
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-96-M2

"Mini-Distributed System

(MDS)

by

Jasper Y. Wong

Mini-Distributed System
(MDS)

Jasper Y. Wong

Department of Computer Science

Brown University

Providence, RI 02912, USA

August 31st,1995

Mini-Distributed System
(MDS)

Jasper Y. Wong

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for the

Degree of Master of Science in the Department of Computer

Science at Brown University

August 1995

Professor Robert H.B. Netzer

Advisor

Table of Contents

Purpose
1 Introduction

1.1 Distributed Computing Systems

1.2 Issues surrounding Distributed Systems

1.3 Dributed Environment on micro-computers

1.4 Overview

2 Mini-Distributed System
2.1 Amiga Operating System

2.1.1 Operating System Versions

2.1.2 Multitasking

2.1.3 Libraries of Functions

2.1.4 Messages and Ports (interprocess communications)

2.2 Design of Mini-Distributed System

2.2.1 Simulation of Amiga's message interface

2.2.2 Local and remote process tracking

2.2.3 Network resource tracking

2.2.4 Structure of Mini-Distributed System

2.2.4.1 Task Manager

2.2.4.2 Resource Manager

2.2.4.3 API Library

2.2.4.4 MDS Daemon

3 Performance Results
3.1 Test #1 Finding prime numbers

4 Future Design

5 Setting Up MDS environment
5.1 Write, Compile, Link and Run

6 Conclusion

Purpose
This paper serves as the project report to the Master's project Mini-Distributed System.

The goal of the project is to bring some form of distributed computation to the home computing
environment. The Amiga computer platform was used as the target system for this project.

The objective of Mini-Distributed System (MDS) is to mimic the internal message system
used by the Amiga's operating system on the surface and exchange messages among networked
Amiga's via TCP/IP socket interface. Thus, application programs can be developed to take
advantage of distributed computation without knowing how to do TCP/IP socket programming.
This report will show that our current implementation of MDS gives adequate performance on a
2-node network. Network with more nodes were not tested due to lack of available machines.

1 Introduction
As the availability of inexpensive processors has made possible the construction of dis­

tributed systems that were previously economically infeasible, networking personal computers is
becoming a common trend in home computing. Thus, distributed programming no longer is a
priviledge enjoyed only by those who program on high-end workstations; it has become poten­
tially accessible to programmers of all levels. In light of the increased raw processing power pro­
vided by networked home computers, it seems appropriate to explore distributed computing on
these computers.

1.1 Distributed Computing Systems
Distributed computing is a form of collaborated computing contributed by different com­

puters connected by network. These computers communicate with one another by exchanging
messages. A standalone computer can also be viewed as a distributed system with processes dis­
tributed internally.

Several advantages can be gained with distributed computation. A task can be divided up
into several pieces and each piece be computed by a different processor such that less time is
required for each task to be completed. Another advantage is the simulation of protected memory.
Failure of one server does not have to bring down the whole network. Lost task can be redistrib­
uted to another server to perform. Resource can also be shared.

Overall, the goal of distributed computing is to combine resources and processing powers
of interconnected computers such that a task can be performed faster and be able to access to
more resources without the cost of upgrading a standalone system to provide equivalent perfor­
mance.

1.2 Issues surrounding Distributed Systems.
Many issues arise in dealing with distributed systems. Synchronization, partial ordering,

system failures, and distributed debugging represent just some of the issues MDS needs to
address.

- Synchronization and Partial ordering
Processes are usually executed with different speeds, especially when they're executed on

different computers, hence synchronization is often required to manage communication among
processes. In order for two processes to communicate, these two processes must find some com­
mon memory block where both processes can access and detect. Then one process may arrange
something to take place in that particular memory block so that another process may detect and
response such that two way communication can be established. It is important that the events of
performing an action and detecting an action are constrained to happen in that order. Synchroni­
zation, can then be defined as a set of constraints on the ordering of events and synchronization
mechanism can be implemented to satisfy these constraints by having the processes to wait for
each other during execution. MDS relies heavily on the synchronization of its processes.

