
Learning DYllamical Systems Using

Hidden Markov Models

Sonia Leach

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements for

the Degree of Master of Science in the Departn1ent of

Computer Science at Brown University

May 1996

~8&/~

Professor Leslie Pack Kaelbling

Advisor

Learning Dynamical Systems Using Hidden Markov

Models 1

Sonia Leach

Department of Computer Science

Brown University

115 VVaterman Street

Providence, RI 02912, USA

Phone: (401) 863-7687

Fax: (401) 863-7657

Email: sml@cs.brown.edu

In this paper, we address the problem of learning models for complex processes under the
assumption that the processes can be represented within the hidden Markov model (HMM)
framework. Toward that aim, we investigate the strengths and weaknesses of two compet
ing algorithms for learning HMMs: Baum-VVelch and Bayesian Model Merging. VVe offer
insight into the reasons for the success or failure of each algorithm, especially through em
pirical trials, in several domains. Our experiments support the conclusion that Bayesian
Model Merging suffers a number of disadvantages which suggest Baum-VVelch be preferred
for learning a particular class of HMMs.

Keywords: dynamical systems, learning, hidden Markov models, Baum-Welch,
Bayesian Model Merging

1 Preliminary versions appear in joint work with Thomas Dean, Leslie Pack Kaelbling, Kee-Eung Kim,
and Hagit Shatkay cited in the references [Dean et al., 1996a, Dean et al., 1996b]

1 Introduction

Real-world processes typically generate data in the form of a sequence of observable outputs
of the system. Often the data suggests that the system exhibits sequentially changing be
havior, where a period of one distinct behavior is followed by a period of another distinct
behavior. These periods are commonly referred to as states and we are interested in how the
system evolves from one state to another. Specifically, we are interested in characterizing
the behavior of the system in the form of a mathematical model, which we can then use
later for prediction or explanation. Given a good enough model, we could also simulate the
process and learn from the simulation, without the expense of gathering data from the real
source.

As an example, a physician might use a model of the blood sugar level in a diabetic
patient to investigate how the patient would respond to varying levels of insulin injection.
Or a computer systems administrator might use a model of network use to determine how
an investment in new technology would affect network performance. Alternatively, speech
recognition systems might use models to distinguish between two word pronunciations, based
on the behavior of the signal. Similar examples can be found in industrial process control,
transportation planning, financial forecasting, protein classification and alignment, and a
host of other applications.

An important aspect of modelling complex systems is to discover structure in the un
derlying process. By this we mean, discovering the states and the dynamics governing the
transitions between those periods. We assume that we can observe the system at discrete
time periods, and that our observations are also discrete. For example, suppose we are trying
to model the behavior of a robot which can be in one of three rooms. The robot travels from
room 1 to room 2, then to room 3, and returns to room 1. However, its path is sometimes
blocked by a door separating room 1 and room 2. We might describe the states of the system
at any point in time in terms of which room the robot is in and whether or not the door is
closed, for a total of 6 states. However, if we note that the robot moving from room 2 to
room 3 is completely independent of whether the door is open or closed, then we can group
states based on this information and use only 4 distinct states. Knowing how the door affects
the location of the robot enables a more efficient and compact representation of the process.
Suppose further that we cannot observe the status ofthe door, so we do not know which state
the robot is in at any point in time. We might still be able to infer the connection between
the robot's location and the status of the door from the observation sequence over time.
We might also be able to infer the door's status if we observe whether the robot remains
in room 1 for any period of time. In general, our hope is that such structure is discernible
from the outputs of a process, even in cases where the dynamics of the underlying process
are unknown.

The theory of hidden Markov models (HMMs) presents a nice framework for modelling
partially observable processes. Here the system dynamics are described in terms of a set
of states, a set of observations, and probability distributions governing the initial states,
state transitions, and observations at the states. The distribution over observations at each
state takes into account the fact that some aspects of the state are hidden, so the same
observation may be made at different states. Learning the distributions, or parameters, for a
particular model of a process requires searching in the space of all parameter settings, guided
by some performance criterion. Typically, the performance criterion is measured in terms of

1

the difference between the learned model and the target model (either the actual model or
proxy in the form of the available data).

The learning algorithms we consider take as input sequences of observations generated by
the process and return a model in the form of the aforementioned distributions. In particu
lar, we examine two prominent algorithms for learning HMMs: the Baum-Welch algorithm
[Baum et al., 1970] and the Bayesian Model Merging algorithm [Stolcke and Omohundro,
1993]. The Baum Welch (BW) procedure assumes the number of states in the model is
fixed, and proceeds to adjust the model parameters, whereas the Bayesian Model Merging
(MM) approach tries to induce both the model topology and parameters. BW has proven
successful in many applications and its strengths and caveats are well known. MM is a more
recent algorithm so little is known about its applicability to a wider range of problems. The
scarcity of literature on MM argues for further evaluation of its performance. Hence, our
discussion of the two algorithms will be biased toward MM.

In this paper, we address the problem of learning models for complex processes under
the assumption that the processes can be represented within the hidden Markov model
framework. Toward that aim, we investigate the strengths and weaknesses of two competing
algorithms for learning HMMs, especially through empirical trials on several domains. Such
a study will not only help us to understand how these specific algorithms work and to
compare their relative performance on a variety of problems, it might also give insight into
the properties of a domain that make learning the structure harder or easier in general.

The remainder of this paper is organized as follows. Section 2 provides the necessary def
inition of a hidden Markov model and details about each of the learning algorithms. Section
3 contains empirical results of applying the algorithms to examples of regular languages and
the robot domain mentioned above. Our experiments provide insight into when and why
these algorithms succeed or fail. Our results show that Bayesian Model Merging is not such
a desirable alternative to Baum-Welch as earlier reports would suggest. Lastly, Section 4
offers further discussion and conclusions.

