
Learning DYllamical Systems Using
 
Hidden Markov Models
 

Sonia Leach 

Department of Computer Science
 
Brown University
 

Submitted in partial fulfillment of the requirements for
 
the Degree of Master of Science in the Departn1ent of
 

Computer Science at Brown University
 

May 1996 

~8&/~
 
Professor Leslie Pack Kaelbling
 

Advisor
 



Learning Dynamical Systems Using Hidden Markov
 
Models 1 

Sonia Leach
 
Department of Computer Science
 

Brown University
 
115 VVaterman Street
 

Providence, RI 02912, USA
 
Phone: (401) 863-7687
 

Fax: (401) 863-7657
 
Email: sml@cs.brown.edu
 

In this paper, we address the problem of learning models for complex processes under the 
assumption that the processes can be represented within the hidden Markov model (HMM) 
framework. Toward that aim, we investigate the strengths and weaknesses of two compet
ing algorithms for learning HMMs: Baum-VVelch and Bayesian Model Merging. VVe offer 
insight into the reasons for the success or failure of each algorithm, especially through em
pirical trials, in several domains. Our experiments support the conclusion that Bayesian 
Model Merging suffers a number of disadvantages which suggest Baum-VVelch be preferred 
for learning a particular class of HMMs. 
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1 Introduction 

Real-world processes typically generate data in the form of a sequence of observable outputs 
of the system. Often the data suggests that the system exhibits sequentially changing be
havior, where a period of one distinct behavior is followed by a period of another distinct 
behavior. These periods are commonly referred to as states and we are interested in how the 
system evolves from one state to another. Specifically, we are interested in characterizing 
the behavior of the system in the form of a mathematical model, which we can then use 
later for prediction or explanation. Given a good enough model, we could also simulate the 
process and learn from the simulation, without the expense of gathering data from the real 
source. 

As an example, a physician might use a model of the blood sugar level in a diabetic 
patient to investigate how the patient would respond to varying levels of insulin injection. 
Or a computer systems administrator might use a model of network use to determine how 
an investment in new technology would affect network performance. Alternatively, speech 
recognition systems might use models to distinguish between two word pronunciations, based 
on the behavior of the signal. Similar examples can be found in industrial process control, 
transportation planning, financial forecasting, protein classification and alignment, and a 
host of other applications. 

An important aspect of modelling complex systems is to discover structure in the un
derlying process. By this we mean, discovering the states and the dynamics governing the 
transitions between those periods. We assume that we can observe the system at discrete 
time periods, and that our observations are also discrete. For example, suppose we are trying 
to model the behavior of a robot which can be in one of three rooms. The robot travels from 
room 1 to room 2, then to room 3, and returns to room 1. However, its path is sometimes 
blocked by a door separating room 1 and room 2. We might describe the states of the system 
at any point in time in terms of which room the robot is in and whether or not the door is 
closed, for a total of 6 states. However, if we note that the robot moving from room 2 to 
room 3 is completely independent of whether the door is open or closed, then we can group 
states based on this information and use only 4 distinct states. Knowing how the door affects 
the location of the robot enables a more efficient and compact representation of the process. 
Suppose further that we cannot observe the status ofthe door, so we do not know which state 
the robot is in at any point in time. We might still be able to infer the connection between 
the robot's location and the status of the door from the observation sequence over time. 
We might also be able to infer the door's status if we observe whether the robot remains 
in room 1 for any period of time. In general, our hope is that such structure is discernible 
from the outputs of a process, even in cases where the dynamics of the underlying process 
are unknown. 

The theory of hidden Markov models (HMMs) presents a nice framework for modelling 
partially observable processes. Here the system dynamics are described in terms of a set 
of states, a set of observations, and probability distributions governing the initial states, 
state transitions, and observations at the states. The distribution over observations at each 
state takes into account the fact that some aspects of the state are hidden, so the same 
observation may be made at different states. Learning the distributions, or parameters, for a 
particular model of a process requires searching in the space of all parameter settings, guided 
by some performance criterion. Typically, the performance criterion is measured in terms of 
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the difference between the learned model and the target model (either the actual model or 
proxy in the form of the available data). 

The learning algorithms we consider take as input sequences of observations generated by 
the process and return a model in the form of the aforementioned distributions. In particu
lar, we examine two prominent algorithms for learning HMMs: the Baum-Welch algorithm 
[Baum et al., 1970] and the Bayesian Model Merging algorithm [Stolcke and Omohundro, 
1993]. The Baum Welch (BW) procedure assumes the number of states in the model is 
fixed, and proceeds to adjust the model parameters, whereas the Bayesian Model Merging 
(MM) approach tries to induce both the model topology and parameters. BW has proven 
successful in many applications and its strengths and caveats are well known. MM is a more 
recent algorithm so little is known about its applicability to a wider range of problems. The 
scarcity of literature on MM argues for further evaluation of its performance. Hence, our 
discussion of the two algorithms will be biased toward MM. 

In this paper, we address the problem of learning models for complex processes under 
the assumption that the processes can be represented within the hidden Markov model 
framework. Toward that aim, we investigate the strengths and weaknesses of two competing 
algorithms for learning HMMs, especially through empirical trials on several domains. Such 
a study will not only help us to understand how these specific algorithms work and to 
compare their relative performance on a variety of problems, it might also give insight into 
the properties of a domain that make learning the structure harder or easier in general. 

The remainder of this paper is organized as follows. Section 2 provides the necessary def
inition of a hidden Markov model and details about each of the learning algorithms. Section 
3 contains empirical results of applying the algorithms to examples of regular languages and 
the robot domain mentioned above. Our experiments provide insight into when and why 
these algorithms succeed or fail. Our results show that Bayesian Model Merging is not such 
a desirable alternative to Baum-Welch as earlier reports would suggest. Lastly, Section 4 
offers further discussion and conclusions. 