The ordering of events can be specified as an event a happened before an event b if a hap­
pened at an earlier time than b. But how can we tell if an event happened before another event?
Some form of observable events within the system are needed to determine the relationship
between the two events in question. A physical clock is psychologically the most ideal candidate.
However, networked computers do not share the same physical clock, nor can they keep precise
physical time without network delay even if they do share one physical clock. Thus, the "hap­

----- ----

pened before" relation is usually defined without using clocks and is denoted by "->". Partial
ordering is then defined as a "happen before" relation at any point of time satisfying the following
conditions: (Figure 1 illustrates the four conditions)

(1) If a and b are events in the same process, and a comes before b, then a->b.
(2) If a is the sending of a message by one process and b is the receipt of the same mes­

sage by another process, then a->b.
(3) If a->b and b->c then a->c.
(4) Two distinct events a and b are said to be concurrent if a !->b and b !-> a.

(1) a->b

Process 1 Process 2

(2) a->b

........

........

........

........

........

........

Process 1 Process 2 Process 3

a

(3) a-x

Process 1 Process 2

(4) a !-> b, b !-> a
><.....

Figure 1. Different forms of partial ordering

Partial ordering serves as the fundmental building blocks for the design of synchronization
mechanism as well as other topics related to distributed system and it's essential to developing on
MDS.

- Distributed debugging
Program which is designed to run on standalone system exhibits same behavior when exe­

cuted repeatedly. Distributed program, on the other hand, may generate different results when
executed more than once. Its nondeterministic behavior can be caused by variations in process
scheduling and message latencies.

There exists several strategies for nondeterministic behavior detection and they can basi­
cally categorized into the followings:

Compile time analysis
It examines program semantics and explores all possible executions.

Trace analysis
It examines execution logs generated by various exections of program in question
to determine nondeterminacy.

On-the-fly detection
It examines information collected during program execution and detects
nondeterminacy by message tracing and other methods.

In general, when debugging mechanisms are made of program operation actual execution
behavior can be perturbed. If the pertubation effects of the instrumentation cannot be quantified
by a perturbation model, information obtained through the debugging instrument could be inaccu­
rate. Ideally, the debugging mechanism should be a separate entity from the actual execution
model. The perturbation effects can also be quantified by implementing controlled execution in
the underlying mail system, allowing the debug technique to be nonintrusive.

The future design of MDS allows for message logging and automatic replay thus allows
for easier implementation of these debug strategies.

- System failure
Networked computers are frequented by system failure. A loose connection, nameserver

failure, system overload, or simply system failure could all lead to a halt in a distributed environ­
ment. When a distributed program encounters system failures, procedures should be established
to ensure the integrity of the program.

System failures fall into two main categories: (1) Server failure and (2) Server delay.
(1) A distributed task could be lost when a server is down and disappeared from the net­

work. A failure with the nameserver may lead to connection failure to all remote servers. Thus,
an ability to recover from system failure is needed when implementing distributed programs.

(2) Server delay can be considered as a form of server failure with remote tasks eventually
routed back to the host server when completed. If a host server assigned remote task a to server 1,
and then server 1 became offline for a period of time such that the host server reassigned the task
a to server 2 to perform, then a conflict may appear when server 1 became back online and send

back the result of task a, thus there exists two results from two completed task a's.

1.3 Distributed Environment on micro-computers
With the increased popularity of home grown local area network (LAN), it has become

beneficial to low-end computers to tap into the power of distributed computing as well. However,
unlike their superset counterpart, most operating systems used on low-end computers weren't
designed with distrbuted environment in mind, and built-in networking software has just begun to
take shape on these operating systems. Thus, providing distributed computing to these systems
requires careful planning and cooperation from application softwares in order to ensure efficiency
and OS-friendliness.

One important feature is required of the operating system in order to provide a functional
minimal distributed environment. A network protocol capable of exchanging messages is the sin­
1ge most important feature needed to distribute tasks. Other features such as remote printing, task
distribution, shared file system...can be implemented with a capable network protocol. Most dis­
tributed systems, such as PVM and some others, are based on some form of UN*X environments,
thus internal multitasking can be assumed. However, quite a few operating systems for micro
computers weren't designed to take upon more than one task at a time. These systems require a
system level add-on which provides some form of time-slice scheduler in order to accept remote
distributed requests as well as to serve as a regular computer (such as DesqView for MS-DOS
computers). Implementation of distributed system is not recommended on these systems as fail­
ure in one task may lead to instability to the entire system.