2 Hidden Markov Models

Hidden Markov models (HMMs) present a general statistical framework for representing
stochastic processes where the state of the system is unknown or hidden from observation.
The general problem of learning HMMs is not known to be in the class of problems with
polynomial time solutions [Abe and Warmuth, 1992]. However, learning algorithms exist
which provide approximate solutions and we experiment with two in particular. The re
mainder of this section is dedicated to a brief description of each algorithm. We first give
the formal definition of an HMM which we adopt throughout the paper.

2.1 Definition of an HMM

We assume a finite number of states and each state emits an output symbol from a finite
alphabet (this is equivalent to saying an observation is made at each state). The output
symbols provide indirect information about the underlying hidden state. The process gov
erning state transitions is assumed to be Markovian, i.e.) the current state depends only on
the immediate predecessor. Formally, we define an HMM as the following:

2

• A finite set of states ql, ... ,qn E Q.

• A finite set of observations VI, .•. ,vm E V.

• A set of transition probabilities A = {ai,j}, where ai,j = Pr(St+1 = qjlSt = qi) is the
probability of transitioning from state qi to state qj and St denotes the state at time
t.	 If St does not refer to any specific qi, we sometimes write aSt,St+l·

• A set	 of observation probabilities B = {bi,k}, where bi,k = Pr(Ot = vklSt = qi) is the
probability of emitting observation Vk from state qi and Ot denotes the observation at
time t. We often refer to bi,j as output or emission probabilities. If St or Ot do not
refer to any specific qi or Vk, we sometimes write bst,ot'

•	 An initial state distribution 1r = {1ri}, where 1ri = Pr(SI qi) is the probability of
starting in state qi.

An HMM is said to generate an observation sequence 0 = 0 10 2 ••• 0 1 of length 1 if
and only if there is a state sequence, or path, SIS2 ... Sl with non-zero probability, such
that St outputs Ot and transitions to St+l with non-zero probability, for all t = 1, ... ,1 (no
transition is made from the state Sd. The probability of a path S1S2 ... Sl (relative to 0) is
the product of all transition and output probabilities along it, weighted by the probability
of starting in state SI' The conditional probability Pr(OIM) of an observation sequence 0
given an HMM M is computed as the sum of the probabilities of all paths that generate 0:

Pr(OIM) = L 1rSl bS1,Ol aS1,S2 ... bS1_1,o1_1 aSI_1,slbsl,01
S1··· S1

The definition used by [Stokke and Omohundro, 1993, Stokke and Omohundro, 1994]
for the Bayesian Model Merging algorithm includes two special states: an initial state I
which occurs at the beginning of any state sequence (hence 1r is unnecessary), and a final
state F at the end of a state sequence. Neither of these states can occur anywhere else in
the state sequence, nor do they emit output symbols. Generally, we assume I, F rt. Q. Note
that such a model can be captured by the above definition with appropriate modifications.
This equivalence is important when we are discussing the learning algorithms, since the two
approaches assume different, yet equivalent, definitions.

For example, Figure 1 illustrates the translation of the HMM, with a single start state I
and single final state F, to an equivalent model according to the definition above. We adopt
the convention that numbers above the arcs between states are the transition probabilities,
and the initial state is highlighted in blue. From Figure la, the transition probability dis
tribution of state I becomes the initial state distribution 1r and the final state F becomes
state q3 in Figure lb. Also, the symbol c is added to the observation alphabet as a spe
cial symbol to indicate the end of an acceptable observation sequence, and the observation
probabilities for each state are modified accordingly. The HMMs are equivalent since any
observation sequence 0 generated by the HMM of Figure 1a has a probability p if and only
if the observation sequence 0', formed by concatenating 0 with any number of the symbol
c, is generated by the HMM of Figure 1b with probability p.

3

1.0 0~ 1.0

• @~@
~ 1t ={1.0, 0.0, O.O}

Pr(a I ql) = 0.2 Pr(a Iq2) = 0.7 Pr(a Iql) =0.2 Pr(a I q2) = 0.7 Pr(a I q3) = 0.0

Pr(b I ql) =0.8 Pr(b Iq2) =0.3 Pr(b Iql) =0.8 Pr(b I q2) = 0.3 Pr(b I q3) =0.0

Pr(c Iql) =0.0 Pr(c Iqi = 0.0 Pr(c I q3) =1.0

(a) (b)

Figure 1: Equivalence of Definitions

2.2 Learning Algorithms

In this paper, we examine two learning algorithms: Baum-Welch and Bayesian Model Merg
ing. We assume the learner is given a sequence of observations and infers a model of the
underlying dynamics governing the process which generated the data. In both cases, we
adopt a Bayesian approach to learning, whereby we are interested in finding the model M
that is most likely given the data 0, i.e.} finding M maximizing Pr(MIO). By Bayes' rule,
we have Pr(MIO) ex: Pr(M) Pr(OIM), where the term Pr(M) allows us to bias the search
over models, and the term Pr(OIM), referred to as the sample likelihood, expresses how
closely the model fits the data.

Below, we give a brief overview of each algorithm, presenting only the relevant ideas,
and refer the reader to the appropriate references for more detailed descriptions. The key
differences in the algorithms are in what features of the model the algorithm learns, how
data from the target process is used in the learning, and how the Bayesian perspective plays
a role. The Baum-Welch algorithm assumes a uniform prior Pr(M) over models of a fixed
size, and begins learning from a random initial model with a fixed number of states. The
algorithm then uses the data to learn that model's parameters. In contrast, the Bayesian
Model Merging algorithm begins learning from a model specific to the data, and adjusts both
the parameters of the model and its topology, using Pr(M) in its search to introduce a bias
toward smaller models.

