
BROWN UNIVERSITY

Department of Computer Science

Master's Project

CS-96-Mll

"Scheduling Time-Critical Graphics on

Multiple Processors for Virtual Environments"

by

Thomas Meyer

Scheduling

Time-Critical Graphics on

Multiple Processors for

Virtual Environments

Thomas Meyer

Department of Computer Science

Brown University

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in the Depart

ment of Computer Science at Brown University

May 1996

~L/fi~ ~~oltj
Professor Andries vall Dam

Advisor

Scheduling Time-Critical Graphics on Multiple Processors for

Virtual Environments

Tom Meyer

May 17, 1996

Chapter 1

Introduction

This paper describes an algorithm for the scheduling of time-critical computation and (possibly dependent) rendering

tasks on single- and multiple-processor architectures, with minimal pipelining delay. The target application of this

algorithm is to manage virtual environment-based scientific visualization scenes consisting of hundreds of objects,

each of which can be computed and displayed at large numbers of resolution levels. The algorithm progressively

refines the time-critical schedule; it always returns a feasible schedule and, when it runs to completion, produces a

good schedule, taking advantage of much of the multiple-processor system (and using all of a single-processor system,

when that is possible).

Complex datasets (e.g., large time-varying fluid-dynamics simulations, high-resolution MRI scans, and structural

simulations) require sophisticated interaction and visualization techniques. For example, a scientist may want to

interactively manipulate and examine complex visualizations, such as a probe with dozens or hundreds of emitted

streamlines in a time-varying flow. For such complex scenes, maintaining a fast interaction rate can be quite diffi

cult, especially in immersive, computationally demanding environments such as the Virtual Wind Tunnel at NASA

Ames [BL91].

Two of the requirements for achieving the feeling of immersion in a virtual environment are to maintain a constant,

fast frame rate, and to reduce end-to-end lag time from a user action to the simulated response. Experiments with

virtual environment systems have shown that it is necessary to attain a frame rate of at least 8-10 frames per second,

1

2 CHAPTER 1. INTRODUCTION

and preferably much faster [DM95]. The manipulation of objects in the simulated environment also becomes difficult

when there is more than 100 milliseconds of delay between the manipulation and the system's display of a response to

that change.

Graphical scenes with highly demanding computations may have a reduced frame rate if there is too much graphical

information to be rendered in a single frame, or if the computations require more than one frame to complete. Deep

pipelining of these operations, though it increases frame rates, also increases the lag inherent in the graphics system.

One technique for maintaining constant frame rates with increasing graphical complexity is to simplify portions

of the scene which are not as perceptually important to the viewer. Objects which are far away from the viewer or

not at the center of attention could be simplified or computed less frequently, and objects which are not visible at all

can be completely ignored. By not computing objects which we will not render, we can also lower the amount of

computational demand on the system, and thus reduce the frame time. Deciding which objects to show and in what

order to compute and render them involves dynamically scheduling them, since the number of objects in an interesting

world is unlikely to be fixed (and the user may even be able to dynamically add large numbers of new objects).

In order to support the task of exploratory visualization in these complex datasets, we develop a time-aware

scheduling algorithm to provide importance-based time-critical computation and rendering of a common scientific

visualization technique (streamlines in a vector field), as shown in Figure 1.1. This algorithm takes advantage of a

dedicated graphics workstation with a single-threaded graphics pipeline and from one to several dozen processors,

communicating using a shared-memory model.

The techniques described in this paper, though developed to support scientific visualization tasks, can be easily

extended to general graphics scheduling. Many objects with a large number of possible representations - for example,

curves and surfaces can be computed at nearly arbitrary intervals - are particularly well-suited to be scheduled using

this algorithm.

This scheduling algorithm has the following advantages:

•	 Mter an initial startup phase, it can terminate at any time during its incremental refinement phase, and will

always return a feasible schedule. This allows the scheduling algorithm itself to be time-critical, so that adding

more tasks to be scheduled will not result in increased scheduling time. (Such algorithms are also known as

3

"anytime algorithms.")

•	 It results in the good usage of single- and multiple-processor machines if it runs to the completion of the

refinement phase.

•	 It schedules all computations using very fine-grain pipelining, reducing lag times by rendering objects in the

order computed.

•	 It balances the benefit of spending time computing new data against the time required to redisplay existing data

at its already-computed resolution.

Its disadvantages are as follows:

•	 Running a scheduler can reduce the amount of time available for computation and rendering, and could severely

reduce the performance of some systems (e.g., if the demands on the system are demanding but fairly static, it

might be better to optimize for the worst case, and not use a scheduler at all).

•	 It is optimized for managing computation/rendering tradeoffs for relatively smooth functions on a multiple

processor machine. A simpler algorithm may be much faster in a more restricted problem domain, such as a

single-processor static architectural walk-through.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: The target application, scientific visualization of complex computational fluid dynamics scenes in an
immersive environment. This picture shows a visualization of a precomputed dataset of air flow past the descending
Space Shuttle. There are two "rakes" (the cylinders) visible in the scene, each of which has several "streamlines" (the
lines which follow the flow of air through the dataset) attached to it.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: The target application, scientific visualization of complex computational fluid dynamics scenes in an
immersive environment. This picture shows a visualization of a precomputed dataset of air flow past the descending
Space Shuttle. There are two "rakes" (the cylinders) visible in the scene, each of which has several "streamlines" (the
lines which follow the flow of air through the dataset) attached to it.

Chapter 2

Previous Work

A large body of research on real-time scheduling exists, dating from the 1950's. A good introduction to the relevant

issues is [SSNB95].