1.4 Overview
In this section we describe in brief the structure of a distributed system and some related

issues affecting the design and implementation of such a system. In section 2 we describe Mini­
Distributed System and how it is integrated with the Amiga's OS architecture. Then in Section 3
we examine the performance of MDS and discuss further improvements. Section 4 we explore a
more complete design of MDS. Section 5 gives a brief walk-thru on how to write MDS applica­
tions. Finally, Section 6 gives a summary and conclusion.

2 Mini-Distributed System
Our goal is to design and implement a distributed system that is friendly to the Amiga

operating system used on some micro computers. That is, to bring high-level connectivity and the
power of distributed computing to these computers without the need to perform complex socket
programming. Such a system can be viewed as a general and flexible distributed resource that
supports a message-passing scheme of computation. The simulation of message-passing permits
system adaptability while retaining high level of transparency with the underlying operating sys­
tem.

Application programs written under Mini-Distributed System (MDS) are structured as
master/slave model in which a set of sub-processes performs task for the master process. Pro­
cesses communicate with each other via an enhanced message structure. Several restrictions were
imposed to ensure overall efficiency and transparency.

2.1 Amiga Operating System

In order to design a distributed environment based on the Amiga operating system it only
makes sense to understand some essential elements of the Amiga operating system such as its
multitasking environment, its lack of memory protection...etc.

2.1.1 Operating System Versions
The Amiga operating system has undergone several major revisions. The latest revision is

Release 3.1 (corresponds to library 39 and above). MDS requires as release 3.1 or above to
function properly.

2.1.2 Multitasking
The core of the Amiga's operating system is Multitasking Executive, usually known as

Exec. Exec serves as a central system in the Amiga and other systems in the Amiga rely on it to
perform correctly. Tasks such as multitask scheduling, message-based interprocess communica­
tion management, the allocationldeallocation of system resources and their accessibilities are all
controlled by Exec.

Traditional micro computer's operating system often sent the computer to perform some
non-computational intensive tasks which require spending a lot of its time waiting for something
to happen. Wait for user to press some keys on the keyboard, wait for the mouse to click on an
icon, wait for data to come in through the serial port, wait for text to go out to a printer...just to
name a few. It is, therefore, logical to think that in order to make efficient use of the CPU's time,
the operating system should have the CPU carry out some other tasks while it is waiting for some
particular events to occur.

By switching to another program when the current one needs to wait for some events to
occur or when a set time limit is reached, a multitasking operating system minimizes the amount
of time it stays in idle stage. A multitasking operating system allows multiple tasks, or programs,
to be executed simultaneously. These tasks can be run independently from each other, allowing
each task to treat itself as if it's the only program executed on the computer, thus having the com­
puter all to itself.

The Amiga's multitasking system relies on switching the task with the highest priority to
use the CPU to achieve multitasking, but only if the task is ready to run. A task can be in one of
three states: ready, sleeping, or running.

-Ready Task
The task is considered to be waiting for the processor but not currently using the CPU. A

list is kept by Exec which includes all the tasks that are ready. Task priority serves as the sort key
which Exec uses, thus Exec wastes no time in searching for ready task with the highest priority as
the task would be the one on the top of the list. Exec then switches the task that currently has con­
trol of the CPU, and sends the ready task with the highest priority to the CPU.

- Sleeping Task
The task is not currently running and is waiting for some event to happen. Exec will move

the sleeping task into the list of ready tasks according to its priority when that event occurs.

- Running Task
The task is currently using the CPU. It will remain the current task until one of the follow­

ing conditions occur:
*A higher priority task becomes ready, so the as preempts the current task and switches

to the higher priority task.
* The current running task needs to wait for an event, so it goes to sleep mode and Exec

switches to the highest priority task in Exec's ready list.
* There is another task of equal priority ready to take control of the CPU and the current

running task has had control of the CPU for at least a preset time period called a quantum.. In this
case, Exec will preempt the current task for the ready one with the same priority; a technique
known as time-slicing. When there is a group of tasks of equal priority on the top of the ready list,
Exec will cycle through them, letting each one use the CPU for a quantum (a slice of time).