2 Hidden Markov Models 

Hidden Markov models (HMMs) present a general statistical framework for representing 
stochastic processes where the state of the system is unknown or hidden from observation. 
The general problem of learning HMMs is not known to be in the class of problems with 
polynomial time solutions [Abe and Warmuth, 1992]. However, learning algorithms exist 
which provide approximate solutions and we experiment with two in particular. The re
mainder of this section is dedicated to a brief description of each algorithm. We first give 
the formal definition of an HMM which we adopt throughout the paper. 

2.1 Definition of an HMM 

We assume a finite number of states and each state emits an output symbol from a finite 
alphabet (this is equivalent to saying an observation is made at each state). The output 
symbols provide indirect information about the underlying hidden state. The process gov
erning state transitions is assumed to be Markovian, i.e.) the current state depends only on 
the immediate predecessor. Formally, we define an HMM as the following: 
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• A finite set of states ql, ... ,qn E Q. 

• A finite set of observations VI, .•. ,vm E V. 

• A set of transition probabilities A = {ai,j}, where ai,j = Pr(St+1 = qjlSt = qi) is the 
probability of transitioning from state qi to state qj and St denotes the state at time 
t.	 If St does not refer to any specific qi, we sometimes write aSt,St+l· 

• A set	 of observation probabilities B = {bi,k}, where bi,k = Pr(Ot = vklSt = qi) is the 
probability of emitting observation Vk from state qi and Ot denotes the observation at 
time t. We often refer to bi,j as output or emission probabilities. If St or Ot do not 
refer to any specific qi or Vk, we sometimes write bst,ot' 

•	 An initial state distribution 1r = {1ri}, where 1ri = Pr(SI qi) is the probability of 
starting in state qi. 

An HMM is said to generate an observation sequence 0 = 0 10 2 ••• 0 1 of length 1 if 
and only if there is a state sequence, or path, SIS2 ... Sl with non-zero probability, such 
that St outputs Ot and transitions to St+l with non-zero probability, for all t = 1, ... ,1 (no 
transition is made from the state Sd. The probability of a path S1S2 ... Sl (relative to 0) is 
the product of all transition and output probabilities along it, weighted by the probability 
of starting in state SI' The conditional probability Pr(OIM) of an observation sequence 0 
given an HMM M is computed as the sum of the probabilities of all paths that generate 0: 

Pr(OIM) = L 1rSl bS1,Ol aS1,S2 ... bS1_1,o1_1 aSI_1,slbsl,01 
S1··· S1 

The definition used by [Stokke and Omohundro, 1993, Stokke and Omohundro, 1994] 
for the Bayesian Model Merging algorithm includes two special states: an initial state I 
which occurs at the beginning of any state sequence (hence 1r is unnecessary), and a final 
state F at the end of a state sequence. Neither of these states can occur anywhere else in 
the state sequence, nor do they emit output symbols. Generally, we assume I, F rt. Q. Note 
that such a model can be captured by the above definition with appropriate modifications. 
This equivalence is important when we are discussing the learning algorithms, since the two 
approaches assume different, yet equivalent, definitions. 

For example, Figure 1 illustrates the translation of the HMM, with a single start state I 
and single final state F, to an equivalent model according to the definition above. We adopt 
the convention that numbers above the arcs between states are the transition probabilities, 
and the initial state is highlighted in blue. From Figure la, the transition probability dis
tribution of state I becomes the initial state distribution 1r and the final state F becomes 
state q3 in Figure lb. Also, the symbol c is added to the observation alphabet as a spe
cial symbol to indicate the end of an acceptable observation sequence, and the observation 
probabilities for each state are modified accordingly. The HMMs are equivalent since any 
observation sequence 0 generated by the HMM of Figure 1a has a probability p if and only 
if the observation sequence 0', formed by concatenating 0 with any number of the symbol 
c, is generated by the HMM of Figure 1b with probability p. 
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1.0 0~ 1.0 

• @~@ 
~ 1t ={1.0, 0.0, O.O} 

Pr(a I ql) = 0.2 Pr(a Iq2) = 0.7 Pr(a Iql) =0.2 Pr(a I q2) = 0.7 Pr(a I q3) = 0.0 

Pr(b I ql) =0.8 Pr(b Iq2) =0.3 Pr(b Iql) =0.8 Pr(b I q2) = 0.3 Pr(b I q3) =0.0 

Pr(c Iql) =0.0 Pr(c Iqi = 0.0 Pr(c I q3) =1.0 

(a) (b) 

Figure 1: Equivalence of Definitions 

2.2 Learning Algorithms 

In this paper, we examine two learning algorithms: Baum-Welch and Bayesian Model Merg
ing. We assume the learner is given a sequence of observations and infers a model of the 
underlying dynamics governing the process which generated the data. In both cases, we 
adopt a Bayesian approach to learning, whereby we are interested in finding the model M 
that is most likely given the data 0, i.e.} finding M maximizing Pr(MIO). By Bayes' rule, 
we have Pr(MIO) ex: Pr(M) Pr(OIM), where the term Pr(M) allows us to bias the search 
over models, and the term Pr(OIM), referred to as the sample likelihood, expresses how 
closely the model fits the data. 

Below, we give a brief overview of each algorithm, presenting only the relevant ideas, 
and refer the reader to the appropriate references for more detailed descriptions. The key 
differences in the algorithms are in what features of the model the algorithm learns, how 
data from the target process is used in the learning, and how the Bayesian perspective plays 
a role. The Baum-Welch algorithm assumes a uniform prior Pr(M) over models of a fixed 
size, and begins learning from a random initial model with a fixed number of states. The 
algorithm then uses the data to learn that model's parameters. In contrast, the Bayesian 
Model Merging algorithm begins learning from a model specific to the data, and adjusts both 
the parameters of the model and its topology, using Pr(M) in its search to introduce a bias 
toward smaller models. 