2.2.1 Baum-Welch

Baum-Welch [Baum et aI., 1970] (BW) is a special case of the expectation maximization
(EM) algorithm of Dempster et aI. [1977]. We use a variant of the algorithm described in
Rabiner [Rabiner, 1989].

The goal of the Baum-Welch algorithm is to learn the probability distributions A, Band
1r for an unknown process, under the assumption that the process can be modeled as an
HMM. Note that the distributions A and B can be thought of as matrices whose rows are
the distributions for each state. The algorithm takes as its input a set of data sequences,
0, generated by the unknown process, and the number of states and observations in the
expected HMM. It starts by assigning some initial probability distribution (usually random)
to each row of the matrices A and B as well as to 1r.

4

It applies a version of the EM algorithm to adjust these initial distributions by collecting
expected sufficient statistics from the data in 0 for each of the model parameters. The
algorithm iteratively adjusts all the probabilities, until a fixed point is reached. At this
point, updating the matrices does not significantly change them. The resulting matrices
form the model M' which induces a probability distribution over data sequences. The model
M' is guaranteed to locally maximize the probability Pr(OIM) = I1oEo Pr(oIM) over all
HMMs M with the same number of states. Note that this is equivalent to maximizing
Pr(MIO) since BW assumes a uniform prior over models of a fixed size. However, the EM
algorithm does not guarantee to find the model that globally maximizes Pr(OIM). In fact,
we can only be certain that the learned model M' is no worse than the arbitrary model we
started with. The choice of the initial model determines how close to the global maximum
the learned model will be.

2.2.2 Bayesian Model Merging

Bayesian Model Merging (MM) is a technique developed by Stolcke and Omohundro [1993].
Unlike the Baum-Welch algorithm, which estimates the parameters of the model assuming
a fixed number of states, MM induces both the model parameters and the model topology.
The algorithm begins with the most specific model consistent with the training data and
generalizes by successively merging states. The criterion for selecting which states to merge
and when to halt the merging process is governed by the Bayesian posterior probability of
the model.

The MM algorithm begins by constructing a model that simply replicates the data. There
is a start state with as many outgoing transitions as there are sequences, and each sequence
is represented by a unique path with one state per output symbol. The transitions from the
start state are uniformly distributed, and a single transition from each of the interior states
has probability one. The algorithm then attempts to learn the model by generalizing from
the data. This is accomplished by merging pairs of states, effectively collapsing portions
of the model with similar substructure. Intuitively, the initial model can be viewed as the
result of "unrolling" the state sequences that were taken when generating the samples from
the real model. The merging process simply attempts to undo the process and return the
consolidated model.

The MM approach is best illustrated with an example. Suppose that the underlying
process we are learning generates the regular language 2 (ab)+. Let the data consist of the
two samples ab and abab. The sequence of merges performed by the algorithm are illustrated
in Figure 2. All transitions between states without specific numbers have probability 1,
and the output symbols appearing above the states have probability 1. Starting with the
initial model M o which replicates the data, successive pairs of states are merged. In this
example, the criterion for which states to merge is to choose the pair that results in a model
with the smallest decrease in sample likelihood over all candidate merges. The logarithm
of the likelihood (base 10) appears to the right of each model Mi. The notation Mi : qj; qk
indicates that model M i was the result of merging states qj and qk (highlighted in turquoise)
in model Mi - 1 . Merging two states requires removing the old states (the combined state is
renumbered with the smaller of the indices of the merged pair), redirecting transitions to

2For an introduction to regular languages, see [Aho et at., 1974]

5

a b

os ._®___________
MO: Log Pr(OIMO) =-0.602dl. • b/0b

O~ I-@-@-@

M1: 1;3 Log Pr(OIM1) = -0.602

O~

a b
M2: 2j4 Log Pr(O 1M2) = -0.602~-I-0

a

&'-
b

0.67

q~
a

M3: 2;6 Log Pr(O 1M3) = -0.829

0- 0.67f---_0 M4: 1j5 Log Pr(O\M4) =-0.829

Figure 2: An example of Bayesian Model Merging

and from the merged pair, and readjusting the transition and emission probabilities for the
combined state as a weighted mixture of the individual distributions for each state in the
merged pair.

In Mo, merging states ql and q3 suffers no likelihood decrease, resulting in the model M l .

The second merge also does not cause a decrease. Note that the first two merges in Figure 2
could be performed in the reverse order and incur the same drop in likelihood. The model
M4 is the minimal model generating the language (ab)+, but the merging could potentially
continue, to yield a model generating the language {ab} +. However, if we look at the drop
of likelihood resulting from the merge, we see a drastic reduction of 3 orders of magnitude,
from -0.829 to -3.465. Since we want the merging process to stop when we have achieved
"desirable" generalization, we wish to disallow the merging of those final two states. One
suggestion is to provide a threshold and only allow merges whose resulting drop in likelihood
is below the threshold. However, determining the threshold may be difficult as it may depend
heavily on the domain, the amount of available data, etc. The actual algorithm uses a more
sophisticated technique.