The generic conecept of task is often represented interchangeably by the terms "task" and
"process". On the Amiga, Exec considers both of them to be tasks.

2.1.3 Libraries of Functions
Similar to most of the modem operating systems, quite a few of the routines that make up

the Amiga's operating system are organized into groups called shared libraries. Unless the library
has already been open, in order to call a function on the Amiga one must first open the library, or
re-enter the library, that contains the function. For example, if one wants to call the ReadO func­
tion to read data from disk one must first opens the DOS library.

The system's master library, called Exec, is always open. Exec keeps track of all the other
libraries and is in charge of opening and closing them. One Exec function, OpenLibraryO, is used
to open all the other libraries.

There exists another type of library known as a link library. Even though a link library is a
group of functions just like a run-time library, there are some major differences in the two types
(current version of MDS is implemented as a link library):

- Run-time libraries
A run-time, or shared library is a group of functions managed by Exec that resides either

in ROM or on disk. A run-time library must be opened before it can be used. The functions in a
run-time library are accessed dynamically at run-time and can be used by many programs at once
even though only one copy of the library is in memory. A disk based run-time library is loaded
into memory only if requested by a program and can be automatically flushed from memory when
no longer needed.

- Link libraries
A link library is a group of functions on disk that are managed by the compiler at link

time. Link libraries do not have to be opened before they are used, instead one must link one's
code with the library when compiling a program. The functions in a link library are actually cop­
ied into every program that uses them.

Following is the Amiga system software hierarchy

AmigaOOSCil

and Utilities

AmigaOOs
Processes,
File System

Disk Control Keyboard
& Mouse

Graphics Audio I/O Ports

680xO and Amiga Hardware

Workbench
Icons/Drawers/

Utilities

Exec: Tasks, Messages, Interrupts, I/O, Libraries and Devices

Intuition
Windows, Menus
Gadgets, Events +-__..

Layers
Library

Graphics
Rendering, Text,

Gels

Figure 2. Amiga System Software Hierarchy

2.1.4 Messages and Ports (interprocess communications)
Interprocess communication serves as the foundation for distributed computing, and Exec

provides a consistent, expandable but somewhat lacking mechanism of messages and ports. This
mechanism is used to pass message structures of arbitrary sizes from task to task, interrupt to task,
or task to software interrupt. In addition, messages are often used to coordinate operations
between cooperating tasks.

A message data structure has two parts: system linkage and message body. The system
linkage is used by Exec to attach a given message to its destination. The message body contains
the actual data of interest. The message body is any arbitrary data up to 64K bytes in size. The
message body data can include pointers to other data blocks of any size within the same computer.
MDS simulates message data structure but both system linkage and message body are sent to its
destination.

A predetermined destination port. is always required when messages are to be sent. At a
port, incoming messages are queued in a first-in-first-out (FIFO) order. There are no system
restrictions on the number of ports or the number of messages that may be queued to a port.

Messages are always queued by reference, i.e., by a pointer to the message. It can be con­
sidered as a praise or a curse that for performance reasons message body duplication is not per­
formed. However, it also presents a problem when we try to adapt network message. In essence,
a message between two tasks is a temporary license for the receiving task to use a portion of the
memory space of the sending task; that portion being the message itself. This means that if A
sends a message to task B, the message is still part of task A context. Task A, however, should not
access the message until it has been replied; that is, until task B has sent the message back, using
the ReplyMsgO function. This technique of message exchange imposes important restrictions on
message access but helps us in enforcing synchronization.

Message ports are redezvous points at which messages are collected. A port may contain
any number of outstanding messages from many different originators. When a message arrives at
a port, the message is appended to the end of the list of messages for that port, and a prespecified
arrival action is invoked.