2.2.1 Baum-Welch 

Baum-Welch [Baum et aI., 1970] (BW) is a special case of the expectation maximization 
(EM) algorithm of Dempster et aI. [1977]. We use a variant of the algorithm described in 
Rabiner [Rabiner, 1989]. 

The goal of the Baum-Welch algorithm is to learn the probability distributions A, Band 
1r for an unknown process, under the assumption that the process can be modeled as an 
HMM. Note that the distributions A and B can be thought of as matrices whose rows are 
the distributions for each state. The algorithm takes as its input a set of data sequences, 
0, generated by the unknown process, and the number of states and observations in the 
expected HMM. It starts by assigning some initial probability distribution (usually random) 
to each row of the matrices A and B as well as to 1r. 
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It applies a version of the EM algorithm to adjust these initial distributions by collecting 
expected sufficient statistics from the data in 0 for each of the model parameters. The 
algorithm iteratively adjusts all the probabilities, until a fixed point is reached. At this 
point, updating the matrices does not significantly change them. The resulting matrices 
form the model M' which induces a probability distribution over data sequences. The model 
M' is guaranteed to locally maximize the probability Pr(OIM) = I1oEo Pr(oIM) over all 
HMMs M with the same number of states. Note that this is equivalent to maximizing 
Pr(MIO) since BW assumes a uniform prior over models of a fixed size. However, the EM 
algorithm does not guarantee to find the model that globally maximizes Pr(OIM). In fact, 
we can only be certain that the learned model M' is no worse than the arbitrary model we 
started with. The choice of the initial model determines how close to the global maximum 
the learned model will be. 

2.2.2 Bayesian Model Merging 

Bayesian Model Merging (MM) is a technique developed by Stolcke and Omohundro [1993]. 
Unlike the Baum-Welch algorithm, which estimates the parameters of the model assuming 
a fixed number of states, MM induces both the model parameters and the model topology. 
The algorithm begins with the most specific model consistent with the training data and 
generalizes by successively merging states. The criterion for selecting which states to merge 
and when to halt the merging process is governed by the Bayesian posterior probability of 
the model. 

The MM algorithm begins by constructing a model that simply replicates the data. There 
is a start state with as many outgoing transitions as there are sequences, and each sequence 
is represented by a unique path with one state per output symbol. The transitions from the 
start state are uniformly distributed, and a single transition from each of the interior states 
has probability one. The algorithm then attempts to learn the model by generalizing from 
the data. This is accomplished by merging pairs of states, effectively collapsing portions 
of the model with similar substructure. Intuitively, the initial model can be viewed as the 
result of "unrolling" the state sequences that were taken when generating the samples from 
the real model. The merging process simply attempts to undo the process and return the 
consolidated model. 

The MM approach is best illustrated with an example. Suppose that the underlying 
process we are learning generates the regular language 2 (ab)+. Let the data consist of the 
two samples ab and abab. The sequence of merges performed by the algorithm are illustrated 
in Figure 2. All transitions between states without specific numbers have probability 1, 
and the output symbols appearing above the states have probability 1. Starting with the 
initial model M o which replicates the data, successive pairs of states are merged. In this 
example, the criterion for which states to merge is to choose the pair that results in a model 
with the smallest decrease in sample likelihood over all candidate merges. The logarithm 
of the likelihood (base 10) appears to the right of each model Mi. The notation Mi : qj; qk 
indicates that model M i was the result of merging states qj and qk (highlighted in turquoise) 
in model Mi - 1 . Merging two states requires removing the old states (the combined state is 
renumbered with the smaller of the indices of the merged pair), redirecting transitions to 

2For an introduction to regular languages, see [Aho et at., 1974] 
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os ._®___________ 
MO: Log Pr(OIMO) =-0.602dl. • b/0b

O~ I-@-@-@ 

M1: 1;3 Log Pr(OIM1) = -0.602 

O~ 

a b 
M2: 2j4 Log Pr(O 1M2) = -0.602~-I-0 

a 

&'-
b 

0.67 

q~ 
a 

M3: 2;6 Log Pr(O 1M3) = -0.829 

0- 0.67f---_0 M4: 1j5 Log Pr(O\M4) =-0.829 

Figure 2: An example of Bayesian Model Merging 

and from the merged pair, and readjusting the transition and emission probabilities for the 
combined state as a weighted mixture of the individual distributions for each state in the 
merged pair. 

In Mo, merging states ql and q3 suffers no likelihood decrease, resulting in the model M l . 

The second merge also does not cause a decrease. Note that the first two merges in Figure 2 
could be performed in the reverse order and incur the same drop in likelihood. The model 
M4 is the minimal model generating the language (ab)+, but the merging could potentially 
continue, to yield a model generating the language {ab} +. However, if we look at the drop 
of likelihood resulting from the merge, we see a drastic reduction of 3 orders of magnitude, 
from -0.829 to -3.465. Since we want the merging process to stop when we have achieved 
"desirable" generalization, we wish to disallow the merging of those final two states. One 
suggestion is to provide a threshold and only allow merges whose resulting drop in likelihood 
is below the threshold. However, determining the threshold may be difficult as it may depend 
heavily on the domain, the amount of available data, etc. The actual algorithm uses a more 
sophisticated technique. 