Classical real-time theories mainly deal with static scheduling problems in which the algorithm has complete

knowledge of the demands placed on it, and where there are generally hard constraints which, if violated, could

result in catastrophic failure (airplanes crashing, factories blowing up, etc). These types of problems, known as "hard

real-time", are fairly well understood, and many algorithms exist for solving them.

Although dynamic multiple-processor scheduling is becoming an active area, little prior work has been done on

it. Almost all multiprocessing scheduling is NP-complete, and good approximation algorithms are only beginning to

emerge [SSNB95]. One interesting result is that, in many cases, no dynamic scheduling algorithm for multiprocessors

can be optimal [Mok83]. There is wide variety of possible heuristics used to generate schedules for real-time tasks;

some are described in [RSZ89].

Soft real-time scheduling, also known as "imprecise computation" scheduling, addresses the scheduling ofproblems

where there may be some fixed startup time, but where incremental results are stored as the computation progresses.

Here, the deadlines are not as strict as they are for hard real-time, since there is some benefit from performing a

partial computation (it may be less accurate, or based on out-of-date knowledge, but it is still useful). Since scientific

visualization graphical objects may be computed at many levels of detail, and can also be computed incrementally, we

5

6 CHAPIER 2. PREVIOUS WORK

will be trying to optimize a very similar problem. The paper [LLS+91] describes various scheduling techniques for

such problems.

Another important part of the time-critical scheduling process is to balance the time spent planning against the

amount of spent executing the schedule. This has become an important area for artificial intelligence research, as

described in [GD95].

Unfortunately, problems ofparticular interest to scientific visualization have notbeen much studied. The narrowness

of the problem - scheduling multiple independent pairs of tasks (computation and rendering) with the two requirements

that the "rendering" portions all take place in a single thread (since modem graphics pipelines are not commonly

multithread-safe), and that each rendering portion start only after the completion of its computation portion - makes it

too specialized to warrant much attention as a general systems problem.

Becauseall virtual environments require near-constant, high frame rates, several systems which address time-critical

issues, particularly in static or walk-through environments, have been developed:

Richard Holloway's Viper system [HoI92] uses objects with predefined levels of resolution, and renders objects at

a global level of resolution sufficient to display all of them in the allotted time. It does not provide for individual levels

of importance for the objects.

Funkhouser and Sequin describe a real-time scheduling algorithm for complex virtual walk-throughs in [FS93].

However, their algorithm does not scale well for objects with many different levels of representation and their faster

algorithm only works well on objects with a globally convex-downward benefit function. Nonetheless, the ideas in

that paper provide the starting point for our algorithm. Also, their analysis of the relative benefits of rendering various

levels of detail is an extremely useful model for describing how to trade-off various rendering elements when creating

time-critical models.

The multi-processing scheduling algorithm described by Rohlf and Helman in [RH94] schedules computation,

culling and rendering of geometric data by using pipelining, which results in the addition of at least one frame's

worth of lag to the system (lag is as bad as low frame rates in virtual environments). They do not model the

computational requirements of generating the scene (since it was originally designed for static walk-throughs), but

require the application designer to schedule computations appropriately. Additionally, they use a feedback-based

2.1. NOVEL ASPECTS OF THIS RESEARCH	 7

model for managing scene complexity, so cannot bound frame times when the scene changes rapidly.

Little work has been done on combining computation and rendering, and on managing tradeoffs among computing

expensive but useful information.

2.1 Novel Aspects of This Research

This research extends the previous work (primarily the Funkhouser-Sequin algorithm) in the following ways:

• We provide a characterization of the general qualities of cost-benefit functions in continuous domains, for tasks

which combine computational and rendering costs. This is not intended to quantify the perceptual or semantic

benefits of a particular task, but describes a model which can be parameterized to suit experimental results

determining such benefits (where such results indicate separable influences on the benefit function).

•	 We iteratively schedule tasks in the continuous domain, on a single processor, and provide bounded estimates of

the quality of such a schedule.

•	 We iteratively schedule tasks on a multiple-processor system. This includes developing a heuristic for good

ordering of the compute and render task allocations in such a system.

)R(OM SDOIAffild .~ Hff.LdVH:J 8

Chapter 3

Benefit Function

For a set of rendering tasks, we need to determine the most useful amount of time to spend computing and rendering

each one. We define a function Benefit(time), which reflects the approximate value of spending an amount of time

time computing and rendering a graphics task. For any set of tasks, we want to maximize

B = LBenefiti(timed
i

subject to the constraint that

L timei :S frametime
i

We base our benefit model on that developed in [FS93]. However, to simplify the analysis, we assume that the

various terms of the benefit function are linearly separable (the true benefit function would most likely be extremely

subtle, and would probably vary from person to person, depending on the time of day, visual acuity, attention span,

and the task at hand).

Our approximation to the actual benefit function consists of a product of several other benefit values, computed on

a per-item basis. For any item i, we decompose the benefit of alloting time t rendering that item into a product of three

9

10 CHAPTER 3. BENEFIT FUNCTION

parts:

Benejiti(time) = Importancei . Processori(time) . Hysteresisi(time)

Importance is a per-frame constant importance value for the item, expressing the object's inherent value, closeness to

the viewer, current interactions with the user and the rest of the scene, and the visual focus of the viewer. Any number

of perceptually-based metrics could be weighted into this. In the current implementation we assign high importance

to streamlines with which the user is interacting, but do not use any additional heuristic; defining useful metrics for

determining an object's importance, both in perceptual and semantic terms, is beyond the scope of this paper.