The criterion for choosing which states to merge tries to sacrifice as little of the sample
likelihood as possible while maintaining a bias toward smaller models capable of general

6

ization. This tradeoff can be captured in a Bayesian formulation. From Bayes' rule, the
posterior model probability Pr(MIO) of the model M given the data D is proportional to
the model prior Pr(M) and the sample likelihood Pr(OIM). Smaller models will have a
higher prior probability, which can outweigh the drop in sample likelihood resulting from
the merging process, provided that the merging is conservative. Each step in the merging
process yields a new model and the objective of the algorithm becomes finding the sequence
of merges that results in the model with the maximum posterior probability.

To avoid searching the whole space, the algorithm adopts a greedy strategy of choosing,
at each step, the pair of states to merge in a given model that yields a new model with the
maximum posterior probability from among the set of models resulting from each potential
merge. The process stops when all potential merges within a given model lead to a decrease in
the posterior. A number of further optimizations are employed to ensure that each update
does not require a global recomputation of the probabilities; rather, the computation is
localized to those states affected by each potential merge. Details about these approximations
and about the choice of model priors can be found in the technical report [Stokke and
Omohundro, 1994].

Note that the number of states n in the initial model is proportional to the number of
data points in the training sample. Each step in the algorithm, therefore, has to consider
O(n2

) pairs of candidate merges. To deal with the complexity, the algorithm can be made
on-line, where samples are incorporated a few at a time to reduce the number of states in
the model and save on the computation required at each step.

Since the MM algorithm uses a best-first search for states to merge and halts as soon
as there is a decrease in the posterior, it is only guaranteed to find a local maximum. One
strategy to overcome this problem is to continue from that point for a fixed number of steps
of lookahead to see whether the decrease was simply temporary. Another strategy used by
the algorithm concerns the trade off between generalization and data fit. Generalization
is driven by maximizing Pr(M), whereas data fit is driven by maximizing Pr(OIM). In
practice, it is desirable to have a parameter which can control the balance between these two
factors. To obtain control over generalization, we include a prior weight A and maximize
the sum Alog Pr(M) + log Pr(0 IM), which is simply the logarithmic version of Bayes' rule
where the model prior is weighted by A. For A > 1 the algorithm will stop merging later,
and earlier for A < 1.

The performance of the algorithm is sensitive to the values for the number of lookahead
steps, as well as the value for the A parameter. To achieve the best results, these values must
be adjusted by hand from trial and error; by experimenting with a number of settings and
looking at the results of the algorithm with a particular parameter setting. More about the
parameter settings appear in our discussion of the experimental results.

Empirical Evaluation

We tested the algorithms on two domains: regular languages, such as the example of the
previous section, and the robot domain mentioned in the introduction. Both of the domains
were simulated, in that we had the target model to generate data and to directly compare
against the learned models. The benefit of using artificial data from a known source is that
it allows us to test the algorithms over different sample sizes, and to investigate the effects

7

3

of varying the parameters of the algorithms. An empirical measure of error can also be
calculated since we know the target distributions.

Our original intent was to first experiment with these small domains, to get an idea of
where the algorithms worked or failed, and proceed to larger problems. Unfortunately a
number of issues prevented such an extended investigation and these problems are covered
in depth in the following subsections.

3.1 Regular Languages

HMMs can be viewed from the formal language perspective as a stochastic generalization of
nondeterministic finite automata. A model induces a probability distribution over the strings
of a regular language. In fact, it can be shown that HMMs accept exactly the class of regular
languages [Dean et al., 1996b]. Thus, one natural application of HMMs is the induction of
the automaton for a stochastic regular language. Although work exists by [Angluin, 1987,
Rivest and Schapire, 1989] for inferring the automaton of a deterministic regular language,
we might instead choose to use techniques for learning HMMs if the data is noisy.

The models learned for regular languages are often non-ergodic, i. e. J every state is not
reachable from every other state in a finite number of steps. All the examples we considered
were generated by a non-ergodic model. In these models, there is a definite notion of a final
(absorbing) state from which no other states may be visited. Hence, learning such a model
requires that the training data sufficiently covers the model, by exercising each transition
and emission probability at least once. For this reason, our training data consist of several
sequences, rather than one long sequence, as is sufficient for ergodic models.

One of our objectives in considering regular languages was to recreate the results of
[Stokke and Omohundro, 1994]. Their experiments showed MM to be superior to BW on
two examples since they were able in each case to induce the structure of the minimal HMM
generating the languages using MM. We mentioned the sensitivity of MM to the setting of
the lookahead and A parameters and our hope was to use this domain to investigate how
difficult it was to determine the correct settings for these parameters in order to induce the
correct model. Our investigation showed that, despite the claims of the creators, finding the
right parameter setting was an art, even for such a simple domain.

The performance measure used to evaluate the algorithms was the log likelihood of a test
set given each model. This quantity is proportional to the negative cross-entropy between
the learned model and the target model, which reaches a minimum when the distributions
are identical. Intuitively, this measure indicates how closely the learned model approximates
the target distribution.

Since our experiments closely mirror those of [Stokke and Omohundro, 1994], we do
not provide specific numbers. Rather, we give a qualitative analysis of the two algorithms
on three languages in particular. The general method of experimentation was to generate
a random training sample of sequences, typically 10 to 20, and train the algorithms from
these samples. The learned models were then tested on a sample of 20-50 sequences, and
compared on the basis of whether they found the correct structure, whether they overgener
alize or overfit the data (which could be roughly estimated by inspection), and whether they
performed well under the sample likelihood measure. The languages we considered include
the language (02*0) U (01*0) which appears in the original study, the language (01)+ , and
the language 1+010+.

8

3.1.1 The Language (02*0) U (01*0)

The language (02*0) U (01*0) provides an interesting test case since there is a dependency
between the first and last symbol, separated by an arbitrary number of intervening symbols.
This long term dependency seems to give MM an advantage, since the character of the
algorithm is heavily data driven, whereas the performance of BW depends strongly on the
initial parameter settings.