The criterion for choosing which states to merge tries to sacrifice as little of the sample 
likelihood as possible while maintaining a bias toward smaller models capable of general
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ization. This tradeoff can be captured in a Bayesian formulation. From Bayes' rule, the 
posterior model probability Pr(MIO) of the model M given the data D is proportional to 
the model prior Pr(M) and the sample likelihood Pr(OIM). Smaller models will have a 
higher prior probability, which can outweigh the drop in sample likelihood resulting from 
the merging process, provided that the merging is conservative. Each step in the merging 
process yields a new model and the objective of the algorithm becomes finding the sequence 
of merges that results in the model with the maximum posterior probability. 

To avoid searching the whole space, the algorithm adopts a greedy strategy of choosing, 
at each step, the pair of states to merge in a given model that yields a new model with the 
maximum posterior probability from among the set of models resulting from each potential 
merge. The process stops when all potential merges within a given model lead to a decrease in 
the posterior. A number of further optimizations are employed to ensure that each update 
does not require a global recomputation of the probabilities; rather, the computation is 
localized to those states affected by each potential merge. Details about these approximations 
and about the choice of model priors can be found in the technical report [Stokke and 
Omohundro, 1994]. 

Note that the number of states n in the initial model is proportional to the number of 
data points in the training sample. Each step in the algorithm, therefore, has to consider 
O(n2

) pairs of candidate merges. To deal with the complexity, the algorithm can be made 
on-line, where samples are incorporated a few at a time to reduce the number of states in 
the model and save on the computation required at each step. 

Since the MM algorithm uses a best-first search for states to merge and halts as soon 
as there is a decrease in the posterior, it is only guaranteed to find a local maximum. One 
strategy to overcome this problem is to continue from that point for a fixed number of steps 
of lookahead to see whether the decrease was simply temporary. Another strategy used by 
the algorithm concerns the trade off between generalization and data fit. Generalization 
is driven by maximizing Pr(M), whereas data fit is driven by maximizing Pr(OIM). In 
practice, it is desirable to have a parameter which can control the balance between these two 
factors. To obtain control over generalization, we include a prior weight A and maximize 
the sum Alog Pr(M) + log Pr(0 IM), which is simply the logarithmic version of Bayes' rule 
where the model prior is weighted by A. For A > 1 the algorithm will stop merging later, 
and earlier for A < 1. 

The performance of the algorithm is sensitive to the values for the number of lookahead 
steps, as well as the value for the A parameter. To achieve the best results, these values must 
be adjusted by hand from trial and error; by experimenting with a number of settings and 
looking at the results of the algorithm with a particular parameter setting. More about the 
parameter settings appear in our discussion of the experimental results. 

Empirical Evaluation 

We tested the algorithms on two domains: regular languages, such as the example of the 
previous section, and the robot domain mentioned in the introduction. Both of the domains 
were simulated, in that we had the target model to generate data and to directly compare 
against the learned models. The benefit of using artificial data from a known source is that 
it allows us to test the algorithms over different sample sizes, and to investigate the effects 
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of varying the parameters of the algorithms. An empirical measure of error can also be 
calculated since we know the target distributions. 

Our original intent was to first experiment with these small domains, to get an idea of 
where the algorithms worked or failed, and proceed to larger problems. Unfortunately a 
number of issues prevented such an extended investigation and these problems are covered 
in depth in the following subsections. 

3.1 Regular Languages 

HMMs can be viewed from the formal language perspective as a stochastic generalization of 
nondeterministic finite automata. A model induces a probability distribution over the strings 
of a regular language. In fact, it can be shown that HMMs accept exactly the class of regular 
languages [Dean et al., 1996b]. Thus, one natural application of HMMs is the induction of 
the automaton for a stochastic regular language. Although work exists by [Angluin, 1987, 
Rivest and Schapire, 1989] for inferring the automaton of a deterministic regular language, 
we might instead choose to use techniques for learning HMMs if the data is noisy. 

The models learned for regular languages are often non-ergodic, i. e. J every state is not 
reachable from every other state in a finite number of steps. All the examples we considered 
were generated by a non-ergodic model. In these models, there is a definite notion of a final 
(absorbing) state from which no other states may be visited. Hence, learning such a model 
requires that the training data sufficiently covers the model, by exercising each transition 
and emission probability at least once. For this reason, our training data consist of several 
sequences, rather than one long sequence, as is sufficient for ergodic models. 

One of our objectives in considering regular languages was to recreate the results of 
[Stokke and Omohundro, 1994]. Their experiments showed MM to be superior to BW on 
two examples since they were able in each case to induce the structure of the minimal HMM 
generating the languages using MM. We mentioned the sensitivity of MM to the setting of 
the lookahead and A parameters and our hope was to use this domain to investigate how 
difficult it was to determine the correct settings for these parameters in order to induce the 
correct model. Our investigation showed that, despite the claims of the creators, finding the 
right parameter setting was an art, even for such a simple domain. 

The performance measure used to evaluate the algorithms was the log likelihood of a test 
set given each model. This quantity is proportional to the negative cross-entropy between 
the learned model and the target model, which reaches a minimum when the distributions 
are identical. Intuitively, this measure indicates how closely the learned model approximates 
the target distribution. 

Since our experiments closely mirror those of [Stokke and Omohundro, 1994], we do 
not provide specific numbers. Rather, we give a qualitative analysis of the two algorithms 
on three languages in particular. The general method of experimentation was to generate 
a random training sample of sequences, typically 10 to 20, and train the algorithms from 
these samples. The learned models were then tested on a sample of 20-50 sequences, and 
compared on the basis of whether they found the correct structure, whether they overgener
alize or overfit the data (which could be roughly estimated by inspection), and whether they 
performed well under the sample likelihood measure. The languages we considered include 
the language (02*0) U (01*0) which appears in the original study, the language (01)+ , and 
the language 1+010+. 
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3.1.1 The Language (02*0) U (01*0) 

The language (02*0) U (01*0) provides an interesting test case since there is a dependency 
between the first and last symbol, separated by an arbitrary number of intervening symbols. 
This long term dependency seems to give MM an advantage, since the character of the 
algorithm is heavily data driven, whereas the performance of BW depends strongly on the 
initial parameter settings. 