Processor expresses the amount of value to be gained by spending that amount of the system's computation, and

rendering time on that object. We assume that this is a nondecreasing function, convex to the right of some "startup

time," where there is no initial benefit. The monotonic, convex-downward aspect reflects the idea that for most

visualizations, "something is better than nothing, but fine detail is worth only a little more than coarse detail." Such a

function is illustrated in Figure 3.1. Without performing detailed user studies, it is difficult to determine what exactly

this function should be, except that it fulfill the above constraints. Since such a study is beyond the scope of our

research, we use sqrt as a suitable function, and a placeholder until more detailed understanding becomes available.

Our implementation uses 0 for time :S times. where times is the initial startup time, and y'time - times for T > Ts.

(Many convex downward functions would have the proper behavior, but the square root is relatively fast to calculate

and differentiate.)

.... StartupC
~

~ =
=:l

Time

Figure 3.1: This is an example of a suitable function for determining the computational benefit of performing
computations. Note that there is a startup cost, followed by a convex-downward monotonic function, as additional
computation time results in reduced additional benefit.

11

The Hysteresis term, as shown in Figure 3.2, is a sigmoid function designed to encourage inter-frame continuity.

It varies smoothly from a value of 1 at some point time < Tprev up to a value of 1 + 0 at Tprev, where Tprev is the

time allocated to the task in the previous frame.

We use a sigmoid function rather than the other obvious choice, a "hat" (gaussian-shaped) function, because our

scheduler requires that the benefit function be monotonic. We also do not mind if an object is rendered at a higher

level of detail than in the previous frame; the situation to avoid is when the object oscillates up and down between

levels of detail. Additionally, since all the optimization techniques we describe here operate using the derivatives, the

actual optimization takes place using the derivative of the sigmoid function, which is a hat function.

As in the Processor term, we have not performed the necessary studies to determine what the hysteresis function

should look like. We use a piecewise-cubic function to approximate the sigmoid function, since that is also fast to

compute and differentiate.

... c
Q,l

5
~

Hysteresis Range

Time

Figure 3.2: The hysteresis function has a constant benefit until reaching the hysteresis range. It then increases smoothly
until reaching the point at which the task was scheduled in the previous frame.

The resulting function, the product of these three components, is shown in Figure 3.3.

Since we want to maximize the sum of all the benefits subject to the constraint that the sum of the times scheduled

for all tasks is less than the frame time, we first examine the benefit per time unit for the tasks. If this benefit per time

Benejiti(time)/time, which Funkhouser and Sequin called the value, is increasing at some time, we would ideally like

to allocate more time to task i: doing so would reduce the average cost of the benefits derived from executing task

i. But if the benefit per time is decreasing, then allocating more time to task i will increase the average cost of the

benefit, and should be done only if other tasks cannot benefit more from being given the additional time instead. We

12 CHAPTER 3. BENEFITFUNCTION

therefore consider the points where the value Benefit; (time) / time is at a maximum as good starting points in the search

for optimal time allocations.

As can be seen in Figure 3.3, due to the fact that each of the two functions it is composed of has only one convex

region, the benefit/time function will have at most two local maxima - near the extreme points ofProcessor; (time) / time

and (Hysteresis; (time) - 1) / time. If these functions are expressed analytically, it is simple to compute these two points.

As long as both functions are differentiable and have few local maxima, we can perform a similar analysis to obtain

the starting points.

.... Startupc
CI.l

~ = ~t
/(- /' Hysteresis Range

Time

Figure 3.3: The benefit function has a fixed startup cost, rises quickly after that, and gradually falls off until the
hysteresis point. The two dashed lines indicated the local maxima of the function Bene fit (time) / time.

Note that in these discussions of the benefit function we are taking advantage of the fact that our tasks are fine-grain

enough that they can be treated like smooth functions. In contrast to our continuous approximations, the actual

functions that constitute Benefit(time) are defined only at a fixed, sparse set of values for time, since computation time

cannot be allocated in quanta smaller than the clock cycle. Furthermore, the functions are likely to be step functions,

constant over some intervals in the domain. To the extent that this is true, time spent in making small adjustments to

the allocation of processor time could be wasted. On the other hand, by bounding the smallest step size we will take

in adjusting processor allocations to be of the same scale as the smallest interval on which the true benefit functions

are constant, we can substantially avoid such waste, while still deriving the benefit of being able to use differentiable

functions.

Chapter 4

Scheduling Algorithm

The order of events in a typical frame of the system is as follows:

• user input is gathered.

(

• any pending database updates (such as reactions to user input) take place in single-threaded mode.

• we execute the schedule (computed in the previous frame), which determines when and where tasks are executed.

at some point during this execution, the schedule of tasks to be performed during the next frame is computed.

This section of the paper discusses the scheduling portion of this loop. The other portions of the event loop are not

central to this research, so will not be discussed in detail.

On a multiple-processor machine, we compute the schedule in the previous frame, so that the other processors

do not have to idle while the schedule is being created. This is not a pipelining of the data, but a pipelining of the

scheduling process. We may lose some reactivity if, for example, the schedule did not anticipate that the user would

click the mouse, but this minimizes lag in the useful case where a user is manipulating an object, and the computational

costs can be predicted in advance.

13

14 CRAnER 4. SCHEDULING ALGORITHM

4.1 Single-Processor Case

We use a two-phase incremental-refinement algorithm, drawing on ideas presented in Funkhouser and Sequin's

system [FS93]. The first phase, in particular, uses their algorithm to create an approximate, coarse schedule that is

later refined using other techniques.