2.2 Design of Mini-Distributed System
MDS takes advantage of the multitasking ability of the Amiga's operating system to pro­

vide a functional distributed environment, it focuses on the following key elements to ensure
usability, efficiency, and transparency.

- Simulation of standard Amiga's message interface on TCP/IP network
- Local and remote process tracking
- Network resource tracking

2.2.1 Simulation ofAmiga's message interface
Section 2.1.4 described the data structure of message used on the Amiga operating system.

Its structure has two parts: system linkage and message body. This data structure presents a few
problems when a process running on computer A trying to receive message from another remote
computer B. First of all, the two computers are connected via TCP/IP protocol thus standard
operating system's messages and ports cannot be used. Secondly, even if the standard method
works, the inability for the Amiga computers to share memory prevents computer A from access­
ing the message body on computer B. Therefore, designing a distributed message interface
requires simulating the data structure of message via TCP/IP and the ability to pass both system

linkage and message body.
The MDS system takes the host IPaddress, destination IP address, socket information and

create a static link between the host and the remote servers. The body of a message is transmitted
as opposed to just the system linkage. The original message body is disposed such that no exces­
sive memory space can be wasted. The message body can be regained when it's been replied.
Application programming interface for message exchanges has also been enhanced to handle the
additional information. An API's server is also used to handle the translation of messages from
standard messages to TCP/IP's socket messages and vice-versa.

Message body is splited into chunks of data and transmitted through the network as a spe­
cial type of message or being written to a temporary file shared by the destinated computer via
some form of shared file system.

2.2.2 Local and remote process tracking
In order to ensure adequate distributed performance, it is important not to overload any

remote servers and to maintain a healthy track of local processes. Good process tracking and
message tracking also allows for flexible distributed debugging by providing execution informa­
tion when needed.

2.2.3 Network resource tracking
Server failure or the additional of new servers may happen any time during the uptime of

the MDS system. It is, therefore, reasonable to keep track of the availability of servers as well as
other network resources. A resource manager is used to broadcast changes in the network.

2.2.4 Structure of Mini-Distributed System
The Mini-Distributed System is broken into the following pieces:
- Task Manager

- Resource Manager

- API library

-MDSDaemon

Figure 3 outlines their relationship and the flow of message exchange.

Machine 1 I Machine 2

I
Resource I I
Manager ~I

r----, I "
I

CliI eot I I

I Software I ~ I
 r------,

I Remote Task I
I drraryl ~/ ------~ - I--- I L .J

Figure 3. Overview of Mini-Distributed System

'

2.2.4.1 Task Manager
Task Manager resides on each computer and keeps a list of current registered local pro­

cesses and a list of registered remote processes. It serves as the main communication center on
each computer responsible to arrange communication among the resource manager, the API
library, and the MDS daemon. The following flow chart outlines Task Manager's operation.

Start

Setup

Spawn
Resource
Manager

Wait for
Message

no

Figure 4. Task Manager

Update
Host list

Acknowledge
Client
Termination

Broadcast
Host list

Delete
Client entry

yes

yes

Register
Client entry

Register
Remote entry

Delete
Remote entry

2.2.4.2 Resource Manager
Resource Manager keeps track of available servers and their CPU loads. It broadcasts its

availability to the network and listens for broadcasts from other resource managers. CPU load is
based on the number of local and remote processes tracked by Task Manager. The following flow
chart outlines Resource Manager's operation.

Start

l'
Setup
Host list

"
Read in
mds.hosts
file

..-
1r

Connect to
:MDS Daemons

"
~te

ost list

,r
Send Host list

to
Task Mana2er

Figure 5. Resource Manager

2.2.4.3 API library
API library is a linkable library which provides an interlace to MDS and its message sys­

tem. A simple call to InitMDSO registers itself with the Task Manager and opens up a communi­
cation channel with remote MDS Daemons. A call to CloseMDSO shutdowns the API server and
notifies the Task Manager of its desire to terminate. Following is a list of functions offered by
API library, a more detailed description can be found on the Reference Guide.