As was the case in the original paper, MM found the correct structure for the minimal
HMM generating the language (02+0) U (01 +0). The models found by BW tended to over
generalize to the language (0 U 1)2*(0 U 1), missing the dependency between first and final
symbols. In terms of log likelihood, MM was found superior to BW.

The interesting aspect of this experiment involved varying the parameter settings of the
MM algorithm. We found that there were large ranges of the A parameter, in particular,
which yielded the same model. The correct model was found in the range of A = 0.23 to
A = 0.03, where values above 0.23 resulted in a model which overfit the data, and values
below 0.03 resulted in a model that overgeneralized to (0 U 1)2*(0 U 1). With this example,
it appeared that finding the correct setting was relatively easy. There appeared to be a nice
correlation between the A parameter and the specificity or generality of the model. However,
experience with other regular languages revealed that not all languages demonstrate such a
nice correlation, suggesting that there might be certain properties of this particular language
that makes the parameters easier to estimate.

3.1.2 The Language (01)+

The language (01)+ was chosen because it is proven for BW that a uniform distribution for
all parameters in a 2-state, 2-observation model is a local maximum [Dean et ai., 1996a].
Starting from a uniform (or nearly so) distribution causes the BW algorithm to learn a
uniform model, i.e.) all probabilities are 0.5. Starting from almost any other distribution
leads the algorithm to the optimal model which has deterministic transitions between a state
generating the symbol 1 and a state generating a O.

MM, the other hand, also proved problematic. Here the correct structure could be found,
but the setting of the A parameter was less straightforward than in the previous example.
Our experiments showed that different training data required different AS in order for MM
to find the correct model. It no longer was the case that broad ranges of A would lead the
algorithm to the solution, regardless of the training sets used.

3.1.3 The Language 1+010+

The language 1+010+ was selected to test whether an algorithm was likely to overgeneralize
to the language (1+0+)+. Experimental results show that BW very often did just that. MM
was able to induce the correct HMM with four states plus a final state for A ~ 1. Values
for A < 1 tended to yield models with a high number of states, indicating rrierging was
stopped too early and the model overfit the data. Furthermore, it was often observed that,
unlike the first example of a regular language, there was not a continuum of A values, where
higher values were correlated with data overfit, and lower values with overgeneralization.
Rather, a lower value exhibited overfit, a higher value found the correct structure, and the
intermediate value overgeneralized. One possible explanation is that because the sequence of

9

• - Robot in room 1
2 • Robot in room 2
1 • Robot in room 3

0.2

Figure 3: Actual Model for the Robot Domain

merges differs depending on the choice of A, a particular choice of merges could prematurely
collapse the structure, from which point the algorithm drastically overgeneralizes.

3.1.4 General Conclusions

The results on regular languages are viewed with mixed feelings. Experimenting with the A
parameter proved to be less straightforward than was reported in [Stokke and Omohundro,
1994]. The authors claim that the parameters seem robust to sample size and distributions,
but our results argued for the contrary. An additional claim of the authors states that the A
parameter can be estimated by starting with a high value, learning a model, and if the learned
model is too specific, we could just feed the learned model back into the algorithm, using it as
a starting point, and continue to merge using a lower value. Our experience shows, not only
that there may not be a smooth correlation between A values and overfit/overgeneralization,
but that the precise sequence of merges changes with each A value. Consequently, the results
of such a procedure would not be the same as if the lower A value was used from the start
of the learning process.

3.2 Robot Domain

The robot domain is the same example used in the introduction. A robot can be in one of
three rooms, where a door separates room 1 and room 2. The robot moves from room 1 to
room 2 to room 3 and then back to room 1 in a continuous cycle. If the robot is in room 1
and the door from room 1 to room 2 is closed, the robot remains in room 1 until the door
opens. The door is open 80% of the time.

The model used to generate the data has 6 actual states as shown in Figure 3, where the
states are described in terms of the robot's location and the status of the door. Observations
are made of the robot's location only, so the observations are a deterministic function of the
state but the actual state is hidden. The output symbols are "4", "2", and "1", corresponding
to whether the robot is in room 1, 2, or 3, respectively. The observation made in each state
appears in red. As noted in the introduction, the dynamics can also be described using only
4 states, since the door does not affect the transition from room 2 to room 3. The 4-state
model appears in Figure 4.

The robot domain was chosen as a test domain because of its structure and simplicity,

10

1 = Robot in room 3

0.2

4 = Robot in room 1
2 = Robot in room 2

Figure 4: Consolidated Model for the Robot Domain

giving us a slightly more complex example but one that was still understandable. One nice
aspect about this domain is that all of the component functions governing transitions and
emissions are deterministic, except the one governing the probability of the door being open.
We hoped that the determinism would make this an easy domain to learn.

The dynamics of this domain can be described by the regular language (4214*)+ which
differs from the previous examples in that the generating model is ergodic. By this we
mean that there is no notion of a final (absorbing) state, and a single long data sequence,
that exercises the transitions and emissions often enough, is sufficient for learning the model.
These two facts become problematic for the MM algorithm. The following paragraphs discuss
each in turn.

Recall that the performance of MM is dominated by the need to examine O(n2
) pairs

of states to merge at each step, where n is the number of states in the model. Though the
algorithm can be made on-line, not much is gained here since we now must use long data
sequences to properly estimate the model parameters. Granted, the robot model only has a
few number of states, so we could use several medium length sequences. However, for the
models we are ultimately interested in, with large numbers of states, the sequences must be
long enough to allow the transitions and emissions to be visited sufficiently often.