Greedy Phase. The first phase is essential; it generates a feasible but not necessarily good schedule, and requires

O(n log n) time, where n is the number of independent tasks. This makes it possible to bound the worst-case time of

the scheduler and consider that amount of time as part of the frame time. Because of this predictability, the scheduler

can place itself into the generated schedule for the next frame. Of course, it is possible to have an extremely complex

scene for which it would be impossible to execute even this phase during the frame time. In this case the schedule

could be recomputed only once every few frames, at some loss of responsiveness.

The greedy initial phase generates for each task i a pair (timeij, Benefiti (timeij)) at each of the local maxima of

the Benefiti (timed)/timeij function. We sort these pairs by the value Benefiti (timed)/timed, and repeatedly take

from the list the task whose value is greatest. If the task has not yet been scheduled and there is still available time, we

add it to the work list; if it has been scheduled and the new value of time is greater than the previously scheduled one,

we reschedule it at the new time (if there is space). Tasks which do not fit in during this phase are scheduled at time

O. This produces an initial packing which is at least half as good as the result from doing the NP-complete optimal

packing of these costlbenefit pairs[FS93].

We can consider this initial phase as choosing a subset of the domain of the function, over which the function is

convex downward. A section which is not convex downward will never be chosen during this phase, since the value

of Benefit (time)/time will still be increasing over such a region. The second, incremental phase then optimizes the

functions over the chosen convex sub-domain.

Incremental Phase. As an extension to the Funkhouser-Sequin algorithm, we then refine this descrete estimate

further in the continuous domain. During the second phase of the algorithm the scheduler iteratively refines its

generated schedule, as time allows. It can terminate at any time, since the feasibility of the schedule is never violated.

We can also search through the subspace more quickly than before, since it is convex and thus any local maximum is

15 4.1. SINGLE-PROCESSOR CASE

also a global maximum of the sub-domain.

The maximum over this continuous domain will have the following characteristics:

•	 L; time; = Irametime (all time will be used up)

•	 the derivatives of Benelit(time;) will all be equal

The second point is true since, for any two convex-downward functions la and Ib' if I~(xa) < 1£(Xb), then we can

increase I a + Ib by scheduling I a for less time and Ib for more time. If the same amount of time is subtracted from I a

and added to the Ib' the first condition will remain true, and we will converge onto the second condition. This process

terminates when all of the tasks have equal derivatives.

When all tasks have the same derivative, it is no longer possible to increase the benefit of the functions, so we must

be at a local maximum, and since a local maximum of a convex function is the global maximum,.we have reached the

global maximum of the sub-domain. (This is equivalent to a gradient-descent search of an i-dimensional space, where

we are able to move in two dimensions at once.)

(
The algorithm is as follows:

•	 while Ltime; < Irametime, set the time for the function with the greatest current Benelit~(time;) to the

maximum possible

•	 then, while all theBenelit~ (time;) arenot equal, takeBa(timea), the function with theminimum Benelit: (time;),

and Bb(timeb), the function withthemaximumBenelit~(time;).Find0 such thatBa(timea-o) =Bb(timeb+o),

and reschedule the functions at the new time.

This phase also takes 0 (n log n) time to come within some constant epsilon of themaximum, andmay be terminated

before the time allotted, at some reduction in the total benefit of the resulting solution.

To determine if we should spend additional time refining the schedule before executing it, we compare the margin

of change in the total benefit per iteration with the amount of time required to perform that iteration. If the scheduler

should run for less time, we decrease its alloted time slightly, bounded by the worst-case time. Otherwise, we can

increase its alloted time.

16 CHAPTER 4. SCHEDULING ALGORITHM

4.2 Multiple-Processor Case

Dedicatedgraphics multiple-processor workstations are becoming common, especially for high-end scientific-visualization

applications. These machines allow light-weight processes which communicate using low-overhead shared memory

and synchronization primitives. However, because graphics pipelines on available machines are not multi-thread-safe,

the rendering pipeline can be fed from only one thread at a time.

Most multiple-processor scheduling algorithms are NP-complete (even the fairly simple case of 2 processors, no

precedence constraints, and arbitrary computation times is NP-complete) [GJ75]. Since we want to schedule a set of

tasks on several processors with precedence constraints, our problem is at least this hard.

We extend the single-processor greedy algorithm to generate a feasible schedule for multiple processors in 0 (n2)

time for a guaranteed schedule or O(n logn) time for an optimistic, probably feasible one (we will explain what we

mean by an "optimistic, probably feasible" schedule later in this paper).

First, let us consider how one might build a good multiple-processor schedule. Generally we have two portions of

the visualization task: a compute task taking time c and a render task taking time r (possibly with a cull task inserted

between them). The compute task can run on any processor, but all render tasks must stay together, and must be limited

to a single processor.

Also, any data must be computed before it can be rendered, so a good schedule would have to make sure that

rendering tasks would not sit idle while waiting for data. Let us consider two tasks which are being computed on a

single processor and rendered on another. If we order them so that the tasks with large values of c - r (which we call

the excess compute time) are last, we have the most room possible for additions, and minimize the startup differences

and ending differences between the processors, as shown in Figure 4.1.

The multiple-processor algorithm works like the single-processor algorithm, except that we modify the insertion

routine to verify that adding work to the schedule doesn't produce an infeasible schedule. We initially try to add each

task to the rendering processor; if there is not enough room on a processor, we push tasks onto the next processor,

starting with the task with the least excess compute on the current processor. In this way, we always minimize the

total amount of computation time required before rendering can begin. Note that often we will have a completely

17 4.2. MULTIPLE-PROCESSOR CASE

I ComputeB IEJ	 C=~A IE
I Compute B II-Rend-erI

I	 RenderA IEJ
A

The tasks ordered without Ordering tasks by excess

regard to excess compute compute time.

time.