As was the case in the original paper, MM found the correct structure for the minimal 
HMM generating the language (02+0) U (01 +0). The models found by BW tended to over
generalize to the language (0 U 1)2*(0 U 1), missing the dependency between first and final 
symbols. In terms of log likelihood, MM was found superior to BW. 

The interesting aspect of this experiment involved varying the parameter settings of the 
MM algorithm. We found that there were large ranges of the A parameter, in particular, 
which yielded the same model. The correct model was found in the range of A = 0.23 to 
A = 0.03, where values above 0.23 resulted in a model which overfit the data, and values 
below 0.03 resulted in a model that overgeneralized to (0 U 1)2*(0 U 1). With this example, 
it appeared that finding the correct setting was relatively easy. There appeared to be a nice 
correlation between the A parameter and the specificity or generality of the model. However, 
experience with other regular languages revealed that not all languages demonstrate such a 
nice correlation, suggesting that there might be certain properties of this particular language 
that makes the parameters easier to estimate. 

3.1.2 The Language (01)+ 

The language (01)+ was chosen because it is proven for BW that a uniform distribution for 
all parameters in a 2-state, 2-observation model is a local maximum [Dean et ai., 1996a]. 
Starting from a uniform (or nearly so) distribution causes the BW algorithm to learn a 
uniform model, i.e.) all probabilities are 0.5. Starting from almost any other distribution 
leads the algorithm to the optimal model which has deterministic transitions between a state 
generating the symbol 1 and a state generating a O. 

MM, the other hand, also proved problematic. Here the correct structure could be found, 
but the setting of the A parameter was less straightforward than in the previous example. 
Our experiments showed that different training data required different AS in order for MM 
to find the correct model. It no longer was the case that broad ranges of A would lead the 
algorithm to the solution, regardless of the training sets used. 

3.1.3 The Language 1+010+ 

The language 1+010+ was selected to test whether an algorithm was likely to overgeneralize 
to the language (1+0+)+. Experimental results show that BW very often did just that. MM 
was able to induce the correct HMM with four states plus a final state for A ~ 1. Values 
for A < 1 tended to yield models with a high number of states, indicating rrierging was 
stopped too early and the model overfit the data. Furthermore, it was often observed that, 
unlike the first example of a regular language, there was not a continuum of A values, where 
higher values were correlated with data overfit, and lower values with overgeneralization. 
Rather, a lower value exhibited overfit, a higher value found the correct structure, and the 
intermediate value overgeneralized. One possible explanation is that because the sequence of 
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• - Robot in room 1 
2 • Robot in room 2 
1 • Robot in room 3 

0.2 

Figure 3: Actual Model for the Robot Domain 

merges differs depending on the choice of A, a particular choice of merges could prematurely 
collapse the structure, from which point the algorithm drastically overgeneralizes. 

3.1.4 General Conclusions 

The results on regular languages are viewed with mixed feelings. Experimenting with the A 
parameter proved to be less straightforward than was reported in [Stokke and Omohundro, 
1994]. The authors claim that the parameters seem robust to sample size and distributions, 
but our results argued for the contrary. An additional claim of the authors states that the A 
parameter can be estimated by starting with a high value, learning a model, and if the learned 
model is too specific, we could just feed the learned model back into the algorithm, using it as 
a starting point, and continue to merge using a lower value. Our experience shows, not only 
that there may not be a smooth correlation between A values and overfit/overgeneralization, 
but that the precise sequence of merges changes with each A value. Consequently, the results 
of such a procedure would not be the same as if the lower A value was used from the start 
of the learning process. 

3.2 Robot Domain 

The robot domain is the same example used in the introduction. A robot can be in one of 
three rooms, where a door separates room 1 and room 2. The robot moves from room 1 to 
room 2 to room 3 and then back to room 1 in a continuous cycle. If the robot is in room 1 
and the door from room 1 to room 2 is closed, the robot remains in room 1 until the door 
opens. The door is open 80% of the time. 

The model used to generate the data has 6 actual states as shown in Figure 3, where the 
states are described in terms of the robot's location and the status of the door. Observations 
are made of the robot's location only, so the observations are a deterministic function of the 
state but the actual state is hidden. The output symbols are "4", "2", and "1", corresponding 
to whether the robot is in room 1, 2, or 3, respectively. The observation made in each state 
appears in red. As noted in the introduction, the dynamics can also be described using only 
4 states, since the door does not affect the transition from room 2 to room 3. The 4-state 
model appears in Figure 4. 

The robot domain was chosen as a test domain because of its structure and simplicity, 
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1 = Robot in room 3 

0.2 

4 = Robot in room 1 
2 = Robot in room 2 

Figure 4: Consolidated Model for the Robot Domain 

giving us a slightly more complex example but one that was still understandable. One nice 
aspect about this domain is that all of the component functions governing transitions and 
emissions are deterministic, except the one governing the probability of the door being open. 
We hoped that the determinism would make this an easy domain to learn. 

The dynamics of this domain can be described by the regular language (4214*)+ which 
differs from the previous examples in that the generating model is ergodic. By this we 
mean that there is no notion of a final (absorbing) state, and a single long data sequence, 
that exercises the transitions and emissions often enough, is sufficient for learning the model. 
These two facts become problematic for the MM algorithm. The following paragraphs discuss 
each in turn. 