Start

Connect with
Task Manager

Connect with
remote
MDS
Daemons

Wait for
Message

Return result
to Client

Transmit to
MDS Daemon ~__-J

Submit
resignation
to Task Manager

Figure 6. API Library

2.2.4.4 MDS Daemon
The MDS Daemon serves as a client daemon under the Internet Super Server (lNet). It

sets up a network port listening to connection requests from remote Resource Managers and API
Libraries. Linkage among resouce managers are arranged by API Daemon. Remote tasks are car­
ried out by the API Daemon by invoking the client's remote process and arranges message
exchanges with the API Library. The following flowchart illustrates the operation ofAPI daemon.

Start

Return
availability

Wait for
Message

Transmit
Message

Spawn
Remote
Task

Transmit
Message

Submit
Resignation
to Task Manager

Figure 7. MDS Daemon

test1.c

#include "mds-api.h"
#include "client.h"

void main(int argc,char *argv[])
{

int pid, servers;
long lbegin, lend, ctrx, ctry, num, prim[5000];
BOOL isprime;
struct Special_Message *smsg;
struct mMsgPort *cport;

initdebug(DEBUG5);

mds_output = Open("CON: 10/3201520/80/Remote Client",MODE_OLDFILE);

if (mds_output==NULL) return;

mds_do_output=TRUE;

if (!lnitREMOTEfASK(argc,argv)) {

EWrite("Failed to initialize Remote Task\n");

EWaitRETURNO;

Close(mds_output);

return;

}

EWrite("Finding parent port\n");

cport = mFindPort(-1);

EWrite("Waiting for message\n");

smsg = (struct SpeciaLMessage *)mGetMsg(cport);

EWrite("Getting server ID\n");

pid = GetServerIDO;

servers = smsg->servers;

lbegin = (smsg->total 1servers) * pid + 1;

lend = (smsg->total 1servers) * (pid+1) - 1;

num=O;

for (ctrx=lbegin; ctrx<=lend; ctrx=ctrx+2) {

isprime=TRUE;

for (ctry=3;ctry < «ctrx-l)/2);ctry=ctry+2)

if « ctrx % ctry)==O) {
isprime=FALSE;
ctry=lend;

}

if (isprime)

prim[num++]=ctrx;

}

smsg->total = num;

mReplyMsg«struct mMessage *)smsg);

for (ctrx=O; ctrx < num; ctrx++) {

References

1. Farshad Nayeri, Ben Hurwitz, and Frank Manola "Generalizing Dispatching in a Distributed
Object System", Proc. of the 8th European Conference on Object-Oriented Programming,
Springer-Verlag, 1994.

2. Jan Vitek, and R. Nigel Horspool "Taming Message Passing: Efficient Method Look-Up for
Dynamically Typed Languages", Proc. of the 8th European Conference on Object-Oriented
Programming, Springer-Verlag, 1994.

3. Peter C. Lockemann "Aggregate Behavior of Loosely Coupled Objects: Architectural Principle
for Heterogeneous and Distributed Systems", Technical Report 0218-11-93-165, GTE Labo­
ratories Incorporated, November 1993.

4. Gregory R. Andrews, and Fred B. Schneider "Concepts and Notations for Concurrent Program­
ming", ACM 15, 1 (March 1983).

5. Eric Leu, Andre Schiper, and Abdelwahab Zramdini "Efficient Execution Replay Technique for
Distributed Memory Architectures", Technical Report 20-5495.88, Ecole Polytechnique Fed­
erale de Lausanne, Departement d'Informatique, Switzerland.

6. Christian Kuhnert, Stefan Maelger, and Johannes Schemmel "Amiga Intern", Abacus.
7. Commodore-Amiga, Inc. "Amiga ROM Kernel Reference Manual: Libraries", Addison-Wes­

ley Publishing Company, Inc.
8. "UMAX 4.3 Programming Guide", Encore Computer Corporation, 1989.
9. "UMAX 4.3 Programmer's Reference Manual", Encore Computer Corporation, 1989.

Mini-Distribllted System

(MDS)

Reference Guide

Jasper Wong

Department of Computer Science

Brown University

Providence, RI 02912, USA

August 30, 1995

1 Purpose
Mini-Distributed System Reference Guide describes the content and use of each of the

MDS functions available to the SAS/C and C++ programmer under AmigaDOS 3.1+.