Figure 4.1: Ordering tasks by increasing excess compute time minimizes the makespan.

render-bound scene, where the render processor is completely full and there is still plenty of room for additional

computation on the other processors. In this case, only purely computational tasks can be added..

Pushing a single task may cause a cascade of pushes, as shown in Figure 4.2, but we do not attempt to push a task

again if a previous push on that task has failed (there is probably still not enough room for it, since pushes only go in

one direction). The scheduler may attempt to push a task multiple times if tasks are repeatedly inserted before that

task, so this heuristic will generally work; however, since some tasks may be shortened during the scheduling process,

there may actually be room for a task which wasn't able to be pushed earlier. With this heuristic, we perform at most

O(p. n) pushes (p is the number of processors), with each attempted push requiring an additional verification pass.

For a small number of processors, this is an acceptable algorithm. In massively parallel systems (beyond the scope

of this research), it will probably be most useful to use an algorithm similar to [BL941, which scales logarithmically

with the number of processors.

This is a modification of the first-fit bin-packing algorithm. Although we build up our packing dynamically,

the eventual result is one which is still produceable by the first-fit algorithm, which produces a packing guaranteed

to be no more than about 22 percent worse than optimal [GJ79l (this correspondence is valid in cases where our

repeated-pushing heuristic is valid).

In order to guarantee feasibility, we need to look at the two possible ways in which an insertion could violate it:

•	 We must make sure that the sum of the work is less than the frametime, for each processor. Verifying schedule-size

feasibility takes a total of linear time with the number of tasks if done as each task is added to the list.

18

Camp

C

Camp

D

CHAPTER 4. SCHEDULING ALGORITHM

Camp

A

Camp

B

Rend
B	

Camp

C

Camp

A

L

..e:-
RendA

Camp

D
RendB

RendC

RendD

~ ..e:

I RendA I

I Rendel

I RendDI

Attemped Insert of a new task	 Add in the rendering component

,- lECamp Camp
CampCamp

A B
D C

-
RendA

RendB
-

RendC
-.-,

II RendD
 Il ~ --'

Camp

D

Camp

B

Camp

C

Camp

A

RendA

RendB

RendC

RendD

The resulting schedule
Push Comp D to make room

Figure 4.2: Pushing a task may cause a cascade of pushes. Here, inserting task B causes task D to move to another
processor.

•	 Any task cannot be rendered in time less than the sum of the startup, compute, and rendering times for that task.

Consider a fine-grained compute task that generates small pieces of geometry (meshes, lines, or even individual

polygons and line segments) at regular intervals c during computation, after the startup time s. Rendering of

any of that task's data cannot begin until time s + c. If the time required to render a piece is r, the total time

required to render x primitives is s + c + (x - 1) . max (c, r) + r. Any generated schedule which violates this

requirement is infeasible.

Verifying precedence relations takes a total of O(n2) time, since it is necessary to check every rendering task

which is scheduled before an inserted rendering task, as well as every computational task which is scheduled

19 4.2. MULTIPLE-PROCESSOR CASE

after an inserted computational task.

As described previously, when scheduling several tasks, we can lower the possibility of feasibility conflicts by

ordering them from low to high excess computation. Where this value is equal, we define a consistent ordering (based

on creation time) of tasks so that the partial order of tasks is identical across both the compute and rendering phases.

In actual practice this heuristic, when applied to scenes containing diverse types of objects, results in schedules which

rarely violate the precedence relations and which achieve high processor usage. Ifone can tolerate the occasional slow

frame, removing the precedence checking results in the previously described 0 (n log n) optimistic, probably feasible

algorithm.

Of course, in pathological cases, any render-dominated schedule may have only the same benefit as the single-

processor schedule, but in most computationally-demanding, complex, and diverse scenes, the scheduling algorithm

is able to take advantage of the different computational and rendering demands of these tasks to generate a feasible,

good schedule which takes advantage of the entire multi-processor system.

(The amount of time required to execute a schedule on n processors, Tn, illustrates how the expense of additional
\

computing time varies with the number of processors available. For the single-processor case, Tl' the amount of time

required is obviously I: Ci + I: r i. At Too, the total time required is determined almost completely by the rendering

time required, and is at most I: ri +max(Ci + 8i) (since, in the worst case, we may have to wait for the longest compute

task to finish before beginning). Although the actual packing is highly dependent on the actual input data, a loose

bound for the worst-case perfOlmance (Tn) ofa schedule with n processors is at most I: ri +max(ci + 8i) * fitotal/n1

It may be possible to generate a tighter bound to the worst- and average-case performance, but such an analysis is

beyond the scope of this research. Although the individual parts of the system are not difficult to bound analytically,

understanding the interactions among these heterogeneous scheduling techniques is a very difficult task.

WHLnIODTV DNIlI1GffH:JS .p }IElLdVH:J oz

Chapter 5

Implementation Description

The algorithm described here was implemented using the TRIM-lite system, a set of C++ class libraries which provides

for a platform-independent abstraction of drawable objects and their associated relationships. This set of class libraries

is part of the UGA system [ZCW+91], developed at Brown University.

There were two large software tasks involved in writing this system:

•	 Porting the code used in f flow (our scientific-visualization testbed, written in TRIM) to C++, with appropriate

generalizations.