Recall that the performance of MM is dominated by the need to examine O(n2
) pairs 

of states to merge at each step, where n is the number of states in the model. Though the 
algorithm can be made on-line, not much is gained here since we now must use long data 
sequences to properly estimate the model parameters. Granted, the robot model only has a 
few number of states, so we could use several medium length sequences. However, for the 
models we are ultimately interested in, with large numbers of states, the sequences must be 
long enough to allow the transitions and emissions to be visited sufficiently often. 

The consequence of this requirement manifests itself quite dramatically in the case of 
MM. The performance suffers tremendously when the number of states in a model exceeds 
100. To give a rough idea of the performance lag, learning from an initial model with, 
say, 200 states requires approximately 2 days of computation. Our original hope was to 
investigate more complex domains than the simple ones of regular language induction and 
the robot model. However, a more complex model implies higher connectivity, and a larger 
state space, which means longer training sequences are necessary, rendering such an indepth 
investigation infeasible. Even within a single domain, it is hard to evaluate the performance 
of MM given that the algorithm is so sensitive to the lookahead and .x parameter settings 
and experimenting with the values requires an immense amount of time. Consequently, our 
reported results for this domain assume a single "vanilla" parameter setting of 0 lookahead 
steps and .x = 1. Additional tests were performed in a few interesting cases. 

The second problem we encountered with using MM in the robot domain concerns the 
algorithm's assumption of a final state. The definition assumes the data was generated by a 
non-ergodic model where there is an explicit notion of a final state. It is not clear how best 
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to apply the MM algorithm to domains without final states. If we simply ran the algorithm 
directly on the data sequences, the choices made by the merging process could be arbitrary 
for the states connected to the final state, since the algorithm could erroneously discover 
structure that was not inherent in the original process. Two modifications to the algorithm 
were attempted. Figure 5 is used to facilitate our discussion of both approaches. We refer 
to the shaded states in the figure as "penultimate" states. 

•	 Strategy 1: We apply the algorithm directly, assuming a final state, to obtain a 
model M. Then we adjust the probabilities of the penultimate states in M to obtain 
the model M' as follows. 

- For each penultimate state i in M with a single outgoing transition to the final 
state (shaded blue in Figure 5), replace i by a state j, in M', having a random 
transition distribution over all states. 

- For each penultimate state k in M with multiple transitions to states other than 
the final state (shaded yellow in Figure 5), replace k by a state l, in M', where 
the weight associated with the transition from k to the final state is distributed 
equally among the other non-final state transitions from k. 

-	 Remove the final state from M. 

Using this method, we allow the merging process to "suggest" the states to which the 
penultimate states should transition. The approach, therefore, accounts for the possi
bility that any structure found by the algorithm is not arbitrary, i.e.} there must have 
been enough evidence in the data to motivate the merges involving the penultimate 
states. We refer to this approach as Strategy 1 in the remainder of the paper. 

•	 Strategy 2: We apply the algorithm, assuming the transition distributions from the 
penultimate states in the initial model Mo are undefined. By this we mean the penul
timate states have no outgoing transitions. The merges made will rely on the output 
characteristics only. Any penultimate state which remains unmerged in the resulting 
model M will be assigned a random transition distribution, as described above. Using 
this method, we consider the possibility that the transition to the final state is an ar
bitrary one, an artifact of our desire to produce a data sequence of a particular length. 
The motivation behind this approach is that we want to avoid imposing a transition 
distribution on a state for which we have no information, rather, we wish to be cautious 
and leave the transition probabilities undefined. This strategy is henceforth referred 
to as Strategy 2. 

Admittedly, both of these approaches are difficult to justify formally, yet any other ap
proach seems equally problematic. Experiments with the robot domain show the second 
modification, which involves leaving the transitions undefined for penultimate states, to 
yield models with better performance than the first in most cases. 

3.2.1 Performance Measures 

As was the case in the experiments with regular languages, the target model generating the 
data is available. Therefore, we can again use the model to compute an empirical measure 
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Figure 5: Dealing with the Final State in MM 

of the error for the learned distributions, in terms of the target. Recall that our measure for 
performance in the previous experiments involved the log likelihood of test data, given the 
model. One important aspect to note is that the use of log likelihood only indicates how 
close the learned model approximates the target distribution. It does not indicate directly 
whether the learned model overfit or overgeneralized. Our previous experiments were less 
concerned with this fact since we knew the minimal model. In the robot domain, it is less clear 
whether or not we consider the 6- or 4-state model the correct model. Also, the motivation 
for developing a model at all for the robot domain is less one of recognition or acceptance 
of a language, as in the previous case, and more one of obtaining a good approximation 
of a model to use as a proxy for the real model, or for predicting future behavior of the 
underlying process. For this reason, we introduce two alternative performance measures 
which are symmetric, i.e., they reward a learned model which nicely approximates the target 
and penalize for overfitting or overgeneralization. 

Since an HMM induces a probability distribution over data sequences, one way of compar
ing HMMs is to compare their corresponding probability distributions. The most commonly 
used measure for this purpose is the Kullback-Leibler divergence [Kullback and Leibler, 
1951]. The Kullback-Leibler divergence is related to log likelihood since the higher the likeli
hood, the lower the Kullback-Leibler distance between the induced distributions of the target 
model and the learned model. As argued previously, we instead prefer symmetric measures 
since we are mostly interested in how the learned model supports prediction of future ob
servations from past observations, rather than in how well the learned model captures the 
hidden dynamics (except insofar as it contributes to prediction). 

The following subsections describe the two performance measures we used in our ex
periments. The first measure captures how close two models are in terms of their induced 
distributions. The second measure compares models based on their predictions. Both of 
these measures require sampling the space of possible sequences of observations. 

3.2.2 Distribution based Measure 

This measure is based on the information-theoretic Kullback-Leibler divergence for a discrete 
domain. It is adapted to be symmetric, and is due to Juang and Rabiner [1985]. 