The consequence of this requirement manifests itself quite dramatically in the case of
MM. The performance suffers tremendously when the number of states in a model exceeds
100. To give a rough idea of the performance lag, learning from an initial model with,
say, 200 states requires approximately 2 days of computation. Our original hope was to
investigate more complex domains than the simple ones of regular language induction and
the robot model. However, a more complex model implies higher connectivity, and a larger
state space, which means longer training sequences are necessary, rendering such an indepth
investigation infeasible. Even within a single domain, it is hard to evaluate the performance
of MM given that the algorithm is so sensitive to the lookahead and .x parameter settings
and experimenting with the values requires an immense amount of time. Consequently, our
reported results for this domain assume a single "vanilla" parameter setting of 0 lookahead
steps and .x = 1. Additional tests were performed in a few interesting cases.

The second problem we encountered with using MM in the robot domain concerns the
algorithm's assumption of a final state. The definition assumes the data was generated by a
non-ergodic model where there is an explicit notion of a final state. It is not clear how best

11

to apply the MM algorithm to domains without final states. If we simply ran the algorithm
directly on the data sequences, the choices made by the merging process could be arbitrary
for the states connected to the final state, since the algorithm could erroneously discover
structure that was not inherent in the original process. Two modifications to the algorithm
were attempted. Figure 5 is used to facilitate our discussion of both approaches. We refer
to the shaded states in the figure as "penultimate" states.

•	 Strategy 1: We apply the algorithm directly, assuming a final state, to obtain a
model M. Then we adjust the probabilities of the penultimate states in M to obtain
the model M' as follows.

- For each penultimate state i in M with a single outgoing transition to the final
state (shaded blue in Figure 5), replace i by a state j, in M', having a random
transition distribution over all states.

- For each penultimate state k in M with multiple transitions to states other than
the final state (shaded yellow in Figure 5), replace k by a state l, in M', where
the weight associated with the transition from k to the final state is distributed
equally among the other non-final state transitions from k.

-	 Remove the final state from M.

Using this method, we allow the merging process to "suggest" the states to which the
penultimate states should transition. The approach, therefore, accounts for the possi
bility that any structure found by the algorithm is not arbitrary, i.e.} there must have
been enough evidence in the data to motivate the merges involving the penultimate
states. We refer to this approach as Strategy 1 in the remainder of the paper.

•	 Strategy 2: We apply the algorithm, assuming the transition distributions from the
penultimate states in the initial model Mo are undefined. By this we mean the penul
timate states have no outgoing transitions. The merges made will rely on the output
characteristics only. Any penultimate state which remains unmerged in the resulting
model M will be assigned a random transition distribution, as described above. Using
this method, we consider the possibility that the transition to the final state is an ar
bitrary one, an artifact of our desire to produce a data sequence of a particular length.
The motivation behind this approach is that we want to avoid imposing a transition
distribution on a state for which we have no information, rather, we wish to be cautious
and leave the transition probabilities undefined. This strategy is henceforth referred
to as Strategy 2.

Admittedly, both of these approaches are difficult to justify formally, yet any other ap
proach seems equally problematic. Experiments with the robot domain show the second
modification, which involves leaving the transitions undefined for penultimate states, to
yield models with better performance than the first in most cases.

3.2.1 Performance Measures

As was the case in the experiments with regular languages, the target model generating the
data is available. Therefore, we can again use the model to compute an empirical measure

12

Figure 5: Dealing with the Final State in MM

of the error for the learned distributions, in terms of the target. Recall that our measure for
performance in the previous experiments involved the log likelihood of test data, given the
model. One important aspect to note is that the use of log likelihood only indicates how
close the learned model approximates the target distribution. It does not indicate directly
whether the learned model overfit or overgeneralized. Our previous experiments were less
concerned with this fact since we knew the minimal model. In the robot domain, it is less clear
whether or not we consider the 6- or 4-state model the correct model. Also, the motivation
for developing a model at all for the robot domain is less one of recognition or acceptance
of a language, as in the previous case, and more one of obtaining a good approximation
of a model to use as a proxy for the real model, or for predicting future behavior of the
underlying process. For this reason, we introduce two alternative performance measures
which are symmetric, i.e., they reward a learned model which nicely approximates the target
and penalize for overfitting or overgeneralization.

Since an HMM induces a probability distribution over data sequences, one way of compar
ing HMMs is to compare their corresponding probability distributions. The most commonly
used measure for this purpose is the Kullback-Leibler divergence [Kullback and Leibler,
1951]. The Kullback-Leibler divergence is related to log likelihood since the higher the likeli
hood, the lower the Kullback-Leibler distance between the induced distributions of the target
model and the learned model. As argued previously, we instead prefer symmetric measures
since we are mostly interested in how the learned model supports prediction of future ob
servations from past observations, rather than in how well the learned model captures the
hidden dynamics (except insofar as it contributes to prediction).

The following subsections describe the two performance measures we used in our ex
periments. The first measure captures how close two models are in terms of their induced
distributions. The second measure compares models based on their predictions. Both of
these measures require sampling the space of possible sequences of observations.

3.2.2 Distribution based Measure

This measure is based on the information-theoretic Kullback-Leibler divergence for a discrete
domain. It is adapted to be symmetric, and is due to Juang and Rabiner [1985].

Since a detailed description is given in both [Juang and Rabiner, 1985] and [Rabiner,
1989], we only briefly review it here. In the rest of the paper this measure is denoted as JR.

