Solaris threads counterpart for 4 and
fewer threads but allows the program to be run with up to 16 threads. A Sun Sparcstation
10/404ZX (which has 4 processors) was used to gather the Solaris thread data while a network of
Sun Sparcstation 10/41GX's connected over a 10 Mbs Ethernet line was used for the distributed
thread data.

The multiprocessor results show that the quicksort, jacobi, and matrix programs
perform quicker with more threads; the quicksort program's execution improves 28%,
jacobi's 36%, and matrix's 46% when the number of threads is increased from 2 to 4.
The matrix program scales slightly better with the distributed threads package: 49%
when the number of threads is increased from 2 to 4, and 74% when the number is
increased from 2 to 8. Furthermore, with the distributed threads package, we were able
to use up to 16 threads to solve the lOOOxlOOO problem which took 27% of the time it
took 4 threads with our package and 16% of the time it took 4 threads on our 4 processor
machine. Since the matrix multiplication requires only a small amount of
synchronization amongst the threads, it exhibits an almost linear speedup with respect to
the number of threads used. Its main performance penalty is the writing and
dissemination of new values to one of the input matrices, which is 4 megabytes in size
for the 1000x1000 and 12 megabytes for the 2000x2000.

What the performance results also illustrate is that a multithreaded program which
runs faster on a multiprocessor machine when more threads are used will not necessarily
scale as well with our package. While the quicksort and jacobi programs' performance

4

improved with additional threads, its performance worsened with additional threads with
our package. This was due to the increased latency penalty that comes with the
additional inter-thread communication. When the data sets were larger, and threads spent
more of their time on computation, the performance with our package improved. Overall,
though, these programs require, as some other multithreaded programs do, very little
communication latency to run well.

The matrix multiplication results reveal another strength of our package which is
illustrated by the large disparity between matrix program's results with the larger data
sets when run on a single multiprocessor machine and the results when the work is
distributed across numerous machines. Whereas the 500x500 matrix times between the
two platforms for 4 and fewer threads were competitive between the two platforms, the
times for the 1000xlOOO and 2000x2000 matrices are much larger for the multiprocessor.
This is due to the amount of memory required to process the larger data sets. When the
data is distributed across numerous machines, each cooperating machine needs to access
a smaller portion of the virtual process memory than a single machine needs to.
Providing access to this larger portion requires that the virtual memory mechanism of the
single machine swap memory to and from disk which hampers performance of the
process significantly.

Overall, the results appear to suggest that the common "real world" multithreaded
program will not benefit from using this package but this is not necessarily the case.
First, as just mentioned, the package will allow multithreaded programs with high
memory requirements to avoid the virtual memory swapping and perhaps improve
performance. Second, many multithreaded programs, such as the jacobi iteration tested
above, can be slightly altered to reduce the effects of network latency and improve
performance. The jacobi program would add mutexes for the rows shared by threads so
that a thread modifying a page would not be interrupted by another trying to read it. This
alteration would allow the jacobi program to perform well with the package.

Additionally, it must be kept in mind that the test hardware used is not all that
powerful. The 10 Mbs Ethernet network connecting the host machines in our tests is
somewhat slow and 100 Mbs connections are becoming abundant. A faster network
connection would drastically improve performance by reducing the inter-thread
communication latencies and bottlenecks.

IV. Internal Implementation

The package works by creating new threads in their own processes on remote
machines rather than in the processes that spawn them. For instance, a
pthread_create (3T) call forks the calling process, invokes the rsh (1) command to
spawn the process on a remote machine, the remote process mmap (2) 's in the global
shared memory and jumps to the thread procedure with a passed argument. Each remote
process contains two threads: one that executes the user's procedures and another that
responds to incoming communication from other threads. This second "serving" thread
is spawned separately at process initialization.