2 Conventions
This section covers the typographical and syntax conventions used in this guide.

2.1 Typographical Conventions
The MDS reference guide use special fonts to depict specific types of information. These

typographical conventions are as follows:

times is the basic type style used for most text.
bold is used to show example statements or programs.

Bold is used also for items specific to the C and C++ languages, such
as the names of functions, header files, and keywords.

italic is used for terms that are defined and for arguments or variables whose
values are supplied by the user. For example, you should enter an
appropriate filename when you see filename.

2.2 Syntax Conventions
This guide uses the following conventions for syntax:
bold	 indicates commands, keywords, and switches that should be

spelled exactly as shown. These arguments mayor may not be
optional, depending on whether they are enclosed in square brackets.

italic	 indicates arguments for which you supply a value.
[]	 indicates an optional argument when they surround the argument.

indicates that you can repeat the argument or group of arguments
preceding the ellipsis any number of times.

+	 means to choose one item from a group of items separated by
the pluses.

The following example illustrates these syntax conventions:
show [function + integer]

show
is a command name, so it appears in bold type.

function
is a function for which you supply the name, so it appears in
italic type.

[function + integer]
are both optional, so they are enclosed in square brackets.

function + integer
indicates that you can specify only one of the items separated by the
plus sigh.

3 Using the MDS Library
Current version of MDS library was compiled as an linkable object file mdsapLo. If a pro­

gram file named test.c is to be linked with the MDS library, you can compile, link, and run test.c
with the following Shell commands:

sc LINK OBI test.o mdsapLo test.c

test

The header file mdsapLh is needed for every program wishing to take advantage of MDS's
distributed power.

iniCMDS Initialize MDS to be used with current application

Synopsis

Description

Portability

Returns

Example

See Also

#include "mdsapi.h"

d =initMDS(p, e, 1);

int d; /* number of available remote servers */

int p; /* number of requested servers */

char *e; /* Remote task to be executed */

BOOL 1; /* boolean variable indicating to log the task or not */

This function registers the current task with the Task Manager and awaits

for connection with the API library. Its requet for the number of servers

and the execution of remote task are then submitted to the API library.

SAS/C

The number of remote servers assigned is returned if the call is successful.

A zero is returned if there's no available remote server or the call failed.

#include "mdsapi.h"

void main(void)

{

if (inicMDS(lO,"c:compute",FALSE)) {
/* Find 10 servers to run the task compute */

}
Close_MDSO;

}

Close_MDSO

Closc_MDS

Synopsis

Description

Portability

Returns

Example

See Also

Shutdown MDS

#include "mdsapLh"

Close_MDSO;

This function submits resignation with the Task Manager and notifies all

remote MDS daemons to terminate. It then closes all the socket connec­

tions.

SAS/C

Nothing is returned.

#include "mdsapi.h"

void main(void)

{

if (inicMDS(lO,"c:compute",FALSE» {
/* Find 10 servers to run the task compute */

}
Close_MDSO;

}

inicMDSO

CloseREMOTETASK Shutdown remote task

Synopsis

Description

Portability

Returns

Example

(
\

See Also

#include "mdsapLh"

CloseREMOTETASKO;

This function submits resignation with the Task Manager and then sent for

disconnection with its parent process.

SAS/C

Nothing is returned.

#include "mdsapLh"

void main(void)

{

if (InitREMOTETASK(argc,argv» {
/* From here on it behaves as a normal program */

}
CloseREMOTETASKO;

}

InitREMOTETASKO

InitREMOTETASK Initialize remote task to be used with parent process

Synopsis

Description

Portability

Returns

Example

See Also

#include "mdsapLh"

d =InitREMOTETASK(argc, argv);

int d; 1* success or failure *1
int argc; 1* number of arguments *1
char *argv[]; 1* actual arguments *1

This function registers the current task with the Task Manager and awaits
for connection with its parent process. It then sets up all the necessary
socket information.

SAS/C

1 if successful or 0 otherwise.