We begin with some preliminary definitions.
Let P = {PI, ... ,Pn} and Q = {ql, ... , qn} be discrete distributions, i.e., L:?=I Pi =

L:~I qi = 1 and 0 :::; Pi, qi ~ 1.

13

The Kullback-Leibler divergence [Kullback and Leibler, 1951] of Q with respect to P is

Since there are infinitely many sequences, applying KL directly to sequences distributions is
not feasible. Hence a sampled version of it is used.

Let M 1 and M 2 be models. Let 0 1 , O2 be (representative) sequences of length T, gener
ated by M 1 , M 2 respectively.

The asymmetric sampled distance is defined as:

The symmetrized version of it is:

For non-ergodic models, there is a need to use multiple sequences from each model, and
calculate their probabilities as a conjunction of independent sequences, which corresponds
to a product of the separate probabilities.

We note that there are two drawbacks to this measure for our purposes:

•	 It is unbounded, since the distributions are over arbitrary sequences. Hence it is hard
to conclude from a single result if two models are far apart or rather close to each
other. We only know that a value of 0 indicates a perfect match between the learned
and the true model distributions .

•	 It compares the overall distributions corresponding to the models, and does not con
centrate on comparing predictions based on the models.

We have developed another information-theoretic measure that addresses these two con
cerns.

3.2.3 Prediction based Measure

Let Pr(vIO, M) denote the probability that the next observation is v given the sequence of
observations ° and the model M. As before, let M1 and M2 be models, and let P, Q be
distributions. However, P and Q in this case are distributions of the form Pr(vlO, M) (rather
than Pr(°IM)). We note that there is a fixed number of observations over which Pr(v 10, M)
is defined. Hence, the KL measure D(PIIQ) is easy to compute.

We define the maximum Kullback-Leibler divergence with respect to P as

Dmax(P) = maxD(PIIQ) .
Q

Due to the finite number of observations, we can prove that Dmax(P) exists and can be
computed in time quadratic in m (where m is the number of possible observations).

We define a performance measure D(M1 , M2) that is symmetric (D(M1 , M2) = D(M2 , M1)),

positive, and bounded (0 ~ D(M1 , M2) ~ 1). Let Oi be the set of all sequences of a fixed

14

JR KLPSet
BW-6 MM-2BW-6 BW-16 BW-4 BW-16 MM-lNo. BW-4 MM-l MM-2

9.8ge-2 1.88e-6 2.50e-21 1.47e-3 6.70e-l 1.26e-l 1.25e-l 9.50e-5 5.00e-22.10e-O
8.4ge-2 5.47e-51.74e-O 1.80e-2 1.40e-O 3.60e-l 7.50e-2 1.95e-5 1.76e-l 1.00e-l2

9.8ge-76.9ge-l 1.02e-2 3.54e-l 6.70e-4 1.00e-l 1.50e-l6.50e-l 1.06e-O 7.50e-23
1.27e-5 4.86e-66.40e-2 1.12e-l 1.75e-2 5.24eO 7.18e-7 1.12e-6 3.50e-l4 7.78e-5

Table 1: Performance on robot domain.

length generated by Mi. Let ° be a set of pairs drawn randomly from 0 1 X O2 • Let
Pi(o) be the distribution governing the next observation given ° and Mi, i.e., Pi(O) =
{Pr(vII0, M i), ... , Pr(vmIO, Mi)}; then

D(M
1

M2) - _1 L ~ [D(P1 (OdII P2 (Od) + D(P2(02)IIP1(02))]
, - 101 (Ol,02)EO 2 Dmax(P1 (Od) Dmax(P2(02)) .

We refer to this measure as KLP. Since it is a normalized measure, a value of 0 corresponds
to an exact match of the next observation distributions, while 1 indicates that the two
distributions are as far apart as possible.

3.2.4 Experimental Results

III this set of experiments, the algorithms learned from 4 data sets - each containing 10
sequences of length 50 - to yield 4 different models. For the MM algorithm, the entire data
set was used in batch mode and the parameter setting was .x = 1 with 0 lookahead steps.
Results are reported using both strategies for dealing with the final state. For the BW

\ algorithm, we varied the number of initial states ill the model, using 4, 6, and 16 states. The
initial distributions were random and the algorithm was run until the probabilities in the
matrices were not changed by more than 1.0e-5. All measures were computed on 20 pairs of
test sequences of length 50. Table 1 shows the results of each algorithm on each data set,
according to each performance measure.

From the table, we can see that the BW models with 6 states generally outperform all
others, with the exception of the 4 state model trained on data set 4. The reason the model
derived from the fourth data set performs so well under both measures is that it looks very
much like the model in Figure 4. In many cases, the models learned by both algorithms
overgeneralized to (roughly) the language (4*21)+. Such a generalization is quite plausible
since the fact that a single "4" is observed at the start of each sequence may be mistaken as
a mere statistical anomaly.

Strategy 2 for dealing with the final state in MM appears to perform better than Strategy
1, except on the model trained on data set 4. The poor performance of MM relative to BW
can be explained by looking at the number of states in each of the MM models. For each
respective data set, the number of states under Strategy 1 is 9, 27, 27, and 16. For Strategy
2, the numbers are 31, 25, 6, 57 respectively. Looking at the resulting models shows that the
merging process was stopped too early, leaving long "strings" of the original state sequences
unmerged with any other state. This indicates that the models overfit the data and were
subsequently penalized under the performance measures.