Since a detailed description is given in both [Juang and Rabiner, 1985] and [Rabiner, 
1989], we only briefly review it here. In the rest of the paper this measure is denoted as JR. 

We begin with some preliminary definitions. 
Let P = {PI, ... ,Pn} and Q = {ql, ... , qn} be discrete distributions, i.e., L:?=I Pi = 

L:~I qi = 1 and 0 :::; Pi, qi ~ 1. 
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The Kullback-Leibler divergence [Kullback and Leibler, 1951] of Q with respect to P is 

Since there are infinitely many sequences, applying KL directly to sequences distributions is 
not feasible. Hence a sampled version of it is used. 

Let M 1 and M 2 be models. Let 0 1 , O2 be (representative) sequences of length T, gener
ated by M 1 , M 2 respectively. 

The asymmetric sampled distance is defined as: 

The symmetrized version of it is: 

For non-ergodic models, there is a need to use multiple sequences from each model, and 
calculate their probabilities as a conjunction of independent sequences, which corresponds 
to a product of the separate probabilities. 

We note that there are two drawbacks to this measure for our purposes: 

•	 It is unbounded, since the distributions are over arbitrary sequences. Hence it is hard 
to conclude from a single result if two models are far apart or rather close to each 
other. We only know that a value of 0 indicates a perfect match between the learned 
and the true model distributions . 

•	 It compares the overall distributions corresponding to the models, and does not con
centrate on comparing predictions based on the models. 

We have developed another information-theoretic measure that addresses these two con
cerns. 

3.2.3 Prediction based Measure 

Let Pr(vIO, M) denote the probability that the next observation is v given the sequence of 
observations ° and the model M. As before, let M1 and M2 be models, and let P, Q be 
distributions. However, P and Q in this case are distributions of the form Pr(vlO, M) (rather 
than Pr(°IM)). We note that there is a fixed number of observations over which Pr(v 10, M) 
is defined. Hence, the KL measure D(PIIQ) is easy to compute. 

We define the maximum Kullback-Leibler divergence with respect to P as 

Dmax(P) = maxD(PIIQ) . 
Q 

Due to the finite number of observations, we can prove that Dmax(P) exists and can be 
computed in time quadratic in m (where m is the number of possible observations). 

We define a performance measure D(M1 , M2 ) that is symmetric (D(M1 , M2 ) = D(M2 , M1 )), 

positive, and bounded (0 ~ D(M1 , M2 ) ~ 1). Let Oi be the set of all sequences of a fixed 
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JR KLPSet 
BW-6 MM-2BW-6 BW-16 BW-4 BW-16 MM-lNo. BW-4 MM-l MM-2 

9.8ge-2 1.88e-6 2.50e-21 1.47e-3 6.70e-l 1.26e-l 1.25e-l 9.50e-5 5.00e-22.10e-O 
8.4ge-2 5.47e-51.74e-O 1.80e-2 1.40e-O 3.60e-l 7.50e-2 1.95e-5 1.76e-l 1.00e-l2 

9.8ge-76.9ge-l 1.02e-2 3.54e-l 6.70e-4 1.00e-l 1.50e-l6.50e-l 1.06e-O 7.50e-23 
1.27e-5 4.86e-66.40e-2 1.12e-l 1.75e-2 5.24eO 7.18e-7 1.12e-6 3.50e-l4 7.78e-5 

Table 1: Performance on robot domain. 

length generated by Mi. Let ° be a set of pairs drawn randomly from 0 1 X O2 • Let 
Pi(o) be the distribution governing the next observation given ° and Mi, i.e., Pi(O) = 
{Pr(vII0, M i ), ... , Pr(vmIO, Mi )}; then 

D(M
1 

M2) - _1 L ~ [D(P1 (OdII P2 (Od) + D(P2(02)IIP1(02))] 
, - 101 (Ol,02)EO 2 Dmax(P1 (Od) Dmax(P2(02)) . 

We refer to this measure as KLP. Since it is a normalized measure, a value of 0 corresponds 
to an exact match of the next observation distributions, while 1 indicates that the two 
distributions are as far apart as possible. 

3.2.4 Experimental Results 

III this set of experiments, the algorithms learned from 4 data sets - each containing 10 
sequences of length 50 - to yield 4 different models. For the MM algorithm, the entire data 
set was used in batch mode and the parameter setting was .x = 1 with 0 lookahead steps. 
Results are reported using both strategies for dealing with the final state. For the BW 

\ algorithm, we varied the number of initial states ill the model, using 4, 6, and 16 states. The 
initial distributions were random and the algorithm was run until the probabilities in the 
matrices were not changed by more than 1.0e-5. All measures were computed on 20 pairs of 
test sequences of length 50. Table 1 shows the results of each algorithm on each data set, 
according to each performance measure. 

From the table, we can see that the BW models with 6 states generally outperform all 
others, with the exception of the 4 state model trained on data set 4. The reason the model 
derived from the fourth data set performs so well under both measures is that it looks very 
much like the model in Figure 4. In many cases, the models learned by both algorithms 
overgeneralized to (roughly) the language (4*21)+. Such a generalization is quite plausible 
since the fact that a single "4" is observed at the start of each sequence may be mistaken as 
a mere statistical anomaly. 

Strategy 2 for dealing with the final state in MM appears to perform better than Strategy 
1, except on the model trained on data set 4. The poor performance of MM relative to BW 
can be explained by looking at the number of states in each of the MM models. For each 
respective data set, the number of states under Strategy 1 is 9, 27, 27, and 16. For Strategy 
2, the numbers are 31, 25, 6, 57 respectively. Looking at the resulting models shows that the 
merging process was stopped too early, leaving long "strings" of the original state sequences 
unmerged with any other state. This indicates that the models overfit the data and were 
subsequently penalized under the performance measures. 