All synchronization provided by the package, including the coordination of the
memory access, is accomplished by an underlying "token" exchange amongst the various
thread processes. This exchange is performed by the package and is completely

5

transparent to the user. In this scheme, each process maintains a table of tokens, each of
which a given thread may have read, write, or no access to. The package allocates a new
token for each synchronization primitive (e.g., a mutex or semaphore) and shared
memory segment used by the threads. The following example illustrates the library's
actions with mutex calls:

Wbat tbe user does Wbat tbe library does

mutex_t *my_mutex = new

mutex_t;
 Allocate a new token for 'my_mutex'. Give

mutex_init(my_mutex,
this thread writeaccess to the token. USYNC_THREAD, 0);

Check thread's access to token corresponding to
'my_mutex'. If the access is not write, locate
the thread with write access, request write
access from that thread, and wait for access to
be granted. Once we have write access, mark
the token as having a writer so that no other
thread may gain write access until
mutex_unlock () is called.

Remove the writer from the token. Check to
see if any threads are waiting for access. If so,

} give writeaccess to the waiting thread and
make our access none.

When a thread requires a different type of access to one of its tokens, it makes a TCPIIP
connection' to the token's "probable owner" (the thread with write access) and requests
the new access. If granted, the calling (client) thread will change its local access for the
token and depending upon the request the serving thread may need to change its own
access for the token. In the event that the serving thread no longer has write access to the
token (it had already given it to another thread), it tells the client to try the thread that the
server had already given the write access to. The client thread then tries again with this
new "probable owner." In the worst case, this token-chasing will reach the true owner of
a token in N - 1 tries", though usually there is at most one or two. Figure 2 shows
another example, this time with shared memory access.

3 • TCP was chosen over UDP for simplicity. Since the protocol ensures reliable data transfer quickly at
the networking level, our package did not have to. Also, Solaris' TCPIIP implementation is very fast so
performance cost is minimal. Also for faster performance, the new connection remains open for the
remainder"of the execution for subsequent requests for a given thread.

6

•	 #include "dthread.h" in the source file containing main()
•	 #include "dthread.h" in all source files callingmalloc() and free()
•	 A call must be inserted at the beginning of main () to ini t_dthread (int argc,

char *argv []), where argc and argv are the arguments passed to main () .
•	 The path of the distributed threads package lib/ directory must be added to the linker

library path flags.
•	 Our thread library 1 ibdthread. a, 1 ibsocket .a, and 1 ibns 1 . a must be statically

linked to.

Once a multithreaded program is recompiled with the distributed threads package,
it may be run with additional command-line options. Arguments to the threads package
are separated from other program arguments by a double dash "--". Following the
double-dash may be one or more of the following optional arguments:

-s [size]	 The amount of shared memory available to the package, in bytes.
If size is smaller than one system page (4096 or 4K), size is
interpreted as the number of megabytes. The default is 10
megabytes.

-f [filename]	 Specify the shared memory file. When specified, the package will
create a single shared memory file which all threads private map
into their address space. Without this flag, the package will create
a file on each system's /tmp directory. This is desirable if not
much swap space is available as the file mapping effectively
reserves swap space twice when the package creates a mapped file
in the swap space.

-m [filename] Specify the file containing the list of machines to be used by the
package. By default, the package will use the .machines file in
the directory specified by the HOME environment variable. The
file contains a carriage-retum-separated list of machine names.

For example:

% faa [faa arg] [faa arg] -- -s 20 -m /usr/local/etc/machines.lst

A file containing a list of machines is required by the package. When a new

thread is created, a process is spawned onto the next machine in the list that has not been

previously used. Processes are spawned onto machines via the "rsh" command and the

user must be allowed to execute the command without supplying a password.

12

'_ K. Li and P. Hudak, "Memory Coherence in Shared Virtual Memory Systems," ACM Trans. Computer
Systems, Vol. 7, No.4, Nov. 1989, pp. 321-359.
U _ Ibid. p. 335. N is the number of threads.
Ul _ P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. "Treadmarks: Distributed shared memory on
standard workstations and operating systems," Proceedings ofthe 1994 Winter Usenix Conference, pages
118-120, January 1994.

13