• Developing the time-critical scheduling algorithm described in the previous sections.

There were also a few small, but important pieces:

•	 Writing a platform-independent multi-threading layer.

•	 Instrumenting the system so that it would work with the thread-monitoring package developed by Tom Doeppner

and Brian Cantrill.

•	 Working with Kostadis Roussos to integrate his OS-level real-time threads package, written for Solaris, into the

time-critical system developed in this project.

All of the C++ code currently resides in the package flick.

21

22 CHAPTER 5. IMPLEMENTATION DESCRIPTION

The curvilinear grid and vector-field code from flick can be used independently of the time-critical scheduler

portions of the project, and are currently used in three other projects: mpflow, used as a SIGGRAPH demo by Sun

Microsystems, flow, a TRIM-lite system designed for the rapid prototyping of scientific visualization techniques, and

vr flow, an experimental platform for the creation of direct-manipulation interfaces for virtual environments.

5.1 Software Architecture

Since one of the goals of this project was to create a general time-critical system for diverse types of tasks, it is

important that it be easy to add new primitives to the system.

5.2 General design of an API for time-critical computing

As more people begin using 3D graphics systems (through VRML and other experiments) time-critical concerns are

being discussed to a much greater extent. There are several different approaches that have been proposed as APls for

time-critical computing:

•	 VRML 1.0 [BPP95] allows world authors to specify a list of alternate representations of an object, each with

an indicator of the distance to switch between these representations. This is extremely good because of its

simplicity; however, interpreting this literally means that models must always switch based on distance, rather

than the overall load of the system, which means that the world will only look "right" on the system it was

authored for. Most current VRML systems allow for the user to switch between a strictly distance-based

interpretation and the more resilient, load-based scheduling. Another problem with this type of description is

that it is limited to a few, discrete alternate versions of the model.

• SGl's Performer [RH94] uses a system similar to that used in VRML 1.0, except that it incorporates nested sets

ofLOD specifications. This allows the render engine to specify different ranges of alternate representations, and

(possibly) morph smoothly among them.

5.3. THE FLICK CLASS LIBRARY	 23

•	 One model being proposed for VRML 2.0, as part of the Moving Worlds proposal [BeI95], is that each object in

the scene should be able to query the current frame rate and and simplify/complexify its representation to try to

maintain the same frame rate.

This leads to two interesting problems, however. One problem will be that if all the objects are trying to reach

the same target frame rate, they will tend to magnify any oscillations in the frame rate by all trying to move in

the same direction simultaneously. Without some form of global control, time-critical scheduling won't work.

Another problem that could arise would be if separately authored objects have different target frame rates. If

they are both seeking in different directions, then one object will be repeatedly attempting to simplify itself at the

same time the other is attempting to make itself more complex, resulting in a world which is drastically different

than what was intended.

•	 The underlying problem that all of these proposals are trying to address is, "How can we add new objects to the

world, and have them behave in the same time-critical ways that built-in objects can?" We have proposed that

Moving Worlds adopt an extremely simple API that will allow some more useful time-critical behavior. This

would allow new types (e.g., written in Java) to define a complexi fy and s impl i fy method. The scheduler

would not be able to query an object about its actual level of detail, but would have to decide which objects to

change based on general scene heuristics. This is primarily good because it is such a simple interface that there

will be little excuse not to implement the two methods. Anything more complex would probably be ignored, as

have many of the more subtle features of VRML 1.0.

The API described in the following section has not been tested with diverse applications, but is the API that this

prototype system uses. We require the programmer to do more work than any of the above techniques, but believe that

the gains derived from more complete knowledge outweigh the costs.

5.3 The flick class library

Adding a new type of schedulable object to the system is fairly simple. The code overhead for adding time-critical

behavior to the entire visualization system is only about 30 lines of C++ code. There are four steps to adding a new

24 CHAPTER 5. IMPLEMENTATION DESCRIPTION

time-critical primitive tq the system:

•	 subclass (possibly using multiple-inheritance) off an appropriate descendant of FLICKer it_task.

•	 override any of the exeeute_eompute, exeeute_render, and exeeute_rerender methods, if nec

essary. These methods perform, respectively, computation of new data, the rendering ofdata which is dependent

on computation happening in that frame, and the rendering ofdata which is either static or has been cached from

previous frames (thus with no dependencies).

•	 add one or two new FLICKtiming_type's, if either a new class of rendering object or a new class of

computation is being performed. These are used so that different classes of computations can time the amount

of time they require.

•	 modify the cost/benefit functions for the new class (less commonly required).

Since some time-critical objects can contain other time-critical objects (e.g., the rake), it may also be necessary

for the implementor to subclass some objects from FLICKtask_holder, a class which provides for higher-level

groupings of time-critical objects.

5.3.1 FLICKcriLtask

The base time-critical class is FLICKer it_task. This defines a number of important virtual methods which may

be overridden by descendants, but which have good default values.

The most important of these methods are the benefi t, benefi td, and benefi tdd methods, which define

a benefit function and its first and second derivatives. Efficient evaluation of these functions is extremely important

for the overall performance of the scheduler, since they are evaluated extremely often during scheduling. This is the

primary reason why we used sqrt as our benefit function - the more general function pow was too slow, taking up a

large amount of time in system profiling. In the future, we may even use an efficient approximation to sqrt in order

to speed up scheduling further.

The sehedule-points method computes the local maxima of the Benejit(x)/x function and schedules initial

starting points on the passed-in scheduler.

25 5.3. THE FLICK CLASS LIBRARY

The set_importance method allows the user to set a static, weighted importance value for the benefit function,

as described previously.