#include "mdsapLh"

void main(void)
{

if (InitREMOTETASK(argc,argv)) {
1* From here on it behaves as a normal program *1

}

CloseREMOTETASKO;

}

CloseREMOTETASKO

GetNumServers

Synopsis

Description

Portability

Returns

Example

See Also

Checks to see how many servers were initialized by the parent process

#include "mdsapi.h"

d =GetNumServersO;

int d; /* number of servers */

This function can be used by the remote task to find out how many servers

were used for task distribution.

SAS/C

It returns the number of servers used.

#include "mdsapi.h"

void main(void)

{

if (InitREMOTETASK(argc,argv» {

d =GetNumServersO;

}

CloseREMOTETASKO;

}

None

GetServerID

Synopsis

Description

Portability

Returns

Example

See Also

Check to see the current process ID number

#include "mdsapLh"

d =GetServerIDO;

int d; /* server's ID */

This function returns the current server's ID.

SAS/C

-1 if parent process or current server's ID (positive integer).

#include "mdsapLh"

void mainevoid)

{

if (InitREMOTETASK(argc,argv» {

d =GetServerIDO;

}
CloseREMOTETASKO;

}

None

mFindPort

Synopsis

Description

Portability

Returns

Example

(

See Also

Find remote message port

#include "mdsapLh"

d =mFindPort(p);

struct mMsgPort *d; /* pointer to remote message port */

int p; /* server's ID number */

This function returns a pointer to a static message port associated with the

server pointed to by the server's ID. -1 can be used to find parent process.

SAS/C

pointer to remote message port or NULL if not found.

#include "mdsapLh"

void main(void)

{

struct mMsgPort *d;
struct mMessage *msg;

if (InitREMOTETASK(argc,argv» {

d =mFindPort(-l);

if (d)

msg =mGetMsg(d);

}
CloseREMOTETASKO;

}

mPutMsgO, mReplyMsgO, mGetMsgO

mPutMsg

Synopsis

Description

Portability

Returns

Example

See Also

Put a message to the given message port

#include "mdsapLh"

mPutMsg(d, m, len);

struct mMsgPort *d; /* pointer to remote message port */

struct mMessage *m; /* pointer to message needed to be sent */

long len; /* length of the message */

This function sends the message to the message port and disposes the cur­

rent message.

SAS/C

None.

#include "mdsapLh"

void main(void)

{

struct mMsgPort *d;
struct mMessage *msg;

if (inicMDS(4,"c:client",FALSE» {

d =mFindPort(2);
if (d)

mPutMsg(d, msg, sizeof(struct mMessage»;

msg =mGetMsg(d);

}
Close_MDSO;

}

mFindPortO, mReplyMsgO, mGetMsgO

mGetMsg

Synopsis

Description

Portability

Returns

Example

(

See Also

Get a message from the given message port

#include "mdsapLh"

m =mGetMsg(d);

struct mMsgPort *d; /* pointer to remote message port */

struct mMessage *m; /* pointer to message needed to be sent */

This function waits for a message to arrive at the given message port and

return a pointer to the message.

SAS/C

A pointer to a message or NULL if none.

#include "mdsapLh"

void main(void)

{

struct mMsgPort *d;
struct mMessage *msg;

if (iniCMDS(4,"c:client",FALSE)) {

d = mFindPort(2);
if (d)

mPutMsg(d, msg, sizeof(struct mMessage));

msg =mGetMsg(d);

}
Close_MDSO;

}

mFindPortO, mReplyMsgO, mPutMsgO

mReplyMsg

Synopsis

Description

Portability

Returns

Example

See Also

Reply to a received message

#include "mdsapLh"

mReplyMsg(m);

struct mMessage *m; /* pointer to a message */

This function replies a message previously received with mGetMsgO.
Message is then disposed.

SAS/C

None.

#include "mdsapLh"

void main(void)
{

struct mMsgPort *d;

struct mMessage *msg;

if (InitREMOTETASK(argc,argv» {

d = mFindPort(-I);
if (d)

msg =mGetMsg(d);

mReplyMsg(msg);

}

CloseREMOTETASKO;

}

mPutMsgO, mFindPortO, mGetMsgO