To test how the >. parameter affected generalization in this domain, we trained a model
using MM with Strategy 2 and .x = 2 on training set 4 and the resulting model appears

15

1.DDDDDO 1.DDDDDD

Figure 6: MM-2 Trained on Data Set 4 (A = 2). The shaded circle indicates the start state.

in Figure 6. The performance was 1.75e-0 for the JR measure and 1.25e-1 for the KLP.
Note that the self-transition on state 0 indicates that the model also overgeneralizes, since it
can generate the observation sequence 4,4,2,1,4, ... which was not possible in the original
model. In fact, examining the results of the tests show that the model was often penalized
for generating such a sequence.

The notable exception for MM is the model learned on data set 3 with Strategy 2, which
appears to do better than both the 4-state and 16-state BW counterparts under the JR
measure. The model, shown in Figure 7, only has six states, which contributes to its success
at generalization. However, note that this model will also be penalized for overgeneralizing
by generating the sequence 4,4,2,1,4,

One final note concerns an earlier observation about why we chose to use symmetric
measures. If we only consider the performance of MM relative to BW in terms of sample log
likelihood, we get a different picture than the one evident in Table 1. We tried an experiment
where the 16 state BW models were compared against the Strategy 2 MM models using log
likelihood on three test sets of 20 sequences of length 50. The results appear in Table 2.
The stars indicate that the learned models were too specific (i. e., they overfit the training
samples) and failed to parse some of the samples. For instance, no path generating the
sequence 4,2,1,4,4,4,4,4,2,1 existed in the model learned for data set 1 using MM. However, for
the models trained on data set 2 (appearing in row 2), we see that in terms of log likelihood,
MM appears to outperform BW. This means that the distribution over observation sequences
induced by the MM model was closer to the target than the BW model. The difference
between the symmetric and asymmetric results can be attributed to the fact that invariably

D.D87302

$
1.DDDDDD D.846154

Ez $
1.000DOO 1.DDOODD

~

0.0434780.153841 0.0'13478 D•.913D43

$
1.DDDDOD

~

16

4

O.o4il61 0.141936 0.812900

rj

0.Dti114J 0.914:l!B6 0.Dl!ll511 l.DOOlIID

0/ ~
1J10110111 1.DOO01II

~
1.ollllDl

Figure 7: MM-2 Trained on Data Set 3 (A = 1). The shaded circle indicates the start state.

Test Set 3Training Test Set 1 Test Set 2
BW-16 MM-2 BW-16Set MM-2 BW-16 MM-2]

-226.7931 -285.944 -187.362 ** *
2 -257.837 -97.382 -89.554 -81.637 -169.062 -83.817

-770.509 -94.560 -643.741 -78.186 -80.2253 *
-167.896 -171.0774 -239.028 * * *

Table 2: Sample Log Likelihood on 3 Test Samples

the MM models overgeneralized since it allows the sequence 4,4,2,1,4,

General Conclusions

The general conclusions regarding the effectiveness of MM are disappointing. The possibility
that an algorithm could correctly learn both the model topology and parameters is highly
attractive. Our experience with MM is disheartening, since the algorithm failed to meet our
expectations. Though the MM algorithm seems elegant and intuitive, it is much too time
consuming to be practical when applied to any interesting domains. The results from the
experiments with regular languages show that MM can easily be applied to domains where
the sequences are short and well structured, as in words or regular expressions, but even this
comes at the price of having to estimate the algorithm's parameters. Our experience shows
that finding the right values for the algorithm is more difficult than the reports of [Stokke

17

and Omohundro, 1994].
Another major problem is in trying to apply MM to domains where the underlying

process is ergodic. There appears to be no natural extension of the algorithm to deal with
domains where there is no distinct notion of a final or absorbing state. The two approaches
we attempted resulted in models which approximate the target distributions well but suffered
from overfit and overgeneralization. It is not clear what other alternatives we might consider.

We offer one key insight into why MM performs so poorly in terms of the models it in
duces. The algorithm begins with a model where the number of states is exactly proportional
to the number of data points. At each state, we are attempting to learn a large number of
parameters based on a single observation. In fact, this is precisely the case following the first
several merges, since we do not have enough information at each state to reliably estimate
what the parameters should be. The problem is compounded by the fact that merges made
cannot be undone, so the algorithm commits to a sequence of merges that could turn out
to be detrimental to the quality of the final resulting model. One strategy to overcome this
problem might be to explore a sequence of k merges in the initial model instead of a single
merge, gradually reducing the horizon depth as the total number of merges increases to the
point where we can put more trust in the algorithm's ability to estimate the model parame
ters. Note that this is not the same as the lookahead procedure discussed earlier, since that
mechanism is only invoked after an initial drop in the posterior probability.

In this paper we attempted to apply HMMs to the task of learning model of dynamical
systems. Specifically, we investigated the performance of two algorithms for learning HMMs
- Baum-Welch and Bayesian Model Merging - on several examples of simulated domains.
We found that Model Merging suffers a number of drawbacks, despite prior claims of its
effectiveness. The algorithm is highly sensitive to a number of parameters that are hard
to estimate. Although the algorithm is designed to learn models from the class of stochas
tic regular languages, we also found that it is not practical for modelling arbitrarily long
data sequences or large state spaces. The performance results suggest that Model Merging
yields models that provide good approximations to the underlying model of the system in
terms of recognizing sequences of observations from the target model with high probability.
However, the learned models frequently fail by overgeneralizing, a harmful characteristic for
applications where the interest is in prediction.

A further goal of this work was to provide additional evaluation of the two algorithms,
since there is little literature about Bayesian Model Merging. The work that does exist is
that of the algorithm's creators so this investigation was meant to be a less biased look into
the applicability of the algorithm. Our hope is that the reader can learn from our experience
when trying to learn models for dynamical systems.

18