There are two methods which can be called between frames, reset and restart. The reset method should

be called at every frame interval, to indicate to a task that it should update its internal representations of the data. If

the previously-computed data is invalidated (e.g., a streamline is moving and needs to be recomputed), the res tart

method should be called as well.

Methods which should be overriden by a descendant:

•	 feasible_prims - returns the number of primitive pieces which can be computed in a specified amount of time.

This and the following time-based functions are generally computed using associated FL ICKt iming_types.

•	 time_per....startup - amount of time required before any primitives can be computed.

•	 time_per-compute - amount of time per primitive computed.

•	 time_peuender - amount of time per primitive rendered.
(

"
5.3.2 FLICKrend_criLtask

This class extends FLICKcri t_task so that it accounts for objects with associated rendering costs but negligible

compute cost (e.g., a static piece of geometry). It incorporates a piecewise-cubic hysteresis factor in the benefit function

described previously (once again, we approximate the ideal behavior of the benefit function with something which can

be computed quickly).

When defining a new type of rendering task, the programmer should pass in a FLICKtiming_type, which

determines how long rendering operations take. Additionally, an execute_rerender method must be defined

which actually performs the rendering and updates the render timing estimates.

5.3.3 FLICKcomp_criLtask

This class extends FL I CKcr i t_task so that it accounts for tasks with no rendering requirements, but with substantial

computing requirements (e.g., the scheduling task itself). It keeps track of the number of cached primitive pieces, and

26 CHAP1BR 5. IMPLEMENTATION DESCRIPTION

modifies the benefit function to account for comptuations which can be reused.

When defining a new type of compute task, the programmer must pass in a FLICKtiming_type, which

determines how long startup and computing operations take. Additionally, an execute_compute method must be

defined which actually performs the computing and updates the compute timing estimates.

5.3.4 FLICKcomp_rend_criLtask

This class combines the FLICKrend_cri t_task and the FLIcKcomp_cri t_task classes. Therefore, it is

necessary to write both execute_compute and execute_render methods for this class, and pass in two

FLICKt iming_types. Also, the programmer must write an execute_rerender method, which renders pieces

which have been computed in the current frame. Since the schedule is not guaranteed to be feasible, this method must

be careful not to render any pieces before they have been computed (either by not rendering them at all, or waiting until

each piece is ready). A spinlock may be useful for this purpose, but we simply wait for a shared variable to become

true (shared-memory latency will guarantee that we don't end up in an inconsistent state).

5.4 Architecture-independent multithreading

One of the problems encountered during the implementation of this system was the lack of an architecture-independent

multiprocessing model, similar in purpose the the architecture-independent 3D graphics library od. The Solaris

machines use POSIX-compliant threads, SGI Irix has its own threads library, and HPIUX does not include threads

as part of its standard OS. Therefore, we defined a simple multiprocessing model which transparently adapts to the

number of processors available.

Additionally, on the Solaris machines, our model incorporates Tom Doeppner and Brian Cantrill's threadmon

library, which allows for graphical performance monitoring of multithreading calls. This graphical monitor was very

useful in determining where system bottlenecks were, and helped us to realize that substantial improvement was

possible in several phases of our scheduler.

The FLICKmp_manager class determines how many processors exist on that machine, and creates that number of

5.5. IMPLEMENTATION RESULTS 27

FLICK"""processors, which do not necessarily map to actual physical processors (kernel-level scheduling frustrates

many attempts at closer control). Each of these virtual processors has two methods: start_execute, which

tells that processor to begin executing a function, and wai t_for_done, which blocks the calling process until the

currently-executing function (if any) is finished.

Although this is an fairly simple multiprocessor model, it is sufficient for the types of control required in this

program (building up and executing work queues). Additionally, it enables us to develop our system on the HPs, which

only have a single processor and do not support multithreading (HP does sell multithreading libraries, but these are

non-preemptive).

5.5 Implementation Results

We tested this algorithm on several different systems: a single-processor HP 735 TVRX, a two-processor SGI Onyx

with a Reality Engine 2 graphics accellerator, a single-processor UltraSPARC Creator, and a four-processor Sun

SPARC 10ZX.

Although both the SGI and Solaris systems allow for privileged users to take advantage ofhard real-time scheduling

techniques, dedicating processors to specific tasks, we have initially attempted to use only user-level scheduling

techniques to to run our real-time usability tests. Recently we have begun to experiment with OS-level real-time

functionality, in particular in Solaris, but do not yet have any conclusive reports.

On the SGI Onyx machine, simulating the allocation of 100 milliseconds (one complete processor at 10 frames/second)

for the scheduling phase, we fill 97% of the other three processors, when the task is compute-bound. With 50 mil

liseconds allocated for the scheduling task, the algorithm still manages to fill 92% of the available processor time. The

benefit of the algorithm declines sharply after this point, however. Giving the scheduler 25 milliseconds resulted in

only 65% processor usage, while 15 milliseconds dropped to 32% usage, resulting in less computational time than a

single processor.

NOI.L<mI:JStrG NOILV.LNffWff7eIWI .~ }lff.LeIVH:J 8(;

Chapter 6

Future Work

We intend to perform additional investigations to understand how the scheduling algorithm's behavior degrades under

stress, and modify the search techniques which it uses to cope better with situations involving too much work or too

little time to schedule.
(

Implementing the interleaved version of this algorithm, in which it schedules itself as a time-critical task onto the

work queue, scheduling the next frame while the current frame is being executed, has has raised several interesting

questions, involving feedback problems and how to deal with unexpected user input (the scheduler can't tell when a

user will begin to manipulate a large, complex visualization tool, so will necessarily lag slightly behind in that case).