To test how the >. parameter affected generalization in this domain, we trained a model 
using MM with Strategy 2 and .x = 2 on training set 4 and the resulting model appears 

15
 



1.DDDDDO 1.DDDDDD 

Figure 6: MM-2 Trained on Data Set 4 (A = 2). The shaded circle indicates the start state. 

in Figure 6. The performance was 1.75e-0 for the JR measure and 1.25e-1 for the KLP. 
Note that the self-transition on state 0 indicates that the model also overgeneralizes, since it 
can generate the observation sequence 4,4,2,1,4, ... which was not possible in the original 
model. In fact, examining the results of the tests show that the model was often penalized 
for generating such a sequence. 

The notable exception for MM is the model learned on data set 3 with Strategy 2, which 
appears to do better than both the 4-state and 16-state BW counterparts under the JR 
measure. The model, shown in Figure 7, only has six states, which contributes to its success 
at generalization. However, note that this model will also be penalized for overgeneralizing 
by generating the sequence 4,4,2,1,4, .... 

One final note concerns an earlier observation about why we chose to use symmetric 
measures. If we only consider the performance of MM relative to BW in terms of sample log 
likelihood, we get a different picture than the one evident in Table 1. We tried an experiment 
where the 16 state BW models were compared against the Strategy 2 MM models using log 
likelihood on three test sets of 20 sequences of length 50. The results appear in Table 2. 
The stars indicate that the learned models were too specific (i. e., they overfit the training 
samples) and failed to parse some of the samples. For instance, no path generating the 
sequence 4,2,1,4,4,4,4,4,2,1 existed in the model learned for data set 1 using MM. However, for 
the models trained on data set 2 (appearing in row 2), we see that in terms of log likelihood, 
MM appears to outperform BW. This means that the distribution over observation sequences 
induced by the MM model was closer to the target than the BW model. The difference 
between the symmetric and asymmetric results can be attributed to the fact that invariably 
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Figure 7: MM-2 Trained on Data Set 3 (A = 1). The shaded circle indicates the start state. 

Test Set 3Training Test Set 1 Test Set 2 
BW-16 MM-2 BW-16Set MM-2 BW-16 MM-2 ] 

-226.7931 -285.944 -187.362 ** * 
2 -257.837 -97.382 -89.554 -81.637 -169.062 -83.817 

-770.509 -94.560 -643.741 -78.186 -80.2253 * 
-167.896 -171.0774 -239.028 * * * 

Table 2: Sample Log Likelihood on 3 Test Samples 

the MM models overgeneralized since it allows the sequence 4,4,2,1,4, .... 

General Conclusions 

The general conclusions regarding the effectiveness of MM are disappointing. The possibility 
that an algorithm could correctly learn both the model topology and parameters is highly 
attractive. Our experience with MM is disheartening, since the algorithm failed to meet our 
expectations. Though the MM algorithm seems elegant and intuitive, it is much too time 
consuming to be practical when applied to any interesting domains. The results from the 
experiments with regular languages show that MM can easily be applied to domains where 
the sequences are short and well structured, as in words or regular expressions, but even this 
comes at the price of having to estimate the algorithm's parameters. Our experience shows 
that finding the right values for the algorithm is more difficult than the reports of [Stokke 
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and Omohundro, 1994]. 
Another major problem is in trying to apply MM to domains where the underlying 

process is ergodic. There appears to be no natural extension of the algorithm to deal with 
domains where there is no distinct notion of a final or absorbing state. The two approaches 
we attempted resulted in models which approximate the target distributions well but suffered 
from overfit and overgeneralization. It is not clear what other alternatives we might consider. 

We offer one key insight into why MM performs so poorly in terms of the models it in
duces. The algorithm begins with a model where the number of states is exactly proportional 
to the number of data points. At each state, we are attempting to learn a large number of 
parameters based on a single observation. In fact, this is precisely the case following the first 
several merges, since we do not have enough information at each state to reliably estimate 
what the parameters should be. The problem is compounded by the fact that merges made 
cannot be undone, so the algorithm commits to a sequence of merges that could turn out 
to be detrimental to the quality of the final resulting model. One strategy to overcome this 
problem might be to explore a sequence of k merges in the initial model instead of a single 
merge, gradually reducing the horizon depth as the total number of merges increases to the 
point where we can put more trust in the algorithm's ability to estimate the model parame
ters. Note that this is not the same as the lookahead procedure discussed earlier, since that 
mechanism is only invoked after an initial drop in the posterior probability. 

In this paper we attempted to apply HMMs to the task of learning model of dynamical 
systems. Specifically, we investigated the performance of two algorithms for learning HMMs 
- Baum-Welch and Bayesian Model Merging - on several examples of simulated domains. 
We found that Model Merging suffers a number of drawbacks, despite prior claims of its 
effectiveness. The algorithm is highly sensitive to a number of parameters that are hard 
to estimate. Although the algorithm is designed to learn models from the class of stochas
tic regular languages, we also found that it is not practical for modelling arbitrarily long 
data sequences or large state spaces. The performance results suggest that Model Merging 
yields models that provide good approximations to the underlying model of the system in 
terms of recognizing sequences of observations from the target model with high probability. 
However, the learned models frequently fail by overgeneralizing, a harmful characteristic for 
applications where the interest is in prediction. 

A further goal of this work was to provide additional evaluation of the two algorithms, 
since there is little literature about Bayesian Model Merging. The work that does exist is 
that of the algorithm's creators so this investigation was meant to be a less biased look into 
the applicability of the algorithm. Our hope is that the reader can learn from our experience 
when trying to learn models for dynamical systems. 
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