It is also be extremely important to understand more about human perception in complex, data-intense environments,

in order to generate more realistic benefit functions. As an example, degrading the individual· books in a complex

walk-through of a library would be useful for an architect, but would be an extremely bad for a researcher walking

down the aisle, trying to find a book based on the memory of its color. Similar but far more complicated cases arise

in fluid visualization, where a scientist looking for vortices may require different degradation tactics than a scientist

investigating laminar air flow.

Because the different tools may also change their relative significance to different scientists, it will also be necessary

to work with scientists to determine the actual semantic benefit of each tool when performing varying types of tasks.

Unfortunately, there are no easy answers in this area, and it seems that any good heuristics might require major

29

30 CHAPTER 6. FUTURE WORK

knowledge-modeling efforts, on a user-by-user basis.

Another interesting research area is in dealing with highly-complex time-varying environments. In such cases,

even when we have good heuristics describing how beneficial the current visualization is, we are not able to predict

the benefit of a visualization in the next frame (a feature may arise which did not exist before, for example).

6.1 Acknowledgments

Thanks to Steve Bryson, who provided the impetus to work on time-critical scientific visualization problems, and who

provided invaluable suggestions during the course of this work. John Hughes helped formalize some of the math

involved, and Andries van Dam guided the course of the research. There were many people in the Brown Graphics

Lab who helped with various parts, especially Bob Zeleznik, Kenneth P. Herndon, Matthias Wloka, Sam Trychin, Tim

Miller, and Currier McEwen. Discussions with Tom Doeppner, Pascal van Hentenryck, and Philip Klein also proved

invaluable.

We would also like to thank the sponsors of the Graphics Lab: NASA, NSF, Sun, SGI, HP, Microsoft, and Taco.

I

Bibliography

[BeI95] Gavin Bell. Moving Worlds. http://webspace.sgi.com/moving-worlds/ ,1995.

[BL91] Steve Bryson and Creon Levitt. The Virtual Windtunnel: An Environment for the Exploration of Three-

Dimensional Unsteady Flows. In Visualization '91, pages 17-24, 1991.

[BL94] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations by Work Stealing.

Proceedings ofthe 35thAnnual Symposium on Foundations ofComputerScience (FOCS), pages 356-268,

November 1994. http://www.cs.utexas.edu/users/rdb/FOCS94.ps .gz.

"
[BPP95] Gavin Bell, Anthony Parisi, and Mark Pesce. The Virtual Reality Modeling Language Version 1.0

Specification. http://vrml.wired.com/vrml. tech/vrm110-3 .html,1995.

[DM95] Nathaniel I Durlach and Anne S. Mavor, editors. Virtual Reality: Scientific and Technological Challenges.

National Academy Press, 1995.

[FS93] Thomas A. Funkhouser and Carlo H. Sequin. Adaptive Display Algorithm for Interactive Frame Rates

During Visualization of Complex Virtual Environments. In James T. Kajiya, editor, Computer Graphics

(SIGGRAPH '93 Proceedings), volume 27, pages 247-254, August 1993.

[GD95] Loyd Greenwald and Thomas Dean. Anticipating Computational Demands when Solving Time-Critical

Decision-Making Problems. The Algorithmic Foundations ofRobotics, 1995.

[GJ75] R. Garey and D. Johnson. Complexity Results for MultiprocessorScheduling Under Resource Constraints.

SlAM JoumalofComputing,1975.

31

32 BIBLIOGRAPHY

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractibility: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, 1979.

[HoI92] Richard L. Holloway. Viper: A Quasi-Real-Time Virtual-Environment Application. Technical Report

TR92-004, University of North Carolina, Chapel Hill, 1992.

[LLS+91] Jane W. S. Liu, Kwei-Jay Lin, Wei-Kuan Shih, Albert Chuang shi Yu, Jen-Yao Chung, and Wei Zhao.

Algorithms for Scheduling Imprecise Computations. IEEE Computer, pages 58-68, May 1991.

[Mok83]	 A. K. Mok. Fundamental Design Problems ofDistributed Systems for the Hard Real-TIme Environment.

PhD thesis, Massachusetts Institute of Technology, 1983.

[RH94] John Rohlf and James Helman. IRIS Performer: A High Performance Multiprocessing Toolkit for Real

Time 3D Graphics. In Andrew Glassner, editor, Proceedings of SIGGRAPH '94 (Orlando, Florida,

July 24-29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages 381-395. ACM

SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[RSZ89] Krithi Ramamithram, John A. Stankovic, and Wei Zhang. Distributed Scheduling of Tasks with Deadlines

and Resource Requirements. IEEE Transactions on Computers, pages 1110-1123, August 1989.

[SSNB95] John A. Stankovic, Marco Spuri, Marco Di Natale, and Giorgio Buttazzo. Implications of Clas

sical Scheduling Results for Real-Time Systems. IEEE Computing, pages 16--25, June 1995.

ftp.cs.umass.edu,/pub/ccs/spring/impl_sch_rts.ps.

[ZCW+91] Robert C. Zeleznik, D. Brookshire Conner, Matthias M. Wloka, Daniel G. Aliaga, Nathan T. Huang,

Philip M. Hubbard, Brian Knep, Henry Kaufman, John F. Hughes, and Andries van Dam. An object

oriented framework for the integration of interactive animation techniques. Computer Graphics (SIG

GRAPH '91 Proceedings), 25(4):105-112, July 1991.

